Research In Motion

A50 How to Debug and
Optimize

On BlackBerry SmartPhones

Andre Fabris

2|Page

Contents
A50 — How t0 DebUg and Optimizecceccuiiiiieiiiie ettt et sre e e e e arre e s are e e e s are e e enareeas 3
DL oYUT =4 o e Yo 3SR 4
CONSOIE WINTGOW ettt ettt et s e st e st e e sar e e s b e e e b seeesabe e e beeesneeesmseesaneeesnneesnneas 6
Variables & DebUZ WINAOWeuiiiiiiie et e e e e e e et e e e e e e e e e s enbere e e e e e eesnnsreeeeens 7
BlackBerry Memory STatistiCs VIEW.......uui ittt ettt e e sab e e e saaae e e e naa e e e s nraeeean 9
BlIaCkBerry ODJECES VIEW .cc.ueiiiiciiieecciiee ettt ee ettt s ettt e e st e e sae e e et ae e e et ba e e e enabaeeeenstaeeesnseeesennsenas 12
2] Yol =TT YA o o 1 [T A T ST 14
(G- 1 o T <{=J @o] 1 1= u o ISR 16
VLT VoY oY A =Y | SR 17
DT o | (o ol &P TP U STP PR POPRT 18
DeEbUEZEING ON ThE DEVICEveiiiciieee ettt ettt eetee e s et te e e e e s be e e e esabeeeeestaeeesnseeeeenees 19
Setting UP the SIMUIGLON ...eviiiiiie e e e e s eare e e e snbae e e e st eeeesraeeesnnsaeeas 21
AT o) o o= PP PPPPPPPPPPPPPPP 23
LIRS ettt ettt b e bt e h e h e sh et et e a et et e e bt e e bt e b e e be e bt e ebeeeheesheeeaeeeateeateeateeateeeane 25

227 *2:BlackBerry.

3|Page

A50 - How to Debug and Optimize

Writing applications for the BlackBerry platform is easy.

Every now and then the application will not do what we intended. | will show you how to debug the
application in Eclipse, as well as how to monitor and optimize it for the best user experience.

This tutorial will cover debugging and profiling, and the available tools in Eclipse.

BZA *2zBlackBerry.

4|Page

Debugging Tools

Debugging is finding errors and then troubleshooting them in your application. There are number of
different ways to debug your application. You can run the application on the simulator and you can
run it on the device.

Most of the time you will debug your application on the simulator as it gives you better tools to find
the issues. Sometimes you will need to debug on the device as some applications do not run in the
simulator (for example, making network connections through a carrier WAP gateway).

There are two ways to run your application in Eclipse: Click on Run / Run option (Ctrl — F11) or Run /
Debug (F11). To debug your application you will need to use the latter one.

The Run / Debug command takes longer to launch the simulator but gives you access to a number of
tools which | will describe below.

& Java- Debugfsrcicomfrimfsamplesfdevicefembeddedmediademo/EmbeddedMediaDemo.java - Eclipse SDK i Z
Fle Edit Source Refactor Mavigste Search Project Run BlackBerry Window Help
Iy HB-0-Q EHG @SS F : @ - & %5 Debug | &’ Java |
[Packag 22 T Hierarch = O [J) EmbeddedMediaDemajava 2 = BB TaskList 53 =7
BE~ £ g9 =E- B 7
prmp setTitle ("Embedded Media Demo™):
& Debug X X ; Fird: » ALK
_statusField = new RichTextField("Loading media, please wai a2l
add (_statusField): =% Uncategorized

Uikpplicarion. getUidpplication() .invokeLater (new Runnable ()
{

= public void runi)
{
2 initializeNMedia();
Jf If initialization was successful...
if (_wideoField != null)
¢ G= Outine £ =0
addFields(): -
) e e w §)
else # comrim samples. device & |
¢ #-“= import declarations

_statusField.setText ("Error: Could not load med cHC E"‘;-'ddeMGﬁGDWD
} C @7 main{Sing(])
8 EmbeddedMedisl

