

Research In Motion

09

A50 How to Debug and

Optimize
On BlackBerry SmartPhones

Andre Fabris

2 | P a g e

Contents

A50 – How to Debug and Optimize ... 3

Debugging Tools .. 4

Console Window ... 6

Variables & Debug Window .. 7

BlackBerry Memory Statistics View ... 9

BlackBerry Objects View ... 12

BlackBerry Profiler View .. 14

Garbage Collection .. 16

Memory Leaks ... 17

Deadlocks .. 18

Debugging on the Device .. 19

Setting up the Simulator ... 21

Event Log ... 23

Links ... 25

3 | P a g e

A50 – How to Debug and Optimize

Writing applications for the BlackBerry platform is easy.

Every now and then the application will not do what we intended. I will show you how to debug the

application in Eclipse, as well as how to monitor and optimize it for the best user experience.

This tutorial will cover debugging and profiling, and the available tools in Eclipse.

4 | P a g e

Debugging Tools

Debugging is finding errors and then troubleshooting them in your application. There are number of

different ways to debug your application. You can run the application on the simulator and you can

run it on the device.

Most of the time you will debug your application on the simulator as it gives you better tools to find

the issues. Sometimes you will need to debug on the device as some applications do not run in the

simulator (for example, making network connections through a carrier WAP gateway).

There are two ways to run your application in Eclipse: Click on Run / Run option (Ctrl – F11) or Run /

Debug (F11). To debug your application you will need to use the latter one.

The Run / Debug command takes longer to launch the simulator but gives you access to a number of

tools which I will describe below.

Figure 1

5 | P a g e

Eclipse allows you to arrange your workspace in a number of different ways. On Figure 1 we can see

a typical edit layout. You will notice in the top right corner that the Java button is pressed. Next to it

is Debug button which will switch the view into the debug view.

Figure 2

If these buttons are not available you can find it in Window menu and then Show View / Debug. In

Figure 2 we can see a typical debug layout. The Debug tab (top left) shows us the running threads.

If the simulator is not running most of the windows here will be empty.

Just below the debug layout is our source code.

Here we can add breakpoints. We can add them before we run the simulator or while we are

running it. The simulator will stop execution of our application when it hits the breakpoint.

Below the source code window is the Console window. Here, you will see the output from the

Virtual Machine as well as the messages from your own application.

In the top right corner we can see the list and values of our variables, as well as a list of breakpoints.

I will show you how to use these windows in more detail.

6 | P a g e

Console Window

Apart from giving you a lot of useful messages from the JVM, we can add our own custom messages.

If we use for example System.out.println(“message”); or

 System.err.println(x); the text message or value of x will be displayed in console window.

It is good practice to use try-catch blocks to catch exceptions, and then print as much information as

you need:

 try {

 ...

 }

 catch (Exception e) {

 System.out.println("Error 123");

 System.out.println(e.toString());

 e.printStackTrace();

 }

This will print your custom error number, exception name and a Stack if available, which you might

find very useful when debugging.

It is also good practice to add this sort of message to the event log which I will cover later in this

tutorial.

7 | P a g e

Variables & Debug Window

Once the application hits the breakpoint and stops we can have a look at the values of the local

variables.

Figure 3

The Variables window will show the values of all local variables at the breakpoint (Figure 3).

Figure 4

8 | P a g e

On the top right part of Debug window there are control icons (Figure 4). They allow you to resume

your application (F8), step Into (F5), step over (F6) your code. This can be very useful as you can see

step by step what is going on in your application.

In the Debug window you can also see the running threads, pause and resume the application

manually, even setup and apply step filters.

9 | P a g e

BlackBerry Memory Statistics View

To see the BlackBerry Memory Statistics view, as well as the Objects and Profiler View, click on

Window / Show View / Other / expand BlackBerry and set the View you want. In this case it is the

Memory Statistics View (Figure 5).

Figure 5

To use it, set up two breakpoints. When the application stops at the first breakpoint, click on the

refresh button on the BlackBerry Memory Statistics View (Figure 6). Press Save and you can save the

data in .csv format.

What we really want is to take a snapshot so we can compare it later.

10 | P a g e

Figure 6

Go to the next breakpoint (F8) and then when the application stops, refresh the BlackBerry Memory

Statistics View again. Press the compare button, and the system will show you the changes (Figure

7).

As you can see in our sample, we used some object handles, but we used quite a lot of RAM. It is

worth investigating what has caused this. In our case we loaded some bitmap images in our

application.

