

Research In Motion

09

C10 Audio And Video

Playback
For BlackBerry SmartPhones

Andre Fabris

2 | P a g e

Contents

C10 Audio And Video Playback ... 3

Audio Playback .. 4

Manager Class ... 4

Player Class .. 5

Playing Audio ... 6

PlayerListener Interface .. 7

Audio Player Sample ... 8

Video Playback .. 13

Conclusion ... 17

Links ... 18

3 | P a g e

C10 Audio And Video Playback

This tutorial will show you how to play audio and video files in your application. I will show you how

to use the Mobile Media API (MMAPI), also known as JSR 135 on BlackBerry SmartPhones.

I will guide you through the MMAPI, then show you on example on how to play simple tunes, how to

play music from file bundled with the application, and how to play the file from your SD card.

I will also tell you which files are supported and how to implement PlayerListener to track events like

when the song has finished.

Then we will cover the video playback. I will show you how to play video in full screen and non-full

screen modes.

4 | P a g e

Audio Playback

To play audio on BlackBerry SmartPhones, we will use classes and interfaces from the

javax.microedition.media package. This package is fully compatible with the MMAPI (JSR 135) and if

you already have knowledge on how to use it, you can start using it straight away.

Let’s start with an overview of the Manager class.

Manager Class

If you did not notice already there are two classes called Manager in the BlackBerry APIs. The first

class is called javax.microedition.media.Manager and the other one is net.rim.device.api.ui.Manager.

The first one is the one used for media handling and the latter one is used for managing the UI

components of the screen. It is worth paying attention when importing packages.

The Manager class was introduced in version 4.0.0 of BlackBerry JDE. We need the Manager to get

access to system resources such as the Player for multimedia processing.

So first thing the Manager does is create a Player which we use to play our media files.

But it can also be used to query a Player, what controls it supports, i.e. volume controls as well as

supported content types and protocols. It can be also used to play single tones.

Content Types and Protocols

Content types indentify the type of media. They are also registered as MIME types.

Common audio content types are:

Wave audio files: audio/x-wav, usually files with extension .wav

MP3 audio files: audio/mpeg, usually files with extension .mp3

MIDI audio files: audio/midi, usually files with extension .midi

To find our which protocols specific content types support on the device we can use:

public static String[] getSupportedProtocols(String content_type).

5 | P a g e

You can also use:

public static String[] getSupportedContentTypes(String protocol),

to find out which content types specific protocols support.

Playing Single Tones

To play a single tone you can use:

public static void playTone(int note, int duration, int volume)
throws MediaException

where:

• SEMITONE_CONST = 17.31234049066755 = 1/(ln(2^(1/12)))

• note = ln(freq/8.176)*SEMITONE_CONST

• The musical note A = MIDI note 69 (0x45) = 440 Hz

• duration is note duration in milliseconds, and

• volume is in range from 0 to 100.

We can use ToneControl constants to play a single note to make our life a little bit easier:

try {
 Manager.playTone(ToneControl.C4, 1000, 100);
} catch (MediaException e) { }

This will play middle C note for 1 second at full volume.

Creating a Player

To create a player which will play our audio files we use the following:

Player Manager.createPlayer(String url);

Where url is the location of the audio file. It can be bundled with the application or located on the

device’s memory or SD card.

Player Class

Player has a life cycle. It has 5 states: unrealized, realized, prefetched, started and closed.

Once you create a player it is in the unrealized state. Once it is created it tries to connect to the

source of the audio. When the system finds the source (which can be time consuming – especially

when using the network) it moves the player in realized state.

6 | P a g e

The Prefetched state is when the player is ready to play audio. From

start the player and it enters the

end it will move back to the prefetched state.

It is important to know you cannot call some methods in some states.

It makes no sense for example to call method start(); to start playback

unrealized, realized or closed state. Figure 1 shows all the state

methods which we can call to get from one state into another.

Playing Audio

To play audio in your application you might first want to cho

background instrumental music, MIDI is the best format as the file sizes are very small, typically 10

20 kb, and the sound quality is very good. However if you want to have vocals, or just voice, or any

other sound effects, such as thunder

Mp3 files are bigger, but you can

Here is a code sample which opens a midi file called test.mid:

import java.io.InputStream;
import javax.microedition.media.*;
import javax.microedition.media.control.*;
.

.

.

public Player myPlayer;
public VolumeControl vc;
.

.

.

ched state is when the player is ready to play audio. From the prefetched state we can

the started state. If we stop the playback or if the

end it will move back to the prefetched state. If we do not need it anymore we can close it.

It is important to know you cannot call some methods in some states.

It makes no sense for example to call method start(); to start playback when

unrealized, realized or closed state. Figure 1 shows all the states a player can be in, and all the

we can call to get from one state into another.