=G EmbeddedMediaSeieer

) 8 _player : Plaper
e _volumneControl
Jrn Fem o _stalusField Rick
* Method to add UI fields to the main screen. Only called if ¥ [® _eontioButton : Blw
<] > <] >
[Problems @ Javadoc | [, Declaration] Console £ wol fB-r3-=0
BlackBerry Simulator Output Console
Funning refresh 6:

Detected information for 1 GPAK connection(s)
net.rim.vad: DONE

Starting net_rim bb_simphonebook

Started net_rim bb_simphonebook(153)

<] £

Figure 1

B4 *2zBlackBerry.

5|Page

Eclipse allows you to arrange your workspace in a number of different ways. On Figure 1 we can see
a typical edit layout. You will notice in the top right corner that the Java button is pressed. Next to it
is Debug button which will switch the view into the debug view.

'_ Debug - Debugfsrcicomirimfsamplesfdevicefembeddedmediademo/EmbeddedMediaDemo.java - Eclipse SDK i z‘
Fle Edit Source Refactor Mavigste Search Project Run BlackBerry Window Help

- FE-0-Q- 5 - 'S (=1 | %5 Debug | & Java
%5 Debug 3 0w 527 7 0] 0= Vaiisbles 1 9 Breakpoints kg~ =0

= B DebugServer [BlackBeny Simuater]
=-@2 RIM JVM[localhost: 8000
#-T5 Theead Group [main]

3] EmbeddedMediasDemo.java &2 = [5= Outine 2 =0
£ B R s e w §

setTitle ("Enbedded MNedia Demo"): # com.im.samples. device. embeddedm| A~

_st.at,usfielci = new RichTextField("Loading media, please waic..."): B ‘= import declarations
add(_statusField): =@, EmbeddedMediaDemo
.) . N . © ¥ main{Stingl])
Uikpplication.getUidpplication() .invokelater (new Runnable () i [— EmbeddedMediaDemal)
{ = GF EmbeddedMediaScreen
- public veid run() o _player Player
4 o _volurmeContral 10
2 initializeMedia(): o statusField - Bich
= _cortrolButton E
/4 If initialization was successful... M i L e M
< > <] >
El Console 03] Tasks xhl #mB-r5-°=0
BlackBeny Simulator Dutput Console
VM:TIZRv=1Z6 -~
WHM:TIZRv=43
WVH:TIZRv=54
WM:TRZ Iv=82Z
WH:TRZ Iv=54
WH:TRZ Iv=55
VM:-CR=1 v
Figure 2

If these buttons are not available you can find it in Window menu and then Show View / Debug. In
Figure 2 we can see a typical debug layout. The Debug tab (top left) shows us the running threads.

If the simulator is not running most of the windows here will be empty.
Just below the debug layout is our source code.

Here we can add breakpoints. We can add them before we run the simulator or while we are
running it. The simulator will stop execution of our application when it hits the breakpoint.

Below the source code window is the Console window. Here, you will see the output from the
Virtual Machine as well as the messages from your own application.

In the top right corner we can see the list and values of our variables, as well as a list of breakpoints.

| will show you how to use these windows in more detail.

B4 *2zBlackBerry.

6|Page

Console Window

Apart from giving you a lot of useful messages from the JVM, we can add our own custom messages.
If we use for example System.out.println (“message”) ; or
System.err.println (x) ; the text message or value of x will be displayed in console window.

It is good practice to use try-catch blocks to catch exceptions, and then print as much information as

you need:

This will print your custom error number, exception name and a Stack if available, which you might
find very useful when debugging.

It is also good practice to add this sort of message to the event log which | will cover later in this
tutorial.

Bz *2:BlackBerry.

7|Page

Variables & Debug Window

Once the application hits the breakpoint and stops we can have a look at the values of the local

variables.