11 | P a g e

Figure 7

12 | P a g e

BlackBerry Objects View

You will need to add breakpoints to your code. Once the application hits the breakpoint, refresh the

BlackBerry Objects View (Figure 8).

Figure 8

The object view shows you ALL objects. So you will not see only the objects from your application,

you will be able to see all objects from all running applications.

The Save option will save the data in .csv format. Snapshot is to be used to compare the objects

between two breakpoints. This is very useful to find memory leaks.

You can also run Garbage Collection to see whether your object references are properly de-

allocated.

You can also use the Filter to limit the Object View to your process. In this case our process number

is 121 – the number in the brackets. After clicking on Filter (Figure 9) enter process number and

press OK. You will have to refresh the main window to see the update.

13 | P a g e

Figure 9

As you can see now we have the list of all the objects in our application and we can monitor and

analyze the memory usage (Figure 10).

Figure 10

14 | P a g e

BlackBerry Profiler View

The Profiler is used to display information about where your application spends its time (Figure 11).

The summary view displays percentage spent in Idle, Code Execution and Garbage Collection stages.

Figure 11

The Method view (Figure 12) will give you a detailed view of all running packages. Under options

you can choose what to profile. Default settings are in ticks (time) but you can also view size and

number of objects, etc.

15 | P a g e

Figure 12

One of the most common mistakes developers make is creating too many String objects.

String test = "a";

test = "b";

test += "c";

System.out.println(test.concat("d"));

Most of you know that the above code does have one variable test but we did not create only one

String object.

Try to run the profiler to see how many String objects this code generates. You might be surprised.

16 | P a g e

Garbage Collection

BlackBerry is a purely Java based platform and it implements a system to periodically free its

memory and resources called Garbage Collection (GC).

The idea is quite simple. All the objects which do not have a reference remain in memory until a GC

runs and frees that memory for us.

So if we create a String object String test = “some text”; it will occupy some space in the memory. If

we do not need that object, we can say test = null; however, the memory will still be occupied with

“some text”. Only when a GC runs will that space in memory be freed.

There is a way to call GC to run manually, and it might seem like a good idea. However, on

BlackBerry, it is highly recommended not to call GC manually, except in special cases.

When GC on BlackBerry runs nothing else runs. Nothing. You can see an hourglass on your screen.

That hourglass only appears when GC is running.

GC type Time

RAM only 0.5 sec

Flash + RAM (Full) 1 sec

Persistent 10 sec

Emergency 20+ sec

Thorough 25 – 30 sec

Table 1

In Table 1 we can see different GC types and the approximate time it takes for them to run on the

device. As you can see, if the system runs any other GC than RAM or Full, it will have a significant

impact on the user experience.

Even the very quick GC types will affect some applications that require fast responses like arcade

games for example.

The BlackBerry heuristics monitor, checks for available free memory and runs GC as needed, and

most of the time it runs quickly and not very often.

We need to keep in mind that other applications which run in the background can affect our

application and our application can affect others.

Therefore it is important to reduce memory usage and GC usage.

17 | P a g e

Memory Leaks

Memory Leaks are created when we maintain a reference to the object which is not needed. Even if

we design code which deletes these references we might still have a reference in the system that

still prevents that object from being deleted.

Memory leaks can happen anywhere in the code but we can usually find them in our

• Data Structure,

• Local Variables,

• Runtime Store and

• Listeners

They are not easy to detect, but we can look for symptoms: Hourglass appears very often as the

device is trying to do garbage collection. Emails will start being deleted. When the device is running

out of memory it will try to notify all applications that use the low memory manager and ask them to

free some space.

The email client will then delete some messages to try to create space.

We can also see the number of free object handles if you go to Options / Status on your device. You

will see the File Free number. If the number is low it may indicate a memory leak.

If you are finding it difficult to pinpoint the memory leak in your application, try to make it worse.

The more data the application uses, the more it will leak and it should be easier to detect.

18 | P a g e

Deadlocks

Deadlocks happen if you have two or more threads waiting for each other, and therefore the

application gets blocked forever. The JVM will detect that the application is not responsive and will

terminate it after some time.

On the BlackBerry it is quite easy to detect and prevent deadlocks.

Figure 13

Click on Run in the Menu and select Debug configurations. Under the Debugging tab (Figure 13) you

can check the box named ‘Interrupt debugger on potential deadlock’.

If the simulator detects a deadlock or a potential deadlock it will stop the execution of the

application and will print the details in the Console window.

19 | P a g e

Debugging on the Device

It is also possible to debug your application on the device. Simulators emulate the physical device

quite well but some functions need to be tested on the real device under real world conditions.