Figure 1

To play audio in your application you might first want to choose which format to use. For

mental music, MIDI is the best format as the file sizes are very small, typically 10

20 kb, and the sound quality is very good. However if you want to have vocals, or just voice, or any

sound effects, such as thunder or explosions, you will probably choose mp3.

Mp3 files are bigger, but you can reduce sample rates, to create smaller files, at cost of quality

code sample which opens a midi file called test.mid:

java.io.InputStream;
javax.microedition.media.*;
javax.microedition.media.control.*;

;

prefetched state we can

the player reaches the

we can close it.

when the player is in

s a player can be in, and all the

ose which format to use. For

mental music, MIDI is the best format as the file sizes are very small, typically 10 –

20 kb, and the sound quality is very good. However if you want to have vocals, or just voice, or any

se mp3.

, at cost of quality.

7 | P a g e

try {
 InputStream is = getClass().getResourceAsStream("/music/test.mid");
 myPlayer = Manager.createPlayer(is, "audio/midi");
 myPlayer.addPlayerListener(this);
 myPlayer.realize();
 myPlayer.prefetch();
 vc = (VolumeControl) myPlayer.getControl("VolumeControl");
 vc.setLevel(50);
} catch (Exception e) { }

In this typical sample, we have a file test.mid bundled with the application. The application gets

access to that file as a stream.

We pass that stream and content type (audio/midi) to the createPlayer method of the Manager

class.

The next line is not needed but it is quite useful. It creates a listener which will notify our application

of player event – such as if player reached the end of media.

After creating the player we need to move it into the realised and/or prefetched state, so it will be

ready for playback.

If the device supports it we can get a volumeControl for the player and set a level.

It is a good practice to monitor the states of volume keys on the BlackBerry SmartPhone and

increase and decrease the volume in your application.

To start or stop the playback we will use:

myPlayer.start(); and myPlayer.stop(); methods.

To close the player you might want to use a code like this:

try {
 myPlayer.removePlayerListener(this);
 myPlayer.stop();
 myPlayer.deallocate();
 myPlayer.close();
 myPlayer = null;
} catch (Exception e) { }

Removing PlayerListener is needed if you used one. We move through the states of the player

backwards - we stop it, deallocate it, and then we close it.

PlayerListener Interface

If your class implements this interface, it needs to overwrite the following method:

public void playerUpdate(Player player, String event, Object eventData)

8 | P a g e

This interface will notify your application as to which player caused the event, which event occurred,

and will pass any associated data to the event.

Interesting events include:

• END_OF_MEDIA

• ERROR

• CLOSED

For the full list you can check the relevant API documents. The way you handle (or ignore) these

events is up to you.

For example if you want to play one song after another, event END_OF_MEDIA will trigger a call to

this method and then you might want to close the player and create and start another one for the

next song.

Audio Player Sample

To add midi file to your application right click on your src folder and select Import (Figure 2). This is

the way you add any type of resource files to your projects.

On the (Figure 3) you need to choose which type of resource you want to add. Select File System,

and then browse to the location of the MIDI. You will need to check the box (Figure 4) next to the file

name and then click Finish.

The full listing of the Audio Player sample is very simple and uses all the methods I described above.

It lists all media types and plays a MIDI file bundled within the application.

9 | P a g e

Figure 2

10 | P a g e

Figure 3

11 | P a g e

Figure 4

12 | P a g e

import java.io.InputStream;
import javax.microedition.media.*;
import javax.microedition.media.Manager;
import javax.microedition.media.control.VolumeControl;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.MainScreen;

public class Audio extends UiApplication {
 public Player myPlayer;
 public VolumeControl vc;

 public static void main(String[] args)
 {
 Audio theApp = new Audio();
 theApp.enterEventDispatcher();
 }

 private Audio()
 {
 pushScreen(new AudioScreen());
 try {
 InputStream is =
getClass().getResourceAsStream("test.mid");
 myPlayer = Manager.createPlayer(is, "audio/midi");
 myPlayer.realize();
 myPlayer.prefetch();
 vc = (VolumeControl)
myPlayer.getControl("VolumeControl");
 vc.setLevel(50);
 myPlayer.start();
 } catch (Exception e) {
 System.out.println(e.toString());
 }
 }
}

final class AudioScreen extends MainScreen
{
 AudioScreen()
 {
 LabelField title = new LabelField("Audio Playback Demo" ,
LabelField.ELLIPSIS | LabelField.USE_ALL_WIDTH);
 setTitle(title);
 add(new RichTextField("Supported types on this device"
,Field.NON_FOCUSABLE));
 String types[] = Manager.getSupportedContentTypes(null);
 for (int i = 0; i < types.length; i++) {
 add(new LabelField(types[i] ,Field.FOCUSABLE));
 }
 }
}

13 | P a g e

Video Playback

To play video in your application we

Usually the videos are much larger so you will not include them with your application, so in this

sample I will show you how to play video from the SD Card.

