
this print for content only—size & color not accurate trim = 7.5" x 9.25"  spine = 0.000"  000 page count

Books for professionals by professionals®

  CYAN
  MAGENTA

 YELLO W
  BLACK

Rizk
BlackBerry Developm

ent

Companion
eBook Available

Beginning

US $39.99

Shelve in
Mobile Computing

User level:
Beginner-Intermediate

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

Beginning BlackBerry
Development
Dear Reader,

Beginning BlackBerry Development will teach you how to build Java-based
BlackBerry applications, starting from the very basics all the way through pack-
aging and distributing, giving you enough knowledge to produce useful, real-
world applications.

I’ve worked with BlackBerry devices for almost as long as they’ve been
around and in that time have seen the platform grow to the point that you can
do a lot of great things with it – using location-based services, sound and other
media, and other technologies – but a lot of developers have difficulty finding
good information on how to get started. I’ve seen a lot of the same kinds of
questions being asked repeatedly: What tools do you use? What are the basic
components of an application? How do I do things like make a network call, or
save data persistently?

All that information is out there, but just not in an easily accessible form.
That’s why I wrote this book: to give an easy to follow introduction to BlackBerry
development that assumes no BlackBerry specific knowledge, and includes
enough information that by the end of the book you can build something useful.

The book covers setup of the development environment, using the BlackBerry
device simulators, loading onto a real device, and basics of BlackBerry applica-
tions. It also covers areas of the BlackBerry platform that almost all applica-
tions end up using, including networking, data persistence, and user interface.
Finally it talks about how to get your applications onto users’ devices, and how
to work with App World to distribute your application to a wide audience, which
is after all the goal of any application developer.

I’ve enjoyed writing this book, I hope you’ll find it useful and that it’ll help
you bring your BlackBerry application ideas to life!

Anthony Rizk

The EXPERT’s VOIce® in BlackBerry

Beginning
BlackBerry
Development

Anthony Rizk

Learn how to build Java-based BlackBerry
applications from scratch

Re
la

te
d

ti
tl

es Please note that
these related titles
are mock covers and
we don't have final

versions at this time

Download at WoweBook.Com

 i

Beginning BlackBerry
Development

■ ■ ■

Anthony Rizk

Download at WoweBook.Com

ii

Beginning BlackBerry Development
Copyright © 2009 by Anthony Rizk

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or by any information storage or retrieval system, without the
prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2427-3

ISBN-13 (electronic): 978-1-4302-2428-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a
trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with
no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewer: Paul Dumais
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper, Frank Pohlmann, Ben Renow-
Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Anne Collett
Copy Editors: Heather Lang, Ginny Munroe and Kim Wimpsett
Compositor: MacPS, LLC
Indexer: BIM Indexing and e-Services
Artist: April Milne

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–

eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution has
been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any person or
entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information
contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to answer questions
pertaining to this book in order to successfully download the code.

Download at WoweBook.Com

iii

To Sabrina and Hannah

–Anthony

Download at WoweBook.Com

iv

Contents at a Glance

■Contents at a Glance .. iv
■Contents .. v
■About the Author... x
■About the Technical Reviewer ... xi
■Acknowlegments .. xii
■Setting the Stage...1
■Hello World..17
■What Makes a BlackBerry Application?..47
■User Interface Basics..63
■Beyond the Basics of User Interfaces ...83
■Storing Data ..131
■Hello Out There! Making a Network-Enabled Application...159
■Where Am I? Using Location-Based Services ...193
■Getting Your App Out There: Packaging and Publishing...213
■Next Steps...237
■Index ...239

Download at WoweBook.Com

 v

Contents

■Contents at a Glance .. iv
■Contents .. v
■About the Author... x
■About the Technical Reviewer ... xi
■Acknowledgments .. xii

■Chapter 1: Setting the Stage ...1

What You Need to Know Before You Can Begin .. 2
Setting Up Your Development Environment... 2

Installing the Development Environment.. 3
Getting Code Signing Keys ... 9

What’s Different About Developing for BlackBerry.. 12
Limited CPU and Memory ... 12
Java as the Native API .. 12
Limited Screen Real-Estate .. 13
User Input ... 13
Many Different Devices .. 13

What’s in This Book ... 13
Chapter 2 .. 13
Chapter 3 .. 14
Chapter 4 .. 14
Chapter 5 .. 14
Chapter 6 .. 14
Chapter 7 .. 14
Chapter 8 .. 14
Chapter 9 .. 14
Chapter 10 .. 15

Download at WoweBook.Com

■ CONTENTS

 vi

■Chapter 2: Hello World ..17
Creating an Application with the BlackBerry JDE.. 17

Creating the Workspace and Project .. 18
Creating the Application Classes.. 19
The Main Application Class .. 22
Coding the Main Screen Class.. 23
Running the Simulator.. 25
Building and Signing Your Application ... 27
Building with Different JDE Versions.. 27
Loading Hello World onto a Device... 28
Using the Debugger .. 28

Creating an Application with the BlackBerry JDE Plug-in for Eclipse ... 32
Creating the Project.. 33
Creating the Application Classes.. 35
Running the Simulator.. 37
Building and Signing Your Application ... 40
Building with Different JDE Versions.. 40
Debugging on a Device... 41

Polishing the Application ... 42
Setting the Title in Project Properties... 42
Creating an Icon ... 43
Seeing It All in Action ... 46

Summary ... 46

■Chapter 3: What Makes a BlackBerry Application? ..47
Javadocs ... 47
The BlackBerry Application Life Cycle... 49

Starting the Application .. 49
Creating the Application ... 49
Invoking the Event Thread.. 50
Processing Events .. 50
Exiting the Application.. 50

Threading and the Event Thread ... 50
Knowing When Your Application Is on the Event Thread.. 51
Updating the UI from Other Threads... 51

Running Background Applications... 54
Detecting Backgrounding or Foregrounding... 54
Sending Your Application to the Background ... 55

Understanding the Types of Projects... 56
Libraries.. 56
Creating an Alternate Entry Point ... 58
MIDP and MIDlet Projects ... 61

Summary ... 61

■Chapter 4: User Interface Basics ..63
The UI Fun Application... 63
The Components of a BlackBerry UI .. 64

Creating the Application ... 65
Adding the Logo Image... 66

Download at WoweBook.Com

■ CONTENTS

 vii

Adding a Few More Fields .. 70
Handling User Interaction .. 74

Handling UI Events.. 74
Handling the Clear Button... 75
Handling the Login Button .. 76

Creating Menus ... 78
Understanding Menu Items .. 78
Implementing the Login and Clear Menu Items.. 79

Summary ... 82

■Chapter 5: Beyond the Basics of User Interfaces..83
Enhancing the UI Fun Application.. 83
Working with Fonts.. 85
Drawing to the Screen Using the Graphics Context... 87

Using the paint method .. 87
Understanding How the BlackBerry Screen Is Drawn .. 88

Creating Custom Fields ... 90
Adding a Custom Label Field .. 90
Creating a Custom Button Field.. 98
A Review of Custom Fields ... 105

Creating Custom Managers ... 105
Creating a Manager .. 108
Tidying Up the Login Success Screen .. 116

Creating a Custom Screen... 117
Delegate Managers .. 118
Implementing the Screen’s sublayout Method... 119
Adding a Few Fields ... 120
Painting the Background .. 121

Adding the Final Touches .. 122
Adding a Header Background... 122
Making Minor Tweaks .. 124

Working with the BlackBerry Storm .. 125
Creating Basic Animation .. 127

Setting the Vertical Offset... 127
Animating the Layout.. 128

Summary ... 129

■Chapter 6: Storing Data...131
Storing Data on the BlackBerry ... 131
Choices for Persistence... 132

RMS .. 132
Persistent Store .. 132
Runtime Store... 132
JSR 75 FileConnection.. 133
SQLite ... 133

BlackBerry Persistent Store... 133
Persistent Store Keys ... 134
Persistent Objects .. 134
What Can You Persist? ... 135

Download at WoweBook.Com

■ CONTENTS

 viii

The Persistable Application .. 136
More Advanced Persistence ... 140
Clearing Persistent Data from a Device.. 143

The FileConnection API.. 143
Writing to the File System .. 152

Summary ... 157

■Chapter 7: Hello Out There! Making a Network-Enabled Application159
Different Ways to Connect ... 159

BES/MDS .. 160
Direct TCP/IP... 161
BIS .. 162
WiFi... 162
WAP 2.0 .. 162
WAP 1.0 .. 163
Recommendation.. 163

Service Book.. 163
The MIDP Connection Framework ... 165

Connector ... 165
Connections.. 165
HTTP Basics.. 166
The Test Web Application ... 167

The Networking Application .. 168
Some Controls .. 168
Making an HTTP Connection... 169
The HttpRequestDispatcher Class .. 169
Testing It... 173
Two-Way Interaction: Sending Data via HTTP POST... 179

Connection Method: Using Direct TCP/IP Instead of BES/MDS.. 184
Making a Connection Using WAP 2.0.. 184
Making a Connection Using BIS.. 185
Making a WiFi Connection .. 185

Determining Network Availabilty ... 186
Using CoverageInfo... 186
Using WLANInfo .. 186
Putting It All Together... 187

TCP Socket Connections.. 188
Summary ... 191

■Chapter 8: Where Am I? Using Location-Based Services..193
GPS Support on BlackBerry Devices.. 193
The Location API .. 194

GPS Modes ... 194
Specifying a GPS Mode .. 195

The Location Application ... 197
Getting Periodic Location Updates Using LocationListener .. 202

Using BlackBerry Maps ... 205
The Invoke API .. 206
Launching the Default BlackBerry Maps View.. 206

Download at WoweBook.Com

■ CONTENTS

 ix

Location Documents... 207
Displaying a Custom Map View .. 209
MapField: Embedding BlackBerry Maps in Your UI .. 210

Summary ... 212

■Chapter 9: Getting Your App Out There: Packaging and Publishing213
Setting Application Properties ... 214
Over-the-Air Installation .. 215

Sibling COD Files .. 215
The JAD File.. 216
Content Types (MIME Types) .. 217
Uploading Your Application .. 217
Downloading the Application.. 218

Desktop Installation... 218
The ALX File.. 219

BlackBerry App World.. 221
Getting an App World Account.. 222
Distributing Your Application on App World.. 223
Implementing License Keys.. 225
Pricing .. 226
The Submission Process .. 226
App World API ... 230

Other Application Stores.. 232
MobiHand .. 232

Signing Up for a MobiHand Account... 233
Submitting and Managing Applications.. 233
Other Sites.. 235

Summary ... 235

■Chapter 10: Next Steps ...237
Keeping Up-to-Date ... 237

Forums ... 238
Newsletters, Blogs, and Other Resources .. 238

Farewell... 238

Index ..239

Download at WoweBook.Com

■ CONTENTS

 x

About the Author

■ Anthony Rizk is an experienced mobile application developer; he is currently CTO and co-
founder of Zeebu Mobile, which makes educational mobile applications for children.
Previously, Anthony was a founding member of Rove Mobile where he was part of the team
that created and developed their mobile network management products, including Mobile
Admin, Mobile SSH, and PCMobilizr. He has been developing BlackBerry applications for
over 8 years and has consulted extensively in the wireless application industry. He lives in
Ottawa with his wife and daughter.

Download at WoweBook.Com

■ CONTENTS

 xi

About the Technical Reviewer

■ Paul Dumais is a mobile application innovator; he is currently the Senior Technical
Architect for BlackBerry App World at Research In Motion. Previously, Paul co-founded Rove
Mobile (formerly Idokorro) where he was responsible for creating and developing all their
mobile network management products including Mobile Admin, Mobile SSH, Mobile
Desktop, Mobile Citrix, BlackBerry Viewer and PCMobilizr. His expertise includes developing
applications for BlackBerry, Symbian, Windows Mobile, Palm and iPhone. In 1999, Paul
created an award winning change management product that was acquired by MKS which is
now serving as the foundation of the MKS Integrity Platform.

Download at WoweBook.Com

■ CONTENTS

 xii

Acknowledgments

Thank you to the two most important people in my life, without whom this book would not have been written: My
wife, Sabrina, for encouraging my writing in blog and book form, keeping me away from distractions, making sure I
stuck to my schedule, and taking care of our daughter on those crucial days when I needed an extra few hours to
complete a chapter. My daughter Hannah for motivating me to try something new, and for still being young
enough to go to bed early giving daddy a bit more time to work.

Thanks to my technical reviewer, and the best software developer I know, Paul Dumais for believing in the idea of
this book from the beginning; reviewing, correcting and improving all my code; and providing ideas and
information about BlackBerry development.

Thanks to the people at Research In Motion and elsewhere who provided feedback and helped improve the book,
notably Mike Kirkup and his team.

Finally, thank you to the team at Apress. Anne Collett, for managing to keep the whole project to a very tight
schedule, while dealing with the last minute revisions and questions of a first-time author. Ewan Buckingham for
his editing and encouragement. Mark Beckner for bringing me into this mess in the first place. Finally Heather
Lang, Ginny Munroe, and Kim Wimpsett for such a fantastic job copy editing. My first book has been a fun and
eye-opening experience thanks to all of you.

Download at WoweBook.Com

1

11

 Chapter

Setting the Stage
There has never been a better time to develop applications for BlackBerry devices than
right now. Since Research In Motion (RIM) launched the first models almost a decade
ago, the BlackBerry smartphone has gone from relative obscurity to near universal
visibility—think about how commonplace it has become to see people in airports, hotels,
offices, or just about anywhere stealing a few minutes to check their e-mail or type
replies. The BlackBerry software development kit has been around since the first
devices were released and has grown to include an extensive collection of examples,
documentation, and a mature set of APIs and tools that have opened the door for all
kinds of great applications, most of which only currently exist in someone’s imagination.
And with the maturing of the BlackBerry community and the introduction of BlackBerry
App World, it’s easier than ever to get your application noticed and downloaded by
users worldwide.

In this chapter we’ll talk a bit about the basics of BlackBerry development –development
environment options (there are a couple), other software and information you need, and
some things to keep in mind. We’ll also walk through the download and setup of the
development tools and simulators so we’re all set up to start building applications in the
next chapter. What This Book Is

This book is a guide to help you get started creating your own BlackBerry applications.
This book is not about writing web applications for BlackBerry devices or about rapid
application development (RAD) solutions, such as MDS Studio or the BlackBerry Plug-in
for Microsoft Visual Studio. This is about building professional, polished, native
applications that take full advantage of the BlackBerry platform.

By the end of this book, you’ll have built several simple BlackBerry applications, learned
how to run them on the various BlackBerry simulators, and how to package and deploy
them onto real BlackBerry devices. You’ll learn how a BlackBerry application is put
together, how to create great looking user interfaces, how to interact with the user (using
the keyboard and trackball/trackpad or touch screen depending on the device), how to
send and receive data over the wireless network, and more. Combined with the
extensive development resources and examples provided by RIM you’ll be on your way
to creating the next killer application for this platform.

1

Download at WoweBook.Com

CHAPTER 1: Setting the Stage 2

What You Need to Know Before You Can Begin
To be able to follow along, you should have previous programming experience in a
modern object-oriented language. This book is not an introduction to object-oriented
programming, or even to the Java language. There are many excellent resources and
tutorials available on the internet.

BlackBerry applications are written in Java Micro Edition (Java ME) formerly called
J2ME. This is a subset of Java Standard Edition (Java SE) that most Java developers
work with. If you’re familiar with Java SE or Java Enterprise Edition (Java EE), Java ME
will be very easy to pick up.

If you’re familiar with another object-oriented language – especially one with a similar
syntax like C#, C++ or even Objective-C – you should similarly have no problem picking
things up. C# developers in particular should be able to understand Java ME code with
little or no effort.

One of the nice things about Java ME and the BlackBerry from the perspective of a
beginner is that the API is small compared to desktop or server programming
environments – you can learn a great deal of it fairly quickly. Of course, this is a
double-edged sword; there will be times you wish the API provided some functionality
that bigger environments do, though the BlackBerry API is getting more functionality all
the time.

Setting Up Your Development Environment
Before you can begin writing applications for BlackBerry you’ll need a few things. First,
you’ll need a computer running Windows 2000 SP1 or later, Windows XP, or Windows
Vista. Any desktop or laptop produced in the last few years should be sufficient, but as
with any software development, the more RAM and CPU speed you have, the better
your experience will be.

The first stop for all BlackBerry development tools and other resources is the BlackBerry
Developer Zone at http://www.blackberry.com/developers/. See Figure 1-1. Here,
you’ll find free downloads, whitepapers, the developer knowledge base, and the
BlackBerry Developer Forums. As a BlackBerry developer, you should get to know this
site very well.

Download at WoweBook.Com

CHAPTER 1: Setting the Stage 3

Figure 1-1. The BlackBerry Developer Zone

While you’re looking at this page, you might as well sign up for a developer account –
it’s free and quick, and you’ll need a login to download the developer tools.

RIM does offer higher-level paid developer programs with additional support and other
benefits, but you can develop and distribute applications with the free account.

Installing the Development Environment
There are two BlackBerry development environments produced by RIM. The BlackBerry
Java Development Environment (JDE), and the BlackBerry JDE Plug-in for Eclipse. Both
are very functional and have been used by developers to produce professional
applications. The JDE has been around longer and is a bit more mature, but almost
everything possible with the JDE can also be accomplished with the Eclipse Plug-in. The
Eclipse Plug-in leverages the entire Eclipse development platform, which includes a
world-class source code editor and a lot of third-party plug-ins. Ultimately, the choice is
a matter of personal preference. We’ll explore both in the next chapter, so you’ll get a
better idea of what the real-world differences are. There are no issues with installing
both the JDE and the JDE Plug-in for Eclipse on the same computer, so if you’re
interested in exploring both and don’t mind the extra time and effort, feel free to follow
through the install instructions for both later in this chapter.

Download at WoweBook.Com

CHAPTER 1: Setting the Stage 4

After deciding between the JDE and the JDE Plug-in, you’ll need to decide on a JDE
version. Each version of the JDE (or each version of the component pack for the Eclipse
Plug-in) corresponds to a major version of the BlackBerry operating system (OS).
BlackBerry does a good job of keeping their OS backward compatible, so something
developed for OS 4.2 generally will work the same on OS 4.3 and higher. However, you
may want to use some features that are only available in a later OS. A safe minimum is
4.2, which covers all trackball devices and later and is the minimum version supported
by BlackBerry App World.

The one exception to all of this is the touch screen BlackBerry Storm, which runs OS 4.7
and can be temperamental with applications built using older versions of the JDE. You
can run applications compiled with versions of the JDE earlier than JDE v4.7 on the
Storm, and they will work. However, by default, they’ll be run in Compatibility Mode,
meaning the user experience won’t be ideal. To avoid Compatibility Mode, you must
compile your application with JDE v4.7 or higher. In many cases, you can just recompile
the same source code.

The bottom line is that if you’re planning on targeting the Storm, you should be sure to
get the JDE or JDE Plug-in v4.7 in addition to any other versions.

Before installing the BlackBerry development tools, you’ll need to install the Java SE
JDK from http://java.sun.com. The version or versions you will have to install depends
on the version of the BlackBerry platform you want to target. For most developers,
downloading Java SE JDK v6.0 is a good choice – it will let you develop for BlackBerry
Device Software version 4.2 and later, which covers all BlackBerry devices introduced in
the last three years or so. More specific information is available on the Developer Zone
at http://na.blackberry.com/eng/developers/javaappdev/javadevenv.jsp.

Installing the BlackBerry JDE
The JDE is a fully integrated stand-alone environment, so if you have the appropriate
version of the Java Development Kit (JDK) installed, you just need to download the
appropriate version of the JDE installer and run it. Everything you need for BlackBerry
development is included in the JDE – from writing code using the built-in editor, to
debugging using the array of BlackBerry device simulators available, to building and
signing your application for deployment onto real devices. Figure 1-2 shows the
BlackBerry JDE as it will appear after being launched for the first time.

Download at WoweBook.Com

CHAPTER 1: Setting the Stage 5

Figure 1-2. The BlackBerry JDE v4.2.1 with the excellent (included) Samples workspace loaded, and a Java
source file opened for editing

Other JDE Versions
Each JDE version is a completely different package, so if you want to specifically target
different versions of the BlackBerry API, you’ll need to download more than one JDE
version. Fortunately, the JDE project and workspace descriptor files will work across all
current versions of the JDE, so you can open the same project in different versions.

Installing the BlackBerry JDE Plug-in for Eclipse
Obviously, you’ll need to download the Eclipse integrated development environment
(IDE) from http://www.eclipse.org. You need version 3.4 (Ganymede), which is shown
in Figure 1-3, but beyond that any of the Java Eclipse packages will do – you only need
the basic Eclipse IDE for Java Developers, but if you want the additional Java EE
features, they won’t affect the BlackBerry JDE Plug-in. If you already have Eclipse
version 3.4 installed, you can use that as well.

Download at WoweBook.Com

CHAPTER 1: Setting the Stage 6

Figure 1-3. These are some of the available Eclipse packages. If you don't already have Eclipse installed, choose
Eclipse IDE for Java Developers.

Eclipse setup is simply a matter of unzipping the file to your PC.

Once you’ve gotten Eclipse set up, download the JDE Plug-in installer and run it. It
includes the JDE v4.5 component pack by default.

Using Other JDE Versions with Eclipse
Other JDE versions are supported within the same environment with downloadable
component packs. To install other component packs for Eclipse, download the
appropriate zip file corresponding to your component pack from the BlackBerry
Developer Zone, and from the Eclipse IDE choose Help ➤ Software Updates, and click
the Available Software tab (see Figure 1-4).

Download at WoweBook.Com

CHAPTER 1: Setting the Stage 7

Figure 1-4. The Eclipse software updates dialog is accessible from by choosing Software Updates from the Help
menu.

Under the Available Software tab, click Add Site. Then, click Archive, and browse for
your zip file (see Figure 1-5).

Figure 1-5. Select Add Site and then Archive to browse to your component pack.

Make sure the check boxes appropriate to the component pack are checked in the tree
view, and click Install to continue (see Figure 1-6).

Download at WoweBook.Com

CHAPTER 1: Setting the Stage 8

Figure 1-6. Make sure all the check boxes for your archive are checked before clicking Install.

Follow the install wizard, and your component pack will be available for use.

Downloading Additional Simulators
Each version of the JDE and version of the JDE component pack comes with a set of
default simulators configured to work with the environment. RIM provides many more
simulators, however. These are very useful for testing how your application functions
with different screen resolutions or input methods. The simulators can be downloaded
from the Developer Zone at http://na.blackberry.com/eng/developers/resources/
simulators.jsp (see Figure 1-7 for a sample list).

Make sure to download simulators that correspond with your JDE or JDE Plug-in
Component pack version.

Figure 1-7. The Simulators Download page showing some of the many choices

Download at WoweBook.Com

CHAPTER 1: Setting the Stage 9

Installing Desktop Software
If you want to load your application onto a BlackBerry device directly from your
computer (i.e., without having to upload to a web server and download to your device
over the wireless connection), you’ll need to install the BlackBerry Desktop Manager
(see Figure 1-8), which includes the device drivers for the BlackBerry. You may already
have this installed, since it comes on a CD with your device or. you can downloade it
from http://www.blackberry.com. You’ll also need this to be able to debug your
application on a device using your USB cable.

Figure 1-8. You can use the BlackBerry Desktop Manager to load applications from your computer to your device.

Getting Code Signing Keys
For basic applications, you can compile and run on real BlackBerry devices with no
further involvement from RIM using the free tools. However, if you want to use certain
features (such as the BlackBerry persistent store, cryptography APIs, and embeddable
web browser) or if you want to allow your application to do things like automatically
start, you’ll need code signing keys from RIM. The code signing keys are only required
to use controlled APIs from an application running on a device; you can run an
application on the simulator that uses controlled APIs without having to sign it.

Since code signing keys usually only take a day or two to receive and a set of keys is
only $20, it’s a good idea to get them while you’re setting up your development
environment—almost every BlackBerry application ends up needing to use at least a few
controlled APIs.

Download at WoweBook.Com

CHAPTER 1: Setting the Stage 10

You can find more information and register for the code signing keys at
http://na.blackberry.com/eng/developers/javaappdev/codekeys.jsp.

The online application form for signing keys is available at https://www.blackberry.com/
SignedKeys/.

When filling in the key request form, remember the PIN you choose. You’ll need it to
install the keys into your JDE. Because it’s sometimes a point of confusion, it’s worth
pointing out that your signing key PIN is not related to a BlackBerry device PIN in any
way.

Installing Your Code Signing Keys
Once you’ve applied for your signing keys, you should receive three e-mails from RIM,
each containing one of the code signing keys. Each gives access to a different part of
the API, and you should install all three on the same PC. Follow the steps in this section
for each of the three keys.

If you’ve installed the JDE, the appropriate file associations will have been made during
install, and you can just double-click each of the keys to start the registration process.
From the JDE Plug-in for Eclipse, select Install Signature Keys from the BlackBerry
menu. Both methods will look the same from this point onwards.

NOTE: Because the key database format sometimes changes, you should install using the
earliest version of the JDE or JDE Plug-in you have and copy the key database to later versions
as outlined later in this section.

If this is the first of the three keys you’ve installed, you’ll be prompted to create a new
public/private key pair (see Figure 1-9).

Figure 1-9. When installing your first key, you’ll be prompted to create a new key pair.

Click Yes in this dialog, and you’ll be asked for a private key password to protect your
key file. Remember this password – you’ll be asked for it every time you want to sign
your application. You’ll then be asked to generate some random data by moving your
mouse pointer around (see Figure 1-10). A word of warning: this will seem like more fun
than it should.

Download at WoweBook.Com

CHAPTER 1: Setting the Stage 11

Figure 1-10. Generating random information for your new key pair—whee!

After this, you’ll be asked to enter the PIN you provided when you applied for your keys,
and the private key password you just entered (see Figure 1-11). Do this, and your key
will be installed and ready to use.

Figure 1-11. Registering a code signing key with the JDE

For the next two keys, you’ll already have generated your key pair, so you’ll just have to
enter the PIN and private key password.

Installing the Signing Keys for Different JDE Versions
Once you’ve created your key pair and installed your three keys, you’ll probably want
them to be available for each version of the JDE or JDE Plug-in Component Pack you
have installed. The key information is stored in three files:

sigtool.csk

sigtool.db

sigtool.set

Download at WoweBook.Com

CHAPTER 1: Setting the Stage 12

These are located in the following default locations; make the appropriate substitutions
for JDE version and nondefault install locations on your system:

For the JDE: C:\Program Files\Research In Motion\BlackBerry JDE
4.2.1\bin

For the JDE Plug-In for Eclipse:
C:\eclipse\plugins\net.rim.eide.componentpack4.2.1_4.2.1.17\
components\bin

To make your keys available for different JDE or JDE Plug-in Component pack versions,
simply copy these files into the appropriate bin directory. It’s also a very good idea to
keep a backup of these files and your original key files if you ever have to rebuild your
development environment.

What’s Different About Developing for BlackBerry
If you’re familiar with developing for modern desktop PCs or servers, there are many
things you might not think about before starting to develop for BlackBerry. Of course,
every platform is different, but there are some things to keep in mind when designing
and implementing an application for BlackBerry.

Limited CPU and Memory
Generally, BlackBerry CPU speed and RAM – as with most mobile devices – lag a few
years behind average PCs. The latest BlackBerry devices are getting faster, so this isn’t
as much of a constraint as it was a few years ago. There are lots of reasons for these
limitations, including prolonging battery life and keeping devices small, but in general,
it’s good to keep in mind that your processor-intensive desktop application algorithm
may not run as nicely on a BlackBerry device. Ways around this include redesigning
your application to let the server, if you have one, do some of the heavy lifting.

Also, because the BlackBerry OS is multitasking, CPU- or RAM-hungry applications
running in the background can make things difficult for other applications on the device.
This is another way of saying “play nice with other applications on the device!”

Java as the Native API
The Java virtual machine (VM) on the BlackBerry is as close to the hardware as you can
get. You can’t write a non-Java native application for the platform. This means that
you’re always in a garbage-collected, bytecode-interpreted environment, and you don’t
have real-time access to the hardware.

Download at WoweBook.Com

CHAPTER 1: Setting the Stage 13

Limited Screen Real-Estate
The largest BlackBerry device screen, in terms of number of pixels and physical size, is
the touch-screen Storm. It measures 3.25 inches and has a 360 × 480 resolution. Most
devices have a 3-inch or smaller screen.

User Input
The BlackBerry Storm lets the user click anywhere on the screen. Other devices don’t
have a touch screen, so the user is limited to the trackball (or trackpad on some recent
device models) and keyboard. The trackball is like a set of up, down, left, and right
cursor keys—not like a mouse. Your user interface must be designed with this in mind.
Imagine how difficult it would be to navigate around a modern Windows application (like
Microsoft Office) using just your cursor keys, and you’ll have an idea of what the
BlackBerry constraints mean.

Many Different Devices
A range of BlackBerry devices is currently being sold and used, and their screen
resolutions range from 240 × 260 to 480 × 360. Physical screen sizes change too.

Some of the devices have a trackball or optical trackpad along with a keyboard, but a
couple of models have a touch screen instead. Some have full QWERTY keyboards,
while others have the BlackBerry SureType keyboard, which has one or two letters per
key. The BlackBerry Storm can present different types of virtual keyboards depending
on device orientation and user preferences.

Processor speed and RAM vary from device to device, as does network speed. And
some hardware features, such as GPS, are not available on all devices.

You should be aware of these differences and design your application to work with as
many devices as possible if you want to reach a significant number of BlackBerry users.

What’s in This Book
Here’s a brief overview of the remaining chapters in this book

Chapter 2
In this chapter, you’ll learn how to build a simple BlackBerry application using the
BlackBerry JDE and the JDE Plug-in for Eclipse. We’ll debug the application using the
simulator and on a real device.

Download at WoweBook.Com

CHAPTER 1: Setting the Stage 14

Chapter 3
This chapter will discuss a number of concepts and topics important to BlackBerry
applications in general, laying down some groundwork to help you understand the rest
of the chapters.