(9= Variables - LB v
Name Value N
= a this EmbeddedMediaScreen (id=1457305664) l

@ _acceptsinput true B
B _accessibleStateSet 1

@ _additionalScrollListeners null

@ _backdoordltStatus 1

@ _backdoorCode 0

@ _backingStore null

@ _backingStoreUpdated false

@ _changelistener null

@ _clearBackingStore false

@ _clickHandled false

4 @ _content ®YRect (id=1457324032)

@ _controlButton null v |

<] 2)

|

The Variables window will show the values of all local variables at the breakpoint (Figure 3).

#5 Debug ©2

: O N DR

:.J@ Thread [Debug(155)id=1465540608] (Suspended [breakpoint at line 71 in com.rim. samples.device. emheddedmednaden‘ ~ |

- icom.rim.samples.device.embeddedmediademo. EmbeddedMediaS creen. <init> () line: 71 | e

== com.nm.samples.device. embeddedmediademo. EmbeddedMediaDemo.<init>[] line: 43
“Z= com.fim.samples.device.embeddedmediademo. EmbeddedMediaD emo.main(java.lang. Sting[]) line: 37
p@ Thread [net_rim_bb_simphonebook(153)id=1448173568] (Running)
@ Thread [net_iim_bb_simphonebook(153)id=1448493056] (Running)

*2z BlackBerry.

8|Page

On the top right part of Debug window there are control icons (Figure 4). They allow you to resume

your application (F8), step Into (F5), step over (F6) your code. This can be very useful as you can see
step by step what is going on in your application.

In the Debug window you can also see the running threads, pause and resume the application
manually, even setup and apply step filters.

227 *2:BlackBerry.

9|Page

BlackBerry Memory Statistics View

To see the BlackBerry Memory Statistics view, as well as the Objects and Profiler View, click on
Window / Show View / Other / expand BlackBerry and set the View you want. In this case it is the

Memory Statistics View (Figure 5).

& Show View

_'type filter text

~= CVS
“[= Debug
“[=% Help
= Java

Bl

:h = Mylyn
#-= Team

= (= BlackBeny
() BlackBery Memary Statistics View
Q BlackBeny Objects View

t-(= Java Browsing

------ “@ BlackBerry Profiler View

Use F2 to display the description for a selected view.

To use it, set up two breakpoints. When the application stops at the first breakpoint, click on the
refresh button on the BlackBerry Memory Statistics View (Figure 6). Press Save and you can save the

data in .csv format.

What we really want is to take a snapshot so we can compare it later.

*2z BlackBerry.

10|Page

[J BlackBerry Memory Statistics View © Refresh Save Snapshot
Memory Statistic # objects Byptesinuse Allocated Free

Object Handles 263168 6089352 94437 168731

RaM 54303 5149032 9291404 16293392

Flash 40917 940920 30999788 28086524

Transient objects [flash) 2631 349112 369252 28086524

Persistent objects (fla... 6540 591808 591808 28086524

Code modules [flash) 31746 0 30038728 28086524

Figure 6

Go to the next breakpoint (F8) and then when the application stops, refresh the BlackBerry Memory
Statistics View again. Press the compare button, and the system will show you the changes (Figure
7).

As you can see in our sample, we used some object handles, but we used quite a lot of RAM. It is
worth investigating what has caused this. In our case we loaded some bitmap images in our
application.

B4 *2zBlackBerry.

11| Page

[J BlackBerry Memory Statistics View © Refresh Save Compare Snapshot
Memory Statistic # objects Bytesinuse Allocated Free

Object Handles 0 124580 213 213

RAM 185 124580 204352 -204352

Flash 28 0 0 0

Transient objects [flash) 0 0 0 1]

Persistent objects [fla.. 0 0 0 0

Code modules (flash) 28 0 0 0

Figure 7

2= *2zBlackBerry.

12| Page

BlackBerry Objects View

You will need to add breakpoints to your code. Once the application hits the breakpoint, refresh the

BlackBerry Objects View (Figure 8).