The previous sample listed all the supported audio a

video types on 4.6.1 device.

Mobile devices have small screen

high resolution, with a frame rate of 100 frames per second, and surround sound attached to it. If

you have such a file I suggest you optimize it for the mobile devices. There are many convertors

available on the internet, and some of them are even free.

try
{
 player = Manager.createPlayer
 player.realize();
 videoControl = (VideoControl)player.getControl(
 videoControl.initDisplayMode(VideoControl.
 "net.rim.device.api.ui.Field"
 videoControl.setVisible(
 player.start();
}

catch (Exception e){ }
In this sample we create a player, and then from that player we get

create a field. At the end we make that field visible.

To play video in your application we will use the same Manager and Player classes.

Usually the videos are much larger so you will not include them with your application, so in this

sample I will show you how to play video from the SD Card.

sample listed all the supported audio and video types. Figure 5 show

Figure 5

Mobile devices have small screens and limited memory. There is no need to have huge video files in

high resolution, with a frame rate of 100 frames per second, and surround sound attached to it. If

est you optimize it for the mobile devices. There are many convertors

internet, and some of them are even free.

createPlayer("file:///SDCard/Trailers/Trailer.avi"

videoControl = (VideoControl)player.getControl("VideoControl"
videoControl.initDisplayMode(VideoControl.USE_GUI_PRIMITIVE

"net.rim.device.api.ui.Field");
videoControl.setVisible(true);

){ }
In this sample we create a player, and then from that player we get VideoControl

field. At the end we make that field visible.

will use the same Manager and Player classes.

Usually the videos are much larger so you will not include them with your application, so in this

shows the supported

here is no need to have huge video files in

high resolution, with a frame rate of 100 frames per second, and surround sound attached to it. If

est you optimize it for the mobile devices. There are many convertors

"file:///SDCard/Trailers/Trailer.avi");

"VideoControl");
USE_GUI_PRIMITIVE,

VideoControl, which we use to

14 | P a g e

This sample will create a full screen video, which

screen.

try {
 player = Manager.createPlayer
 player.realize();
 vc = (VideoControl) player
 vc.initDisplayMode(VideoControl.
 GUIControl gc;
 if ((gc = (GUIControl)
 add((Field)gc.initDisplayMode(GUIControl.
 }
 vc.setDisplayLocation(15, 200);
 vc.setDisplaySize(200, 200);
 vc.setVisible(true);
 player.start();
} catch (Exception e) { }

To run this sample in the simulator you will need to

change SD Card. Select Add Directory and then browse to the folder on your PC which contains the

video file you want to play (Figure

Figure 7 shows how the application

used to create it.

ate a full screen video, which will be drawn over all the other components on the

createPlayer("file:///SDCard/vid.3GP");

player.getControl("VideoControl");
.initDisplayMode(VideoControl.USE_DIRECT_VIDEO, this);

((gc = (GUIControl)player.getControl("GUIControl")) != null
add((Field)gc.initDisplayMode(GUIControl.USE_GUI_PRIMITIVE

.setDisplayLocation(15, 200);

.setDisplaySize(200, 200);

To run this sample in the simulator you will need to “load” an SD Card. In the Simulate menu

change SD Card. Select Add Directory and then browse to the folder on your PC which contains the

Figure 6).

Figure 6

how the application looks in the simulator. Following this is the entire sample code

drawn over all the other components on the

null) {
IMITIVE, null));

Simulate menu, select

change SD Card. Select Add Directory and then browse to the folder on your PC which contains the

this is the entire sample code

15 | P a g e

import javax.microedition.media.Manager;
import javax.microedition.media.Player;
import javax.microedition.media.control.*;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.container.MainScreen;
import net.rim.device.api.ui.component.*;

class Video extends UiApplication
 public static void main(String[] args) {
 Video theApp =
 theApp.enterEventDispatcher();
 }
 private Video() {
 pushScreen(new
 }
}

final class VideoScreen extends
 private Player player
 private VideoControl

 VideoScreen() {
 try {
 player = Manager.
 player.realize();
 vc = (VideoControl)
 vc.initDisplayMode(VideoControl.
 GUIControl gc;
 if ((gc = (GUIControl)
 add((Field) gc.initDisplayMode(GUIControl.
 null));
 vc.setDisplayLocation(15, 100);
 vc.setDisplaySize(200, 200);
 vc.setVisible(
 player.start();

Figure 7

javax.microedition.media.Manager;
javax.microedition.media.Player;
javax.microedition.media.control.*;
net.rim.device.api.ui.*;
net.rim.device.api.ui.container.MainScreen;
net.rim.device.api.ui.component.*;