Chapter 4
In this chapter, you’ll start to explore the user interface API in depth by building an
application that supports multiple screens and a variety of different user interface
controls.

Chapter 5
We’ll modify the application from Chapter 4 by creating and extending a number of user
interface components, and you’ll learn how to work with the user interface model and
create a custom look and feel for your applications.

Chapter 6
Next, we’ll move beyond the user interface. You’ll learn how to persistently store data on
the device between invocations of the application or resets of the device. We’ll also
explore the BlackBerry file system.

Chapter 7
This chapter will explore wireless networking by creating an application that interacts
with a web service on the internet.

Chapter 8
In Chapter 8, we’ll explore the location-based services support on the BlackBerry
platform by creating an application that gets location information using the GPS
hardware in a BlackBerry smartphone and interacts with BlackBerry maps to display
location information.

Chapter 9
In this chapter we’ll discuss how to package and distribute your application, both from
your own website and through other means. We’ll talk in depth about BlackBerry App
World and how to leverage its features and then briefly discuss some third-party
application stores.

Download at WoweBook.Com

CHAPTER 1: Setting the Stage 15

Chapter 10
Chapter 10 will provide a few final bits of information and a list of BlackBerry
development resources that you can use to help answer your future questions...

Download at WoweBook.Com

CHAPTER 1: Setting the Stage 16

Download at WoweBook.Com

 1717

 Chapter

Hello World

In this chapter, you’ll learn about the basics of BlackBerry application development by

creating a simple Hello World application in both the BlackBerry JDE and the BlackBerry

JDE Plug-in for Eclipse. The code will be the same for both—in fact, throughout the rest

of this book, we’ll focus on the code and not the development environment—but the

details about creating the project, adding classes and resource files, and running and

debugging are different. Our application is a simple BlackBerry application with a single

screen that will display “Hello World”. We’ll walk through creating the workspace and

project, creating and building out the necessary classes, and compiling and running on a

simulator. Then, we’ll add a few extra bits of polish, like a proper application name,

version information, and an icon. Finally, you’ll see how to build, sign, and run the

application on an actual device.

We’ll do all of this first using the stand-alone BlackBerry JDE and then using the

BlackBerry JDE Plug-in for Eclipse. To avoid too much repetition, we’ll discuss the code

a bit more in-depth in the BlackBerry JDE section, so even if you plan on using the JDE

Plug-in for Eclipse, you should read the section on the JDE first.

This is a quick-start chapter, so the goal is to gain basic proficiency with the

development tools and a bit of understanding of the basics of a BlackBerry application

without going too in depth. You’ll probably have a lot of questions throughout this

chapter, but the best way to proceed is to just go through step by step—things will

become clearer as we explore details of application development later on.

There’s a lot to do here, so let’s get going.

Creating an Application with the BlackBerry JDE
The BlackBerry JDE is a fully integrated development environment that contains all the

tools you need to develop, build, and test your application, on both a simulator and a

device. Its editor, while quite usable, is not quite state-of-the-art, and if you’re used to

something like Visual Studio or Eclipse, you may find it a step backward. However, it

makes up for this by supporting the widest range of features for BlackBerry

development; there are times when only the JDE will do. And a lot of developers like it

2

Download at WoweBook.Com

CHAPTER 2: Hello World 18

for its integrated nature and straightforward design and usage; you don’t have to play

with a lot of settings that might get in the way of developing your application.

If you don’t have the JDE installed, please see Chapter 1 for information about where to

get it and how to install it.

Creating the Workspace and Project
The BlackBerry JDE can have a single workspace loaded at any time. This workspace

can contain any number of projects. Each project represents either a BlackBerry

application, an alternate entry point to an application, a library, or a MIDlet. We’ll discuss

these all in the next chapter; for now, we’ll just build a simple application.

Start by launching the JDE. If this is the first time you’ve launched it, you’ll see the

samples.jdw workspace already loaded. This contains an array of very useful sample

applications from BlackBerry that show you how to use different parts of the BlackBerry

API, and it’s a great reference for application developers.

For now, we’ll create our own workspace by selecting New Workspace from the File

menu. Call the workspace HelloWorld, and select a directory to save it in, as shown in

Figure 2-1.

Figure 2-1. The JDE Create Workspace dialog

The JDE will create a file called HelloWorld.jdw in the directory that you specified

Next, create a BlackBerry application project in this workspace by right-clicking

HelloWorld.jdw in the JDE and selecting “Create new Project in HelloWorld.jdw” from

the pop-up menu, as shown in Figure 2-2.

Download at WoweBook.Com

CHAPTER 2: Hello World 19

Figure 2-2. Creating a new project in the JDE workspace

We’ll call this project HelloWorld as well, and leave the project in the same directory

as the workspace, so just type HelloWorld in the “Project name” field as shown in

Figure 2-3, and click OK.

Figure 2-3. Creating the new project within the workspace

There will now be a HelloWorld.jdp file in your directory. By default, this is already a

BlackBerry application project (we’ll talk about project types a little bit in the next

chapter), so we don’t have to do anything else.

Creating the Application Classes
Now, we’ll create the Java classes that our Hello World application needs in much the

same way as creating a project—right click the HelloWorld project, and select “Create

new File in Project” as shown in Figure 2-4.

Download at WoweBook.Com

CHAPTER 2: Hello World 20

Figure 2-4. Creating a new class in the JDE

Call the new file HelloWorldApp (you can leave off the .java extension, as it will be

added if you don’t explicitly enter another file extension). It’s also a very good idea to

put your classes into packages. In the JDE, you can do this by specifying a subdirectory

for the new class; the JDE will automatically map that to a package. We’ll use

com.beginningblackberry.helloworld as our package name, which maps to the

directory com\beginningblackberry\helloworld. Add that to the end of the directory in

the dialog box shown in Figure 2-5, and click OK.

Figure 2-5. Creating the main HelloWorldApp class in the JDE

Now, the HelloWorldApp.java file will be created and opened by default in our

workspace. The JDE helpfully fills in a basic class structure for us too, as shown in

Figure 2-6.

Download at WoweBook.Com

CHAPTER 2: Hello World 21

Figure 2-6. HelloWorldApp.java

We’ll create one more class for our main screen and then start filling in details. Follow

the same steps as before, and call the class HelloWorldMainScreen. Or, as a shortcut,

you can right click the com/beginningblackberry/helloworld directory instead of the

project name to have the JDE automatically fill in the package directory for you.

HelloWorldApp and HelloWorldMainScreen are the only classes we’ll need for this

application. The application project, as it appears in the JDE, is shown in Figure 2-7.

Download at WoweBook.Com

CHAPTER 2: Hello World 22

Figure 2-7. Both classes for Hello World in the JDE

The Main Application Class
The main application class will need to do three things:

 Create an instance of the application

 Create the main screen and push it onto the display stack

 Start the event dispatch thread

This is generally the pattern you’ll follow for all your applications, unless you need to do

something like automatically start when the BlackBerry device boots.

UiApplication
All applications that display a user interface (screens, menus, etc.) must subclass

net.rim.device.api.ui.UiApplication. We’ll do this by adding an import to the top of

HelloWorldApp.java and making an appropriate change to the class definition (I’ve

removed some of the automatically generated comments from the source to keep

things shorter):

Download at WoweBook.Com

CHAPTER 2: Hello World 23

package com.beginningblackberry.helloworld;

import net.rim.device.api.ui.UiApplication;

class HelloWorldApp extends UiApplication {
 HelloWorldApp() { }
}

NOTE: We could have used import net.rim.device.api.ui.* to get the same result,
but we imported the specific class instead. When you need to import a class, it’s better to
import that class specifically instead of the class’s package. Doing so will improve application
performance, and performance is very important on mobile devices.

Next, we’ll fill in the constructor of HelloWorldApp. This will create the main screen and

push it onto the display stack:

class HelloWorldApp extends UiApplication {
 HelloWorldApp() {
 HelloWorldMainScreen mainScreen = new HelloWorldMainScreen();
 pushScreen(mainScreen);
 }
}

Finally, we’ll need a main method. This will be familiar to you if you’re a Java SE, .NET, or

C developer but is different from the Java ME/MIDP way of doing things. The main

method acts as the entry point for our application and always has the same signature.

You should only have one main method per application. The main method will create an

instance of our application, and start the event dispatcher, which is the mechanism that

does all the drawing to screen, and listens for all user interaction for our application.

class HelloWorldApp extends UiApplication {
 …
 public static void main(String[] args) {
 HelloWorldApp app = new HelloWorldApp();
 app.enterEventDispatcher();
 }
}

The enterEventDispatcher method will never return as long as the application is

running. Essentially, the thread that entered the main application becomes the event

dispatch thread. We’ll explore this in greater depth later, but for now, just remember that

the method won’t return during the application’s normal life cycle.

Coding the Main Screen Class
If you tried to build the application at this point, you’d get a compile error, because we

fudged something. The pushScreen call in HelloWorldApp’s constructor requires a Screen

object, which is a subclass of net.rim.device.api.ui.Screen, and

HelloWorldMainScreen doesn’t subclass that yet. Let’s fix that now:

Download at WoweBook.Com

CHAPTER 2: Hello World 24

package com.beginningblackberry.helloworld;

import net.rim.device.api.ui.container.MainScreen;

class HelloWorldMainScreen extends MainScreen {
 HelloWorldMainScreen() { }
}

We subclass MainScreen instead of Screen, because MainScreen gives us a couple of

things automatically, namely a basic layout manager (to position our UI controls on the

screen) and a default menu. Later, we’ll want to handle some of that functionality

ourselves, but for this application, the default behavior of MainScreen is just what

we want.

You could run the application now, but you’d just get a blank screen (albeit with a menu

containing the Close item). That’s because we haven’t added anything to our main

screen yet. Let’s do that and then build and run the application.

Adding Basic Fields
We’ll deal with the user interface more in-depth later, but for now, here’s a brief

overview of how things work, so you’re not walking totally blindfolded.

The BlackBerry User Interface API follows a Fields/Layout Managers/Screens model:

Fields (the user interface controls like buttons and text boxes) are contained within

layout managers, which arrange and draw them in specific positions. The managers

themselves are contained within other managers, and ultimately a Screen class, which

represents the visible display on the BlackBerry. If you’ve used Java’s Abstract Window

Toolkit (AWT), Swing, Windows Forms, or any number of other UI toolkits, these

concepts will be familiar to you. In fact if you’re an experienced Swing user, you’ll find

things very familiar.

For now, I’ll gloss over some of the details, but basically, a MainScreen instance contains

a single VerticalFieldManager instance, which arranges all fields that it contains, one

below the other, in the order that they’re added.

The BlackBerry API contains a useful variety of fields and managers already. For Hello

World, we’ll just need one—the LabelField, which displays (as you might expect) a text

label. If you’re interested in exploring a bit more, you can find most of the built-in fields

in the net.rim.device.api.ui.component package and the built-in layout managers in

net.rim.device.api.ui.container.

It’s easier to show than explain, so here’s what HelloWorldMainScreen looks like with the

LabelField added:

package com.beginningblackberry.helloworld;

import net.rim.device.api.ui.container.MainScreen;
import net.rim.device.api.ui.component.LabelField;

Download at WoweBook.Com

CHAPTER 2: Hello World 25

class HelloWorldMainScreen extends MainScreen {
 HelloWorldMainScreen() {
 LabelField labelField = new LabelField("Hello World");
 add(labelField);
 }
}

Now, the application’s finished! Let’s take a look at it in action in the simulator.

Running the Simulator
Running an application in the simulator is very easy. Remember when we talked about

how easy setup is with the JDE? From the Debug menu, click Go—that’s it. The JDE will

automatically build your project (hopefully, you don’t have any build errors) and deploy it

to the simulator, and the default simulator for your version of the JDE will start. We used

the JDE version 4.2.1, which has the BlackBerry 8800 as its default simulator, so we get

a window that looks like this the one shown in Figure 2-8.

Figure 2-8. The default JDE version 4.2.1 simulator is the BlackBerry 8800.

Your application won’t be started by default, so you’ll have to navigate to it and start it.

There are two things to remember with the simulator:

 Unless you’re using the JDE version 4.7 with the BlackBerry Storm

simulator, you can’t click the screen—well, you can, but it won’t do

anything, as most BlackBerry devices don’t have touch screens.

Download at WoweBook.Com

CHAPTER 2: Hello World 26

 The trackball registers up, down, left, and right movements; it

basically like the arrow keys on your keyboard. In fact, the easiest

way to operate the trackball in the simulator is to use the arrow keys

on your PC’s keyboard.

For most devices, to run the application in the simulator, you can follow these

instructions:

1. Navigate down to the Applications icon (the bottom one on the list),

and press Enter on your keyboard (see Figure 2-9).

Figure 2-9. The Applications icon on the simulator

2. Navigate to the HelloWorld icon (see Figure 2-10), and press Enter.

Figure 2-10. The HelloWorld Icon on the simulator

3. The application will start: HelloWorldMainScreen will display our

LabelField, which says Hello World as shown in Figure 2-11.

Figure 2-11. Hello world!

This application is not the most exciting, certainly, but it’s a real, fully functional

application. It has a menu with a Close menu item (you can open the menu by clicking

the BlackBerry key to the left of the trackball), and you can start and exit it, and with a

Download at WoweBook.Com

CHAPTER 2: Hello World 27

tiny bit of work, you’ll be able to put it onto a real device. The first thing we’ll need to do

is build and sign our application.

Building and Signing Your Application
Building on the JDE is as simple as clicking Build from the Build menu.

The Hello World application is simple enough that you don’t need to sign it to run on a

device, but it’s a good idea to get used to signing your applications for when you will

need it. If you don’t have your code signing keys yet, you can skip the rest of this

section.

After you’ve built your application, select Request Signatures from the Build menu.

Notice that all signatures are listed as optional (See Figure 2-12). We don’t need to sign,

but it won’t hurt, so click the Request button, and enter your password. You’ll see a

progress dialog and, if all goes well, messages letting you know that your application

has been signed.

Figure 2-12. Requesting signatures for Hello World

Building with Different JDE Versions
If you want to build with different versions of the JDE, you’ll have to reload your

workspace under each version of the JDE you want to use.

Generally, building with the earliest version that supports all the features that you need is

a good idea. This gives your application compatibility with the widest range of

BlackBerry devices.

You may need to build and run under a later version if you want to test with a simulator

(such as the touch screen BlackBerry Storm) that’s only available for certain versions of

Download at WoweBook.Com

CHAPTER 2: Hello World 28

the JDE. Also, if you want to use a specific API, you’ll obviously need to use the

appropriate version of the JDE; JDE versions that APIs appear in are usually specified in

the BlackBerry API Javadocs.

Loading Hello World onto a Device
You can load a BlackBerry application onto a device in several ways. For now, to avoid

discussion of different descriptor files, we’ll use a developer tool called JavaLoader.

JavaLoader is a command-line tool, meaning you have to run it from the Windows

command prompt. Start a command prompt window, and navigate to your working

directory. Then, make sure your BlackBerry is plugged into a USB port on your

computer before typing the following:

<Path to JDE bin> \JavaLoader.exe -u load HelloWorld.cod

Replace <Path to JDE bin> with the path to the bin directory under your JDE

installation, usually C:\Program Files\Research In Motion\BlackBerry JDE 4.2.1\bin\.

Your application should load on to your device almost instantly, and you’ll be ready to

show off Hello World to your friends!

Using the Debugger
The simulator and JDE debugger are as powerful a combination as you’d expect from

any modern development environment. You can simulate different network coverage,

battery levels, and other device configurations, as well as events like phone calls

through the Simulate menu. You can also set a breakpoint and step through your code

at any point.

Of course, no simulator is a 100 percent perfect representation of the real thing, so the

debugger also lets you connect to your application running on a real BlackBerry device

through a USB connection.

Changing Simulators and Settings
Your choice of simulators is limited to those that came with the version of the JDE

you’re using and any others you’ve downloaded and installed (see Chapter 1). To select

a simulator other than the default, select Preferences from the Edit menu, and click the

Simulator tab (see Figure 2-13).

Download at WoweBook.Com

CHAPTER 2: Hello World 29

Figure 2-13. The Simulator tab in the JDE’s Preferences window

On the Simulator tab, you can choose a specific simulator to run and modify quite a few

other useful parameters, for example:

 PIN: This is often used as a unique device ID for a client-server

application.

 Launch Mobile Data Service (MDS) with simulator: This is required

for simulating most BlackBerry networking applications. We’ll use

and discuss this in Chapter 7.

Setting Breakpoints
Setting a breakpoint is easy. Just right-click somewhere in your source file, and select

Set Breakpoint At Cursor (or press F9 to set a breakpoint at the line the cursor is

currently on). A breakpoint will cause your application to pause and open the debug

view when that line is reached. From that point, you can step through your code line-by-

line to look at the values of variables, the call stack, and other information.

Let’s try this with Hello World now. Open HelloWorldMainScreen.java in the editor and

move the cursor to the first line in the constructor, as shown in Figure 2-14.

Download at WoweBook.Com

CHAPTER 2: Hello World 30

Figure 2-14. Move the cursor to the first line of the HelloWorldMainScreen constructor.

Right-click, and add a breakpoint. You’ll see a red ball indicating the breakpoint, as

shown in Figure 2-15.

Figure 2-15. A breakpoint is indicated by the circle to the left of the LabelField initialization.

Now, start the simulator if it isn’t still running, and start the application. Since this

breakpoint is in a constructor, the debugger should come up right away (see

Figure 2-16). The JDE window will have a few new panels available, including the

Calling Method panel. It displays that call stack and shows that we’re in the

HelloWorldMainScreen constructor, which was called from the HelloWorldApp

constructor, which was called from the main method in HelloWorldApp.

Download at WoweBook.Com

CHAPTER 2: Hello World 31

Figure 2-16. Execution stopped at a breakpoint with the JDE. The call stack is visible in the middle-left panel and
the variables in the bottom-right one.

In the bottom-right panel is a list of variables that are currently in scope. If we step to the

next line (using F10 or Debug ➤ Step Over), labelField will appear in that list.

Additional information and functionality, such as profiling, is available from the

View menu.

Debugging on a BlackBerry Device
Debugging on a device lets you test things that are difficult or impossible with the

simulator like specific network conditions and memory and speed constraints. The

debugger lets you set breakpoints that will cause the device to suspend execution, as

well as allowing you to see the output of System.out.println statements in your

application.

To debug your application on a device, you must have your device connected to your

computer via USB cable. Also, the BlackBerry Desktop Manager should not be running;

it will cause connection problems with the debugger.

Download at WoweBook.Com

CHAPTER 2: Hello World 32

With your BlackBerry device plugged in and the application loaded (but not running),

click the Debug menu, and select Attach To. Your device’s PIN should appear in the

menu as in Figure 2-17. Click it, and after a few seconds for the debugger to attach

(messages will appear on the device’s screen), you’ll be able to do everything you can

with a simulator.

Figure 2-17. Attaching the debugger to a real device

Now, if you’ve kept the same breakpoint from the “Setting Breakpoints” section, when

you launch the application the JDE will pop up in the same view with an arrow pointing

to the breakpoint at the same line.

Creating an Application with the BlackBerry JDE
Plug-in for Eclipse
The JDE Plug-in for Eclipse hasn’t been around as long as the stand-alone JDE and,

until fairly recently, wasn’t as well supported, so there are still a few things that may not

work 100 percent of the time. Also, the JDE Plug-in supports only JDE version 4.2.1 and

later. Neither of these limitations is a concern for the majority of projects: the flakier

parts are fairly obscure and don’t affect the final application, and version 4.2.1 is pretty

much the minimum that most commercial applications should realistically support. The

benefit is the richness of the Eclipse environment—mainly Eclipse’s editor, which has

many more features than the one included with the JDE. For what it’s worth, I have used

earlier versions of the JDE Plug-in for Eclipse to create many professional BlackBerry

applications, and even with its quirks, I would recommend it to any developer.

We’ll walk through creating the same Hello World application with the JDE Plug-in

for Eclipse, but I’ll skimp a bit on explanations of the code this time, so if you

don’t understand something about the structure of the program itself, refer to the

previous sections.

Download at WoweBook.Com

CHAPTER 2: Hello World 33

If you haven’t installed the JDE Plug-in for Eclipse, refer to Chapter 1 for instructions

about where to get it and how to install it.

Creating the Project
With Eclipse, workspace creation is implicit, and the JDE Plug-in uses the same concept

of workspace as Eclipse itself does. When you start Eclipse, you’re asked for a

workspace location, which can be any directory. Select (or create) an appropriate one

and click OK, as shown in Figure 2-18.

Figure 2-18. Creating a new workspace in Eclipse

If this is the first time you’ve opened this workspace, you’ll see Eclipse’s new workspace

Welcome screen (see Figure 2-19). There are useful things here, but for this tutorial, just

click “Go to the workbench”.

Figure 2-19. The Eclipse new workspace Welcome page

Download at WoweBook.Com

CHAPTER 2: Hello World 34

To create a new BlackBerry project, click the File menu, and choose New ➤ Project.

In the New Project dialog, select BlackBerry Project from the BlackBerry folder, as

shown in Figure 2-20.

Figure 2-20. The Eclipse New Project dialog

Click Next; name your project HelloWorld, and click Finish. Your Eclipse workspace

should contain a single project in the Package Explorer on the left-hand side. When

expanded, the package should contain a folder named src, which is where all our

source files will reside, and a reference to NET_RIM_BLACKBERRY, which is the BlackBerry

runtime library containing the BlackBerry API, as shown in Figure 2-21.

Figure 2-21. New BlackBerry project in Eclipse

Download at WoweBook.Com

CHAPTER 2: Hello World 35

Creating the Application Classes
Here’s where the power of Eclipse will start to become apparent. We’ll create the same

two classes for our project as we did with the JDE, but Eclipse will let us generate a lot

more of the code automatically.

Creating the Main Application Class
Right-click the HelloWorld project icon in the Package Explorer, and from the pop-up

menu, select New ➤ Class. In the dialog, type the following values:

 Package: com.beginningblackberry

 Name: HelloWorldApp

 Superclass: net.rim.device.api.ui.UiApplication

NOTE: A handy shortcut throughout Eclipse, both in the New Java Class dialog and in the code
editor, is to type part of the class name and then press Ctrl+space to get a list of class
suggestions. For example, to automatically get the class name
net.rim.device.api.ui.UiApplication in the Superclass field of the New Java Class
dialog, type UiApp and press Ctrl+space. Eclipse will look for possible completions in the RIM
API and in any classes you’ve created in your workspace. It also works for other Java
constructs, such as method names.

Under “Which method stubs would you like to create?” , make sure the first two check

boxes for generating a main method and constructors are checked (the third box can be

checked or not, there are no abstract methods in UiApplication, so it won’t make a

difference). Everything else can be left at the default (see Figure 2-22).

Figure 2-22. Creating the main application class with Eclipse

Download at WoweBook.Com

CHAPTER 2: Hello World 36

You’ll get the following source code:

package com.beginningblackberry;

import net.rim.device.api.ui.UiApplication;

public class HelloWorldApp extends UiApplication {

 public HelloWorldApp() {
 // TODO Auto-generated constructor stub
 }

 /**
 * @param args
 */
 public static void main(String[] args) {
 // TODO Auto-generated method stub

 }

}

There are even TODO markers where we have to write our logic. We’ll do that, but first,

let’s create the main screen class.

Creating the Main Screen Class
Click New ➤ Class again (or if you right-click the package in the tree view and select

New ➤ Class, you won’t have to reenter the package name). Fill in the following values:

 Package: com.beginningblackberry

 Name: HelloWorldMainScreen

 Superclass: net.rim.device.api.ui.container.MainScreen (or type

MainS, and press Ctrl+space)

Leave all other values as default, and click Finish to create the following source code:

package com.beginningblackberry;

import net.rim.device.api.ui.container.MainScreen;

public class HelloWorldMainScreen extends MainScreen {

}

Filling in the Hello World Classes
Now, we’ll fill in the logic for both of our classes as in the previous sections (the code is

repeated here for your convenience).

First, add the code for HelloWorldApp.java:

package com.beginningblackberry;

Download at WoweBook.Com

CHAPTER 2: Hello World 37

import net.rim.device.api.ui.UiApplication;

public class HelloWorldApp extends UiApplication {

 public HelloWorldApp() {
 HelloWorldMainScreen mainScreen = new HelloWorldMainScreen();
 pushScreen(mainScreen);
 }

 /**
 * @param args
 */
 public static void main(String[] args) {
 HelloWorldApp app = new HelloWorldApp();
 app.enterEventDispatcher();
 }

}

Then, add the following code for HelloWorldMainScreen.java:

package com.beginningblackberry;

import net.rim.device.api.ui.component.LabelField;
import net.rim.device.api.ui.container.MainScreen;

public class HelloWorldMainScreen extends MainScreen {
 public HelloWorldMainScreen() {
 LabelField labelField = new LabelField("Hello World");
 add(labelField);
 }
}

Running the Simulator
As with the JDE, the application is automatically built and deployed when we launch the

simulator (in fact, with Eclipse, the Java code is compiled whenever you make any

change, which makes spotting errors easy). Running the simulator involves an extra step

or two, because you have to create a debug configuration. The advantage of this is that

you can create multiple device configurations for different simulators and quickly select

whichever one you need.

Click the arrow next to the debug icon in the Eclipse toolbar, and select Debug

Configurations, as shown in Figure 2-23.

Download at WoweBook.Com

CHAPTER 2: Hello World 38

Figure 2-23. The Eclipse debug configurations drop-down

The Debug Configurations dialog (see Figure 2-24) lets you set up different

configurations, which may be different simulators or actual devices. Each configuration

can have different debug parameters, and as you develop applications, you’ll likely end

up with a few different configurations for debugging different operating system versions,

screen sizes, and so on. Feel free to explore these options at any time.

For now, select the BlackBerry Simulator icon on the left side, and click the New button

on the toolbar in the dialog window that’s shown in Figure 2-23.

Figure 2-24. Setting up a simulator debug configuration with the Eclipse Plug-in

Download at WoweBook.Com

CHAPTER 2: Hello World 39

We’ll keep all the defaults, so just click the Debug button at the bottom of the dialog

shown in Figure 2-25, and the simulator will launch with your application deployed. From

this point on, you can access your debug configuration directly from the Debug drop-

down menu in the main Eclipse toolbar by clicking the downward-facing arrow next to

the debug icon.

Figure 2-25. The default values for a new debug configuration

Using Breakpoints and the Debug Perspective
A breakpoint can be set for a line from the Run menu, using Toggle Breakpoint.

When the application stops at a breakpoint, you’ll be prompted to show the Eclipse

Debug perspective. The Debug perspective gives you the same information as the JDE,

arranged slightly differently (see Figure 2-26).

Download at WoweBook.Com

CHAPTER 2: Hello World 40

Figure 2-26. The Eclipse Debug perspective, stopped at a breakpoint.

All the same functionality that was available in the JDE is available here, using Eclipse’s

keyboard shortcuts and menus, of course. More debugging information is available from

the Window menu, under Show View.

Building and Signing Your Application
The concepts are the same for building and signing with the JDE Plug-in for Eclipse as

with the JDE. To build your application, open the Project menu, and click Build Active

BlackBerry Configuration.

To sign the application, open the BlackBerry menu, and select Request Signatures. The

same dialog will appear as you saw with the JDE.

Building with Different JDE Versions
Building with different versions of the JDE using the JDE Plug-in is accomplished by

changing your workspace configuration. By default, the JDE Plug-in comes with a single

version of the JDE; you must download others as outlined in Chapter 1.

The easiest way to access your JDE configuration is by clicking Configure BlackBerry

Workspace from the BlackBerry menu. You’ll be presented with the Eclipse Preferences

window, opened to the BlackBerry JDE section.

This window is worth exploring a bit on your own time, but for now, click the Installed

Components item in the left-hand tree view (see Figure 2-27).

Download at WoweBook.Com

CHAPTER 2: Hello World 41

Figure 2-27. Changing JDE Versions in Eclipse

You’ll see a list of all of your installed JDE versions. Select one, and click OK. You’ll be

prompted to rebuild your workspace with the new JDE version.

NOTE: You can only run debug configurations corresponding to your currently selected JDE
version. Others will still show up in the debug drop-down, however. Selecting an incompatible
one won’t cause any harm but will result in an error dialog.

Debugging on a Device
Like the JDE, the JDE Plug-in allows you to debug code on a real device. This requires

the creation of a new debug configuration. From the Debug toolbar menu, select Debug

Configurations, and create a new BlackBerry Device configuration by highlighting that

icon and clicking the New button, as shown in Figure 2-28).

Download at WoweBook.Com

CHAPTER 2: Hello World 42

Figure 2-28. Setting up for on-device debugging using the Eclipse Plug-in

Polishing the Application
Now that we’ve created and run our first application in the JDE or Eclipse (or both),

we’ll finish off by adding a few bits of polish: the application icon and a slightly

friendlier name.

Setting the Title in Project Properties
The application title and version are both accessed through the project properties

dialog, which is in almost the same place in both development environments. In the JDE,

it’s accessed by right-clicking the project and selecting Properties. In Eclipse, it’s

accessed by right-clicking the name of the project in the left-hand pane, selecting

Properties and clicking BlackBerry Project Properties in the list on the left side (the other

items in the list are properties that apply to all types of Eclipse projects, which are

outside the scope of this book).

If you don’t specify an application title, the BlackBerry will use your project name as the

title of the application on the home screen. In our case, we want a space between Hello

and World and add an exclamation point to make it more exciting, so type Hello World!

in the Title field (Figure 2-29 shows the JDE project properties dialog).

Download at WoweBook.Com

CHAPTER 2: Hello World 43

Figure 2-29. The properties dialog for the HelloWorld project

Creating an Icon
A BlackBerry icon should be a PNG image. Because there are different screen

resolutions, the image size will depend on the devices you want to support, though 48 ×

48 pixels is reasonable for most devices (many older ones will scale it down). For more

information about ideal icon sizes for different devices you can refer to the BlackBerry UI

Guidelines. The easiest way to find them is to search the BlackBerry Developer Zone

(see Chapter 1) for “UI Guidelines.” You can download the icon file I used from the

book’s page of the Apress website.