@, BlackBeny Objects View 2

MName

AS0Debug(121): Code
AS0Debug(121): Code
A50Debug(121): Code
AS0Debug(121): Code
AS0Debug(121): Code
A50Debug(121): Code
AS0Debug(121): Code
AS0Debug(121): Code
A50Debug(121): Code
AS0Debug(121): Code
AS0Debug(121): Code
AB0Debug(121): Code
AS0Debug(121): Code
AS0Debug(121): Code
AS0Debug(121): Code
AS0Debug(121): Code
AS0Debug(121): Code
ABODebug(121]: Code
AB0Debug(121): Code
AS0Debug(121): Code
AS0Debug(121): Code
AS0Debug(121): Code
AS0Debug(121): Code
AS0Debug(121): Code
A50Debug(121): Code
AS0Debug(121): Code

] (] i L] e i] e i] e L] e L] e L]] e] e e]

Number of objects: 88897 .5ize: 30112016 bytes;

Yalue
id=900251648 "BBMillbank"

id=3005213984 "Capital [can be chan .."

id=900554752 “({[<)}i]>"
id=900603304 "net.rim.device.inter ..."
id=9007343976 "edit"

id=900838816 "Please press a butto ..."

id=900923392 "w ashington"
id=900939776 "London"
1d=900356160 "Ottawa"
id=901005312 "bitmap"
id=901177344 "us png"
id=901414912 "uk.png"
id=901701632
id=901808128 "us.png"

id=901824512 "Wu0089PN G \in\w001 A\n'wi0000*

id=301840896 "uk.png"

id=501843088 "\wD08IPNG w001 ANnhw0000

1d=301857280 "canada.png”

id=301865472 "\w008IPNG\rn\w001 A\nhw0000

id=901873664 "w0000M<unknown>"
id=901881856 "w0000w00030.0"
id=901830048 "wi0000"
id=901838240 " pnghn"
id=901939200 "wi0001"
id=902029312 "RIMResources™
id=9020456596 "com.rim.resources.”

Figure 8

Refresh Save Clear Filter Snapshot Garbage collect

Type
java.lang Stiing
java.lang.Sting
java.lang.Sting
java.lang Stiing
javalang.Sting
java.lang.Sting
java.lang Stiing
javalang.Sting
java.lang.Sting
java.lang Stiing
java.lang.Sting
java.lang.Sting
int[4]
java.lang.Sting
byte[14309]
java.lang Stiing
byte[20914]
java.lang.Sting
byte[7838)
byte[11]
byte[5]

byte[1]

byte[3)

byte(1]
java.lang. Sting
java.lang Stiing

Size fad
12

28

12

40

8

24

12

m;oommoom

14312
20916
7840

The object view shows you ALL objects. So you will not see only the objects from your application,

you will be able to see all objects from all running applications.

The Save option will save the data in .csv format. Snapshot is to be used to compare the objects
between two breakpoints. This is very useful to find memory leaks.

You can also run Garbage Collection to see whether your object references are properly de-

allocated.

You can also use the Filter to limit the Object View to your process. In this case our process number
is 121 — the number in the brackets. After clicking on Filter (Figure 9) enter process number and
press OK. You will have to refresh the main window to see the update.

*2z BlackBerry.

13| Page

Objects View Options

[T Include Al Instance

Cancel

Figure 9

Snapshot Fiter: | Show Al

Type: l

Process: [121|

Location: l All g

As you can see now we have the list of all the objects in our application and we can monitor and
analyze the memory usage (Figure 10).