Figure 14

Under Run / Debug Configurations you can click on BlackBerry Device and add new configuration.

There you can choose to attach the debugger to the specific device. After selecting the device and

clicking on the Debug window you might be asked for the device password assuming you have one

set.

20 | P a g e

Figure 15

You will probably get the message that one or more .debug files are missing (Figure 15).

The reason this might happen is that the software version on your device does not match the

software version of your simulator. You can download the right simulator on our Developer

Download web site:

https://www.blackberry.com/Downloads/browseSoftware.do;jsessionid=CJsgqMfoukmF9f3r

zxLShA**

If the simulator is not available yet for your version of device software then you can upgrade or

downgrade the software on your device to a version that matches one of the simulator versions.

You can also ignore the message, just click on ‘Don’t ask this again’ button. Some of the debugging

features will not work, for example getting stack traces, but most of the features described above

will still work.

https://www.blackberry.com/Downloads/browseSoftware.do;jsessionid=CJsgqMfoukmF9f3rzxLShA**
https://www.blackberry.com/Downloads/browseSoftware.do;jsessionid=CJsgqMfoukmF9f3rzxLShA**

21 | P a g e

Setting up the Simulator

If you want to set up the simulator to work under specific conditions, or simulate network /file

connectivity (MDS-CS, SD card, etc.) you need to change the Simulator preferences (Figure 16).

Figure 16

Here is a brief overview of some of the options:

Name Description

Launch MDS-CS To be used when needed to simulate MDS_CS Internet connection

Device Which device to use in the simulator

PIN Change device’s PIN number

Automatically use default

values for all prompts

Skips through prompts which usually appear when you first switch

on the device

System and Keyboard Locale If you want to test i18n

Interrupt on potential Helps detecting deadlocks

22 | P a g e

deadlock

Reset file system and NVRAM Clears file system and NVRAM

SD Card options Various options to simulate whether SD card inserted, ejected etc.

Network registration Skip network registration emulation

Phone, IMEI and other

numbers

Specify emulator phone and other numbers

Ports USB cable connected – Simulates connection to the PC

Disable backlight shutoff Quite a useful function

Display the LCD only Hides the keyboard part of the simulator

You can save these configurations and use them when needed.

23 | P a g e

Event Log

The Event log is the log of system events and we can write to it using the available APIs. It is a useful

tool to debug your application. You can access it on the device or copy it to your PC using the

application called javaloader.

To access the event log on the device (and on the simulator), from the home screen, hold down the

Alt key and while holding type lglg. You will then see on your display a list of all logged events (Figure

17).

Figure 17

If you press enter you can see more details about every item in the log (Figure 18).

24 | P a g e

Figure 18

To download the event log from the device to the PC type in the command prompt:

 javaloader –u eventlog log.txt

The API which allows your application to write to the event log is:

net.rim.device.api.system.EventLogger

Examples:

// Register application for event logging.

 EventLogger.register(0x9c805919833654d6L, SampleApp);

 // Set minimum logging level.

 EventLogger.setMinimumLEvel(EventLogger.INFORMATION);

 // Log a numeric event.

 EventLogger.logEvent(0x9c805919833654d6L, 12, EventLogger.INFORMATION);

 // Log a String

 EventLogger.logEvent(GUID, yourString.getBytes(), level);

For more information on how to use EventLogger please look at the BlackBerry Java API Reference.

25 | P a g e

Links

BlackBerry Developers Web Site:

 http://na.blackberry.com/eng/developers/

Developer Video Library:

http://na.blackberry.com/eng/developers/resources/videolibrary.jsp

Documentation:

http://na.blackberry.com/eng/support/docs/developers/?userType=21

Knowledge Base Articles:

http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/348583/custo

mview.html?func=ll&objId=348583

Forums:

http://supportforums.blackberry.com/rim/?category.id=BlackBerryDevelopment

http://na.blackberry.com/eng/developers/
http://na.blackberry.com/eng/developers/resources/videolibrary.jsp
http://na.blackberry.com/eng/support/docs/developers/?userType=21
http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/348583/customview.html?func=ll&objId=348583
http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/348583/customview.html?func=ll&objId=348583
http://supportforums.blackberry.com/rim/?category.id=BlackBerryDevelopment

	A50 – How to Debug and Optimize
	Debugging Tools
	Console Window
	Variables & Debug Window
	BlackBerry Memory Statistics View
	BlackBerry Objects View
	BlackBerry Profiler View

	Garbage Collection
	Memory Leaks
	Deadlocks
	Debugging on the Device
	Setting up the Simulator
	Event Log
	Links