Adding an Icon with the JDE
Using the JDE, you must add the icon’s image file to the project before using it as your

application icon. Save the file to a directory under your project. Then from the Project

menu, select Add File to Project, and browse for your icon file. Your workspace should

now list icon.png on the left side (see Figure 2-30).

Download at WoweBook.Com

CHAPTER 2: Hello World 44

Figure 2-30. The application icon added to the JDE project

Now, right-click the icon, and select Properties. Select the Use As Application Icon

check box in the File Properties dialog (see Figure 2-31).

Figure 2-31. Setting icon.png to be used as the applicaton’s icon

Download at WoweBook.Com

CHAPTER 2: Hello World 45

Adding an Icon with the JDE Plug-in for Eclipse
The JDE Plug-in doesn’t require you to add the icon to the workspace before making it

the application icon. In fact, the icon’s image file doesn’t even have to be in the project

directory (though storing it with the project is highly recommended, as it makes

managing everything easier). Right-click your project, and select Properties to open the

project properties, dialog. Then, click BlackBerry Project Properties, followed by the

Resources tab, and click the Add button under “Icon files” (see Figure 2-32). Then

browse for your icon.

Figure 2-32. Adding the Hello World application icon in Eclipse

Download at WoweBook.Com

CHAPTER 2: Hello World 46

Seeing It All in Action
Now, go ahead and run the simulator again. Our fancy new icon and more user-friendly

name will be displayed on the home screen, just like in Figure 2-33!

Figure 2-33. The shiny new Hello World! name and icon

Summary
Congratulations! You’ve successfully built your first BlackBerry application. You’ve

learned how to run and debug it in the simulator and how to load and debug it on a real

BlackBerry device. That’s a good start, but obviously, we haven’t even scratched the

surface of the rich BlackBerry API, so there’s a lot still to learn. In the next chapter, we’ll

briefly discuss and consolidate some of the concepts that you learned here and set the

stage for our deeper exploration of the BlackBerry API.

Download at WoweBook.Com

47

4747

 Chapter

What Makes a BlackBerry
Application?

You should now be familiar with the basics of building a BlackBerry application using

the stand-alone JDE or the JDE Plug-in for Eclipse. Before really diving into what the

BlackBerry API can do, we’ll digress briefly to discuss a few concepts that apply to

BlackBerry application development. If you’re eager to get coding, you can skip to the

next chapter, but I recommend you at least skim over this one first, so you know what’s

discussed here and can refer to it later as necessary. We’ll cover some fundamental

things that will be used heavily in the next couple of chapters, including the user

interface threading model and the BlackBerry API Javadocs. We’ll also cover a few

things that are useful to know in many types of applications, like application life cycle,

foreground and background applications, and the different types of BlackBerry projects

you can create using the development environment.

Javadocs
The BlackBerry development environment comes with API documentation in the

Javadoc format (See Figure 3-1). Javadocs should be familiar to Java developers;

basically, these form a set of HTML files for each class in the API, detailing all the

methods and other properties of each class. You’ll find yourself referring to the

Javadocs frequently, so it’s good to know where to find them. They’re also a great way

to explore the API and get an idea of what’s possible.

3

Download at WoweBook.Com

CHAPTER 3: What Makes a BlackBerry Application? 48

Figure 3-1. The BlackBerry API Javadocs

If you’ve installed the stand-alone JDE, you can find the Javadocs through the Windows

Start menu at Research In Motion ➤ BlackBerry JDE 4.2.1 ➤ API JavaDoc Reference (or

a similar place for different versions of the JDE).

With the JDE Plug-in for Eclipse, the Javadocs are located on the filesystem under the

Eclipse installation directory. For example, the 4.2.1 component pack is located here:
eclipse\plugins\net.rim.eide.componentpack4.2.1_4.2.1.17\components\docs\api\in
dex.html.

You can also see the Javadoc for any class or method in the Eclipse editor by hovering

the mouse pointer over the class or method name for a few seconds as in Figure 3-2.

Figure 3-2. Viewing the Javadoc for MainScreen class in Eclipse by hovering the mouse pointer

Download at WoweBook.Com

CHAPTER 3: What Makes a BlackBerry Application? 49

The BlackBerry Application Life Cycle
BlackBerry applications behave very much like ordinary desktop applications. If you’ve

had experience with C, C++, or Java on the desktop, some of the ideas in the previous

chapter probably seemed very familiar to you. Specifically, the main method for a

BlackBerry application is identical to the main method for a Java SE application (which is

very similar to C’s).

While there are exceptions for specific needs, almost all BlackBerry applications will

follow the same life cycle. In this book, all of our applications will fundamentally look like

the Hello World application we created in the last chapter.

Starting the Application
An application is generally started in one of three ways:

 The user clicks the application’s icon on the BlackBerry home

screen.

 The application is an automatically starting application and runs

when the device is turned on or after it reboots.

 The application is run by another application.

In all cases, the main method is the first entry point for your application. The BlackBerry

device will create a process, which will call that method. Whenever the main method

exits, the process is terminated and your application exits. This means that if you want

your application to do anything, you’d better do it in that main method.

The main method takes an array of java.lang.String objects as parameters. For the

most part, this array is empty, but parameters can be passed in if you define them in the

project properties or if they’re passed by another process that is starting your

application.

Creating the Application
All BlackBerry applications that want to present a user interface to the user must

extend UiApplication. You can only create one instance of UiApplication for any

application process; the BlackBerry runtime will throw an exception if you try to

instantiate a second one.

Even applications with no user interface must extend

net.rim.device.api.system.Application, but those types of applications are outside

the scope of this book.

You can always access your application instance using the static method

UiApplication.getUiApplication(). This actually returns an instance of your application

class, so from anywhere in Hello World, the following is allowed:

HelloWorldApp helloWorld = (HelloWorldApp)UiApplication.getUiApplication();

Download at WoweBook.Com

CHAPTER 3: What Makes a BlackBerry Application? 50

Invoking the Event Thread
The event thread is started for you by the BlackBerry operating system, but it doesn’t

start processing events and drawing the UI until you explicitly tell it to. You do this with

the UiApplication.enterEventDispatcher() call that you saw in the last chapter. Once

this method is called, the thread that entered into the main method passes from your

direct control and takes up the task of listening for user interface input and drawing the

user interface to the screen. You’ll still get a chance to do work on the thread, but for the

most part, its activities are scheduled by the BlackBerry operating system.

enterEventDispatcher won’t return for the entire life cycle of your application, so if

there’s anything your main thread must do before calling this (for example, some types

of initialization) you have only one chance.

Processing Events
The application responds to keyboard input, trackball, or touch screen movements and

clicks and to other events like system messages.

Exiting the Application
Generally, a BlackBerry application exits when the last screen is removed from the

display stack (by closing it). You may have noticed the System.exit() method, which will

exit the application, but it’s recommended to avoid this and properly clean up the

application on exiting by closing all screens instead. When the application exits, all

application state will be cleaned up, and the next time the user clicks the application

icon the main method will be called again with a new process.

Threading and the Event Thread
The BlackBerry UI API is single-threaded. This means that all UI updates and events are

handled by the same thread—or more precisely, must be done while holding the event

lock, which most of the time is held by the UI thread. It also has a couple of implications

for BlackBerry applications: other threads can’t directly access the UI without explicitly

acquiring the event lock (an exception will be thrown if you try), and if you perform an

operation on the event thread that takes a long time, the entire user interface will pause

while that operation is taking place.

The message to take away from all this is to get comfortable with using at least one or

two other threads in your applications.

Download at WoweBook.Com

CHAPTER 3: What Makes a BlackBerry Application? 51

NOTE: We’re not going to be doing heavy concurrency in this book, so if you’re understand
what a thread is and how to create and start one, you’ll be fine. However, if you’re not
comfortable with the idea of threading at all, or have never used threads in your programming,
I recommend you take a look at the Java SE threading API.

Knowing When Your Application Is on the Event Thread
You can always tell if your code is being executed by the event thread by calling

UiApplication.isEventDispatchThread(). Generally though, you shouldn’t need to

invoke this. A good rule of thumb for determining if you’re on the event thread is: If your

code was invoked more or less directly from the run method of a Thread that you

created, you’re not on the event thread. If the code was invoked by the system in

response to user input (for example, a menu item or a button click), you’re on the event

thread.

Updating the UI from Other Threads
Of course, many times, you want an event in another thread to be reflected in the UI, for

example, to show progress of a long network activity like a file download. To do that,

there are a couple of methods. The first is to use UiApplication.invokeLater or

UiApplication.invokeAndWait to tell the UI thread to run some code on the event thread

at the next available opportunity. The second method is to acquire the UI event lock by

synchronizing on the object returned by UiApplication.getEventLock(). We’ll explore

the first method by modifying Hello World to start a thread that adds a message to the

main screen’s Label field every 5 seconds.

NOTE: Both invokeLater and invokeAndWait do the same thing—queue an instance of
java.lang.Runnable to be executed on the event thread. The difference is that
invokeLater returns immediately, while invokeAndWait doesn’t return until the run
method of your Runnable has finished executing and, therefore, blocks the thread that calls it

First, let’s change labelField to be a member variable instead of a variable local to the

constructor, and add a method to append text to it:

public class HelloWorldMainScreen extends MainScreen {

 private LabelField labelField;

 public HelloWorldMainScreen() {
 labelField = new LabelField("Hello World");
 add(labelField);
 }

Download at WoweBook.Com

CHAPTER 3: What Makes a BlackBerry Application? 52

 public void appendLabelText(String text) {
 labelField.setText(labelField.getText() + "\n" + text);
 }

}

Because appendLabelText calls LabelField.setText, the call can only be made from the

event thread. If you attempt to call this method directly from another thread, an

exception will be thrown.

Now, we’ll define the thread class that will actually do the updating. It will loop from 1 to

10. In each iteration, it will wait 5 seconds and then add some text to the LabelField.

Create a new class called MainScreenUpdaterThread that extends java.lang.Thread. The

full source code follows:

package com.beginningblackberry;

import net.rim.device.api.ui.UiApplication;

public class MainScreenUpdaterThread extends Thread {
 HelloWorldMainScreen mainScreen;

 public MainScreenUpdaterThread(HelloWorldMainScreen mainScreen) {
 this.mainScreen = mainScreen;
 }

 public void run() {
 for (int i = 0; i < 10; i++) {

 try {
 Thread.sleep(5000);
 } catch (InterruptedException ex) {

 }
 // Queue a new task on the event thread
 UiApplication.getUiApplication().invokeLater(new Runnable() {
 public void run() {
 mainScreen.appendLabelText("Update");
 }

 });

 }
 }
}

To actually update the UI, we’re using an anonymous inner class, which is a class that

we define at the point where we instantiate it. Our anonymous inner class calls the one

method that needs to be called on the event thread—appendLabelText (which calls

LabelField.setText).

We’ll start our thread in the HelloWorldMainScreen constructor as follows:

 public HelloWorldMainScreen() {
 labelField = new LabelField("Hello World");
 add(labelField);

Download at WoweBook.Com

CHAPTER 3: What Makes a BlackBerry Application? 53

 MainScreenUpdaterThread thread = new MainScreenUpdaterThread(this);
 thread.start();
 }

Finally, running this application will produce the output shown in Figure 3-3.

Figure 3-3. A few updates from our thread

Using the Event Lock
What about the second method of updating the UI from another thread? With a simple

modification to MainScreenUpdaterThread we can do that too. Change the run method of

MainScreenUpdaterThread to the following:

 public void run() {
 for (int i = 0; i < 10; i++) {
 try {
 Thread.sleep(5000);
 } catch (InterruptedException ex) {

 }
 // Ensure we have the event lock
 synchronized(UiApplication.getEventLock()) {
 mainScreen.appendLabelText("Update");
 }
 }
 }

The application should run exactly the same way as in the previous example.

This example application is admittedly a bit contrived, but it’s important to understand

the concept of updating the UI from a different thread, as this concept will be applied

throughout most BlackBerry applications you create.

Download at WoweBook.Com

CHAPTER 3: What Makes a BlackBerry Application? 54

Running Background Applications
While an application, by default, will exit when the last screen is closed, you can override

this behavior to send an application to the background instead, meaning that the UI will

not be displayed, but the application will continue to run as the user performs other

tasks. Running applications in the background is useful in the following situations:

 You want your application to periodically check for changes on the

device or for events. For example, the BlackBerry Messages

application always runs to check for incoming mail.

 You want to periodically download new information from the

network. Several weather and stock applications use this approach.

 You need to maintain a connection to an external server. An instant

messaging application might need to maintain a connection to the

messaging server.

Detecting Backgrounding or Foregrounding
An application can be sent to the background if a user when presses the red phone key

or explicitly switches tasks. You can detect this background status by overriding the

UiApplication.deactivate method. Similarly, you can detect your application coming

back into the foreground by overriding UiApplication.activate.

Let’s modify HelloWorldApp to display a message when Hello World goes to the

background or comes to the foreground:

public class HelloWorldApp extends UiApplication {

 private HelloWorldMainScreen mainScreen;

 public HelloWorldApp() {
 mainScreen = new HelloWorldMainScreen();
 pushScreen(mainScreen);
 }

 public void deactivate() {
 mainScreen.appendLabelText("Went to background");
 }

 public void activate() {
 mainScreen.appendLabelText("Came to foreground");
 }

 /**
 * @param args
 */
 public static void main(String[] args) {
 HelloWorldApp app = new HelloWorldApp();
 app.enterEventDispatcher();
 }

}

Download at WoweBook.Com

CHAPTER 3: What Makes a BlackBerry Application? 55

When you run this application, you’ll immediately see a “Came to foreground” message.

The message is displayed because of the initial activation of the application. Press the

red button, and then select the icon a few times to send the application back and forth

from foreground to background. You’ll see something like Figure 3-4.

Figure 3-4. Hello World after going between the background and foreground a few times.

Sending Your Application to the Background
You can send your application to the background using the

UiApplication.requestBackground() method. To make Hello World go to the

background rather than exit when the user closes the main screen, let’s override

Screen.close() in HelloWorldMainScreen:

public class HelloWorldMainScreen extends MainScreen {
 //...

 public void close() {
 UiApplication.getUiApplication().requestBackground();
 }

Now, pressing the escape key or selecting Close from Hello World will actually send the

application to the background. You can test that this produces the same messages as in

the example shown in Figure 3-4.

Download at WoweBook.Com

CHAPTER 3: What Makes a BlackBerry Application? 56

Understanding the Types of Projects
I mentioned this topic earlier, but it deserves a little more discussion now. Using the JDE

or the JDE Plug-in for Eclipse, you can create several types of BlackBerry projects.

We’ve been making applications up to this point, but there are two others that you may

end up using: libraries and alternate entry points.

Libraries
Libraries, like applications, are packaged as .cod files. They’re loaded onto a device in

the same way. The difference is that they aren’t executed directly by the BlackBerry;

they contain code or resources used by one or more other applications. You may want

to create a library to logically separate your code or to reuse code between applications.

Creating a Library
Creating a library is similar to creating an application. From Eclipse you create a

BlackBerry project as normal, and then from the Project Properties, select Library as

shown in Figure 3-5.

Figure 3-5. Making a BlackBerry application into a library in Eclipse

Download at WoweBook.Com

CHAPTER 3: What Makes a BlackBerry Application? 57

From the JDE, simply select Library from the “Create new file” dialog, as shown in

Figure 3-6.

Figure 3-6. Creating a new Library in the JDE

Using Libraries in Your Application
Once you have a library, you need to tell your development environment that your

application depends on it. From the JDE, this is accomplished through the Project ➤

Dependencies menu item.

From Eclipse, the option is buried a little deeper, under project Properties, select Project

References, as shown in Figure 3-7.

Download at WoweBook.Com

CHAPTER 3: What Makes a BlackBerry Application? 58

Figure 3-7. Adding a library dependency from Eclipse

Once you’ve added the library dependency to your project, you can refer to classes in

that library in the same way as you refer to classes in your application.

NOTE: A warning about duplicate classes on the BlackBerry. The BlackBerry class loader uses
one global namespace. This means that having two classes in two different modules have the
exact same fully qualified class name will cause a conflict. Having two classes both named
com.beginningblackberry.HelloWorldMainScreen is a problem, but if one is named
com.somethingelse.HelloWorldMainScreen, that’s OK. Libraries can help you get
around naming conflicts like this by moving common code into one place, but they can also
cause problems if you’re not careful and have the same classes included in a library and in
your application.

Creating an Alternate Entry Point
An alternate entry point is exactly what it sounds like—another way for the user or

BlackBerry to start your application. An alternate entry point can provide another icon on

the BlackBerry home screen to start your application. By clicking on the other icon, the

same main method is called, but with different parameters, allowing you to run your

Download at WoweBook.Com

CHAPTER 3: What Makes a BlackBerry Application? 59

application in different modes. Alternate entry points are also commonly used with

applications that are configured to automatically start when the device powers on or

reboots, but that may also need to be started by the user or might be integrated into

other applications, such as the Messages or Camera application, and started using a

menu item in one of those applications. The process for creating an alternate entry point

is fairly similar between the JDE and the JDE Plug-in for Eclipse, so we’ll just go over the

Eclipse method in this chapter.

In the Hello World workspace, create a new BlackBerry project called

HelloWorldAlternate, and open the BlackBerry Project Properties dialog. The Application

tab will have a couple of new entries, one of which is Alternate CLDC Application Entry

Point. Select that, and the “Alternate entry point for” drop-down will become enabled,

letting you select HelloWorld as the project (see Figure 3-8).

Figure 3-8. Creating an alternate entry point for the Hello World application

Let’s modify the application a little, so you can see the alternate entry point at work. In

the Arguments box, type alt and click OK. Now, add a new constructor to

HelloWorldMainScreen:

 public HelloWorldMainScreen(boolean isAlternateEntry) {
 if (isAlternateEntry) {
 labelField = new LabelField("Goodbye World!");
 }
 else {
 labelField = new LabelField("Hello World!");
 }

Download at WoweBook.Com

CHAPTER 3: What Makes a BlackBerry Application? 60

 add(labelField);
 }

Modify the main method and the constructor in HelloWorldApp to look at the parameters

passed in, and call the alternate constructor if alt is the first one:

 public static void main(String[] args) {
 HelloWorldApp app = new HelloWorldApp(args);
 app.enterEventDispatcher();
 }

 public HelloWorldApp(String[] args) {
 if (args.length > 0 && args[0].equals("alt")) {
 mainScreen = new HelloWorldMainScreen(true);
 }
 else {
 mainScreen = new HelloWorldMainScreen(false);
 }
 pushScreen(mainScreen);
 }

In the new HelloWorldApp constructor, we first check the length of args. The BlackBerry

device will split the argument string that we specified in the project properties for our

alternate entry point into words based on whitespace, and place each word into a

separate element of the array. Since we didn’t specify any arguments for the main

HelloWorld project, args will have a length of 0.

Now when you run the simulator, you’ll see a HelloWorldAlternate icon on the home

screen. Click it, and you’ll see Goodbye World, as in Figure 3-9.

Figure 3-9. Running Hello World through an alternate entry point

Download at WoweBook.Com

CHAPTER 3: What Makes a BlackBerry Application? 61

MIDP and MIDlet Projects
Finally, you may have noticed the MIDlet project type in the Eclipse Plug-in or the JDE.

In case you’re not familiar with Java ME programming, a MIDlet is the application type

for the Java ME Mobile Information Device Profile (MIDP), which is essentially a set of

classes and capabilities that most Java ME implementations support. Many other types

of smartphones from companies such as Nokia, Sony Ericsson, and Motorola support

MIDP. You would use MIDP to build applications that run on all these devices without

any code changes.

The BlackBerry fully supports MIDP but also includes a large API that’s not part of

MIDP. This means that the BlackBerry can run MIDlets, and in fact, MIDlets that are

specifically built for BlackBerry can access many parts of the non-MIDP API, but they

don’t have access to the entire BlackBerry API. Specific things that MIDlets do not have

access to include the BlackBerry UI API and the BlackBerry application life cycle

controls (like automatic start). For these reasons, I recommend that you not write your

BlackBerry applications as MIDlets, and in fact, I don’t discuss MIDlet-specific topics in

this book after this section. However, if you have an existing MIDlet originally built for

another smartphone platform and you need to quickly run it on a device, BlackBerry has

you covered.

Summary
This chapter has been a bit of a grab bag of interesting development topics, and you’ll

end up using many of them in your own applications. By now, though, you’re probably

ready to get back to learning more of the BlackBerry API. So take a deep breath,

because now that you have the basic knowledge to create applications, we’re going to

speed up a bit, and the lessons for the rest of the BlackBerry API are going to start

coming fast and furious!

Download at WoweBook.Com

CHAPTER 3: What Makes a BlackBerry Application? 62

Download at WoweBook.Com

 63

 Chapter

User Interface Basics
Our Hello World application was great for introducing the BlackBerry development

environment and the basics of a BlackBerry application, but it was certainly not what

we’d usually think of a as a fully developed application. It lacked the ability to interact

with the user, and its user interface was very limited. In the next couple of chapters, we’ll

explore the BlackBerry user interface in much greater detail and build an application that

really shows off what you can do with the BlackBerry.

The BlackBerry API includes a rich framework for building user interfaces for your

applications. This chapter will build on the concepts covered in the last two chapters

to show you how to use the full range of BlackBerry UI components to build an

application with a couple of screens and several controls that respond to user input.

We’ll also equip the application with a couple of menu items besides the defaults that

are provided.

If you’re familiar with Java’s Abstract Window Toolkit (AWT) Swing, Windows Forms, or

another object-oriented user interface toolkit, you’ll have no problem learning the

BlackBerry UI API. The key point implied here is that user interfaces for Java-based

BlackBerry applications are built in code: there are no configuration files or external

metadata to worry about. This situation has positive aspects (for example, all UI

information is centralized in the Java code) and negative aspects (for example, you have

no visual tools for building your UI).

Ready? Let’s dive in and start building our application.

The UI Fun Application
We want an application that will show off what the BlackBerry UI can do. We’ll build just

such an application over the course of this chapter (and improve it in later chapters), but

having the end goal in mind before we start will be helpful.

To show off a few of the available controls, and have something with some amount of

interactivity, we’ll construct a simple login screen. When we’re done, the main screen of

our application will look like the one shown in Figure 4-1.

4

Download at WoweBook.Com

CHAPTER 4: User Interface Basics 64

Figure 4-1. Our goal application for this chapter

There’s a plain-text field for the username, a hidden-text password field, a drop-down

list that lets the user choose a domain, a check box to ask the application to remember

the password, and a couple of buttons that will log in the user and clear the text fields.

For good measure, we’ve thrown in an image at the top of the screen, and we’ll add a

couple of menu items too.

For this application, there will be no networking; clicking Login will display a simple

screen that lets us know that the button has been pressed and shows the credentials

the user has entered.

The Components of a BlackBerry UI
All the visible elements on screen in a BlackBerry application are of one of the

three types:

 Fields: These are the basic building blocks of the UI. Generally, each

control, such as a button or text field, corresponds to an instance of

a field. The Field class draws the control and handles user input.

 Managers: These arrange fields on the screen. Each field must

belong to one and only one manager. Each manager is also a field,

meaning managers can contain other managers, allowing for some

pretty intricate UI layouts.

Download at WoweBook.Com

CHAPTER 4: User Interface Basics 65

 Screens: There’s one active screen per application at any time.

Screens handle field layout through a delegate manager and provide

additional functionality like menus.

Fields are all derived from net.rim.device.api.ui.Field. There are a lot of useful

prebuilt fields available in the net.rim.device.api.ui.component package.

Managers are derived from net.rim.device.api.ui.Manager, which you’ll find is a

subclass of net.rim.device.api.ui.Field. Several useful managers are defined in the

net.rim.device.api.ui.container package.

Screens all derive from net.rim.device.api.ui.Screen, which is a subclass of Manager,

and therefore of Field. You’ll also find the default screens in the

net.rim.device.api.ui.container package.

NOTE: Though Screen is ultimately descended from Field, you can’t add a Screen to a
Manager. The hierarchy in this case represents functionality—a Screen does things that a
Field and Manager do, such as painting itself, handling user input, and managing fields, but
it is not actually a drop-in replacement for a Field the way a Manager is.

Right now, or at some time soon, you may want to browse through the Javadocs for the

packages mentioned in this section. These can give you an idea of what’s possible with

the BlackBerry and maybe help with some ideas for your own applications. In this

chapter, all the fields, managers, and screens we’ll use will be those provided with the

JDE. You’ll learn how to make your own in the next chapter.

Creating the Application
Using your development environment of choice, create a new BlackBerry Application

project called UiFun. We’ll create the application class and main screen class as before.

The main application class will be the same as the simple first version that we created a

couple of chapters ago. We’ll use the package com.beginningblackberry.uifun and call

the application and main screen classes UiFunApplication and UiFunMainScreen. You

should know enough to create these classes now, but for reference the source code

follows:

package com.beginningblackberry.uifun;
import net.rim.device.api.ui.UiApplication;

public class UiFunApplication extends UiApplication {
 public UiFunApplication() {
 UiFunMainScreen mainScreen = new UiFunMainScreen();
 pushScreen(mainScreen);
 }

 public static void main(String[] args) {
 UiFunApplication app = new UiFunApplication();
 app.enterEventDispatcher();
 }

Download at WoweBook.Com

CHAPTER 4: User Interface Basics 66

}

Here’s the source code for the UiFun application class:

package com.beginningblackberry.uifun;

import net.rim.device.api.ui.container.MainScreen;

public class UiFunMainScreen extends MainScreen {
 public UiFunMainScreen() {

 }
}

Adding the Logo Image
The first field we add will be an instance of

net.rim.device.api.ui.component.BitmapField to show the image at the top of

the screen.

The BlackBerry can use PNG, GIF, or JPEG images, but most applications use PNGs

because of their reduced size, high quality, and support for transparencies. When

creating images for use in your application, always consider compressing your image as

much as possible using your graphics program or a PNG optimizer (several good free

ones are available), because large images can very quickly increase the size of your

application. You can download the logo image we’re using from the book’s web site at

http://www.beginningblackberry.com.

Adding the Image to the Project
If you’re using the JDE Plug-in for Eclipse, add the image file to your Eclipse project by

creating a new folder called res at the same level as your source folder (see Figure 4-2),

copying the image into that folder and from your Eclipse workspace by right-clicking

your project and clicking Refresh. You can put images in whatever folder you want,

ut for this example, we decided to create a specific resources folder (hence the

name res).

Download at WoweBook.Com

CHAPTER 4: User Interface Basics 67

Figure 4-2. This Eclipse workspace with the apress_logo.png image added

If you’re using the stand-alone JDE, create a folder called res at the same level as your

com folder (the root of your source tree), and copy the image file there (see Figure 4-3).

Then, from the Project menu, choose Add File to Project, and browse to the image file.

Figure 4-3. The JDE workspace with the apress_logo.png image added

Adding the Image to the Screen
BitmapField takes a Bitmap object as an argument in its constructor, so we’ll need to

load the image before constructing the field. We’ll import

net.rim.device.api.system.Bitmap and add the following line to UiFunMainScreen’s

constructor load the bitmap from the image resource we just added:

Download at WoweBook.Com

CHAPTER 4: User Interface Basics 68

Bitmap logoBitmap = Bitmap.getBitmapResource("res/apress_log.png");

The path for loading bitmaps, and all other resources, is relative to the location of your

project definition file (the .jdp file). We put the bitmap in a res folder at the same level as

our src folder.

Finally, we want to center the bitmap horizontally at the top of the screen. MainScreen

lays out fields vertically top to bottom in the order that they’re added, so the

BitmapField will automatically appear at the top of the screen. But to horizontally center

it, we need to specify the Field.FIELD_HCENTER style in its constructor. We’ve also

elected to make the BitmapField a member field instead of just declaring it locally in the

constructor. We’ll follow this pattern for all our fields—making our user interface

components member fields will become important as we start to handle user input.

Now, constructing the bitmap field and adding it to the screen is easy. The complete

code follows:

package com.beginningblackberry.uifun;

import net.rim.device.api.system.Bitmap;
import net.rim.device.api.ui.Field;
import net.rim.device.api.ui.component.BitmapField;
import net.rim.device.api.ui.container.MainScreen;

public class UiFunMainScreen extends MainScreen {
 BitmapField bitmapField;

 public UiFunMainScreen() {
 Bitmap logoBitmap = Bitmap.getBitmapResource("res/apress_logo.png");
 bitmapField = new BitmapField(logoBitmap, Field.FIELD_HCENTER);
 add(bitmapField);
 }
}

And when this code is run, we’ll see the screen shown in Figure 4-4.

Download at WoweBook.Com

CHAPTER 4: User Interface Basics 69

Figure 4-4. The BitmapField centered at the top of the screen

Field Style Flags
Almost all fields and managers have a constructor that takes a style parameter. The style

is a mask of various style flags concatenated with the bitwise or operator (|). These flags

are defined throughout the API, although most are in Field and Manager, and they can

influence many different aspects of field appearance, positioning, and behavior. You can

apply any style to any field, but whether the style has an effect depends on the field and

sometimes the manager that contains that field. Generally, anything defined within the

Field class is applicable to any field (including managers); anything defined within the

Manager class is applicable to any manager, and anything defined within the Screen class

is applicable to any screen. Flags defined within a specific subclass of field usually only

apply to that field and any field that subclasses it; examples include the

ButtonField.CONSUME_CLICK style and the various styles associated with TextField,

BasicEditField, and their subclasses.

There are unfortunately no guarantees about how a specific style flag will affect different

fields. Generally, flags work the way you’d expect them to, but remember that just

setting a particular alignment flag on a field does not guarantee that you’ll get exactly

what you want. For example, some managers ignore the alignment flags, which will

become clear when we build our own manager later on.

The Javadocs provide more information for specific fields.