(@, BlackBery Objects View i
Number of objects: 271:5ize: 185524 bytes;

MName

AB0Debug(121): Code
AS0Debug(121): Code
A50Debug(121): Code
AS0Debug(121): Code
AS0Debug(121): Code
A50Debug(121): Code
AS0Debug(121): Code
AS0Debug(121): Code
A50Debug(121): Code
A50Debug(121): Code
AS0Debug(121): Code
AB0Debug(121): Code
A50Debug(121): Code
AS0Debug(121): Code
AS0Debug(121): Code
A50Debug(121): Code
AS0Debug(121): Code
AS0Debug(121): Code
A50Debug(121]): Code
AS0Debug(121): Code
AS0Debug(121): Code
A50Debug(121]): Code
AB0Debug(121): Code
AS0Debug(121): Code
A50Debug(121): Code
AS0Debug(121): RAM

] (] i L] e i] e i] e L] e L] e L]] e] e e]

Retum to stait Backward

Walue

id=900521384 "Capital [can be chan ..."
id=900838816 "Please press a butto ..."
id=900923392 "W ashington"

id=900939776 "London"

id=900956160 "Ottawa™

id=901005312 "bitmap"

id=901701632

id=901808128 "us.png"

id=901824512 "wi0083PNG A\ Anhwui0000
id=901840896 "uk.png"

id=901843088 "w008IPNG w001 A\nhwi0000
id=901865472 "w008IPNG\n\w001 ANnhw0000
id=901873664 "w0000M<unknown>"
id=901881856 "w0000Yw00030.0"

id=901830048 "w0000"

id=901838240 " pnghn"

id=901939200 "wi0001"

id=902127616 "canada.png”

id=902725632 "User Interface Sampl .."
id=903036928 "Close"

id=903069696 "Change Capital”

id=904937472

id=904945664

id=904953856

id=304962048

id=899907584

Figure 10

Refresh Save Clear Filter Snapshot Garbage collect

Type Size IA‘
java.lang Stiing 28
java.lang.Sting 24
java.lang. Sting 12
java.lang Stiing 8
javalang.Sting 8
java.lang. Sting 8
int[4] 16
javalang.Sting 8
byte[14309] 14312
java.lang Stiing 8
byte[20914] 20916
byte[7838) 7840
byte[11] 12
byte[5) 8
byte[1] 4
byte[5) 3
byte[1] 4
java.lang. String 12
java.lang Stiing 24
java.lang Stiing 8
java.lang.Sting 16
int[25] 100
shaort[22] 44
int[26] 104
int[26] 104
net.rim. device.intermnal ui.Artich 52 bl)

*2z BlackBerry.

14| Page

BlackBerry Profiler View

The Profiler is used to display information about where your application spends its time (Figure 11).
The summary view displays percentage spent in Idle, Code Execution and Garbage Collection stages.

"&] BlackBeny Profiler View © Refiesh Save Clear Options
. Details Percent Time [clock ticks) Count
Idle 96.65% 21655747470 397
Code Execution 0.00% 1] 0
= Garbage Collection 33B% 750211250 16
R 1.35% 303449650 3
FULL 1.99% 446761600]

.Su'nmay Method = Source

Figure 11

The Method view (Figure 12) will give you a detailed view of all running packages. Under options
you can choose what to profile. Default settings are in ticks (time) but you can also view size and
number of objects, etc.

B4 *2zBlackBerry.

15| Page

"®) BlackBeny Profiler View © Refresh Save Clear Options
Details Percent Time [clock ticks) 2]
+ Al All All All
+ - net_fim_os 26.13% 345333040 85048
+ - net_nim_clde 17.09% 225963750 79577
+ - net_rim_clde-1 16.19% 213982380 64637
+ - net_rim_os-6 9.97% 131857210 14803
+ - net_rim_os-5 4.80% 53484340 22557
+ - net_im_cldc-11 4.49% 59326800 22102
+ net_im_cldc-4 417% 55118510 1506
+ net_rim_clde-13 3,305 43611570 9014
+ - net_rim_clde-14 242% 32022200 2447
+ - net_rim_clde-18 2405 31707000 15519
+ - net_nim_cldc-12 1.76% 23323650 7472
+ - net_rim_cldc-6 1.51% 20022010 4636
+ - net_rim_cldc-5 1.32% 17413280 4256
+ - net_rim_cldc-17 1.02% 13540220 2565
+ - net_rim_os-1 0.98% 12904580 534
+ - net_rim_bb_fileindexservice 0.66% 8769230 952
+ net_rim_os-2 0.29% 3875240 143
+ - net_rim_clde-8 0.28% 3750350 478
+ net_rim_bb_profiles_tunes 0.24% 3237820 213
+ net_nm_bb_medialibrary 0.20% 2597830 1235
+ net_nm_clde-15 018% 2325130 1419 o

<] i >
Summary | Method | Source

Figure 12
One of the most common mistakes developers make is creating too many String objects.
String test = "a";
test = "b";

test += "c";
System.out.println(test.concat ("d"));

Most of you know that the above code does have one variable test but we did not create only one
String object.