UiApplication {
main(String[] args) {

Video theApp = new Video();
theApp.enterEventDispatcher();

new VideoScreen());

extends MainScreen {
player;

VideoControl vc;

= Manager.createPlayer("file:///SDCard/vid.3GP"
.realize();

= (VideoControl) player.getControl("VideoControl");
.initDisplayMode(VideoControl.USE_DIRECT_VIDEO, this

GUIControl gc;
((gc = (GUIControl) player.getControl("GUIControl")) !=

add((Field) gc.initDisplayMode(GUIControl.USE_GUI_PRIMITIVE
));

.setDisplayLocation(15, 100);

.setDisplaySize(200, 200);

.setVisible(true);
.start();

"file:///SDCard/vid.3GP");

);
this);

)) != null)
USE_GUI_PRIMITIVE,

16 | P a g e

 } catch (Exception e) { }
 LabelField title = new LabelField("Video Playback Sample",
 LabelField.ELLIPSIS | LabelField.USE_ALL_WIDTH);
 setTitle(title);
 add(new RichTextField("Playing video in window", Field.NON_FOCUSABLE));
 }
}

There are a couple of things we need to explain. The method setDisplayLocation sets where you

want the video to appear (those are the coordinates of the top left corner of the video).

We also set the desired size of the video with the sedDisplaySize method. All the values are in pixels.

The video size will be automatically scaled to the desired size.

This field does not act like a normal Field in a Manager, as the Manager has no control over its

placement.

17 | P a g e

Conclusion

In this tutorial we have seen how easy it is to play various audio and video files within your

application.

We did not touch the topic of streaming audio or video from the Internet as it is the topic of another

tutorial.

We have described the basic functions of the Manager and Player classes as well as the

PlayerListener and Video Control Interfaces.

There are more topics on multimedia that you may want to investigate. We suggest you follow the

links below to learn more.

18 | P a g e

Links

BlackBerry Developers Web Site:

 http://na.blackberry.com/eng/developers/

Developer Video Library:

• Playing Audio in Your Application

http://www.blackberry.com/DevMediaLibrary/view.do?name=audioplayback

• Playing Video in Your Application

 http://www.blackberry.com/DevMediaLibrary/view.do?name=videoplaybacka

Developer Labs:

• Multimedia Labs

http://na.blackberry.com/eng/developers/resources/developer_labs.jsp#tab_tab_jde

Documentation:

• Documentation for developers can be found here:

http://na.blackberry.com/eng/support/docs/developers/?userType=21

Knowledge Base Articles:

• How To – Play audio in application

http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/348583/80033

2/1089414/How_To_-_Play_audio_in_an_application.html?nodeid=1168553&vernum=0

• How to – Play video within a BlackBerry SmartPhone application

http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/348583/80033

2/1089414/How_To_-

_Play_video_within_a_BlackBerry_smartphone_application.html?nodeid=1383173&vernum

=0

Forums:

• The link to BlackBerry Development Forums:

http://supportforums.blackberry.com/rim/?category.id=BlackBerryDevelopment

Sample Code:

• There is a sample application located in your JDE folder i.e.:

C:\Program Files\Research In Motion\BlackBerry JDE

4.6.0\samples\com\rim\samples\device\embeddedmediademo

http://na.blackberry.com/eng/developers/
http://www.blackberry.com/DevMediaLibrary/view.do?name=audioplayback
http://www.blackberry.com/DevMediaLibrary/view.do?name=java
http://www.blackberry.com/DevMediaLibrary/view.do?name=videoplayback
http://na.blackberry.com/eng/developers/resources/developer_labs.jsp#tab_tab_jde
http://na.blackberry.com/eng/support/docs/developers/?userType=21
http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/348583/800332/1089414/How_To_-_Play_audio_in_an_application.html?nodeid=1168553&vernum=0
http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/348583/800332/1089414/How_To_-_Play_audio_in_an_application.html?nodeid=1168553&vernum=0
http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/348583/800332/1089414/How_To_-_Play_video_within_a_BlackBerry_smartphone_application.html?nodeid=1383173&vernum=0
http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/348583/800332/1089414/How_To_-_Play_video_within_a_BlackBerry_smartphone_application.html?nodeid=1383173&vernum=0
http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/348583/800332/1089414/How_To_-_Play_video_within_a_BlackBerry_smartphone_application.html?nodeid=1383173&vernum=0
http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/348583/800332/1089414/How_To_-_Play_video_within_a_BlackBerry_smartphone_application.html?nodeid=1383173&vernum=0
http://supportforums.blackberry.com/rim/?category.id=BlackBerryDevelopment

	Audio Playback
	Manager Class
	Player Class
	Playing Audio
	PlayerListener Interface
	Audio Player Sample

	Video Playback
	Conclusion
	Links