Download at WoweBook.Com

CHAPTER 4: User Interface Basics 70

Adding a Few More Fields
Next, we’ll add our screen’s remaining controls: the username and password fields, the

domain drop-down list, the check box, and the Login and Clear buttons.

Creating the Username and Password Fields
We’ll use an EditField for the username and a PasswordEditField (which automatically

hides characters as they are typed) for the password field. Each of these fields can

display its own label, specified in the constructor. We don’t need to apply any special

styles to these fields.

Add the following import statement to the top of UiFunMainScreen.java, just under the

other import statements:

import net.rim.device.api.ui.component.EditField;

Then, add the following declarations to the top of the UiFunMainScreen class:

EditField usernameField;
PasswordEditField passwordField;

And add the following lines go in the constructor:

usernameField = new EditField("Username:", "");
passwordField = new PasswordEditField("Password:", "");
add(usernameField);
add(passwordField);

Creating the Domain Field and Check Box
The Domain field should be a drop-down list. For the BlackBerry, this is accomplished

by an instance of net.rim.device.api.ui.component.ChoiceField. You can implement

the interface directly, but for this application, the net.rim.device.api.ui.component.
ObjectChoiceField component will do just fine; it allows us to specify an array of

Objects, which will be used to populate the field (the toString method will be used for

the display string). If you want a list of numbers, net.rim.device.api.ui.component.
NumericChoiceField is also often useful.

We’ll add the imports for both of these fields first:

import net.rim.device.api.ui.component.CheckboxField;
import net.rim.device.api.ui.component.ObjectChoiceField;

Then, we add the declaration of the member variables, again at the top of the

UiFunMainScreen class:

 ObjectChoiceField domainField;
 CheckboxField rememberCheckbox;

Download at WoweBook.Com

CHAPTER 4: User Interface Basics 71

Because we’re just using hard-coded values for this application, instantiating our

ObjectChoiceField is easy:

domainField = new ObjectChoiceField("Domain:", new String[] {"Home", "Work"});
add(domainField);

And by this point, you can probably figure out how to use

net.rim.device.api.ui.component.CheckboxField to create a check box on screen;

there’s nothing special to note about CheckboxField except that you have to specify the

state of the check box (true for checked or false for unchecked) when you instantiate it:

rememberCheckbox = new CheckboxField("Remember password", false);
add(rememberCheckbox);

Creating the Buttons
To create the Login and Clear buttons that go beneath these text fields, we’ll use—as

you might expect—the ButtonField class. A warning with ButtonFields: when creating a

ButtonField, you should always specify the style ButtonField.CONSUME_CLICK. If you

don’t, the click event will be passed onto the screen, and a menu will open when the

user clicks the button, though your button will still cause an action to be performed.

First, we’ll import ButtonField:

import net.rim.device.api.ui.component.ButtonField;;

Next, we add the declarations for our two buttons:

 ButtonField clearButton;
 ButtonField loginButton;

Finally, the following lines go in the UiFunMainScreen constructor:

clearButton = new ButtonField("Clear", ButtonField.CONSUME_CLICK);
loginButton = new ButtonField("Login", ButtonField.CONSUME_CLICK);
add(clearButton);
add(loginButton);

Now, if you run the application, you’ll see something similar to Figure 4-5.

Download at WoweBook.Com

CHAPTER 4: User Interface Basics 72

Figure 4-5. The fields for the UiFun application

We’re pretty close to being done! But we want those two buttons to be beside each

other instead of one on top of the other.

Arranging the Buttons Horizontally
Remember that MainScreen (which UiFunMainScreen is derived from) lays out its fields

vertically. To put two fields beside each other, we need to place them in an instance of

net.rim.device.api.ui.container.HorizontalFieldManager and add that manager to

the screen. We’ll give the HorizontalFieldManager the Field.FIELD_RIGHT style, to put

the buttons on the right side of the screen.

Add the following import:

import net.rim.device.api.ui.container.HorizontalFieldManager;

Erase the two add calls for the buttons, and replace them with this:

HorizontalFieldManager buttonManager = new HorizontalFieldManager(Field.FIELD_RIGHT);
buttonManager.add(clearButton);
buttonManager.add(loginButton);
add(buttonManager);

We’ll also add a couple of instances of

net.rim.device.api.ui.component.SeparatorField, which draws a horizontal line

across the screen, and of LabelField, which contains our login instructions. The full

code for the UiFunMainScreen constructor at this point follows (remember to add an

import statement for SeparatorField):

Download at WoweBook.Com

CHAPTER 4: User Interface Basics 73

 Bitmap logoBitmap = Bitmap.getBitmapResource("res/apress_logo.png");
 bitmapField = new BitmapField(logoBitmap, Field.FIELD_HCENTER);
 add(bitmapField);
 add(new SeparatorField());
 add(new LabelField("Please enter your credentials:"));

 usernameField = new EditField("Username:", "");
 passwordField = new PasswordEditField("Password:", "");
 add(usernameField);
 add(passwordField);

 domainField = new ObjectChoiceField("Domain:", new String[] {"Home", "Work"});
 add(domainField);

 rememberCheckbox = new CheckboxField("Remember password:", false);
 add(rememberCheckbox);

 add(new SeparatorField());

 clearButton = new ButtonField("Clear", ButtonField.CONSUME_CLICK);
 loginButton = new ButtonField("Login", ButtonField.CONSUME_CLICK);

 HorizontalFieldManager buttonManager =
 new HorizontalFieldManager(Field.FIELD_RIGHT);
 buttonManager.add(clearButton);
 buttonManager.add(loginButton);
 add(buttonManager);
}

Running the application, we’ll see our screen looking the way we intended it, as

Figure 4-6 illustrates.

Figure 4-6. The final look for the login screen

Download at WoweBook.Com

CHAPTER 4: User Interface Basics 74

Handling User Interaction
Now, we have a screen that looks the way we want it to, but it doesn’t do anything yet—

well, you can move the focus between controls, type in the text fields, and change the

check box and the choice field, but the application doesn’t really do anything yet. Let’s

get those buttons to work!

Handling UI Events
The BlackBerry API uses an observer pattern to dispatch events: All fields can have a

listener attached to them, and that listener is notified when a change event happens.

The exact trigger for a change event varies from field to field.

In the case of ButtonField, the change event happens when the button is clicked by the

trackball or a touch on the touch screen, or when the Enter key is pressed while a button

is highlighted. For CheckboxField, a change event happens when the check box is

checked or unchecked, and for ChoiceField, an event happens whenever the user

selects a different choice.

You attach a listener using the Field.setChangeListener method.

Note that the BlackBerry provides a unicast event model: there is only ever at most one

change listener for a field. If you use Field.setChangeListener, you replace whatever

listener may have been there already, preventing it from receiving events. This makes a

lot of sense for a mobile platform where resources and application scope are limited

but may be different from what you’re used to with desktop or server application

development.

A listener must implement the FieldChangeListener interface. In this case, we’ll

make our UiFunMainScreen implement net.rim.device.api.ui.FieldChangeListener

by changing the class declaration and implementing the listener method in

UiFunMainScreen:

public class UiFunMainScreen extends MainScreen implements FieldChangeListener {
public void fieldChanged(Field field, int context) {
}

Remember to add an import for net.rim.device.api.ui.FieldChangeListener to the top

of the Java file.

The field parameter is a reference to the field that originated the change, in this case,

one of our ButtonField instances (once we’ve added them). The context can mean

different things: when you define your own fields, you can use it to pass along additional

information about the field change event. For this application, we’ll ignore the context

parameter.

Download at WoweBook.Com

CHAPTER 4: User Interface Basics 75

Handling the Clear Button
We’ll hook up the Clear button first. Add the following line in the constructor, just after

instantiating the button:

clearButton.setChangeListener(this);

Now, when the user clicks on the clear button, we’ll receive an event in

UiFunMainScreen.fieldChanged. We can test this with a simple dialog using the

net.rim.device.api.ui.component.Dialog class:

public void fieldChanged(Field field, int context) {
 if (field == clearButton) {
 Dialog.inform("Clear Button Pressed!");
 }
}

The Dialog class is a handy way of displaying simple messages to the user. Run the

application, and click Clear to see that we’re correctly handling and receiving the event

(see Figure 4-7).

Figure 4-7. An event from the Clear button

Of course, what we actually want the Clear button to do is remove all text from our

fields. Let’s define a method to do this. Add the following to UiFunMainScreen:

private void clearTextFields() {
 usernameField.setText("");
 passwordField.setText("");
}

Download at WoweBook.Com

CHAPTER 4: User Interface Basics 76

And change the fieldChanged method to call our new method:

public void fieldChanged(Field field, int context) {
 if (field == clearButton) {
 clearTextFields();
 }
}

Now, clicking Clear will erase the text from both of our fields (see Figure 4-8).

Figure 4-8. When the fields are populated (as in the image on the left), clicking the Clear button removes the text
from the fields (as shown in the image on the right).

Handling the Login Button
We’ll do two things with our Login button: Check that both fields have some text in them

and display a warning dialog if they don’t. And, if both have been filled in, display a new

screen informing the user that login was successful.

Defining a New Screen
To keep the flow of everything fairly logical, let’s define the login success screen now. It

will be a simple screen with three label fields, one each to show a successful login, the

username, and the selected domain. We’ll pass the username and domain in the

constructor of the screen. The entire code for LoginSuccessScreen is as follows:

package com.beginningblackberry.uifun;

import net.rim.device.api.ui.component.LabelField;
import net.rim.device.api.ui.container.MainScreen;

Download at WoweBook.Com

CHAPTER 4: User Interface Basics 77

public class LoginSuccessScreen extends MainScreen {
 public LoginSuccessScreen(String username, String domain) {
 add(new LabelField("Logged in!"));
 add(new LabelField("Username: " + username));
 add(new LabelField("Domain: " + domain));
 }
}

We display the new screen in the same way as we displayed UiFunMainScreen from

UiFunApplication, but here, we have to get a reference to our UiApplication instance

first. UiApplication.getUiApplication() will give us that; in fact, it’s a reference to the

very same instance of UiFunApplication that we created in our main method. The code

will look something like this:

LoginSuccessScreen loginSuccessScreen = new LoginSuccessScreen(…)
UiApplication.getUiApplication().pushScreen(loginSuccessScreen);

As we did with the Clear button, we’ll define a method to perform the login logic

described previously. We need the name of the selected domain to pass to the new

screen; we can get the index of the currently selected item in domainField by calling

domainField.getSelectedIndex(), and we can get the choice associated with that index

by calling domainField.getChoice(int). The getChoice method returns an Object.

However, because all the objects we passed into the constructor for domainField were

Strings, we can safely cast the result of getChoice back to a String. The full code for

UiFunMainScreen.login follows:

 private void login() {
 if (usernameField.getTextLength() == 0 || passwordField.getTextLength() == 0) {
 Dialog.alert("You must enter a username and password");
 }
 else {
 String username = usernameField.getText();
 String selectedDomain =
 (String)domainField.getChoice(domainField.getSelectedIndex());
 LoginSuccessScreen loginSuccessScreen =
 new LoginSuccessScreen(username, selectedDomain);
 UiApplication.getUiApplication().pushScreen(loginSuccessScreen);
 }
 }

We’ll have to modify fieldChanged to handle the login button as well:

 public void fieldChanged(Field field, int context) {
 if (field == clearButton) {
 clearTextFields();
 }
 else if (field == loginButton) {
 login();
 }
 }

Finally, remember to add the change listener to loginButton in UiFunMainScreen’s

constructor:

 loginButton.setChangeListener(this);

When you run the application now, you’ll see the result show in Figure 4-9.

Download at WoweBook.Com

CHAPTER 4: User Interface Basics 78

Figure 4-9. Clicking Login without a username a password (left) and with a username and password (right)

Creating Menus
Menus are everywhere in a BlackBerry application; in fact, you should try to provide

menu options for most major functionality, because the menu is easier to access on

most BlackBerry devices than buttons on the screen.

The screen handles displaying menus, and menu items contain their own logic for

performing actions.

Understanding Menu Items
Individual items in a menu are instances of net.rim.device.api.ui.MenuItem. This class

is abstract, and implements Runnable (it has a run method that you need to implement).

The run method is executed on the event thread when the user clicks the menu item,

so you can safely modify the UI from within the run method. This also means you

shouldn’t do any heavy processing or networking in the run method without starting a

separate thread.

Each menu item has three pieces of information associated with it: text to display, a

priority, and an ordinal. The priority determines which menu item is initially highlighted

when the menu is first displayed; the item with the lowest value for priority will be

highlighted when the menu is first opened. The ordinal determines where the item will

appear in the menu relative to other menu items. A menu item will appear above menu

items with higher ordinal values and below menu items with lower ordinal values. Two

menu items with the same ordinal will appear in the order they were added to the menu,

top to bottom.

Download at WoweBook.Com

CHAPTER 4: User Interface Basics 79

Implementing the Login and Clear Menu Items
We’ll implement two menu items for our application corresponding to the Login and

Clear actions.

We’ll create a new class for each menu item and declare these as inner classes within

UiFunMainScreen—because we’ll only use them here and to give them access to

UiFunMainScreen’s private login and clearTextFields methods:

public class UiFunMainScreen extends MainScreen implements FieldChangeListener {
 class LoginMenuItem extends MenuItem {
 public LoginMenuItem() {
 super("Login", 20, 10);
 }

 public void run() {
 login();
 }
 }

 class ClearMenuItem extends MenuItem {
 public ClearMenuItem() {
 super("Clear", 10, 20);
 }

 public void run() {
 clearTextFields();
 }
 }
}

Notice how we arranged the ordinal and priorities with the menu items. ClearMenuItem

has a lower ordinal value and higher priority value than LoginMenuItem. Therefore, Clear

will appear above Login on the menu, but Login will be highlighted by default. This

arrangement lets us mirror the order of the buttons on screen, but make the most likely

user choice the default one, saving our users a bit of time.

There are a couple of places we can add menu items. One is in the screen’s constructor,

by calling getMenu and adding items to the Menu object we get back. The other is by

overriding makeMenu in our screen class. We’ll do the latter, because makeMenu is useful

when creating context sensitive menus (menus whose items may change depending on

the state of the screen). The makeMenu method in UiFunMainScreen should look like this:

 protected void makeMenu(Menu menu, int instance) {
 super.makeMenu(menu, instance);
 menu.add(new LoginMenuItem());
 menu.add(new ClearMenuItem());
 }

It’s very important to have the super.makeMenu call here; otherwise, the default menu

items for the screen will not be added. Specifically, we’d lose the Close item that

MainScreen automatically adds for us. There are times where we might want to change

that, but not for this application, so we’ll be sure to make the super.makeMenu call.

Download at WoweBook.Com

CHAPTER 4: User Interface Basics 80

One final tip—we declared the menu items explicitly as classes in this example to

present things in a clear order, but you’ll usually see menu items declared as

anonymous inner classes instead. Using an anonymous inner class is more succinct,

and you generally use each menu item class only once in a given application. So instead

of using the preceding implementation, we could have omitted the declarations for

LoginMenuItem and ClearMenuItem and instead done the following in makeMenu:

 protected void makeMenu(Menu menu, int instance) {
 super.makeMenu(menu, instance);
 menu.add(new MenuItem("Login", 20, 10) {
 public void run() {
 login();
 }
 });
 menu.add(new MenuItem("Clear", 10, 20) {
 public void run() {
 clearTextFields();
 }
 });
 }

In fact, we’ll be using this form throughout the rest of this book.

Supporting Different Menu Instances
The instance parameter is used to identify which menu we’re supposed to show.

BlackBerry applications display a few slightly different menus depending on how the

menu is displayed and the context of the screen and controls. The defined instances

follow:

 Menu.INSTANCE_CONTEXT: The menu was displayed by clicking the

trackball. Usually, this menu will be a subset of only the items

available in the default menu that are applicable to the currently

focused control or section of the screen. For example, Close

wouldn’t show up here. The BlackBerry automatically adds a Full

Menu item to this menu, which causes makeMenu to be called with

INSTANCE_DEFAULT as the instance parameter.

 Menu.INSTANCE_CONTEXT_SELECTION: This is the same as

INSTANCE_CONTEXT, but the menu is displayed while the user has

some text selected. You can use this to display items that may only

apply when you can copy text.

 Menu.INSTANCE_DEFAULT: In this case, menu is displayed by pressing

the menu key. This menu should contain all the items in the context

menu, in addition to any items that apply to the application as a

whole. Close would show up here.

In our application, we want Login and Clear to show up no matter which control has

focus, since everything is related to logging in. Effectively, we can ignore the instance

parameter in makeMenu, as the BlackBerry will automatically take care of putting the

Download at WoweBook.Com

CHAPTER 4: User Interface Basics 81

Close item only in the appropriate menu instance. This is why our makeMenu method is

so simple.

With that discussion out of the way, we can now run the application and see our menu

items, which should look like the ones in Figures 4-10 and 4-11.

Figure 4-10. In the context menu, notice the Login is selected, and the Full Menu item is present.

Figure 4-11. In the default menu, notice the Login is selected, and many more menu items are present.

Download at WoweBook.Com

CHAPTER 4: User Interface Basics 82

You’ll notice that the instance menu can only show up when the currently focused

control does not consume the click. Our ButtonFields have the ButtonField.CONSUME_
CLICK style flag set, so the instance menu won’t show up when you click the trackball

while they’re focused, which is how you’d expect buttons to behave. The CheckboxField

and ObjectChoiceField also consume the trackball click, so we’ll see the context menu

only when we click the trackball on one of the text fields.

Clicking either the Clear or Login menu item will have the same effect as clicking the

Clear or Login button.

Summary
Congratulations, you’ve created your first multiscreen, interactive BlackBerry

application! Although the application was simple, we covered a lot of ground in this

chapter. You should now understand how to construct a BlackBerry UI using screens,

managers, and fields and how to support user interaction through controls and menus.

The concepts that we covered are basically the same as those you’ll use to construct

UIs of any complexity in Java-based BlackBerry applications, and they are

fundamentally important to any BlackBerry developer. So, if there was anything you

didn’t understand fully, go back and review that section. Moving on from this chapter

with a gap in your understanding will slow you down as we get into creating more

advanced applications in later chapters.

Using just what you’ve learned so far, you can construct some fairly complex

applications, although they’d be a bit limited in usefulness without networking or

persistent storage. We’ll tackle both of those topics in later chapters, but before that, the

next chapter will go even deeper into the API and create some custom fields, managers,

and screens to really remove any limits and let you create almost any user interface you

can design and imagine.

Download at WoweBook.Com

83

83

 Chapter

Beyond the Basics of User
Interfaces
The previous chapter introduced the major concepts that you’ll need to build a

BlackBerry user interface. Armed with what you learned, you can create a wide range

of very functional applications. In this chapter, we’ll take a deeper dive into the

BlackBerry API and learn how to really control all aspects of the look and feel of your

application’s UI.

The topics in this chapter will get a bit more advanced but are nothing you shouldn’t be

able to handle if you’ve followed through up to this point. I’ll be up front though, and say

that you’ve already learned enough to put together a user interface that could support a

lot of different applications, so if you want to skip over this chapter for now and go on to

learn about networking, persistence, and other services before spending time on your

UI, then go ahead. Later topics don’t depend on this chapter, so skipping it for now

won’t do any harm. I highly recommend that you do come back here before finally

publishing your application, as the topics we’ll cover here will go a long way toward

improving the appearance and overall user experience of your application.

In this chapter, we’ll take the UI Fun application that we built in the last chapter as a

starting point and modify a lot of the components that make up its user interface. We’ll

focus a bit on some aspects of the API that we glossed over earlier (yes, I know we did)

and explore fonts, colors, and more; this will give you a feel for what can be done, but of

course, as with all things in this book, you should just look at this as the beginning.

When you’re done here, you’ll have the tools and knowledge to implement almost any

user interface that you can imagine and design.

Enhancing the UI Fun Application
We’re starting with the UI Fun application from Chapter 4. If you didn’t go through that

entire chapter and build the application, we recommend you do that before continuing,

to make sure you’ve got the solid hold on the UI fundamentals that you’ll need in this

chapter. If you believe you’re comfortable enough but didn’t go all the way through, you

can download the complete source code to the Chapter 4 version of UiFun from this

book’s web site.

5

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 84

The UI Fun application at this point should look like the one shown in Figure 5-1.

Figure 5-1. The UiFun application from Chapter 4

When we’re done, our application will look more like the one shown in Figure 5-2.

Figure 5-2. The updated interface for the UiFun application

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 85

Working with Fonts
The first and easiest thing to do will be to change the font used in the UI components.

The BlackBerry platform includes pretty good font support and makes it almost trivial to

change the font used for a component or an entire screen.

Font support is provided through the net.rim.device.api.ui.Font and FontFamily

classes. Through these, you can create fonts using any of the fonts installed on your

device (quite a collection for all recent BlackBerry devices).

There are two ways to get a font. One is to obtain a specific font family (what might be

called a typeface in different systems) and get a specific font from it. The other is to

derive a font from another font you already have.

To get font from a font family, we must have an instance of that font family; this just

involves the FontFamily.forName method. You can use any of the names of the families

on your device – you can see these on the device by going to the device’s options

screen, and selecting Screen/Keyboard (see

Figure 5-3). This also gives you a nice real-time preview of different font families, styles,

and sizes.

Figure 5-3. A selection of the font families available on a BlackBerry device

To demonstrate BlackBerry font support, we’ll explicitly set a new font for UiFun.

Starting with the code as at the end of Chapter 4, add the following imports to the top

of UiFunMainScreen.java:

import net.rim.device.api.ui.Font;
import net.rim.device.api.ui.FontFamily;
import net.rim.device.api.ui.Ui;

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 86

The Ui class will be used in a minute; we’ve just added the import statement here to

save time. We’ll use the BB Alpha Serif family, available on all devices, to more closely

match the lettering in our logo image. Add the following to the UiFunMainScreen

constructor:

 try {
 FontFamily alphaSerifFamily = FontFamily.forName("BBAlpha Serif");
 } catch (ClassNotFoundException e) {
 }

This method won’t ever actually throw a ClassNotFoundException, though it’s a checked

exception so the Java language requires us to add some code to handle it. If you specify

a name for a font family that isn’t available, the BlackBerry will still return a default.

There are a few choices for font style (the standard bold, italic, underlined, and so on),

defined as constants in the Font class. You can also specify font sizes in a few different

ways; the main ones to be concerned with are points and pixels. The size unit is

specified using one of the constants from the net.rim.device.api.ui.Ui class.

For our application, we’ll use a 9-point plain (not bold, italic, or underlined) version of BB

Alpha Serif:

Font appFont = alphaSerifFamily.getFont(Font.PLAIN, 9, Ui.UNITS_pt);

NOTE: Font sizes should generally be specified as points instead of pixels, because BlackBerry
devices vary a great deal in screen resolution and physical size, or in other words, in dots per
inch (DPI). A 10-pixel font may be acceptable on a BlackBerry Pearl but will look tiny on the
higher resolution screen of a Curve 8900. Using points makes the fonts appear roughly the
same physical size on these different devices.

Changing the screen’s font is straightforward:

 setFont(appFont);

All the font code, added to UiFunMainScreen’s constructor, looks like this:

 public UiFunMainScreen() {
 try {
 FontFamily alphaSansFamily = FontFamily.forName("BBAlpha Serif");
 Font appFont = alphaSansFamily.getFont(Font.PLAIN, 9, Ui.UNITS_pt);
 setFont(appFont);
 } catch (ClassNotFoundException e) {
 }
 // ...
 }

Each screen, manager, and field can have a different font, but setting the font for a

container (screen or manager) will generally have the effect of setting the font for

everything contained within it, unless you specify a different font for some of the

components using their setFont methods. All this means that we don’t have to do

anything else, and we’ve now specified a different font for all the controls in our

application. Run UiFun, and you’ll see the new font in effect (see Figure 5-4).

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 87

Figure 5-4. All elements, including text typed into the edit fields, are now using the new the BB Alpha
Serif font.

Drawing to the Screen Using the Graphics Context
The basic interface for displaying anything to the BlackBerry device’s screen is the

net.rim.device.api.ui.Graphics class. It’s used under the hood by pretty much all

elements of the BlackBerry user interface, and it gives you the tools to do anything

you’ve seen in any BlackBerry application’s user interface. If you’re going to be doing

any kind of user interface work with BlackBerry applications, you should get very familiar

with the Graphics class.

Each instance of Graphics is associated either with a Bitmap object or with a display

(basically, a BlackBerry device’s physical screen). For this book, we’ll only focus on a

Graphics object associated with a display.

Using the paint method
All fields (and managers and screens) get access to the Graphics object associated with

the current display through the paint method. This method is called whenever the

BlackBerry device determines that the section of the display containing the Field needs

repainting. An important thing to bear in mind is that the same instance of the Graphics
class is used by all managers and fields on a screen, and this instance is passed by the

screen through its managers to the fields. This may seem a minor point, but it’s

important to keep in mind, as it’ll help in determining exactly why your application is

drawing to the screen in a certain way. For example, setting the color on the Graphics

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 88

object will affect the color of components drawn after it, unless they explicitly set their

own colors.

Because it’s so important to understand how the UI is displayed by the BlackBerry

platform, we’ll take time for a brief discussion here before getting to more concrete

examples.

Understanding How the BlackBerry Screen Is Drawn
At a high level, things happen in two stages. First comes the layout stage, where layout

and sublayout methods are called and all the fields are positioned and sized on the

screen. Second is the paint stage, where paint methods are called and the fields

actually draw to the display.

Laying Out the Screen
Layout involves positioning and sizing all the managers and controls on the screen. It

starts with the screen itself and works down through all the nested managers and fields

as follows:

1. The screen’s sublayout(int width, int height) method is called. The

width and height parameters will be the width and height in pixels of the

device’s display.

2. The sublayout method of the screen’s delegate manager is called. You’ll

learn more about the delegate manager when you learn to build your

own screen class, but briefly, it’s the component that actually contains

and lays out all the fields and managers on the screen and is the only

component directly controlled by the Screen itself. Often, the delegate

manager will take up the entire screen, but there are instances, such as

in a dialog with a border, where this may not be the case. So the width

and height parameters passed to the delegate manager’s sublayout

method will be less than or equal to the width and height parameters

passed to the screen’s sublayout method.

3. The delegate manager iterates through all the fields and managers it

contains and lays out each of them, that is, positions them within itself,

tells them how much space is potentially available and asks them what

size they’ll be on screen. This has the effect of calling sublayout (for a

manager) or layout (for a field). The width and height available to each

of the fields and managers will vary depending on how the delegate

manager lays out its fields. In many cases, they may be greater than the

height and width of the delegate manager itself; this means that the

delegate manager is a scrolling manager and will only draw a subset of

its fields at any time.

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 89

4. Each manager lays out its managers, fields, and so on.

5. Each field lays out itself out; a field may take up less than the space

available.

Painting to the Screen
The Painting stage is where pixels are actually drawn to the screen. In the same

sequence as the layout stage, the screen, managers and fields are all asked to paint

themselves:

1. The screen’s paint method is called, with a Graphics context that

represents the current display.

2. The screen may do some painting itself (drawing its background for

example) and then asks its delegate manager to paint itself, which has

the effect of calling the delegate manager’s paint method with the same

Graphics object. If the delegate manager is smaller than the screen, the

screen will set a clipping region on the Graphics object to the size and

position of the delegate. This prevents the delegate from drawing

outside its size (set during layout) and frees the delegate from worrying

about what its absolute position on screen is (which, in fact, it generally

doesn’t know).

3. The delegate manager again may do some painting itself, and then asks

each of its subfields and managers to paint themselves, setting

appropriate clipping regions for each of its fields.

4. Each manager paints itself and asks its managers and fields to paint

themselves.

5. Each field paints itself.

Another important thing to keep in mind is that layout happens rarely—generally when a

screen is constructed or when fields are added or removed—while paint happens

frequently. This means that you should be very concerned about the speed of your paint

methods; slow paint methods will slow down your user interface and negatively affect

your application’s user experience.

You should remember, in a nutshell, that

 Layout happens once (or rarely), and in this step fields size

themselves and are positioned.

 Paint happens often, and in this step, fields draw their contents to

the display.

Now that we’ve covered the framework, it’s time to fill in the details by actually

implementing some custom fields, managers, and screens. Along the way, we’ll use a lot

of the methods in the Graphics class and explore those as we encounter them.

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 90

Creating Custom Fields
We’ll create a couple of custom fields, first a simple static noninteractive one to

introduce the concepts and then a more complicated one that deals with user

interaction, focus, and events.

Adding a Custom Label Field
We’ll start by replacing the Please Enter Your Credentials field with one built from

scratch that will use different foreground and background colors and contain a small

image. It’s a simple field to make but will illustrate the basic concepts well.

Creating the Basic Field Class
Create a new class under the com.beginningblackberry.uifun package called

CustomLabelField that subclasses net.rim.device.api.ui.Field. Here’s the basic

outline, with placeholders for the two abstract methods that we’re required to implement

for any field:

package com.beginningblackberry.uifun;

import net.rim.device.api.ui.Field;
import net.rim.device.api.ui.Graphics;
import net.rim.device.api.system.Bitmap;
import net.rim.device.api.ui.DrawStyle;

public class CustomLabelField extends Field {

 protected void layout(int width, int height) {
 }

 protected void paint(Graphics graphics) {
 }
}

Bitmap and DrawStyle will be used by the field a bit later; we just added the import

statements now for convenience.

Creating a Constructor
We’ll now add a constructor and a few member variables to contain the label text and

foreground and background colors (we’ll add the image shortly):

 private String label;
 private int foregroundColor;
 private int backgroundColor;

 public CustomLabelField(String label, int foregroundColor,
 int backgroundColor, long style) {
 super(style);
 this.label = label;

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 91

 this.foregroundColor = foregroundColor;
 this.backgroundColor = backgroundColor;
 }

NOTE: Colors on the BlackBerry are represented by ints. You can use one of the constants in
the net.rim.device.api.ui.Color class to select a desired color, or specify a color in
hexadecimal RRGGBB format, the same as in HTML, such as 0xFF0000 for red or 0x0000FF
for blue.