Try to run the profiler to see how many String objects this code generates. You might be surprised.

B4 *2zBlackBerry.

16 |Page

Garbage Collection

BlackBerry is a purely Java based platform and it implements a system to periodically free its
memory and resources called Garbage Collection (GC).

The idea is quite simple. All the objects which do not have a reference remain in memory until a GC
runs and frees that memory for us.

So if we create a String object String test = “some text”; it will occupy some space in the memory. If
we do not need that object, we can say test = null; however, the memory will still be occupied with
“some text”. Only when a GC runs will that space in memory be freed.

There is a way to call GC to run manually, and it might seem like a good idea. However, on
BlackBerry, it is highly recommended not to call GC manually, except in special cases.

When GC on BlackBerry runs nothing else runs. Nothing. You can see an hourglass on your screen.
That hourglass only appears when GC is running.

GC type Time

RAM only 0.5 sec

Flash + RAM (Full) 1 sec

Persistent 10 sec

Emergency 20+ sec

Thorough 25-30sec
Table 1

In Table 1 we can see different GC types and the approximate time it takes for them to run on the
device. As you can see, if the system runs any other GC than RAM or Full, it will have a significant
impact on the user experience.

Even the very quick GC types will affect some applications that require fast responses like arcade
games for example.

The BlackBerry heuristics monitor, checks for available free memory and runs GC as needed, and
most of the time it runs quickly and not very often.

We need to keep in mind that other applications which run in the background can affect our
application and our application can affect others.

Therefore it is important to reduce memory usage and GC usage.

BZA *2zBlackBerry.

17 |Page

Memory Leaks

Memory Leaks are created when we maintain a reference to the object which is not needed. Even if
we design code which deletes these references we might still have a reference in the system that
still prevents that object from being deleted.

Memory leaks can happen anywhere in the code but we can usually find them in our

e Data Structure,

e local Variables,

e Runtime Store and
e Llisteners

They are not easy to detect, but we can look for symptoms: Hourglass appears very often as the
device is trying to do garbage collection. Emails will start being deleted. When the device is running
out of memory it will try to notify all applications that use the low memory manager and ask them to
free some space.

The email client will then delete some messages to try to create space.

We can also see the number of free object handles if you go to Options / Status on your device. You
will see the File Free number. If the number is low it may indicate a memory leak.

If you are finding it difficult to pinpoint the memory leak in your application, try to make it worse.
The more data the application uses, the more it will leak and it should be easier to detect.

BZA *2zBlackBerry.

18| Page

Deadlocks

Deadlocks happen if you have two or more threads waiting for each other, and therefore the
application gets blocked forever. The JVM will detect that the application is not responsive and will
terminate it after some time.

On the BlackBerry it is quite easy to detect and prevent deadlocks.

& Run Configurations

)

Create, manage, and run configurations

= _ -Nv = B
SR e MName: | DebugServer
type filter text -
’) Deployed Build Configurations Simulator 'rgz/ Source] Common
= BlackBeny Simulator
"B DebugServer
| & DebugServe L
I 5] Java Applet Profile: .SBUU‘JDE ZI
' [3] Java Application
Ju JUnit | General | | | Memory | Metwork | Ports | View | Advanced|

B Tack Contert Test [] Interrupt debugger on potential deadlock

[[] Do net stop execution when an exception is caught by “catch| Throwable |

[Appl || Reven |

Filter matched 6 of B items

G Cmn o)

Figure 13

Click on Run in the Menu and select Debug configurations. Under the Debugging tab (Figure 13) you
can check the box named ‘Interrupt debugger on potential deadlock’.