The BlackBerry actually uses a 16-bit color model, with 5 bits for red, 6 for green, and 5

for blue. It’ll automatically select the closest color to whichever one you specify, but it

may not appear exactly as on screen, and the apparent color can vary from device to

device depending on screen characteristics. So be sure to test out your color choices on

a range of real devices.

One final thing to notice in the constructor; we’ve added a style parameter so the user of

this field can set styles. It’s a good idea when creating fields to provide at least one

constructor where style flags can be set.

Adding the layout Method
We’ll do something very simple for the layout method. Since we want our label field to

span the width of the screen, we’ll just use the passed-in width parameter as our field

width. Remember the width parameter tells how much space is available to our field.

We’ll base the height on the height of the Field’s font:

 protected void layout(int width, int height) {
 setExtent(width, getFont().getHeight());
 }

Although it’s a simple method, there’s an important principle illustrated here: Because

there are a wide range of BlackBerry models, and default fonts and screen resolutions

vary quite a bit, you should avoid specifying absolute sizes wherever possible. Instead,

you should specify everything relative to the widths and heights available to you at

runtime, including the widths and heights of the fonts being used. This will help a great

deal in getting your application to run on a different model of BlackBerry. By doing

things this way, we could go back and select a different font for our screen, and we

wouldn’t have to change this layout method.

After calling setExtent, the getWidth and getHeight methods in our field will return the

values we set; this is how the manager containing this field will now how to lay out our

field in relation to all the other fields it manages and how it will know how much space to

give the field to paint.

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 92

Adding the paint Method
To draw text to the display, we can just use the following:

 protected void paint(Graphics graphics) {
 graphics.drawText(label, 0, 0);
 }

We don’t have to worry about setting a specific font. The Graphics object will have its

font set to the field’s current font, meaning that the font that we set earlier in

UiFunMainScreen is already the current font for this graphics object.

Now, let’s set the foreground and background colors and make sure we clear the field to

the background color before we draw the text:

 protected void paint(Graphics graphics) {
 graphics.setBackgroundColor(backgroundColor);
 graphics.clear();
 graphics.setColor(foregroundColor);
 graphics.drawText(label, 0, 0);
 }

And that’s almost everything we need to do; in fact, at this point, you can try out the

label field with our application.

Trying Out the Label Field
In The UiFunMainScreen constructor, replace this line:

 add(new LabelField("Please enter your credentials:"));

with this one:

 add(new CustomLabelField
 ("Please enter your credentials:", Color.WHITE, 0x999966, 0));

And the application will have a label with a different foreground and background

(0x999966 is kind of a dark tan color), as shown in Figure 5-5.

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 93

Figure 5-5. Using our custom label

Adding an Image
Now, we’ll add the ability to display an image to the left of the text. We’ll create another

constructor with a Bitmap parameter, and if this is specified, the Bitmap will be drawn at

the left edge of the field, and the text will be shifted over to accommodate it. Let’s start

with the additional member variable and the constructor:

public class CustomLabelField extends Field {
 private Bitmap image;
 private String label;
 private int foregroundColor;
 private int backgroundColor;

 public CustomLabelField(String label, int foregroundColor,
 int backgroundColor, Bitmap image, long style) {
 super(style);
 this.label = label;
 this.foregroundColor = foregroundColor;
 this.backgroundColor = backgroundColor;
 this.image = image;
 }

We’ll make a small change to the layout method, to handle the case where the image is

taller than the font:

 protected void layout(int width, int height) {
 if (image != null) {
 setExtent(width, Math.max(image.getHeight(), getFont().getHeight()));
 }

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 94

 else {
 setExtent(width, getFont().getHeight());
 }
 }

And we’ll need to make another small change to the paint method. If we were given a

bitmap, we’ll draw it and set the x parameter to drawText to the right of the bitmap.

We’re also doing something else here: If the bitmap is taller than the font, we want the

text centered vertically. Similarly, if the font is taller, we want the bitmap centered

vertically. The algorithm in both cases is the same:

position = (Field height – item height) / 2

That’s a good one to keep at hand; you’ll end up using it often in your user interfaces (or

the equivalent for horizontal centering).

Our new paint method looks like this:

 protected void paint(Graphics graphics) {
 graphics.setBackgroundColor(backgroundColor);
 graphics.clear();
 graphics.setColor(foregroundColor);
 if (image != null) {
 int textY = (getHeight() - getFont().getHeight()) / 2;
 int imageY = (getHeight() - image.getHeight()) / 2;
 graphics.drawBitmap(0, imageY, image.getWidth(), image.getHeight(),
 image, 0, 0);
 graphics.drawText(label, image.getWidth(), textY);
 }
 else {
 graphics.drawText(label, 0, 0);
 }
 }

Graphics.drawBitmap is another good method to get familiar with. Its parameters let you

draw part of a bitmap or a full bitmap, and it automatically takes into account image

transparency, as you’ll see when we put this new field to use with a partially transparent

image.

Trying the new CustomLabelField
We’ll change UiFunMainScreen’s constructor again to use CustomLabelField’s new

constructor. We’ll have to add a line to load the bitmap first, and add that bitmap to

the project as before. You can get the image we’re using here from this book’s page

web site.

The new lines for the constructor follow:

 Bitmap loginImage = Bitmap.getBitmapResource("res/login_arrow.png");
 add(new CustomLabelField
 ("Please enter your credentials:", Color.WHITE, 0x999966, loginImage, 0));

And running the application, you’ll see the image and text together, as illustrated in

Figure 5-6.

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 95

Figure 5-6. The label showing our image

Tying Up Some Loose Ends
The field works now, and in the end, when you’re building a field for your application, all

that matters is that it works where you want it to work. We’ll fill in a couple of details

here though, to make our CustomLabelField truly complete, and to illustrate a few

additional concepts.

First, there are two methods which you should override but don’t absolutely have to:

getPreferredWidth and getPreferredHeight. These are used by some layout managers

to help with determining field layout before a given field has had a chance to lay itself

out. They let the manager know how much space the field needs ideally. There’s no

guarantee the manager will give the field that much space, or even call the methods, but

they’re easy to implement for our field, so for completeness, we’ll implement them.

getPreferredHeight is just the same algorithm we used in layout:

 public int getPreferredHeight() {
 if (image != null) {
 return Math.max(getFont().getHeight(), image.getHeight());
 }
 else {
 return getFont().getHeight();
 }
 }

The getPreferredWidth method is a bit trickier. Since we don’t know the width available,

we’ll have to come up with a sensible value; in this case, we’ll use the total width of the

text in the field’s font, plus the width of the image (if any):

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 96

 public int getPreferredWidth() {
 int width = getFont().getAdvance(label);
 if (image != null) {
 width += image.getWidth();
 }
 return width;
 }

The Font.getAdvance method just tells us the width, in pixels, needed to render the

given string in that font.

Now, we’ll take another look at layout. Two parameters were passed in, but we ignored

the height parameter. What if the available height is less than the height we need for the

font or image? It turns out the BlackBerry API will let us set a height that’s bigger than

the available height but will clip our field when it’s drawn. Basically our paint method

would think it had more space than it actually did, which would definitely lead to some

drawing bugs. Given our field and application, it’s unlikely we’ll ever actually run into

problems with the available height, but it does come into play with other fields, so let’s

modify our layout method to respect the height parameter. We’ll also take this

opportunity to eliminate some code replication. Since getPreferredHeight used exactly

the same algorithm as layout, we’ll just called getPreferredHeight, and if the height

passed to layout is less than that, we’ll cap the size at the smaller height:

 protected void layout(int width, int height) {
 setExtent(width, Math.min(height, getPreferredHeight()));
 }

Finally, what if our text is wider than the available width? This isn’t unlikely; with a

slightly larger font, wider image, or narrower screen, we could run out of room easily.

Right now, the text will just cut off wherever the screen ends, even in the middle of a

letter. Without getting into anything fancy, like text wrapping, we can use another

version of Graphics.drawText that allows us to specify the width available for the text

and set a flag to draw an ellipsis (. . .) at the end of our text if it exceeds the given space:

 protected void paint(Graphics graphics) {
 graphics.setBackgroundColor(backgroundColor);
 graphics.clear();
 graphics.setColor(foregroundColor);
 if (image != null) {
 int textY = (getHeight() - getFont().getHeight()) / 2;
 int imageY = (getHeight() - image.getHeight()) / 2;
 graphics.drawBitmap(0, imageY, image.getWidth(), image.getHeight(),
 image, 0, 0);
 graphics.drawText(label, image.getWidth(), textY, DrawStyle.ELLIPSIS,
 getWidth()-image.getWidth());
 }
 else {
 graphics.drawText(label, 0, 0, DrawStyle.ELLIPSIS, getWidth());
 }
 }

Now, if our label is too long, at least it’ll look a bit better (see Figure 5-7).

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 97

Figure 5-7. The CustomLabelField demonstrating the ellipsis

Finally, let’s revisit the layout method briefly. We made the field always take up the

entire width available to it. What if we didn’t want that behavior? How would the

application using the field specify its behavior? Take a look at the field style flags

available in the Field class. There’s one called USE_ALL_WIDTH. Let’s alter layout so that

our label field only uses the full with of the screen if this flag is specified.

The change is simple:

 protected void layout(int width, int height) {
 if ((getStyle() & Field.USE_ALL_WIDTH) == Field.USE_ALL_WIDTH) {
 setExtent(width, Math.min(height, getPreferredHeight()));
 }
 else {
 setExtent(getPreferredWidth(), getPreferredHeight());
 }
 }

Again, we can use getPreferredWidth, because it already gives us the width of the

image (if any) plus the text.

Finally, to make sure the label on our login screen still spans the entire width, we’ll make

a slight change to UiFunMainScreen’s constructor, to pass in Field. USE_ALL_WIDTH as

the style flag:

 Add(new CustomLabelField
 ("Please enter your credentials:", Color.WHITE, 0x999966, loginImage,
Field.USE_ALL_WIDTH));

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 98

Congratulations, you’ve created your first custom field! You can take the appearance as

far as you want (exploring the Graphics class may give you some ideas), but you

understand the basics of building a field, except for one crucial piece: how to interact

with the user. To illustrate that, we’ll replace our application’s buttons with something a

bit different and learn how to create fields that a user can interact with.

Creating a Custom Button Field
To create our new buttons, we’ll again start from scratch. Because you just worked

through the basics of drawing a field, we’ll focus only on areas that are different when

creating an interactive field.

Laying Out the Interface
We’ll start with the parts that you already know—the layout and paint methods. In this

case, we want a size that’s a bit bigger than our text, because we’re going to draw a

background for the button that extends beyond the text by a few pixels.

We also want to leave one pixel of blank space around the outside of the button, so the

two buttons appear well spaced when they’re next to each other on the screen. Figure

5-8 illustrates the horizontal sizing of the button relative to the text; the vertical layout is

similar.

Figure 5-8. The horizontal dimensions of the custom button field

So, for the layout method, we just add 8 pixels (4 on each side) to the font advance for

our button’s text, and add 8 to the font height to get the field’s size. Create a new class

called CustomButtonField; the initial code should look like the following:

package com.beginningblackberry.uifun;

import net.rim.device.api.ui.Color;
import net.rim.device.api.ui.Field;

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 99

import net.rim.device.api.ui.Graphics;
import net.rim.device.api.ui.Keypad;

public class CustomButtonField extends Field {
 private String label;
 private int backgroundColor;
 private int foregroundColor;

 public CustomButtonField(String label, int foregroundColor,
 int backgroundColor, long style) {
 super(style);
 this.label = label;
 this.foregroundColor = foregroundColor;
 this.backgroundColor = backgroundColor;
 }

 public int getPreferredHeight() {
 return getFont().getHeight() + 8;
 }

 public int getPreferredWidth() {
 return getFont().getAdvance(label) + 8;
 }

 protected void layout(int width, int height) {
 setExtent
 (Math.min(width, getPreferredWidth()), Math.min(height,
getPreferredHeight()));
 }
}

Painting the Buttons
Instead of clearing the whole field to the background color, we’ll just draw a rounded

rectangle of the given background color, and draw the text on top of that. We’ll have to

come back to paint when we make this field focusable, but for now, to get something on

screen, our paint method looks like this:

 protected void paint(Graphics graphics) {
 graphics.setColor(backgroundColor);
 graphics.fillRoundRect(1, 1, getWidth()-2, getHeight()-2, 12, 12);
 graphics.setColor(foregroundColor);
 graphics.drawText(label, 4, 4);
 }

Taking a Look
Replace the ButtonFields in UiFunMainScreen with CustomButtonFields, and you’ll see

how the buttons look so far. In UiFunMainScreen’s constructor, change the class for the

button declaractions from ButtonField to CustomButtonField:

 CustomButtonField clearButton;
 CustomButtonField loginButton;

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 100

Then, in UiFunMainScreen’s constructor replace the following lines:

 clearButton = new ButtonField("Clear", ButtonField.CONSUME_CLICK);
 clearButton.setChangeListener(this);
 loginButton = new ButtonField("Login", ButtonField.CONSUME_CLICK);
 loginButton.setChangeListener(this);

with these lines:

 clearButton = new CustomButtonField("Clear", Color.WHITE, Color.LIGHTGREY, 0);
 clearButton.setChangeListener(this);
 loginButton = new CustomButtonField("Login", Color.WHITE, Color.LIGHTGREY, 0);
 loginButton.setChangeListener(this);

Running the application, you’ll see, as you should expect by now, our buttons drawn to

the screen as illustrated in Figure 5-9.

Figure 5-9. Two buttons, rounded rectangles with text – no surprises

If you try to use the application now, however, you’ll notice a big difference; you can no

longer select the buttons!

Making the Button Focusable
Because most BlackBerry devices use a trackball as their navigation method, the

concept of focus is very important. The field with focus is the one that receives events

from the user interface and has the first chance to respond to them. (Even the

BlackBerry Storm preserves the notion of focus, though having focus is not as critical.

When you lightly tap the screen on top of a field, it receives focus.)

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 101

To make the button focusable we’ll just override isFocusable in CustomButtonField to

return true:

 public boolean isFocusable() {
 return true;
 }

Now, you’ll be able to move the focus down to the buttons, but the visual representation

shown in Figure 5-10 is not what we want.

Figure 5-10. Custom button fields with the default focus drawing behavior

Drawing the Focus
The default focus behavior for the BlackBerry is to invert pixels that are in the

background color. This look is fine for many types of fields, but for our button field, we

want to change the button to a color that the user specifies at instantiation time.

First, let’s add a couple of member variables, so we can specify the color of the focused

button’s text and background:

 private int focusedForegroundColor;
 private int focusedBackgroundColor;

 public CustomButtonField(String label, int foregroundColor,
 int backgroundColor, int focusedForegroundColor,
 int focusedBackgroundColor, long style) {
 super(style);
 this.label = label;
 this.foregroundColor = foregroundColor;
 this.backgroundColor = backgroundColor;
 this.focusedForegroundColor = focusedForegroundColor;

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 102

 this.focusedBackgroundColor = focusedBackgroundColor;
 }

Now, we’ll disable the default focus behavior so that blue rectangle isn’t drawn. To do

this, we just override drawFocus and have it do nothing:

 protected void drawFocus(Graphics graphics, boolean on) {
 }

Field has a method called isFocus that lets us determine if the field is in focus while

we’re painting. We’ll make use of this in our paint method to draw the button in different

colors when it’s in focus. To illustrate a little bit more about drawing using the Graphics

object, we’re also going to add a shine effect to our focused button by drawing a

semitransparent white rounded rectangle on top of the button background:

 protected void paint(Graphics graphics) {
 if (isFocus()) {
 graphics.setColor(focusedBackgroundColor);
 graphics.fillRoundRect(1, 1, getWidth()-2, getHeight()-2, 12, 12);
 graphics.setColor(Color.WHITE);
 graphics.setGlobalAlpha(100);
 graphics.fillRoundRect(3, 3, getWidth()-6, getHeight()/2, 12, 12);
 graphics.setGlobalAlpha(255);
 graphics.setColor(focusedForegroundColor);
 graphics.drawText(label, 4, 4);
 }
 else {
 graphics.setColor(backgroundColor);
 graphics.fillRoundRect(1, 1, getWidth()-2, getHeight()-2, 12, 12);
 graphics.setColor(foregroundColor);
 graphics.drawText(label, 4, 4);
 }
 }

Transparency is specified through the setGlobalAlpha method on the graphics object. It

takes an int that can range from 0 for fully transparent to 255 for fully opaque and

affects all subsequent drawing operations with that Graphics object, so be sure to reset

the alpha value to 255 before the end of your paint method, or you may see some

strange effects in your application.

Finally, we need to have the button repaint when its focus state changes. This does not

happen automatically, so we need to override onFocus and onUnfocus to explicitly

invalidate the field. Be sure to call the superclass’s versions of these methods to

maintain the focus behavior:

 protected void onFocus(int direction) {
 super.onFocus(direction);
 invalidate();
 }

 protected void onUnfocus() {
 super.onUnfocus();
 invalidate();
 }

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 103

Changing the button initialization in UiFunMainScreen’s constructor, we’ll specify a green

and yellow color scheme for our buttons they have focus:

 clearButton = new CustomButtonField
 ("Clear", Color.WHITE, Color.LIGHTGREY, Color.YELLOW, Color.GREEN, 0);
 clearButton.setChangeListener(this);
 loginButton = new CustomButtonField
 ("Login", Color.WHITE, Color.LIGHTGREY, Color.YELLOW, Color.GREEN, 0);
 loginButton.setChangeListener(this);

Now, everything will look a lot better (see Figure 5-11).

Figure 5-11. Custom focus appearance

Now, we have buttons that look as we want them to when focused, but when we click

them, nothing happens. The final piece to put in place is to have each trackball or touch

screen click fire a field-changed event.

Handling Events
Fortunately, the API makes event handling very easy. All we have to do is override

navigationClick and call fieldChangeNotify. The API takes care of handling the listener

and calling its fieldChanged method:

 protected boolean navigationClick(int status, int time) {
 fieldChangeNotify(0);
 return true;
 }

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 104

The status parameter is unimportant for our purposes, but comparing it against values

defined in net.rim.device.api.system.KeypadListener would let us determine if the Alt,

Shift, or other keys were being pressed while the user clicked our field.

Returning true from this method lets the framework know that we handled this event, so

no one else should respond to it.

Finally, the BlackBerry ButtonField also fires an event when the user presses the Enter

key while the field has focus. We’ll implement that behavior by overriding keyChar:

 protected boolean keyChar(char character, int status, int time) {
 if (character == Keypad.KEY_ENTER) {
 fieldChangeNotify(0);
 return true;
 }
 return super.keyChar(character, status, time);
 }

The Enter key is the only one this field should handle, so we fire a field changed event

and return true if that’s the case. Otherwise, we call the superclass’s method that will

allow other interested components to handle this keypress if they want.

Trying it out, we’ll get the same results as with the BlackBerry ButtonField class, as

shown in Figure 5-12.

Figure 5-12. The fully functional CustomButtonField

Now we’ve got a fully customized button field that acts like a built-in ButtonField.

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 105

A Review of Custom Fields
You can extend the concepts here to make your buttons include images, have different

fonts, or anything else your application requires. The same concepts will also let you

create many different types of fields.

Remember, when implementing a field from scratch you should be concerned with these

methods:

 paint

 layout

And when creating an interactive field, you should override at least these methods as

well:

 isFocusable

 onFocus

 onUnfocus

 drawFocus

 navigationClick

 keyChar

Creating Custom Managers
Now let’s turn our attention to the username, password, and domain fields. We want the

labels to line up to the right. To do that, we’ll have to make two changes. The first is

easy—we’ll stop using the built-in labels of the EditFields and ObjectChoiceField and

replace them with LabelFields. We’ll use HorizontalFieldManagers as we do for the

buttons to keep the labels and edit fields on the same line. The new code for the

UiFunMainScreen constructor follows:

 usernameField = new EditField("", "");
 LabelField usernameLabel = new LabelField("Username:", Field.FIELD_RIGHT);
 HorizontalFieldManager usernameManager = new HorizontalFieldManager();
 usernameManager.add(usernameLabel);
 usernameManager.add(usernameField);
 passwordField = new PasswordEditField("", "");
 LabelField passwordLabel = new LabelField("Password:", Field.FIELD_RIGHT);

 HorizontalFieldManager passwordManager = new HorizontalFieldManager();
 passwordManager.add(passwordLabel);
 passwordManager.add(passwordField);
 domainField = new ObjectChoiceField("", new String[] {"Home", "Work"});
 LabelField domainLabel = new LabelField("Domain:", Field.FIELD_RIGHT);
 HorizontalFieldManager domainManager = new HorizontalFieldManager();
 domainManager.add(domainLabel);
 domainManager.add(domainField);

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 106

 add(usernameManager);
 add(passwordManager);
 add(domainManager);

We’ve given the labels the Field.FIELD_RIGHT style, which will be important later but

doesn’t affect the appearance because of the way the horizontal field managers function

in this configuration. The appearance of the application is the same as before, but the

horizontal field managers are outlined to clarify the discussion that will follow (see

Figure 5-13).

Figure 5-13. Separate labels and fields in horizontal field managers.

One quick way to get the labels and fields to line up the way we want them is to create

two vertical field managers, one for the labels and one for the fields. We can rely on the

fact that the fields and labels are the same height to make them line up vertically. The

two vertical field managers go inside one horizontal field manager, which is added to the

screen. We’re not going to pursue this, but for illustrative purposes Figure 5-14 shows

how the screen looks, again with the managers outlined.

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 107

Figure 5-14. Using VerticalFieldManagers to line up the components

That looks pretty good. So what’s the problem? We’re relying on the fact that the label

fields are the same height as the other fields. This is not guaranteed—a fact we can

illustrate by typing in a long username as shown in Figure 5-15.

Figure 5-15. Knocking the fields out of alignment

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 108

What we really want is a grid of labels and fields. We’ll do this by creating a grid field

manager.

Creating a Manager
Managers are, in many ways, simpler to implement than fields. You’re only required to

implement one method, sublayout, and unless you’re doing something really complex,

the basic net.rim.device.api.ui.Manager paint method will still work and draw your

fields wherever you positioned them.

Managers do have to be concerned with things like moving the focus from field to field,

but if we’re clever enough about things, we won’t have to worry about handling that

ourselves either. The functionality that net.rim.device.api.ui.Manager gives us will be

enough.

Understanding GridFieldManager
GridFieldManager will let the user specify a number of grid columns when it’s

instantiated. The number of rows will vary depending on the number of fields added.

For a horizontal or vertical manager, it’s clear where fields are positioned, either left to

right or top to bottom in the order they’re added (we’ll ignore insert for now). For a grid

manager, it’s not as clear which way we should add them. Should they be added left to

right, then top to bottom, or the other way around? So we’ll just choose to go left to

right and then top to bottom as shown in Figure 5-16

Figure 5-16. This is our field layout for the grid manager; the numbers represent the order the fields
were added to the manager.

Implementing the Basic Framework
We’ll subclass directly from net.rim.device.api.ui.Manager and build our Manager from

scratch. The only thing we’ll need to keep track of is the number of columns. The

Manager class already maintains the list of fields for us:

package com.beginningblackberry.uifun;

import net.rim.device.api.ui.Field;
import net.rim.device.api.ui.Manager;

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 109

public class GridFieldManager extends Manager {
 private int numColumns;

 public GridFieldManager(int numColumns, long style) {
 super(style);
 this.numColumns = numColumns;
 }

 protected void sublayout(int width, int height) {
 }
}

Implementing the sublayout Method
All the magic in a manager happens in the sublayout method. It’s similar to a field’s

layout method, down to the requirement that you call setExtent within the method to

set the manager’s size (and in fact, behind the scenes, the manager’s layout method

calls sublayout). Remember, a manager is ultimately a type of field.

The other requirement in a manager’s sublayout method is that you position and size all

the fields contained by the manager. This is done through the layoutChild and

setPositionChild methods. The layoutChild method will result more or less directly in a

call to the child field’s layout method, meaning that before you call layoutChild the

child field will return 0 from getWidth and getHeight.

Here’s where we have to think about how exactly we’ll determine how wide each column

should be. In our case, we’re using the manager in a limited fashion, and we control how

it’s used. Therefore, we can make some assumptions about the types of fields that will

be contained; specifically, we can ensure that fields will in general all be able to fit in a

row across the screen. When designing general-purpose managers, many of these

design decisions can quickly become very complex; it’s usually good practice to keep in

mind where you’re going to be using your manager and design to that, rather than

attempting to design for the general case right away.

We’ll also assume that we don’t have to worry about having enough vertical space for

the manager. In fact, if we end up in a constrained vertical space, the manager will just

be cut off at the bottom, and it’s not certain that we could really do much better than

that.

So our manager’s sublayout method will do the following:

1. Go through the fields in the first (leftmost) column and call layoutChild

on each one, so get an accurate width and height.

2. Determine the width of the first column from the maximum width of all

the fields.

3. Subtract that width from the total available, and continue to layout the

fields in each column in turn, left to right.

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 110

4. Set the position for all fields in the first row based on the column

widths.

5. Set the position for all fields in the second row based on the column

widths and the maximum height of all the fields in the first row, and

continue top to bottom for all the rows.

6. Set the extent of the field based on the total width of all columns and

the total height of all rows.

Clear? Here’s how all the code looks:

 protected void sublayout(int width, int height) {
 int[] columnWidths = new int[numColumns];
 int availableWidth = width;
 int availableHeight = height;

 // For each column size all the fields and get the maximum width
 for(int column = 0; column < numColumns; column++) {
 for
 (int fieldIndex = column; fieldIndex < getFieldCount(); fieldIndex +=
numColumns){
 Field field = getField(fieldIndex);
 layoutChild(field, availableWidth, availableHeight);
 if (field.getWidth() > columnWidths[column]) {
 columnWidths[column] = field.getWidth();
 }

 }

 availableWidth -= columnWidths[column];
 }

 int currentRow = 0;
 int currentRowHeight = 0;
 int rowYOffset = 0;

 // Set the position of each field
 for(int fieldIndex = 0; fieldIndex < getFieldCount(); fieldIndex++) {
 Field field = getField(fieldIndex);
 if (fieldIndex % numColumns == 0) {
 setPositionChild(field, 0, rowYOffset);
 }
 else {
 setPositionChild
 (field, columnWidths[(fieldIndex % numColumns) - 1], rowYOffset);
 }

 if (field.getHeight() > currentRowHeight) {
 currentRowHeight = field.getHeight();
 }

 if (fieldIndex % numColumns == numColumns - 1) {
 currentRow ++;
 rowYOffset += currentRowHeight;
 currentRowHeight = 0;

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 111

 }
 }

 int totalWidth = 0;
 for(int i = 0; i < numColumns; i++) {
 totalWidth += columnWidths[i];
 }
 setExtent(totalWidth, rowYOffset + currentRowHeight);
 }

There’s a lot to this method, so let’s walk through it. The first for loop iterates through

all the fields in the manager, one column at a time and calls layoutChild on each one to

set its size:

for(int column = 0; column < numColumns; column++) {
 for(int fieldIndex = column; fieldIndex < getFieldCount(); fieldIndex += numColumns) {

If we have a two-column grid with six fields, we go through the fields in this order

(starting with 0):

Column 0:
 0
 2
 4
Column 1:
 1
 3
 5

For each column, we lay out all the fields in whatever width we have available, and then

take the maximum width as the column width. We subtract that width from the total

remaining width to get the available width for the next columns.

Once we’ve determined the column widths, the next for loop again goes through all the

fields in the manager, to position them on screen using setPositionChild:

for(int fieldIndex = 0; fieldIndex < getFieldCount(); fieldIndex++) {
 Field field = getField(fieldIndex);
 if (fieldIndex % numColumns == 0) {
 setPositionChild(field, 0, rowYOffset);
 }
 else {
 setPositionChild
 (field, columnWidths[(fieldIndex % numColumns) - 1], rowYOffset);
 }

We have the column widths already so we know where they should be positioned

horizontally. As we lay out each row, we keep track of the field with the largest height in

that row, and use that as the row height:

 if (field.getHeight() > currentRowHeight) {
 currentRowHeight = field.getHeight();
 }

When we’re at the last field of a row (where the index is one less than a multiple of the

number of columns), we shift the vertical position for the next row downward, and start

over again:

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 112

 if (fieldIndex % numColumns == numColumns - 1) {
 currentRow ++;
 rowYOffset += currentRowHeight;
 currentRowHeight = 0;
 }

Finally, we set the size for the manager by adding up all the column widths, and taking

the total of all the row heights:

 int totalWidth = 0;
 for(int i = 0; i < numColumns; i++) {
 totalWidth += columnWidths[i];
 }
 setExtent(totalWidth, rowYOffset + currentRowHeight);

Seeing the Grid Field Manager in Action
OK, now let’s see how the grid looks. We’ll modify UiFunMainScreen’s constructor again

to use the grid field manager to hold our separate labels and edit fields:

 usernameField = new EditField("", "");
 LabelField usernameLabel = new LabelField("Username:", Field.FIELD_RIGHT);
 passwordField = new PasswordEditField("", "");
 LabelField passwordLabel = new LabelField("Password:", Field.FIELD_RIGHT);

 domainField = new ObjectChoiceField("", new String[] {"Home", "Work"});
 LabelField domainLabel = new LabelField("Domain:", Field.FIELD_RIGHT);

 GridFieldManager gridFieldManager = new GridFieldManager(2, 0);
 gridFieldManager.add(usernameLabel);
 gridFieldManager.add(usernameField);
 gridFieldManager.add(passwordLabel);
 gridFieldManager.add(passwordField);
 gridFieldManager.add(domainLabel);
 gridFieldManager.add(domainField);

 add(gridFieldManager);

Remember, because we’ve instantiated a two-column grid, the labels will all appear in

the left column and the edit fields on the right.

Now, start the simulator, and you should see something like Figure 5-17.

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 113

Figure 5-17. Using the first version of the grid field manager

We’re doing better already. The username can wrap, and all the labels stay aligned with

the field. Incidentally if you’re paying attention, you might realize that when the text in

the username field wraps, it causes the screen’s layout method to be run again. This

behavior is fine and expected: layout happens infrequently, but it does happen.

Aligning the Labels
There’s one problem though. While the edit fields are aligned properly, the labels are still

aligned to the left, rather than the right, despite the fact that we gave them the

Field.FIELD_RIGHT styles. Remember earlier that I mentioned that styles were

dependent on the field and the manager? Our GridFieldManager has to explicitly

support the FIELD_RIGHT style to get the alignment to work the way we expect it to. The

change is simple. If the field has the FIELD_RIGHT style set, we just need to shift it to the

right by the width of the column minus the width of the field. In sublayout replace the

following lines:

 if (fieldIndex % numColumns == 0) {
 setPositionChild(field, 0, rowYOffset);
 }
 else {
 setPositionChild
 (field, columnWidths[(fieldIndex % numColumns) - 1], rowYOffset);
 }

with these:

 int fieldOffset = 0;

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 114

 if ((field.getStyle() & Field.FIELD_RIGHT) == Field.FIELD_RIGHT) {
 fieldOffset = columnWidths[fieldIndex % numColumns] - field.getWidth();
 }
 if (fieldIndex % numColumns == 0) {
 setPositionChild(field, 0 + fieldOffset, rowYOffset);
 }
 else {
 setPositionChild
 (field, columnWidths[(fieldIndex % numColumns) - 1] + fieldOffset,
rowYOffset);
 }

Now, our manager positions all of the label fields correctly (see Figure 5-18).

Figure 5-18. The labels are aligned on the right. Notice that wrapping is supported for the password
field too.

If you wanted to support Field.FIELD_HCENTER, the change would be similar. I’ll leave

that as an exercise for you.

Focus Movement
If you play with this application, you’ll notice that the focus moves as you’d expect it to:

when the cursor is in the username field, scrolling down or right will move the cursor to

the password field and then to the domain drop-down. This is because of the default

focus movement behavior, which is to use the order the fields are added to the manager

as the focus order and to move to later fields in the focus order when the trackball is

moved right or down and to earlier fields when the trackball is moved left or up.

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 115

This behavior wouldn’t work if we had more than one column of focusable fields in our

manager. Imagine we have two columns of focusable fields. Figures 5-19 through 5-22

illustrate the focus movement problems. The numbers represent the order fields are

added to the grid field manager.

Figure 5-19. Grid manager with six fields. Fields number 2, 3, 5 and 6 are focusable.

Figure 5-20. Field 2 has focus initially.

Figure 5-21. A rightward trackball movement correctly moves the focus from field 2 to field 3.

Figure 5-22. A downward trackball movement moves the focus from field 3 to field 5, which is not the behavior
we expect.

This problem exists because the default focus-moving algorithm doesn’t take into

account field position on the screen, only field order within the manager. So moving right

and down are considered to be the same action. You can fix this by overriding

navigationMovement in your manager, but the discussion about how to do so is beyond

the scope of this book. The source code available on the book’s web site includes a

sample implementation for moving focus in a grid field.

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 116

Tidying Up the Login Success Screen
Now that we’ve got a few components, let’s revisit LoginSuccessScreen. With some

simple modifications to the constructor to use our CustomLabelField and

GridFieldManager, we can make the screen look a little better.

 public LoginSuccessScreen(String username, String domain) {
 try {
 FontFamily alphaSansFamily = FontFamily.forName("BBAlpha Serif");
 Font appFont = alphaSansFamily.getFont(Font.PLAIN, 9, Ui.UNITS_pt);
 setFont(appFont);
 } catch (ClassNotFoundException e) {
 }

 add(new CustomLabelField("Logged In!", Color.WHITE, 0x999966,
Field.USE_ALL_WIDTH));
 add(new SeparatorField());
 GridFieldManager gridFieldManager = new GridFieldManager(2, 0);
 gridFieldManager.add
 (new CustomLabelField("Username:", Color.BLACK, Color.WHITE,
Field.FIELD_RIGHT));
 gridFieldManager.add
 (new CustomLabelField(username, Color.BLACK, Color.LIGHTGREY,
Field.USE_ALL_WIDTH));
 gridFieldManager.add
 (new CustomLabelField("Domain:", Color.BLACK, Color.WHITE,
Field.FIELD_RIGHT));
 gridFieldManager.add
 (new CustomLabelField(domain, Color.BLACK, Color.LIGHTGREY,
Field.USE_ALL_WIDTH));
 add(gridFieldManager);
 }

Here, we’ve moved the username and domain labels and values into a grid, similar to

our main screen. Notice that we’ve given the right column labels the

Field.USE_ALL_WIDTH value, which, in combination with the sublayout method of the grid

field manager, will make them use the entire screen width except for the space taken by

the first column. Go back and see if you can figure out why, and try to figure out what

would happen if we applied Field.USE_ALL_WIDTH to the labels for the first column.

The screen with the constructor provided in this section will look something like

Figure 5-23.

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 117

Figure 5-23. The redone login success screen

Now, you should be familiar with how to make fields and managers. That leaves one

more piece of the visual BlackBerry user interface to cover before we’re finished this

chapter—screens.

Creating a Custom Screen
We’re actually using three screens in our UI Fun application already. Two are obvious:

UiFunMainScreen and the login success screen. The third is the dialog that appears when

you try to log in without entering a username and password (see Figure 5-24).

Figure 5-24. The login dialog is a Screen too

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 118

A screen on the BlackBerry doesn’t have to take up the entire display; other screens can

be visible below it. All screens, however, do take over the user input. That is, any

keypresses, trackball presses, or touch screen taps only go to whatever screen is

currently active and on top of the display stack. The active screen is also the one that

controls the menu.

All screens are derived from net.rim.device.api.ui.Screen. We’ll illustrate the

concepts by creating a custom dialog to replace the default one, if for no other reason

than we want to use our own colors and font and replace the OK button with one of our

custom button fields.

We’ll name our new screen CustomDialog (you should be seeing a pattern in our names

by now) and directly subclass Screen. There is a PopupScreen class in

net.rim.device.api.ui.container, but it adds some things that we don’t want, like a

border. The basic code looks like this:

package com.beginningblackberry.uifun;

import net.rim.device.api.ui.Screen;
import net.rim.device.api.ui.container.VerticalFieldManager;

public class CustomDialog extends Screen {
 public CustomDialog(String message) {
 super(new VerticalFieldManager());
 }

 protected void sublayout(int width, int height) {
 }
}

Right away, you should notice two things. First, we’re required to implement sublayout;

this will actually be much easier than with a manager. Second, we’re required to pass a

Manager to Screen’s constructor. This is the delegate manager.

Delegate Managers
A screen doesn’t directly lay out any of its fields. Instead, it delegates that to a manager

that’s specified when the screen is instantiated. All the manager methods on the screen

(add, delete, insert, etc.) actually end up invoking the same methods on the delegate

manager. The only component the screen handles directly is the delegate manager. This

separation of manager and screen makes it easy to change the internal layout of any

screen. This also means that a screen must have a delegate manager at all times, so it

must be specified at instantiation time and can never be changed. The delegate

manager can be any valid Manager class, as there are no extra requirements above what

a regular Manager does.

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 119

Implementing the Screen’s sublayout Method
As we’ve discussed, the screen’s sublayout method needs to worry about only the

delegate manager. This is accessible through the getDelegate method. There are a

couple of special methods in Screen that allow us to layout the delegate manager and

position it. These methods work the same as the methods to set field position and size

in any other manager. In addition to this, our sublayout method needs to set the extent

of the screen, just as with any field, and set the position of the screen on the display.

The width and height parameters passed into the sublayout method of a screen will

always be the width and height of the device’s display (on a device with a rotatable

display, like the BlackBerry Storm, these will represent the current orientation of

the screen).

Note that setPosition sets the position of the screen relative to the device’s display;

that is, setPosition(10, 10) will position the screen 10 pixels from the top-left corner of

the display. setPositionDelegate sets the position of the delegate manager relative to

the screen’s position.

We’re going to give the delegate manager slightly less room than is available to us, to

ensure the screen’s contents don’t take up the entire screen and to leave room for us to

draw a border around the screen. When we’ve determined the size of the delegate, we

set the actual size of the screen accordingly:

 protected void sublayout(int width, int height) {
 layoutDelegate(width - 80, height - 80);
 setPositionDelegate(10, 10);
 setExtent(width - 60, Math.min(height - 60, getDelegate().getHeight() + 20));
 setPosition(30, (height - getHeight())/2);
 }

We’re leaving 30 pixels to the left and right of the screen and a minimum of 30 to the top

and bottom, though if the delegate is small, we’ll have more space. We’re also leaving a

10-pixel border on all sides between the edges of the screen and the edges of the

delegate manager to give us space to draw our border.

Let’s add a LabelField to the constructor and make a change in UiFunMainScreen to see

this in action. First, edit CustomDialog’s constructor:

 public CustomDialog(String message) {
 super(new VerticalFieldManager(), Screen.DEFAULT_CLOSE);
 add(new LabelField(message));
 }

The add method here actually delegates to the VerticalFieldManager constructed on the

preceding line. Also, we’ve added the Screen.DEFAULT_CLOSE style so that pressing the

escape button will close this screen.

In UiFunMainScreen, modify the login method by replacing the line that shows the dialog:

 Dialog.alert("You must enter a username and password");

with the following line to instantiate and show our custom dialog:

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 120

 UiApplication.getUiApplication().pushModalScreen
 (new CustomDialog("You must enter a username and password"));

Now, run the application, and click the Login button (or menu item), and you’ll see a

basic screen like the one in Figure 5-25.

Figure 5-25. Basic custom dialog

Right now, there’s not much too it, just a white square with our LabelField on it, but it is

a screen. Try typing, and you’ll notice that the rest of the application doesn’t respond.

The custom dialog is intercepting all the keypresses. Pressing the escape key will

dismiss the dialog.

Adding a Few Fields
We’ll modify the constructor to add an OK button and a separator field to fill out the

dialog. We’ll also set the font while we’re at it. The following is the new constructor:

 public CustomDialog(String message) {
 super(new VerticalFieldManager(), Screen.DEFAULT_CLOSE);
 try {
 FontFamily alphaSansFamily = FontFamily.forName("BBAlpha Serif");
 Font appFont = alphaSansFamily.getFont(Font.PLAIN, 9, Ui.UNITS_pt);
 setFont(appFont);
 } catch (ClassNotFoundException e) {
 }

 add(new LabelField(message));

 add(new SeparatorField());

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 121

 okButton = new CustomButtonField
 ("OK", Color.WHITE, Color.LIGHTGREY, Color.YELLOW, Color.GREEN,
Field.FIELD_HCENTER);
 okButton.setChangeListener(this);
 add(okButton);
 }

We’re using the same color scheme for the OK button as with the buttons on

UiFunMainScreen. We’ll also have to make CustomDialog implement

FieldChangeListener and provide an appropriate fieldChanged method:

public class CustomDialog extends Screen implements FieldChangeListener {
 private CustomButtonField okButton;

 //...

 public void fieldChanged(Field field, int context) {
 if (field == okButton) {
 close();
 }
 }

Painting the Background
Just to illustrate the concept, we’ll draw a simple background consisting of a rounded

rectangle in our tan color outlined in black. The paintBackground method is the place to

do this; we won’t interfere with painting of the fields which is already handled just fine by

the Screen class:

 protected void paintBackground(Graphics graphics) {
 graphics.setColor(0x999966);
 graphics.fillRoundRect(0, 0, getWidth(), getHeight(), 12, 12);
 graphics.setColor(Color.BLACK);
 graphics.drawRoundRect(0, 0, getWidth(), getHeight(), 12, 12);
 }

Now, let’s run the application again and take a look at our completed dialog (see

Figure 5-26).

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 122

Figure 5-26. The completed custom dialog

The border between the outside edge of the screen and the delegate manager is now

apparent by looking at the label and separator fields. Clicking OK will close the dialog,

as we’d expect.

Adding the Final Touches
We’re almost there. All that’s left is to change the color of the background behind the

logo image and make a couple of minor tweaks to alignment. I’ve left this section until

almost the end of this chapter, because there’s not a lot new here; we’re just applying

concepts that you already know.

Adding a Header Background
We want to put a black background behind the header image and align the image to the

left. The second change is easy; simply change the style Field.FIELD_HCENTER to

Field.FIELD_LEFT (or leave it out entirely, as FIELD_LEFT is the default).

To make the image sit on a different color background, we’ll put the BitmapField inside

another manager and let that manager draw the background color. We’ll use a

HorizontalFieldManager. This first part should be familiar to you by now. Change the

following lines in the UiFunMainScreen constructor:

 Bitmap logoBitmap = Bitmap.getBitmapResource("res/apress_logo.png");
 bitmapField = new BitmapField(logoBitmap, Field.FIELD_LEFT);

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 123

 HorizontalFieldManager hfmLabel = new
HorizontalFieldManager(Field.USE_ALL_WIDTH);
 hfmLabel.add(bitmapField);
 add(hfmLabel);

The background is still white, but we’ve set the stage to change it. Now, there are two

ways we can go about providing a black background. Before version 4.6 of the

operating system, we would have to subclass the HorizontalFieldManager and modify

the paint method. In version 4.6, RIM introduced a new method. We’ll cover both

methods briefly.

Subclassing HorizontalFieldManager
There’s a simple Java construct called an anonymous inner class that lets us define a

class at the same time as we instantiate it, if we need only one instance of the new

class, as we do here. I’ll present the code and discuss it afterward. Replace the new

HorizontalFieldManager line with the following lines:

 HorizontalFieldManager hfmLabel = new
HorizontalFieldManager(Field.USE_ALL_WIDTH) {
 protected void paint(Graphics graphics) {
 graphics.setBackgroundColor(Color.BLACK);
 graphics.clear();
 super.paint(graphics);
 }
 };

This code redefines the paint method only for this instance of HorizontalFieldManager.

The new paint method is simple. It just clears the entire background of the manager to

black and then calls super.paint to draw the rest of the manager as before.

Using Background and BackgroundFactory
The version 4.6 of the JDE and operating system introduced borders and backgrounds,

which can be used to modify the appearance of UI components. For this to work, you

have to use JDE 4.6 or later, or configure the Eclipse Plug-in to use the JDE component

pack 4.6 or later.

The border and background classes can be found in the net.rim.device.api.ui.decor

package. We’re interested in BackgroundFactory and Background. The code is pretty

self-explanatory—we create a solid black background, and attach it to our

HorizontalFieldManager:

 HorizontalFieldManager hfmLabel = new
HorizontalFieldManager(Field.USE_ALL_WIDTH);
 Background blackBackground =
BackgroundFactory.createSolidBackground(Color.BLACK);
 hfmLabel.setBackground(blackBackground);

Both the subclass method and the background method produce the same result, which

is shown in Figure 5-27.

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 124

Figure 5-27. A black background for our image

Which method should you use to set the background color? For now, I recommend

subclassing HorizontalFieldManager, because it works with versions of the operating

system before 4.5, and a lot of devices out there are still running those operating

systems. If you use BackgroundFactory and Background, your application will not run on

devices with version 4.5 or older. In the future though, expect this to change. Think of

this as a sneak preview of the way BlackBerry development will be done in the near

future.

Making Minor Tweaks
Just to complete the look we wanted, we’ll do a couple of small things. First, we want

the labels to be indented from the left side a bit—we’ll accomplish that just by adding a

few spaces to the beginning of the Username label—since everything is in a grid layout,

the other fields will still line up with the right side of the label:

LabelField usernameLabel = new LabelField(" Username:", Field.FIELD_RIGHT);

Finally, let’s align the Remember password check box to the right. Just add the

Field.FIELD_RIGHT alignment style to it:

 rememberCheckbox = new CheckboxField("Remember password", false,
Field.FIELD_RIGHT);

Now, our main screen is exactly as we wanted to see it, as illustrated in Figure 5-28.

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 125

Figure 5-28. The finished UiFun main screen

Working with the BlackBerry Storm
In most of the work we’ve done so far, I’ve mentioned the trackball many times, as most

BlackBerry devices are trackball (or trackpad) devices after all. But what about the

BlackBerry Storm with its touch screen?

The good news is that, if you construct your components the way we’ve done here,

everything will work as you’d expect on the Storm. The BlackBerry operating system

maps touch events to appropriate focus or navigation click events on your screens and

fields, so as long as you’re working at the level of those methods, you don’t have to do

any extra work to be compatible with the touch screen input method. You will, as

discussed earlier, have to compile your code with JDE 4.7 or later to avoid compatibility

mode, but the code itself won’t have to change.

The other new feature of the Storm is that you can use it in vertical and horizontal

orientation. The good news is that, since we’ve used relative positioning everywhere, our

application will look good automatically on the Storm in both vertical and horizontal

orientation (see Figures 5-29 and 5-30).

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 126

Figure 5-29. UiFun running on the BlackBerry Storm simulator in vertical orientation

Figure 5-30. UiFun running on the BlackBerry Storm simulator in a horizontal orientation

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 127

When the device is rotated, your sublayout and layout methods will automatically be

called, and you’ll have a chance to adjust your screen layout to the new width and

height.

The virtual keyboard will also automatically be displayed whenever the focus is on a text

edit field.

Creating Basic Animation
We’re going to spend a little bit of time on a topic that can really make your user

interface shine—animation. Now, this topic is more advanced, and really only recently

have applications with fancier screen transitions and other effects started to appear. So

you’re fine without animation. This section will teach you a bit more about how the

BlackBerry UI API works though, and it’s kind of fun, so I recommend you at least read

through it.

The BlackBerry platform, at the time of this writing, doesn’t offer any transitions between

screens by default. In our application, when you click the Login button, the login screen

instantly appears; it doesn’t fade in, slide in, or anything like that. We’ll modify UiFun so

that when the user logs in (clicks the Login button after typing a username and

password), the login success screen slides up from the bottom of the display.

The basic idea for user interface animation is to pick an aspect of the user interface to

animate (size, position, transparency) and a time for the animation to take place (for

example, 300 milliseconds for a screen to slide onto the display). Then, in each update

of the user interface, check if the animation time has elapsed: if not, update the user

interface aspect according to how much time has passed, and queue up another

UI update.

Using time-based animation like this means that the animation will run as smoothly as

possible across different device models and under different conditions and will always

take the same amount of time to complete.

Setting the Vertical Offset
To get the animation started, add a new variable to LoginSuccessScreen called

verticalOffset:

 private int verticalOffset;

We’ll update this variable during the animation, decrementing it from the display height

to zero.

We’ll also add another variable and a constant final variable to keep track of how much

time has passed in our animation and how long the animation should be. In this case,

we’ve chosen 300 milliseconds, as generally, somewhere between 200 and 300

milliseconds gives a decent user experience.

 private final static long animationTime = 300;
 private long animationStart = 0;

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 128

The animation logic all occurs within sublayout. We’ll only run the animation code if

verticalOffset is greater than zero, that is, only if the screen is not all the way onto the

display.

If verticalOffset is greater than zero, we’ll check the current time against the

animationStart time. Based on the ratio of the elapsed time to the total time for the

animation, we’ll set a new value for verticalOffset.

Finally, after updating the screen’s position, we’ll queue another update layout if

verticalOffset is still not zero by calling UiApplication.invokeLater.

Animating the Layout
The code for sublayout follows:

 protected void sublayout(int width, int height) {
 super.sublayout(width, height);
 if (verticalOffset > 0) {
 if (animationStart == 0) {
 // start the animation
 animationStart = System.currentTimeMillis();
 }
 else {
 long timeElapsed = System.currentTimeMillis() - animationStart;
 if (timeElapsed >= animationTime) {
 verticalOffset = 0;
 }
 else {
 float percentDone = (float)timeElapsed / (float)animationTime;
 verticalOffset =
 Display.getHeight() - (int)(percentDone * Display.getHeight());
 }
 }
 }
 setPosition(0, verticalOffset);

 if (verticalOffset > 0) {
 UiApplication.getUiApplication().invokeLater(new Runnable() {
 public void run() {
 updateLayout();
 }
 });
 }
 }

Notice that there’s an initial case where animationStart is zero. This case represents the

first frame of the animation, so we just leave verticalOffset where it is.

Speaking of verticalOffset, we’ll initialize it in the LoginScreen constructor to the

height of the display:

 verticalOffset = Display.getHeight();

 new Thread(this).start();

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 129

And that’s it. Now, the login success screen will smoothly scroll up from the bottom of

the screen (see Figure 5-31).

Figure 5-31. The login success screen sliding in

All animation follows the same basic pattern, but it can get much more complex. With

the same basic technique you can implement motion, fading, and more.

Summary
Congratulations! This chapter covered a lot of ground, and by working through it, you’ve

learned enough about the BlackBerry UI to create all kinds of great-looking applications.

In this chapter, we modified our UiFun application from last chapter by creating a new

label field that allowed us to display an image alongside the label and providing a

different background and foreground color. We also created a replacement button field

that let us specify colors for both focused and unfocused states and gave us a slightly

different look than the default ButtonField. Then, we created a new layout manager that

let us align our labels and edit fields in the way we wanted and a new dialog to replace

the default BlackBerry OK dialog. After that, we made some tweaks to the application’s

color and alignment and, finally, added a simple animation effect to the login success

screen.

Individually, all these changes were small, but together, they represent the starting point

for creating most of the great user interfaces you see on modern BlackBerry

applications.

Download at WoweBook.Com

CHAPTER 5: Beyond the Basics of User Interfaces 130

Now, we’ve gone pretty much as far as we will with the BlackBerry user interface in this

book. In the next chapter, we’ll start looking at an entirely new topic that’ll help you

produce much more capable applications—storing data on the device.

Download at WoweBook.Com

131

131

 Chapter

Storing Data
You now know enough about the BlackBerry user interface to create some pretty

impressive looking applications. So far, however, we’ve mostly focused on the basics of

application lifecycle and user interface. The applications that we’ve created haven't

saved any data to any form of persistent storage; each time they’re run, it’s as if they’re

running for the first time.

In the real world, most applications need to persist data. Even the simplest of

applications typically has a user option or two that need to be stored when the

application is shut down or the device is reset.

A number of different mechanisms exist on the BlackBerry for persisting data. Some

applications use more than one method depending on what is persisted, whereas

other applications choose one or another and use that. We’ll list and describe the

different persistence methods, explain times when you might want to use each one,

and then build a couple of applications to explore the more common and useful

methods in depth.

Storing Data on the BlackBerry
The BlackBerry, like most smartphones, uses flash memory to store persistent data

between application and device resets. BlackBerry devices have internal flash memory,

and most models also support external SD cards. Some types of persistence work with

the internal memory only, while some work with both internal flash memory and any SD

card that’s attached to the device.

6

Download at WoweBook.Com

CHAPTER 6: Storing Data 132

Choices for Persistence
The BlackBerry offers several ways to store persistent data on the device. In versions of

the JDE prior to version 5.0, these are:

 MIDP’s Record Management System (RMS)

 BlackBerry Persistent Store

 JSR 75 FileConnection support

 JDE Version 5.0 adds one more: SQLite.

Because this book is designed to help you develop for the widest range of BlackBerry

devices, we’ll only briefly touch on SQLite, which is only available on devices with OS

5.0 or later.

RMS
RMS is supported by BlackBerry mostly as part of supporting the MIDP standard. It’s a

simple, non-relational database format that enables the application to store arrays of

bytes. There’s minimal support for sharing data between applications, and application

data is attached to the application—that is, when the application is removed from the

device, application data is also removed. Generally, there’s no reason to use RMS

unless you’re supporting legacy code or developing a MIDlet instead of a BlackBerry

CLDC application, which, as we discussed in Chapter 3, is not usually an ideal choice

for BlackBerry development. You can find information about RMS in many places on the

Web, and in the BlackBerry Javadocs. All the relevant classes are located in the

javax.microedition.rms package. RMS stores can be written only to the internal flash

memory of the device.

Persistent Store
The BlackBerry Persistent Store provides similar features to RMS; however, it offers an

easier way to store a wider range of objects and the capability to directly store instances

of classes that you define in your applications. It also optionally offers compression and

security with little extra work from the application, so it is the method you should use for

most of your data storage functionality in a majority of BlackBerry applications. The

Persistent Store classes are located in net.rim.device.api.system: PersistentStore

and PersistentObject (PersistentContent provides compression and encryption).

Finally, persistent stores can be written only to the device’s internal flash memory.

Runtime Store
The Runtime Store is similar to the Persistent Store, but doesn’t persist across device

resets. It’s mostly useful as a mechanism for applications to share information.

Download at WoweBook.Com

CHAPTER 6: Storing Data 133

JSR 75 FileConnection
The FileConnection APIs are part of Java Specification Request (JSR) 75. JSR is part of

the Java Community Process. The other part of JSR 75 includes Personal Information

Management (PIM) APIs, which are also supported by the BlackBerry, but they are

outside the scope of this chapter.

The FileConnection APIs allow you to access the BlackBerry file system—both the

device’s internal memory and any SD card that is currently plugged into the device. The

file system is where the BlackBerry stores pictures, media, files that are downloaded

through the browser, and any attachments saved from email, and it is generally

accessible by all BlackBerry applications on the device. It’s a good place to store large

files, such as pictures or documents, especially if the user might want to access them in

some other way, such as through the BlackBerry Desktop Manager.

SQLite
SQLite is a full SQL database implementation. It’s powerful and useful for storing

structured data, but because it’s available only for devices that run BlackBerry OS 5.0 or

later, you should use it only if you need it and are willing to target a smaller segment of

BlackBerry devices.

The BlackBerry SQLite implementation enables you to create and access databases

stored on the device’s internal memory and external SD cards.

Your choices for persistence cover a wide enough range of functionality to meet almost

any application’s need. Because the Persistent Store and the FileConnection APIs are

the most commonly used and cover the persistence needs of almost all applications,

we’ll focus on those throughout the remainder of this chapter. We’ll also build a couple

of applications to explore how the APIs function.

BlackBerry Persistent Store
The Persistent Store enables you to save objects to the device’s flash memory. Because

it doesn’t support saving to the SD card, it’s not a good idea to use it to store

documents or anything else that can run up to large amounts of storage space. Most

modern devices have at least 128 MB of flash memory onboard and typically, a

significant percentage of that is free even after taking into account space used by the

OS, email, and other data. This means you don’t have to knock yourself out trying to

save space while writing typical application data like user settings; however, if you need

to manage many high-resolution photos, audio, or video files, the FileConnection API is

probably a better choice, and is covered later in this chapter.

There are only two classes you really need to be familiar with to use the Persistent Store:

net.rim.device.api.system.PersistentStore and

net.rim.device.aip.system.PersistentObject.

Download at WoweBook.Com

CHAPTER 6: Storing Data 134

Persistent Store Keys
Persistent Store manages a list of keys (long values) and objects (instances of

PersistentObject). The list of keys is global across all applications on the device.

Unfortunately, you don’t know ahead of time which keys are in use by other

applications; but, in practice, the keyspace is so large that conflicts never occur.

Fortunately, BlackBerry JDE and JDE Plug-in for Eclipse both offer a convenient

shortcut for generating a long value for use as a key. Simply type some text into the

editor, select it, and right-click. A menu item called Convert String to Long (for the

Eclipse plug-in—see Figure 6-1) or Convert [Selected Text] to long (for the JDE—see

Figure 6-2) and a new long value is generated based on a hash of the selected text.

Figure 6-1. Creating a long value for a Persistent Store key with the Eclipse plug-in

Figure 6-2. Creating a long value for a Persistent Store key with the JDE

Persistent Objects
Using the PersistentStore.getPersistentObject method returns an instance of

PersistentObject, even if the key hasn’t ever been used before. This is important. You

always get back a PersistentObject, but the content of that object might be null. This

means either that nothing has been saved with that key or it was deleted:

 PersistentObject persistentObject =
PersistentStore.getPersistentObject(0x2a5c4229e4666089L);

Download at WoweBook.Com

CHAPTER 6: Storing Data 135

The contents of the PersistentObject are accessed through the getContents method.

Again, this method might return null:

 // contents may be null
 Object contents = persistentObject.getContents();

To set or replace the contents of the PersistentObject, use the setContents method:

 Hashtable hashtable = new Hashtable();
 persistentObject.setContents(hashtable);

Setting the contents, however, does not mean the object has been persisted. For that,

you need to call the commit method:

 persistentObject.commit();

One final note: the PersistentObject maintains a reference to its contents. To change

the data in the PersistentObject,, you just need to modify that instance and call

persistentObject.commit; you do not need to call setContents again, unless you want

an entirely different object to be associated with the given persistent key:

 // This will persist MyKey and New Value
 // no need to call persistentObject.setContents
 hashtable.put("MyKey", "New Value");
 persistentObject.commit();

What Can You Persist?
The Persistent Store obviously can directly persist only objects, not primitive types. You

can’t directly persist an int, for example, but you can wrap the int in an Integer object

and persist that:

 persistentObject.setContents(new Integer(1234));

Generally, any object that you pass into setContents must implement the

net.rim.device.api.util.Persistable interface. This interface contains no methods;

it’s just a marker for the BlackBerry OS. A lot of the built-in classes on the BlackBerry

implement this interface. See the Javadocs for Persistable for a list.

In addition to these, a few of the basic Java classes are also allowed, even though they

don’t explicitly implement Persistable. These additional allowed persistable classes are:

java.lang.Boolean
java.lang.Byte
java.lang.Characte
java.lang.Integer
java.lang.Long
java.lang.Object
java.lang.Short
java.lang.String
java.util.Vector
java.util.Hashtable

Arrays of primitive types are also implicitly persistable, as are arrays of other persistable

types. So, you can persist byte[], char[], int[],String[], Vector[], and so on.

Download at WoweBook.Com

CHAPTER 6: Storing Data 136

Note that persistence saves the entire object, including all objects it references. This

means that if your object references other objects, those objects must be persistable,

too. In the previous example, we could persist the hashtable after we added a new key-

value pair because the key and value were both strings, and String is persistable.