If the simulator detects a deadlock or a potential deadlock it will stop the execution of the
application and will print the details in the Console window.

B4 *2zBlackBerry.

19|Page

Debugging on the Device

It is also possible to debug your application on the device. Simulators emulate the physical device
quite well but some functions need to be tested on the real device under real world conditions.

)

& Debug Configurations

Create, manage, and run configurations

X B 3

:type filter text

Name: :New_conliguration

BlackBeny Device & Source [} Comman

C e —— BlackBerry Device configuration
L Mew_configuration

= BlackBeny Simulator O Attach to any connected

Do DebugServer (® Attach to specific device

: #5) Java Applet

I -3 Java Application

cJu JUnit

- Z Remote Java Application

i E Running BlackBerry Simula

~Juy Task Context Test

= BlackBerny Device

Attach to BlackBeny Device: USE [20840fee)

<] > [sppy || Pevet |
Filter matched 10 of 10 items

@ [Debug || Cise |

Figure 14

Under Run / Debug Configurations you can click on BlackBerry Device and add new configuration.
There you can choose to attach the debugger to the specific device. After selecting the device and
clicking on the Debug window you might be asked for the device password assuming you have one

set.

2= *2zBlackBerry.

20|Page

&= Cannot find file

'f The "net_rim_app_manager.debug" file is missing. Please choose the missing file.
L

| Seach.. | [Browse... I l Cancel] lDon‘k ask this again]

Figure 15

You will probably get the message that one or more .debug files are missing (Figure 15).

The reason this might happen is that the software version on your device does not match the
software version of your simulator. You can download the right simulator on our Developer
Download web site:

https://www.blackberry.com/Downloads/browseSoftware.do;jsessionid=ClsggMfoukmF9f3r
ZXLShA**

If the simulator is not available yet for your version of device software then you can upgrade or
downgrade the software on your device to a version that matches one of the simulator versions.

You can also ignore the message, just click on ‘Don’t ask this again’ button. Some of the debugging
features will not work, for example getting stack traces, but most of the features described above
will still work.

B4 *2zBlackBerry.

https://www.blackberry.com/Downloads/browseSoftware.do;jsessionid=CJsgqMfoukmF9f3rzxLShA**
https://www.blackberry.com/Downloads/browseSoftware.do;jsessionid=CJsgqMfoukmF9f3rzxLShA**

21| Page

Setting up the Simulator

If you want to set up the simulator to work under specific conditions, or simulate network /file
connectivity (MDS-CS, SD card, etc.) you need to change the Simulator preferences (Figure 16).

X

& Debug Configurations

Create, manage, and run configurations
- TE%X 8- Name: :DebugSemer
type filter text -
Deployed Build Configurations Simulator ?:‘/ Source] Common
= BlackBeny Device
e @ NB’W_DWHQU[&“OH Profile: I DE —| m
= g BlackBerny Simulator et | hd - E
- ~[B) pebugServer
@ Java Applet General | Debugging | Memory | Network | Ports | View | Advanced
: 'i ja\:tﬁpphcatm Launch simulator when debugger connects)
. Remote Java Application [[] Minimize when launching simulator
@l Running BlackBerry Simulatc [[] Launch Mobile Data System Connection Service (MDS-CS) with simulator
~Juy Task Context Test Launch app or URL on startup:
Device:
8330 vl
[] &utomatically use default values for all prompts
Specify the number of seconds to wait before the automated response is selected. Requires the use of /automate.:
PIN:
|0x21000004 _
ESN: v
<] ? (ool][Reyer]
Filter matched 10 of 10 items
® (oo [0]
Figure 16
Here is a brief overview of some of the options:
Name Description
Launch MDS-CS To be used when needed to simulate MDS_CS Internet connection
Device Which device to use in the simulator
PIN Change device’s PIN number

Automatically use default Skips through prompts which usually appear when you first switch
values for all prompts on the device

System and Keyboard Locale If you want to test i18n

Interrupt on potential Helps detecting deadlocks

B4 *2zBlackBerry.