However, the following would not be allowed:

public class MyClass {
 int someValue;
}
…
 hashtable.put("AnotherKey", new MyClass());
 // The next line will throw an exception
 // because MyClass isn’t Persistable
 persistentObject.commit();

But if MyClass implements Persistable, everything will work:

public class MyClass implements Persistable {
 int someValue;
}
…
 hashtable.put("AnotherKey", new MyClass());
 // This will work now
 persistentObject.commit();

That’s enough of the theory to get us started. We’ll touch on a couple of other details

later, but for now let’s put this knowledge to work.

The Persistable Application
Create a new BlackBerry application project called Persistable. The main screen will

have a few controls on it, so we can demonstrate persistence of different data types. To

save time, here’s the code for both classes:

PersistenceApplication.java

package com.beginningblackberry.persistence;

import net.rim.device.api.ui.UiApplication;

public class PersistenceApplication extends UiApplication {
 public PersistenceApplication() {
 PersistenceScreen screen = new PersistenceScreen();
 pushScreen(screen);
 }

 public static void main(String[] args) {
 PersistenceApplication application = new PersistenceApplication();
 application.enterEventDispatcher();
 }

}

PersistenceScreen.java

package com.beginningblackberry.persistence;

Download at WoweBook.Com

CHAPTER 6: Storing Data 137

import java.io.IOException;
import java.util.Hashtable;

import net.rim.device.api.system.PersistentObject;
import net.rim.device.api.system.PersistentStore;
import net.rim.device.api.ui.component.CheckboxField;
import net.rim.device.api.ui.component.DateField;
import net.rim.device.api.ui.component.EditField;
import net.rim.device.api.ui.component.NumericChoiceField;
import net.rim.device.api.ui.container.MainScreen;
public class PersistenceScreen extends MainScreen {
 EditField editField;

 public PersistenceScreen() {
 editField = new EditField("Persistent Data:", "");
 add(editField);
 }

}

We intentionally kept this simple. The application will save data when you exit and load

that data into the appropriate UI components when you start the application.

Note that we added a bunch of imports to PersistenceScreen here to save time later on.

The Persistent Object
We need to have the persistent object available to load and save data. We’ll make it an

instance variable of PersistenceScreen:

public class PersistenceScreen extends MainScreen {
 PersistentObject persistentObject;

Now let’s define the key. Right under the PersistentObject declaration, type

“com.thinkingblackberry.persistence.PersistenceScreen,” and then highlight it and

select Convert String to Long:

public class PersistenceScreen extends MainScreen {
 PersistentObject persistentObject;
 0x9df9f961bc6d6baL

You should get the same long value as above if you started with the same string (don’t

worry if you didn't; it’s not important for this exercise. As long as you have some value,

the application will still work).

Finally, add the following to make it a static final long variable:

public class PersistenceScreen extends MainScreen {
 PersistentObject persistentObject;
 static final long KEY = 0x9df9f961bc6d6baL;

Now add the following line to the constructor to initialize the object:

 persistentObject = PersistentStore.getPersistentObject(KEY);

Download at WoweBook.Com

CHAPTER 6: Storing Data 138

Loading the Data
Loading is easy in this case. We’ll store a string directly into the contents of the

PersistentObject so we’ll check to see whether a string was set, and if so, update the

edit field:

 if (persistentObject.getContents() != null) {

editField.setText((String)persistentObject.getContents());
 }

The Save Method
We’ll start by saving the data. This introduces another new UI concept; the screen’s

save method. Every screen on the BlackBerry keeps track of whether its controls have

been modified since it was displayed. If they have, it displays a Save/Discard/Cancel

prompt to the user. If the user chooses “Save,” the save method is called. By overriding

that method, you can save your data when the screen is closed.

Add the following code to PersistenceScreen:

 public void save() throws IOException {
 persistentObject.setContents(editField.getText());
 persistentObject.commit();
 }

That’s all you have to do! Now go ahead and run the application. The first time, you’ll

see the edit field is empty, as shown in Figure 6-3.

Figure 6-3. Persistence application before entering any data

Download at WoweBook.Com

CHAPTER 6: Storing Data 139

Now enter some text into the edit field and click the Escape key to exit the application.

The Save prompt displays as shown in Figure 6-4.

Figure 6-4. The Save prompt

Select Save, and the application exits. Now when you restart the application, the text

displays in the edit field just as you entered it (see Figure 6-5).

Figure 6-5. We've successfully saved and loaded data!

Download at WoweBook.Com

CHAPTER 6: Storing Data 140

More Advanced Persistence
The initial example was just to give you an idea of how easy persistence can be. We’ll

now modify the application to do something that might be a little more applicable in a

real-world application.

The Persistent Store’s use of long values for keys, and the method of wrapping each

stored object in a PersistentObject makes it easy to store individual objects, but what if

(as in most applications) you need to store a lot of different pieces of data? You can use

a different long key for each one, but that rapidly gets unmanageable. The solution is to

store a java.util.Hashtable in the PersistentObject, and then store each piece of data

within that hashtable. A Hashtable stores a set of key-value pairs, and as long as all the

keys and all the values are persistable objects, you can persist the hashtable itself.

Modifying the UI
To give us some more data to store, we’ll add a few fields to the PersistenceScreen.

Add the following to the top of the PersistenceScreen class:

 CheckboxField checkboxField;
 NumericChoiceField numericChoiceField;
 DateField dateField;

And the following lines to the constructor:

 checkboxField = new CheckboxField("Boolean data", false);
 numericChoiceField = new NumericChoiceField("Numeric data:",
1, 10, 1);
 dateField = new DateField("Date:",
System.currentTimeMillis(), DateField.DATE);

 add(checkboxField);
 add(numericChoiceField);
 add(dateField);

NumericChoiceField basically acts the same as the ObjectChoiceField you saw earlier,

but contains only integer values and has a couple of methods to make getting and

setting the values as ints easy. DateField naturally enough displays a date and time as

represented in Java as a long value.

Using a Hashtable
We’re going to make the persistent object use a Hashtable to store its contents, instead

of storing a String. Add a declaration for the Hashtable to the top of PersistenceScreen:

public class PersistenceScreen extends MainScreen {
 Hashtable persistentHashtable;

The idea in the constructor is to create the Hashtable if this is the first time using the

Persistent Store, or load it if not. Change the initialization code for the PersistentObject

to the following:

Download at WoweBook.Com

CHAPTER 6: Storing Data 141

 if (persistentObject.getContents() == null) {
 persistentHashtable = new Hashtable();
 persistentObject.setContents(persistentHashtable);
 }
 else {
 persistentHashtable = (Hashtable)persistentObject.getContents();
 }

Loading and Saving the Data
With the hashtable initialized, add the following lines to the end of the

PersistenceScreen constructor to load the data:

 if (persistentHashtable.containsKey("EditData")) {
 editField.setText((String)persistentHashtable.get("EditData"));
 }
 if (persistentHashtable.containsKey("BoolData")) {
 Boolean booleanObject = (Boolean)persistentHashtable.get("BoolData");
 checkboxField.setChecked(booleanObject.booleanValue());
 }
 if (persistentHashtable.containsKey("IntData")) {
 Integer intObject = (Integer)persistentHashtable.get("IntData");
 numericChoiceField.setSelectedValue(intObject.intValue());
 }
 if (persistentHashtable.containsKey("Date")) {
 Long longObject = (Long)persistentHashtable.get("Date");
 dateField.setDate(longObject.longValue());
 }

The pattern is the same for all primitive datatypes. Wrap them in the appropriate

associated data class and put that into the hashtable.

The save method is simpler because we don’t have to do all the checking:

 public void save() throws IOException {
 persistentHashtable.put("EditData", editField.getText());
 persistentHashtable.put("BoolData", new Boolean(checkboxField.getChecked()));
 persistentHashtable.put("IntData", new
Integer(numericChoiceField.getSelectedValue()));
 persistentHashtable.put("Date", new Long(dateField.getDate()));
 persistentObject.commit();
 }

Notice we removed the setContents method from save. The PersistentObject

maintains a reference to the Hashtable throughout the lifecycle of the screen, so all we

need to do is call commit and it will write the latest versions of all referenced data to

persistent storage.

Download at WoweBook.Com

CHAPTER 6: Storing Data 142

Clearing the Old Persistent Data from the Simulator
There’s one last thing we need to do before running the application. Because we’re

using the same Persistent Store key as before, and because we’ve already persisted a

String using that key, the first time we try to read the contents of the PersistentObject

and cast to a Hashtable, we’ll get an exception because the contents are a String. We

need to clear the simulator’s persistent data before running the application again.

From the JDE Plug-in for Eclipse, you erase the simulator’s file system by selecting the

BlackBerry menu, Erase Simulator File ➤ Erase File System (see Figure 6-6).

Figure 6-6. You need to erase the file system to erase the old contents of the Persistent Store.

From the JDE, the same functionality is available from the File menu, Erase Simulator

File, Erase File System.

You might wonder about how we’d deal with this situation on a real device. This does

happen, and we’ll touch on that in shortly, but right now, let’s look at the new

application in action (see Figure 6-7). The usage is the same, but now we’re storing a

bunch of different pieces of data:

Download at WoweBook.Com

CHAPTER 6: Storing Data 143

Figure 6-7. Storing and loading a bunch of data

Clearing Persistent Data from a Device
On a BlackBerry device, persistent data is somewhat independent of the application.

What does that mean? It has to do with what types of classes you persist. If you persist

only classes that are defined in the BlackBerry API, your data by default will stay behind

when your application is deleted from the device. Other applications can still access it,

and if you reload your application onto the device, your data will still be there.

If you want your data to be removed when your application is removed, the easiest

method is to store classes that are defined in your application. In our application, this is

easy to accomplish. We’ll define a new class called CustomHashtable that extends

Hashtable. Remember, we have to be sure to make it implement Persistable because

any class that we want to persist must directly implement Persistable; it doesn’t matter

if it extends a persistable class. Create the class in a new file called

CustomHashtable.java, containing the following code:

package com.beginningblackberry.persistence;

import java.util.Hashtable;

import net.rim.device.api.util.Persistable;

public class CustomHashtable extends Hashtable implements Persistable {

}

We don’t need to add anything more to this class. Just replace all the references to

Hashtable in PersistableScreen with references to CustomHashtable and everything will

work as before, except that when the application is removed from the device, the data

will not stay behind.

The FileConnection API
The JSR 75 FileConnection API gives your application the capability to read and write to

the BlackBerry file system, both the internal flash memory and any memory card

attached to your device. It also enables you to read data that other applications have

written to the file system. This is especially useful for retrieving pictures, video, and other

media that might be on your device.

In the following sections, we’ll create a simple application to browse for photos from the

device’s memory (internal or memory card) and display them on screen.

Basic Application Framework
You should be used to creating applications by now; create a new a new BlackBerry

application called FileConnection. Start with an application class and main screen

class. The initial classes are as follows:

Download at WoweBook.Com

CHAPTER 6: Storing Data 144

FileConnectionApplication.java:

package com.thinkingblackberry.fileconnection;

import net.rim.device.api.ui.UiApplication;

public class FileConnectionApplication extends UiApplication {

 public FileConnectionApplication() {
 FileConnectionScreen screen = new FileConnectionScreen();
 pushScreen(screen);
 }

 public static void main(String[] args) {
 FileConnectionApplication app = new FileConnectionApplication();
 app.enterEventDispatcher();
 }

}

FileConnectionScreen.java:

package com.thinkingblackberry.fileconnection;

import net.rim.device.api.ui.MenuItem;
import net.rim.device.api.ui.component.Menu;
import net.rim.device.api.ui.component.ObjectListField;
import net.rim.device.api.ui.container.MainScreen;

public class FileConnectionScreen extends MainScreen {
 private ObjectListField fileList;
 private String currentPath = "file:///";

 public FileConnectionScreen() {
 setTitle("FileConnection");

 fileList = new ObjectListField();

 fileList.set(new String[] {"store/", "SDCard/"});

 add(fileList);
 }

 protected void makeMenu(Menu menu, int instance) {
 super.makeMenu(menu, instance);
 menu.add(new MenuItem("Select", 10, 10) {
 public void run() {
 loadFile();
 }
 });
 }

 private void loadFile() {
 }

}

Download at WoweBook.Com

CHAPTER 6: Storing Data 145

We’re introducing another new UI component here: the ObjectListField. This displays a

vertical list of strings on screen. We’ll use it to show the contents of the directories as

we browse.

We’ve populated our object list field with two initial entries: store/ and SDCard/. These

are the root directories for the internal device memory and the memory card,

respectively, and are the same on every BlackBerry device. We use them as a starting

point for browsing.

There’s also a String that contains the current path. When opening a FileConnection,

you need the full path. we’ll use this variable to keep track of it.

Finally, we’ve added a single menu item in the makeMenu method using an anonymous

inner class as discussed in Chapter 4. We’ve also created a loadFile method that will

contain all the FileConnection logic.

For now, the application looks like Figure 6-8, with the default two items in the

ObjectListField and the single custom menu item.

Figure 6-8. The FileConnection application main screen containing the two default directory entries

Opening a File Connection
Classes related to the FileConnection API are found in the javax.microedition.io.file

package. For this application, we’ll mostly work with the FileConnection interface.

FileConnection is a pretty rich interface. It enables you to create and delete files, list the

contents of a directory, and read and write file contents and attributes.

Download at WoweBook.Com

CHAPTER 6: Storing Data 146

You obtain a FileConnection using the javax.microedition.io.Connector class. The

Connector class is also used to initiate network connections among other things, so we’ll

be using it again in the future. All of its methods take a string parameter, which is a URL

representing a resource. Connector URLs conform to the standard URL definition from

RFC 2396, with a scheme portion (such as http:) that represents the type of resource

being requested.

The BlackBerry Javadocs thoroughly explain the details of the many different connection

types; we’ll explore some of them in Chapter 7 when we discuss networking. For now,

just be concerned with opening file resources.

File connection URLs start with “file://.”

For example, to open the store directory representing the device’s internal memory,

you’d use the following code. Note the extra “/” at the beginning of the URL:

 try {
 FileConnection storeDirectory =
(FileConnection)Connector.open("file:///store/");
 } catch (IOException e) {
 }

As long as the URL represents a path that could be valid, no exception is thrown. This

enables you to create a file by first opening a connection to a URL representing the file

you want to create, and then calling FileConnection.create. For BlackBerry, a URL is

valid if all directories specified in the URL exist, with the exception of the last one only if

the path returns a file. For example, if the home directory exists under the store directory,

and is empty (containing no subdirectories or files) then the following URL

is allowed:

file://store/home/testfile.txt

and so is the following:

file://store/home/newdir/

but the following URL will cause an exception to be thrown, because newdir doesn’t

exist:

file://store/home/newdir/test.txt

Listing the Directory Contents
The first thing we’ll implement is listing files and subdirectories in a directory. Whenever

you click the Select menu item, if the currently highlighted item in the object list field is a

directory, we’ll replace the items in the list field with the contents of that directory.

When the user clicks Select, we’ll construct a path to that directory by simply

concatenating the current path with the path of that directory; all directory entries end

with a “/”character so we don’t have to worry about adding that.

Download at WoweBook.Com

CHAPTER 6: Storing Data 147

The FileConnection.isDirectory method tells you if the file connection points to a

directory. If it does, the list method retrieves an Enumeration of Strings, which are the

pathnames of the files and directories contained within the directory. Because

ObjectListField requires an Object array, we’ll add the strings from the enumeration

one by one to a Vector, and get the array from that Vector when we’re done. Here’s the

code for loadFile:

 private void loadFile() {
 currentPath += fileList.get(fileList, fileList.getSelectedIndex());
 try {
 FileConnection fileConnection = (FileConnection)Connector.open(currentPath);
 if (fileConnection.isDirectory()) {
 Enumeration directoryEnumerator = fileConnection.list();
 Vector contentVector = new Vector();
 while(directoryEnumerator.hasMoreElements()) {

 contentVector.addElement(directoryEnumerator.nextElement());
 }
 String[] directoryContents = new String[contentVector.size()];
 contentVector.copyInto(directoryContents);
 fileList.set(directoryContents);
 }

 } catch (IOException ex) {

 }
 }

Run the application, and you should be able to navigate through the device’s file system

by selecting directories and clicking the Select menu item (see Figure 6-9).

Figure 6-9. Highlight SDCard, and then Highlight BlackBerry, and then
open the menu and click Select. open the menu and click Select.

Download at WoweBook.Com

CHAPTER 6: Storing Data 148

Browsing through the SD card's file structure

Viewing Pictures
Now we’ll add the code to loadFile to actually view pictures. We will create a new

screen containing a single BitmapField to view our picture; whenever we highlight a

picture in the file list and click Select, we’ll create a new instance of this screen and

push it onto the stack.

The Image Display Screen
Make a new file called ImageDisplayScreen.java in your project. The code for

ImageDisplayScreen is simple:

package com.thinkingblackberry.fileconnection;

import net.rim.device.api.system.EncodedImage;
import net.rim.device.api.ui.component.BitmapField;
import net.rim.device.api.ui.container.MainScreen;

public class ImageDisplayScreen extends MainScreen {
 public ImageDisplayScreen(EncodedImage image) {
 BitmapField bitmapField = new BitmapField();
 bitmapField.setImage(image);
 add(bitmapField);
 }
}

This uses an EncodedImage instead of a Bitmap because that’s the way we’ll load the

image from the file system. EncodedImage has a few extra features over Bitmap including

scaling, support for multiple frames, and support for more file types.

Download at WoweBook.Com

CHAPTER 6: Storing Data 149

Loading Images from the File System
For any FileConnection, you can retrieve an InputStream. This enables us to read bytes

from the file.

The only checking that we’re doing is that the path ends in a known file extension. For

purposes of this exercise, you don’t need to worry about error handling, but if this were

a production application, we’d add more. The following code should be added to

loadFile, right after the if statement:

 else if (currentPath.endsWith(".jpg") || currentPath.endsWith(".png")) {
 InputStream inputStream = fileConnection.openInputStream();
 InputStream inputStream = fileConnection.openInputStream();
 byte[] imageBytes = new byte[(int)fileConnection.fileSize()];
 inputStream.read(imageBytes);
 inputStream.close();
 EncodedImage eimg = EncodedImage.createEncodedImage(imageBytes, 0,
imageBytes.length);

 UiApplication.getUiApplication().pushScreen(new ImageDisplayScreen(eimg));

 }

Getting Images into the Simulator
Before you run the application, you need a few pictures on the simulator’s file system to

use for testing. You can get these by running the camera application on your simulator.

If you have a webcam attached to or built in to your PC, you might get to snap an actual

picture. Otherwise, you are presented with a dialog box to choose an image to represent

the picture the camera takes. In either case, take a picture or two and start the

FileConnection application again.

Unless you explicitly saved your picture to a different location, navigate to

SDCard/BlackBerry/pictures, and you should see the image listed, as shown in

Figure 6-10.

Download at WoweBook.Com

CHAPTER 6: Storing Data 150

Figure 6-10. A list of images in the pictures directory

If you click on one of those images, you should see something like Figure 6-11.

Figure 6-11. The image?

Download at WoweBook.Com

CHAPTER 6: Storing Data 151

You might get a clearer image if you selected a lower resolution picture from the dialog

box, but if you took a higher-resolution picture using the camera on a real device, what

you see is the extreme upper left corner of that photo.

The BlackBerry’s LCD screen is generally a lot lower resolution than its camera, so to

display the full image, you need to scale it. This is another reason we used

EncodedImage instead of Bitmap; it has better built-in image-scaling support.

Scaling the Image
Though not directly relevant to persistent storage, scaling the image will make the

application complete, and it is useful to know how to do it

We’ll do the image scaling within ImageDisplayScreen’s constructor. We’ll present the

code first and discuss it after. The new constructor for ImageDisplayScreen is:

 public ImageDisplayScreen(EncodedImage image) {
 int displayWidth = Fixed32.toFP(Display.getWidth());
 int imageWidth = Fixed32.toFP(image.getWidth());
 int scalingFactor = Fixed32.div(imageWidth, displayWidth);
 EncodedImage scaledImage = image.scaleImage32(scalingFactor, scalingFactor);
 BitmapField bitmapField = new BitmapField();
 bitmapField.setImage(scaledImage);
 add(bitmapField);
 }

NOTE: EncodedImage uses 32-bit fixed point decimal numbers as its scale factors. The
BlackBerry provides support for numbers in this format in the net.rim.device.

api.math.Fixed32 class. Fixed32 enables you to store a decimal number in a 32-bit int;
16 bits are used for the integer portion and 16 bits are used for the decimal portion. Addition
and subtraction operations on Fixed32 numbers are faster than on floats or doubles, so

they can be a good choice for those types of decimal arithmetic. When using Fixed32 numbers,
remember to convert back and forth from regular ints; that’s what the toFP method does. You
also must use Fixed32 methods for multiplying and dividing Fixed32 format numbers. Using the

* and / operators produces nonsensical results, but you can use the standard Java + and –

operators for addition and subtraction.

For EncodedImage, a scaling factor of between 0 and 1 means scale up; a scaling factor

of greater than 1 means scale down. We can get the correct scaling factor for our image

by dividing the image’s width by the BlackBerry display’s width. To be completely

precise, we could check the image and display height, too, but I’ll leave that as an

exercise for you. When you run the FileConnection application and select the same

image now, you’ll get a much better picture (see Figure 6-12).

Download at WoweBook.Com

CHAPTER 6: Storing Data 152

Figure 6-12. The correctly scaled image

This is as far as we’ll go with reading files from the file system. There are, of course,

areas where the application can be improved, but at this point, you should have a good

understanding of how to read files and directories using the FileConnection API. You

can also try to run this application on a real device, and you should be able to view

photos that were taken by the device’s camera.

Now let’s explore the other half of the FileConnection API: creating and writing to files

on the file system.

Writing to the File System
We’ll extend the FileConnection application to enable writing to the file system. We can

leverage the same directory browsing code and add functionality that enables you to

make a copy of an existing image in the same directory.

The functionality will be as follows: when a file (not a directory) is highlighted, a Copy

menu item is available. When you click this menu item, you are prompted for a name for

the new file, and if that file name doesn’t exist, the selected file is copied into a new file

with the specified name.

A Dynamic Menu Item
First, we’ll add the new menu item to let us copy the currently selected file. Before we

add the menu item, let’s put in place the method that we’ll call to do the work of copying

the file. Add this to FileConnectionScreen:

Download at WoweBook.Com

CHAPTER 6: Storing Data 153

 private void copyFile() {
}

Now we want the Copy menu item to show up only when a file is selected. We know

which entries in the object list field are files because the directories all end with the

“/”character. Because we’re constructing the menu in the makeMenu method, which is

called every time the menu key is clicked, we can easily check at that time if the

currently selected item ends in “/”", and add the Copy menu item only if it does not. Add

the following code to the FileConnectionScreen’s makeMenu method:

 String selectedItem = (String)fileList.get(fileList,
fileList.getSelectedIndex());
 if (!selectedItem.endsWith("/")) {
 menu.add(new MenuItem("Copy", 10, 10) {
 public void run() {
 copyFile();
 }
 });
 }

If you run the application now and browse around, you’ll see that the Copy menu item

shows up only when a file is highlighted (see Figure 6-13).

Figure 6-13. The Copy menu item shows up only when a file is selected.

Download at WoweBook.Com

CHAPTER 6: Storing Data 154

The File Name Screen
When we copy a file, we’ll pop up a dialog asking for a name for the new copy. This

requires us to create a new screen with an edit field for the name. We’ll subclass

net.rim.device.api.container.PopupScreen to get a dialog rather than a full screen.

Note that the constructor for PopupScreen asks for the delegate manager, just as the

constructor for Screen does. We’ll just use a VerticalFieldManager. We’ll also add a

ButtonField so there’s some way to dismiss the screen (remember to set the

ButtonField.CONSUME_CLICK style).

Finally, we’ll provide a method in the screen class to retrieve the name of the file from

the edit field. The FileNameScreen class looks like this:

package com.thinkingblackberry.fileconnection;

import net.rim.device.api.ui.Field;
import net.rim.device.api.ui.FieldChangeListener;
import net.rim.device.api.ui.component.ButtonField;
import net.rim.device.api.ui.component.EditField;
import net.rim.device.api.ui.container.PopupScreen;
import net.rim.device.api.ui.container.VerticalFieldManager;

public class FileNameScreen extends PopupScreen implements FieldChangeListener {
 private EditField fileNameField;
 private ButtonField okButton;
 public FileNameScreen() {
 super(new VerticalFieldManager());

 fileNameField = new EditField("New Filename:", "");
 add(fileNameField);
 okButton = new ButtonField("OK", ButtonField.CONSUME_CLICK |
Field.FIELD_HCENTER);
 okButton.setChangeListener(this);
 add(okButton);
 }

 public String getFilename() {
 return fileNameField.getText();
 }

 public void fieldChanged(Field field, int context) {
 if (field == okButton) {
 close();
 }
 }
}

Download at WoweBook.Com

CHAPTER 6: Storing Data 155

Copying the File
To display the file name screen, we’ll use UiApplication.pushModalScreen instead of

pushScreen. This just means that the method won’t return until the file name screen is

closed, this is the functionality we want in this case because we can’t copy the file until

you’ve entered a file name and clicked OK:

 FileNameScreen screen = new FileNameScreen();
 UiApplication.getUiApplication().pushModalScreen(screen);
 String newFilename = screen.getFilename();

After getting the file name, we’ll open a connection to the full URL for that filename and

use FileConnection.exists to check to see if there’s already a file there. If so, we’ll

display a dialog and exit the method:

 FileConnection newFileConnection =
(FileConnection)Connector.open(currentPath + newFilename);
 if (newFileConnection.exists()) {
 Dialog.alert("The file '" + newFilename + "' already exists!");
 newFileConnection.close();
 return;
 }

If the file doesn’t exist, call FileConnection.create to create it. Then, open an

OutputStream to the new file:

 newFileConnection.create();
 OutputStream newFileOutputStream =
newFileConnection.openOutputStream();

From that point on, the code is the same as when loading an image, except that instead

of constructing an image with the byte array, we’re writing it to the OutputStream that

represents the newly created file. Here’s copyFile in its entirety:

 private void copyFile() {
 // Prompt for the new filename
 FileNameScreen screen = new FileNameScreen();
 UiApplication.getUiApplication().pushModalScreen(screen);
 String newFilename = screen.getFilename();

 try {
 FileConnection newFileConnection =
(FileConnection)Connector.open(currentPath + newFilename);
 if (newFileConnection.exists()) {
 Dialog.alert("The file '" + newFilename + "' already exists!");
 newFileConnection.close();
 return;
 }

 // The file doesn't exist, so we'll create it
 newFileConnection.create();
 OutputStream newFileOutputStream = newFileConnection.openOutputStream();

 // Open the old file
 currentPath += fileList.get(fileList, fileList.getSelectedIndex());

Download at WoweBook.Com

CHAPTER 6: Storing Data 156

 FileConnection fileConnection = (FileConnection)Connector.open(currentPath);
 InputStream inputStream = fileConnection.openInputStream();

 // Copy the contents of the old file into the new one
 byte[] fileContents = new byte[(int)fileConnection.fileSize()];
 inputStream.read(fileContents);
 newFileOutputStream.write(fileContents, 0, fileContents.length);
 inputStream.close();
 newFileOutputStream.close();
 Dialog.inform("Successfully copied the file!");
 } catch (IOException ex) {

 }
 }

Now run the application to try it out. Browse to the SDCard/BlackBerry/pictures folder

and copy one of the files there. Figure 6-14 shows the Filename dialog.

Figure 6-14. Entering the new file name; be sure to include the correct extension.

because our application doesn’t dynamically reload the directory, you have to exit and

browse back to the pictures directory to see your new file (see Figure 6-15).

Download at WoweBook.Com

CHAPTER 6: Storing Data 157

Figure 6-15. The new file

You can select and view this file just as you could the original.

Summary
You should now have a good understanding of how to use persistence on the

BlackBerry; at least you’ve experienced a couple of the most used and most useful

methods. We built an application that saved and loaded a few different types of data

using the BlackBerry Persistent Store, and we created and saved our own persistent

class. We also created an application that used the FileConnection API to browse

through the BlackBerry file system and view an image stored in it, and then we extended

the application to enable us to write a copy of that image back to the file system. Using

these mechanisms, your potential universe of BlackBerry applications has suddenly

expanded. You can now create applications that save data between invocations, and

there are many commercial applications that don’t require any more knowledge of

BlackBerry programming than you’ve already developed.

Congratulate yourself for getting this far, and get ready. We’re about to expand the

reach of your BlackBerry applications even further—literally—because in the next

chapter, you learn how to create applications that can send and receive data over a

wireless network.

Download at WoweBook.Com

CHAPTER 6: Storing Data 158

Download at WoweBook.Com

159

159

 Chapter

Hello Out There! Making a
Network-Enabled
Application
The BlackBerry was built to communicate. Sending and receiving email, browsing the

Web, and often even downloading applications to your device require access to the

wireless data network. Naturally, a lot of the most compelling BlackBerry applications

also heavily feature networking as a core part of their functionalities.

Fortunately, the BlackBerry JDE makes networking a snap. It offers a range of choices

for getting your application to communicate with servers and other systems on the

Internet or on a corporate network. For the most part, you don’t have to worry about

different device or wireless network characteristics; the BlackBerry platform abstracts

that detail so you can concentrate on application-specific details.

In this chapter, we’ll discuss the BlackBerry data networking functionality, the different

methods that a BlackBerry can use to connect, and when and how you might want to

use them. We’ll then develop a couple of applications to explore making HTTP and TCP

socket connections to interact with a web application on the internet.

Different Ways to Connect

The BlackBerry offers a number of different methods of making network connections.

These include the BlackBerry Enterprise Server / BlackBerry Mobile Data System

(BES/MDS), direct Transmission Control Procotol / Internet Protocol (TCP/IP),

BlackBerry Internet Service (BIS), WiFi, Wireless Access Protocol (WAP) 1.0, and WAP

2.0. (See Figure 7-1.) They each have certain advantages and disadvantages, and

depending on the configuration of your device and environment, some of the methods

might not be available. Generally, you can make all supported types of network

connections: HTTP connections and TCP and UDP sockets over any of these

connection methods. We’ll briefly cover the different connection methods.