22| Page

deadlock

Reset file system and NVRAM Clears file system and NVRAM

SD Card options Various options to simulate whether SD card inserted, ejected etc.
Network registration Skip network registration emulation

Phone, IMElI and other Specify emulator phone and other numbers
numbers

Ports USB cable connected — Simulates connection to the PC
Disable backlight shutoff Quite a useful function
Display the LCD only Hides the keyboard part of the simulator

You can save these configurations and use them when needed.

BZA *2zBlackBerry.

23| Page

Event Log

The Event log is the log of system events and we can write to it using the available APIs. It is a useful
tool to debug your application. You can access it on the device or copy it to your PC using the
application called javaloader.

To access the event log on the device (and on the simulator), from the home screen, hold down the
Alt key and while holding type Iglg. You will then see on your display a list of all logged events (Figure
17).

Event Log (Warning)

a PhoneApp - app-deac

a net.rim.simapp - ABRT

a net.rim.simapp - ABRT

W net.rim.hrtRT - PNHr

a net.rim.hrtRT - ETot

a net.rim.vad - DONE

a net.rim.tunnel - Clos-rim.net.gprs

E net.rim.tcp - OPsx -5

a net.rim.hrtRT - EHr+

a net.rim.hrtRT - ENpc 0x12e66630

a net.rim.hrtRT - PUpI 4

Figure 17

If you press enter you can see more details about every item in the log (Figure 18).

B4 *2zBlackBerry.

24| Page

Event Information

Name: PhoneApp
Severity: Always Logged

GUID: ddaObc913b6aaeec
Time: Apr 02, 2009 08:41:57
app-deac

Figure 18

To download the event log from the device to the PC type in the command prompt:
Jjavaloader -u eventlog log.txt
The APl which allows your application to write to the event log is:

net.rim.device.api.system.EventLogger

Examples:

// Register application for event logging.
EventLogger.register (0x9c805919833654d6L, Samplelpp) ;

// Set minimum logging level.
EventLogger.setMinimumLEvel (EventLogger.INFORMATION) ;

// Log a numeric event.
EventLogger.logEvent (0x9c805919833654d6L, 12, EventLogger.INFORMATION) ;

// Log a String
EventLogger.logEvent (GUID, yourString.getBytes(), level);

For more information on how to use EventLogger please look at the BlackBerry Java APl Reference.

B4 *2zBlackBerry.

25|Page

Links

BlackBerry Developers Web Site:
http://na.blackberry.com/eng/developers/

Developer Video Library:

http://na.blackberry.com/eng/developers/resources/videolibrary.jsp

Documentation:

http://na.blackberry.com/eng/support/docs/developers/?userType=21

Knowledge Base Articles:

http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/348583/custo
mview.html?func=11&objld=348583

Forums:

http://supportforums.blackberry.com/rim/?category.id=BlackBerryDevelopment

BZA *2zBlackBerry.

http://na.blackberry.com/eng/developers/
http://na.blackberry.com/eng/developers/resources/videolibrary.jsp
http://na.blackberry.com/eng/support/docs/developers/?userType=21
http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/348583/customview.html?func=ll&objId=348583
http://www.blackberry.com/knowledgecenterpublic/livelink.exe/fetch/2000/348583/customview.html?func=ll&objId=348583
http://supportforums.blackberry.com/rim/?category.id=BlackBerryDevelopment

	A50 – How to Debug and Optimize
	Debugging Tools
	Console Window
	Variables & Debug Window
	BlackBerry Memory Statistics View
	BlackBerry Objects View
	BlackBerry Profiler View

	Garbage Collection
	Memory Leaks
	Deadlocks
	Debugging on the Device
	Setting up the Simulator
	Event Log
	Links