7

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 160

Figure 7-1. Some of the different ways a BlackBerry device can make wireless connections

BES/MDS
The BES allows BlackBerry devices to make network connections securely to servers

inside a corporate network. This is accomplished through the MDS component of the

BES, so connections made this way are sometimes referred to as BES/MDS

connections. Connections made by the BlackBerry device using the MDS are actually

proxied by the MDS; that is, the MDS makes connections on behalf of the BlackBerry

device, and data is transferred to and from the device over the same secure channel

that corporate BlackBerry email uses.

Obviously, the BES/MDS connection method is available only to devices that have been

activated on a BES. The advantage to using the BES/MDS is that because the MDS

makes connections, it can resolve any servers that can be reached from the server

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 161

running the BES, meaning the servers behind the corporate firewall are reachable. The

disadvantage is that if there are any restrictions on connections going from the BES to

servers outside the network, those restrictions affect BlackBerry connections made

through the BES, too.

Note that by default, the browser on devices attached to a BES uses the MDS to make

connections, meaning you can use the browser to access internal web servers. In fact,

this is a good way to tell if your device uses the MDS to make connections; if the title of

your browser application is called “BlackBerry Browser,” then your device uses the MDS

tomake connections.

Direct TCP/IP
Just like most other smart phones, BlackBerry devices can also make direct TCP/IP

connections using the wireless carrier’s infrastructure without going through any

BlackBerry-specific service. This method works with most devices, although it can be

disabled by a BES administrator for devices connected to

a BES.

The advantages are that this method is available on almost all BlackBerry devices.

Occasionally, configuration problems with the Access Point Name (APN) used in direct

TCP/IP connections (see the note) that can cause problems with TCP/IP connections.

Also, though it’s becoming rarer, some BlackBerry wireless plans don’t include direct

TCP/IP access.

NOTE: The BlackBerry device uses the)APN to make direct TCP/IP connections. The APN
varies from carrier to carrier, and usually it is preconfigured on the device by the carrier;
however, in some cases the configuration might have been lost. You can access APN
configuration from the device Options by selecting Advanced Options ➤ TCP/IP. Some carriers
require a username and password along with the APN. A search on the internet will usually
provide a list of settings for the major wireless carriers.

You can also specify the APN, username, and password if necessary when making your
connection. This is tricky to manage with so many configurations and is outside the scope of
this book; for more information, see the BlackBerry JavaDocs for javax.microedition.io.
Connector.

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 162

BIS
BIS provides much of the same functionality for individual BlackBerry users as the BES

does for corporate users, without the same level of security. If you use a BlackBerry

device that’s not connected to a BES, you’re already using the BIS to send and receive

your email. The BIS is also able to proxy connections in the same way as the BES/MDS

does. Because the BIS can access servers only on the internet, it doesn’t give the

access to a corporate network that using the BES/MDS does. The main advantage to

using a BIS connection over a direct TCP/IP connection is that some BlackBerry

wireless plans don’t include direct TCP/IP access, but almost all include BIS access as

it’s required for non-BES email. To enable your application to make connections through

the BIS, you must be part of the BlackBerry Alliance Program and receive approval for

your application to use the BIS. For that reason, we won’t cover BIS connections in this

book, but the basic mechanism is similar to the other connection types.

WiFi
Many BlackBerry devices include WiFi networking (802.11 B/G and sometimes A). This

allows your device to connect to a network via a WiFi router. You generally must set up

access for specific WiFi routers. This is up to the device user, not the application

developer. Assuming the device has been connected to a WiFi router, however, your

application can make network connections over WiFi. The advantages are better speed,

lower latency, and the fact that no carrier data charges are incurred. The disadvantage is

that WiFi coverage is not as widespread as wireless network coverage for most users,

so you should support at least one other connection method.

In the case of applications using a BES/MDS or BIS connection, the device can be

configured to automatically use an appropriate WiFi hotspot where available to connect

to the BES or BIS. This requires no additional effort on the part of the application; it’s

handled automatically by the BlackBerry platform. You can, however, also make a direct

WiFi connection explicitly from the application.

WAP 2.0
WAP 2.0 connects through the wireless carrier’s WAP gateway. Similar to direct TCP/IP

connections, WAP 2.0 doesn’t use any BlackBerry specific infrastructure. The wireless

plan associated with the BlackBerry device must also support WAP 2.0 access.

Fortunately, this is the case with almost all devices sold. The big advantage of WAP 2.0

over direct TCP/IP is that no APN configuration is necessary, meaning that devices are

more likely to be able to connect without needing any additional configuration.

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 163

WAP 1.0
Unlike all the other connection methods mentioned, WAP 1.0 doesn’t support the full

range of connection types. Specifically, security is limited. Though WAP 1.0 is supported

by all BlackBerry devices, its limitations mean that unless you have a specific reason,

you should use the other connection methods instead.

Recommendation
By default the BlackBerry uses the BES/MDS as the connection method for devices

activated on a BES, and it uses the TCP/IP connection method for other devices. For

devices activated on a BES, this is reasonable behavior because the BES connection is

at least as secure as a direct TCP/IP connection. For devices not activated on a BES, a

good method is to attempt to use WAP 2.0 first because a given device is more likely to

be configured to use WAP 2.0 correctly and fallback to direct TCP/IP if necessary. We’ll

cover how to do that later in this chapter. If you’re using BES/MDS, you can rely on the

automatic WiFi fallback behavior. If you’re using direct TCP/IP, you might want to

provide some WiFi functionality, depending on how heavily your application uses

the network.

Service Book
The BlackBerry service book is a configuration storage system that the device uses to

maintain information about various aspects of its configuration. The service book

contains records that govern everything from optional applications that are installed or

visible to email account configuration. The service book records are also used to

maintain information about the different connection methods available to a given device.

You can see the service book on a BlackBerry device (or the BlackBerry simulator) by

opening device Options and then clicking Advanced Options and Service Book (see

Figure 7-2):

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 164

Figure 7-2. Some typical service book records on a BlackBerry device

Each record contains two identifiers, a CID and a UID. The UID uniquely identifies the

record on the device, and the CID gives information about what type of record it is. For

example, on a device with more than an associated email address, there are many

service records with a CID of CMIME, but each will have a different UID.

The service book is important for networked applications because most of the

connection methods have an associated record, and this can be a quick way to check to

see if your device has been provisioned correctly for a given connection type. The one

exception is direct TCP/IP, which doesn’t have an associated service record.

Configuration information for direct TCP/IP connections is specified in the TCP/IP

options screen as discussed previously.

There are many different types of service book records. It can be interesting to look

through them and see what’s available; you shouldn’t try to change or delete anything

unless you know what you’re doing. For the purposes of this chapter, we’ll explore only

the specific service records that we need.

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 165

The MIDP Connection Framework
The BlackBerry uses the same connection framework as defined in the MIDP standard,

with some extra functionality specific to the BlackBerry platform.

Connector
All connections are initiated using the javax.microedition.io.Connector class. We briefly

used this class in Chapter 6 to open a connection to the file system. The same class is

used for HTTP, HTTPS, socket, and many other connection types.

For example, to open an HTTP connection to retrieve a web page, use the following:

HttpConnection connection = (HttpConnection)Connector.open(“http://www.apress.com/”);

Note that this just retrieves the primary content of the page. To get images and other

resources, you’d have to request them specifically.

Connections
All the Connector.open methods return a subclass of the

javax.microedition.io.Connection interface.

The specific type depends on the scheme of the URL passed in (the http:// portion).

There’s a fairly hefty hierarchy of connection types, but for most purposes you’ll directly

use only a few, as shown in Table 7-1.

Table 7-1. Common Network Connection Types, Connection Interface that Connector Returns, and the URL
Schcme Indicating Each Type

Connection Type Connection Class URL Scheme

HTTP HttpConnection http://

HTTPS (secure HTTP over TLS) HttpsConnection https://

TCP/IP socket SocketConnection socket://

SSL or TLS secure socket SecureConnection ssl:// or tls://

All of the previous network connection types allow a similar format for the URL:

scheme://host:port/path[optional parameters]

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 166

For example:

 HttpConnection connection =
(HttpConnection)Connector.open("http://www.apress.com:80/book/catalog");

SocketConnection socket = SocketConnection)Connector.open("socket://www.apress.com:80");

We used FileConnection in the previous chapter, which, as you saw, uses the file://
scheme.

HTTP Basics
Because we’ll explore HTTP networking first, we’ve included a quick review of the

basics of the protocol. If you’re familiar with HTTP, you can probably safely skip this

section, but we want to briefly cover the basics of how the protocol works before we

continue to ensure all the terms we use are fresh in your mind.

HTTP is the fundamental protocol of the World Wide Web. It’s a connectionless request-

response protocol, meaning there is no concept of a persistent connection between a

series of requests.

Request and Response
An HTTP request is a message sent from the client (in this case, the BlackBerry device)

to the server. The server sends back a response. The request and response might

contain some content called the body. In addition, the response always contains a

numeric response code, which lets us know if the request was successful, if it failed, or if

more action is needed. It gives more detailed information about what exactly happened

(e.g. the cause of failure).

Methods
HTTP supports several request methods, which help the server know how to handle the

request. The most important HTTP methods for our purposes are:

 GET: Used to retrieve a resource (such as a web page or image)

from a URL

 POST: Used to send data to a server (such as the content of a form)

based on a URL

In fact, the BlackBerry supports only the GET, POST, and HEAD methods; it doesn’t

support custom methods. For most applications, this is sufficient, but it is something to

keep in mind.

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 167

Headers
Finally, in addition to the main content of the request and response (the body), HTTP

allows additional data to be sent in the form of headers. They can be sent with the

request to the server and the response from the server, and they can contain arbitrary

text data. There are many standard headers, and the connection API contains methods

for easily accessing some of the most common ones.

The Test Web Application
I created a simple web application to let you easily explore performing HTTP POSTs and

GETs from the BlackBerry (See Figure 7-3). You can access this application using your

browser at http://beginningblackberry.appspot.com:

Figure 7-3. The Test Web Application

It consists of a single HTML page containing a PNG image and a text box. When you

enter text into the box and click Go! it displays the words you typed in reverse order,

one per line with an HTML line break tag between them (see Figure7-4 and Figure 7-5).

Figure 7-4. Typing text into the web application

Figure 7-5. The resulting output from the previous figure

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 168

The Networking Application
Create a new BlackBerry application project called Networking. Create the application

and main screen classes in the com.beginningblackberry.networking package as

follows:

NetworkingApplication.java:
package com.beginningblackberry.networking;

import net.rim.device.api.ui.UiApplication;

public class NetworkingApplication extends UiApplication {

 public NetworkingApplication() {
 NetworkingMainScreen scr = new NetworkingMainScreen();
 pushScreen(scr);
 }

 public static void main(String[] args) {
 NetworkingApplication application = new NetworkingApplication();
 application.enterEventDispatcher();
 }
}
NetworkingMainScreen.java:
package com.beginningblackberry.networking;

import net.rim.device.api.ui.container.MainScreen;

public class NetworkingMainScreen extends MainScreen {
 public NetworkingMainScreen() {
 }
}

Some Controls
The first functionality we’ll build is the capability to get images and web page text from

the Web.

We’ll add a few controls here. First, an edit field to enter the URL, and then a couple of

fields to display resources that the application fetches: a BitmapField and another new

control called RichTextField. Make the following changes to

NetworkingMainScreen.java:

 private EditField urlField;
 private BitmapField imageOutputField;
 private RichTextField textOutputField;

 public NetworkingMainScreen() {
 setTitle("Networking");
 urlField = new EditField("URL:", "");
 textOutputField = new RichTextField();
 imageOutputField = new BitmapField();

 add(urlField);

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 169

 add(new SeparatorField());
 add(new LabelField("Image retrieved:"));
 add(imageOutputField);
 add(new SeparatorField());
 add(new LabelField("Text retrieved:"));
 add(textOutputField);
 }

RichTextField is a powerful control. It enables you to display a lot of text on multiple

lines with built-in line wrapping and different styles for different parts of the text. For this

application, we’ll take advantage of the multiline and line wrapping capabilities of

RichTextField to display the text result of the network requests. We need to add a

separate LabelField because RichTextField has no support for a built-in label.

Next, add a menu item and skeleton method to initiate the HTTP request to

NetworkingMainScreen:

 private void getURL() {
 }

 protected void makeMenu(Menu menu, int instance) {
 super.makeMenu(menu, instance);
 menu.add(new MenuItem("Get", 10, 10) {
 public void run() {
 getURL();
 }
 });
 }

Making an HTTP Connection
Now let’s get to the details of how to make the request. First, note one critical issue.

Remember back in the early part of the book when we discussed the event thread? That

information is important now. When networking on the BlackBerry, always remember the

following:

Never perform a network operation on the event thread.

Earlier, we said that it’s a bad idea to do anything that can take a lot of time on the event

thread because that would have the effect of freezing the user interface, making the user

think the application had hung or crashed. In the case of networking, the situation is

worse. Depending on the device and configuration, the API often throws an exception if

you try to initiate a network connection from the event thread.

The HttpRequestDispatcher Class
We need to create a separate thread for the HTTP request. Do this by creating a new

class that extends java.lang.Thread. Call the class HttpRequestDispatcher:

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 170

public class HttpRequestDispatcher extends Thread {
 private String url;
 private String method; // GET or POST
 private NetworkingMainScreen screen;

 public HttpRequestDispatcher(String url, String method, NetworkingMainScreen screen)
{
 this.url = url;
 this.method = method;
 this.screen = screen;
 }

 public void run() {

 }
}

Notice we’re passing in an instance of the main screen. This is to give us a way to

update the screen when a request succeeds or fails. We’ll need to add a couple of

methods to let us send these notifications. Add the following method skeletons to

NetworkingMainScreen. We’ll fill them in later:

public class NetworkingMainScreen extends MainScreen {
 // ...
 public void requestSucceeded(byte[] result, String contentType) {

 }

 public void requestFailed(String message) {

 }

If we wanted to make our HttpRequestDispatcher more general purpose we’d define an

interface containing the previous methods for NetworkingMainScreen to implement.

Because we’re just illustrating basic concepts here, we’ve elected to use

NetworkingMainScreen directly and eliminate the extra java file that an interface would

require.

The Run Method
We will perform only GET requests at first. There will be an extra line or two for POST

requests. All the work is done in the run method:

 public void run() {
 try {
 HttpConnection connection = (HttpConnection)Connector.open(url);
 connection.setRequestMethod(method);

 int responseCode = connection.getResponseCode();
 if (responseCode != HttpConnection.HTTP_OK) {
 screen.requestFailed("Unexpected response code: " + responseCode);
 connection.close();
 return;
 }

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 171

 String contentType = connection.getHeaderField("Content-type");
 ByteArrayOutputStream baos = new ByteArrayOutputStream();

 InputStream responseData = connection.openInputStream();
 byte[] buffer = new byte[10000];
 int bytesRead = responseData.read(buffer);
 while(bytesRead > 0) {
 baos.write(buffer, 0, bytesRead);
 bytesRead = responseData.read(buffer);
 }
 baos.close();
 connection.close();

 screen.requestSucceeded(baos.toByteArray(), contentType);
 } catch (IOException ex) {
 screen.requestFailed(ex.toString());
 }
 }

The first couple of lines set up the connection parameters:

 HttpConnection connection = (HttpConnection)Connector.open(url);
 connection.setRequestMethod(method);

As mentioned previously, you get an HttpConnection back from Connector.open only if

the URL starts with http://. Be sure to type that into the text field when using the

application!

At this point in the run method, network activity has not occurred yet. The connection is

still in the setup state. HttpConnection doesn’t actually start a connection until you ask

for some data that it needs to request from the server. This is useful to remember

because there’s often a noticeable delay in initiating a network connection, and in this

case, it’ll happen when the next line is called:

 int responseCode = connection.getResponseCode();

The response code is just the standard HTTP response code value: 200 if the request

succeeded and some other value if it didn’t (it’s slightly more complicated, but for our

purposes, that’s fine). Test the response code and if it’s not 200

(HttpConnection.HTTP_OK), notify the main screen and stop:

 if (responseCode != HttpConnection.HTTP_OK) {
 screen.requestFailed("Unexpected response code: " + responseCode);
 connection.close();
 return;
 }

Next, retrieve the value of the Content-type response header. Getting a header is

another method that would initiate the connection if we hadn’t already called

getResponseCode:

 String contentType = connection.getHeaderField("Content-type");

Finally, open the connection’s input stream and read the data into a buffer. We use a

ByteArrayOutputStream as a convenient way to buffer the bytes from the input stream:

 ByteArrayOutputStream baos = new ByteArrayOutputStream();

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 172

 InputStream responseData = connection.openInputStream();
 byte[] buffer = new byte[10000];
 int bytesRead = responseData.read(buffer);
 while(bytesRead > 0) {
 baos.write(buffer, 0, bytesRead);
 bytesRead = responseData.read(buffer);
 }
 baos.close();
 connection.close();

Finally, we pass the data along with the content type back to the main screen to deal

with

the following:

screen.requestSucceeded(baos.toByteArray(), contentType);

Initiating the Connection
The getURL method requires only a couple of lines to initiate the connection:

 private void getURL() {
 HttpRequestDispatcher dispatcher = new HttpRequestDispatcher(urlField.getText(),
"GET", this);
 dispatcher.start();
 }

Displaying the Response Failed Notification
Now let’s start modifying NetworkingMainScreen to handle the results of the HTTP

request. First, we’ll have requestFailed display a dialog box when called.

Remember, this method is being called from a different thread than the event thread, so

we can’t directly call Dialog.alert. Instead, we’ll use UiApplication.invokeLater to let

the event thread display the dialog at the next available opportunity:

 public void requestFailed(final String message) {
 UiApplication.getUiApplication().invokeLater(new Runnable() {
 public void run() {
 Dialog.alert("Request failed. Reason: " + message);
 }
 });
 }

NOTE: If you’re paying close attention you’ll notice one change to the method signature: we
made the message parameter final. This is necessary because we use it inside an anonymous
inner class (the Runnable that we create). Final just means that we’re not allowed to do
something like this in the body of the requestFailed method:

 message = ""; // ERROR – will not work!

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 173

Testing It
We’re now at a stage where we can see a network connection happen: by typing in a

URL to a page that doesn’t exist, we’ll get a failed notification and see a dialog.

Before we run the application in the simulator, there’s an additional topic you need to

know—the MDS simulator.

The MDS Simulator
By default, the BlackBerry makes connections using the BES/MDS method. To let you

test this, the JDE and Eclipse Plug-in include an MDS simulator. This needs to be

running to make MDS-enabled connections from your simulator.

Fortunately, running the MDS simulator is easy. In the JDE Plug-in for Eclipse, open your

debug configuration, and on the Simulator tab, ensure Launch Mobile Data System
Connection Service (MDS-CS) with simulator is enabled as shown in Figure 7-6.

Figure 7-6. Enabling the MDS simulator from the Eclipse plug-in

Similarly, from the JDE, open the Preferences dialog and under the Simulator/General

tab, select the same option; see Figure 7-7 for the JDE Preferences dialog.

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 174

Figure 7-7. Enabling the MDS simulator from the JDE

NOTE: Some versions of the JDE use the term MDS and some use MDS-CS. For our purposes,
they are the same thing.

Launching the MDS Manually
If you have the standalone JDE installed, you can also launch the MDS simulator from

the Start menu. It’s common to have to restart the MDS simulator from time to time

when debugging your applications; sometimes, it can take a few attempts to get it to

connect. If you cannot perform a network connection, simply stop and restart both the

MDS and Device simulators. The MDS that comes with the JDE will work fine with the

MDS that comes with the JDE Plug-in for Eclipse, so if you have both environments

installed, you can run the MDS from the JDE and run your simulator from Eclipse.

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 175

Running the Application
Start your debug session. Along with the simulator, you’ll see a command prompt

window open running the MDS (see Figure 7-8).

Figure 7-8. The MDS simulator running

Let’s test the requestFailed method by making a request for a page that doesn’t exist.

Start the application, in the URL field, type

http://beginningblackberry.appspot.com/nopage.html, and then open the menu and

click Get, as shown in Figure 7-9.

Figure 7-9. Type a URL to a nonexistent page, and then click Get.

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 176

After a momentary delay, you should see a dialog informing you that the request failed

with a response code of 404, which is HTTP speak for “not found,” as shown in

Figure 7-10.

Figure 7-10. URL not found

Believe it or not, this is a good result. The 404 error is sent by the server, meaning we’ve

successfully made a network connection! Next, we’ll fill in the details to handle a request

for a resource that actually exists.

Handling Successful Requests
We’ll do the following things in the requestSucceeded method:

 Check the contentType.

 If the content type is an image (image/png, image/jpeg, image/gif),

decode the image and display it.

 If the content type is text (text/plain, text/html, or text/anything),

display the text in the RichTextField.

 Otherwise, display an error message.

The code for this is actually simple. Again, this method is called from outside the event

thread so you have to be sure to get the event lock before you manipulate the UI:

 public void requestSucceeded(byte[] result, String contentType) {
 if (contentType.equals("image/png") ||
 contentType.equals("image/jpeg") ||

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 177

 contentType.equals("image/gif")) {
 Bitmap bitmap = Bitmap.createBitmapFromBytes(result, 0, result.length, 1);
 synchronized (UiApplication.getEventLock()) {
 imageOutputField.setBitmap(bitmap);
 }

 }
 else if (contentType.startsWith("text/")) {
 String strResult = new String(result);
 synchronized (UiApplication.getEventLock()) {
 textOutputField.setText(strResult);
 }
 }
 else {
 synchronized (UiApplication.getEventLock()) {
 Dialog.alert("Unknown content type: " + contentType);
 }
 }
 }

Everything is straightforward. The only thing to note is that we used three separate

synchronized blocks instead of making the entire method synchronized. Generally, this

is a good UI programming principle. We minimize the amount of work done in the

synchronized blocks so we can minimize the impact to the user experience. In this case,

it probably wouldn’t be noticeable, but if we encoded or scaling scaled a very large

image or large amount of text, putting all that into the synchronized block would lock up

the event thread for longer.

Try It
Now, run the application again. First, try the URL for the main test web application:

http://beginningblackberry.appspot.com. Enter the URL, and in the menu, click Get.

You should see a lot of HTML in the text area, such as what you see in Figure 7-11.

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 178

Figure 7-11. Retrieving the HTML of the test web application

When we opened an HttpConnection to http://beginningblackberry.appspot.com, the

server sent back “text/html” as the content type, so the method interpreted the data as

a string and put the text into the RichTextField. Now let’s verify that the code for

retrieving an image works, too. Because you can see the URL to the apress_logo image

in the HTML—img/apress_logo.png—you just need to add that to the end of the URL to

get http://beginningblackberry.appspot.com/img/apress_logo.png. Then, select Get

again and you’ll see a result like what you see in Figure 7-12.

Figure 7-12. Retrieving the logo from the web application

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 179

In this case, the server sent back image/png as the content-type, so the code interpreted

the data from the input stream as the bytes for an image and successfully decoded and

displayed it.

Two-Way Interaction: Sending Data via HTTP POST
Now we’ll complete our exploration of HTTP using the BlackBerry by sending some data

to the web application using an HTTP POST. Remember that the web application takes

a series of words separated by spaces and returns the same list of words in reverse

order but separated by new lines and HTML break (br) tags.

How an HTML Form Works
You might already know this, but let’s review how a POST from an HTML form in a

browser works. We will duplicate this functionality in the Networking application.

The web application contains this HTML:

<form action="/" method="POST">

 <input type="text" name="content"></input>
 <input type="submit" value="Go!"/>
</form>

This defines a form that the browser uses to send data to the web application.

Specifically, the first line says to send the data via HTTP POST to the URL “/,” which is

just the base URL of the web application.

The input type=”submit” defines the Go button as the button that invokes the POST.

Finally, the input type=”text” line defines the text box and gives it the name content.

The web application expects the body of the POST request to contain something like

the following:

 content=ONE+TWO+THREE

The “+” characters are a way of encoding spaces in the input. We have to do this, too. In

addition, the content type header in the request to the server should be application/x-
www-form-urlencoded to indicate that the content is encoded in this way.

Modifying HttpRequestDispatcher
Most of the code to perform a POST is the same as to perform a GET, so we’ll just

modify the run method of HttpRequestDispatcher to handle both. First, we need a way

to pass the POST body to HttpRequestDispatcher. Create a new member variable called

postData and a new constructor so we can initialize it:

 private byte[] postData;

 public HttpRequestDispatcher(String url, String method,
 NetworkingMainScreen screen, byte[] postData) {
 this.url = url;

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 180

 this.method = method;
 this.screen = screen;
 this.postData = postData;
 }

Next, we need to check if we have post data to send before initiating the connection. If

we do, we’ll set the content-type header by using HttpConnection.setRequestProperty,

and then open an output stream for the connection and write the data. Modify the run

method by adding the following lines:

 if (method.equals("POST") && postData != null) {
 connection.setRequestProperty("Content-type", "application/x-
www-form-urlencoded");
 OutputStream requestOutput = connection.openOutputStream();
 requestOutput.write(postData);
 requestOutput.close();
 }

Everything else should stay the same. We’ll handle the response the same way by

calling requestSucceeded in NetworkingMainScreen.

Modifying NetworkingMainScreen
We need two things in our screen: an edit field to enter the post data and a way to

invoke the Post request (a menu item and method).

Add the edit field first. Declare a new EditField called postDataField:

 private EditField postDataField;

Then, initialize it and position it right below the URL field:

 add(urlField);
 add(new SeparatorField());

 postDataField = new EditField("Post data:", "");
 add(postDataField);
 add(new SeparatorField());

 add(new LabelField("Image retrieved:"));
 add(imageOutputField);

Next, define the postURL method. It does the same thing as the getURL method with the

additional functionality of taking the text from the post data edit field and encoding it for

the body of the post. We’ll use the class

net.rim.blackberry.api.browser.URLEncodedPostData to do the actual encoding and

formatting of the data for the request body:

 private void postURL() {
 String postString = postDataField.getText();
 URLEncodedPostData encodedData = new URLEncodedPostData(null, false);
 encodedData.append("content", postString);
 HttpRequestDispatcher dispatcher = new HttpRequestDispatcher(urlField
 .getText(), "POST", this, encodedData.getBytes());
 dispatcher.start();
 }

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 181

If postDataField contains the text “A B C”, the byte[] output from encodedData will be

“content=A+B+C”.

Adding the menu item is exactly the same as the Get menu item. Add the following lines

to makeMenu:

 menu.add(new MenuItem("Post", 10, 10) {
 public void run() {
 postURL();
 }
 });

We’re done. We don’t need to make modifications to requestSucceeded because we

want the same functionality, which is to display the text.

Let’s try it out. Enter http://beginningblackberry.appspot.com in the URL field and

ONE TWO THREE FOUR FIVE in the Post data field, and then click Post from the menu.

You should see the words, one per line, in the output as shown in Figure 7-13.

Figure 7-13. The result of posting ONE TWO THREE FOUR FIVE

Making Secure HTTP (HTTPS) Connections
To make a connection to a secure HTTP server, replace http:// with https://

in the Connector.open method. Fortunately, the web application also supports

HTTPS connections, so simply substitute https:// into the URL to make

https://beginningblackberry.appspot.com, and then click Get. The result will look

almost the same as the non-secure HTTP connection (see Figure 7-14).

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 182

Figure 7-14. Retrieving the web application over HTTPS

Performing the POST works in a similar way. We haven’t had to change the

connection-handling code because Connector.open returns an HttpsConnection

instead of HttpConnection, and HttpsConnection derives from HttpConnection. We

can, however, detect this and display some information about the connection (in this

case, the issuer of the TLS certificate). Add the following lines to the run method of

HttpRequestDispatcher right after getting the response code:

 if (connection instanceof HttpsConnection) {
 HttpsConnection secureConnection = (HttpsConnection)connection;
 final String issuer =
secureConnection.getSecurityInfo().getServerCertificate().getIssuer();
 UiApplication.getUiApplication().invokeLater(new Runnable() {
 public void run() {
 Dialog.inform("Secure Connection, certificate
issued by: " + issuer);
 }

 }

Now, if we enter the https:// URL, we’ll get a dialog with some info as shown in

Figure 7-15.

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 183

Figure 7-15. Information about the security of the connection

NOTE: Something to be aware of with HTTPS connections—and this applies to secure socket
(TLS and SSL) connections, too—is that things are simple only when the certificate provided by
the server is known to the BlackBerry, or, in the case of a BES/MDS connection, known to the
BES. In the case of an unknown certificate such as a self-signed certificate, a prompt is
displayed to the user asking them to verify the connection. If the connection is a BES/MDS
connection, this prompt is displayed only if certificate verification is done on the device by
adding the EndToEndRequired=true parameter to the end of the URL to force certificate
verification to happen on the device. Otherwise, the connection just fails. If you stick with
certificates from known certification authorities, you shouldn’t have to worry about any of this.

Summary: HTTP Networking
You’ve learned the basics of HTTP networking, and created an application that

performed both an HTTP GET and HTTP POST. The application performed the requests

in a separate thread, which is necessary for all BlackBerry networking. We decoded the

responses by first looking at the Content-type header to determine what the server was

sending back, and then decoding either an image or text data. We also encoded our

POST request body and set the Content-type header for the request appropriately.

Finally, we peformed an HTTPS connection simply by switching the scheme of the URL,

and using the HttpsConnection interface got some information about the connection.

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 184

Connection Method: Using Direct TCP/IP Instead of
BES/MDS
Now, let’s take a few minutes to see how to force a connection to make a direct TCP/IP

connection to the server instead of using the BES/MDS. The Networking application

currently uses the device’s default connection method. As mentioned earlier, if you run

the application on a device that’s not activated on a BES, the requests will already go

over direct TCP/IP. However, if you run on a device connected to a BES, the POST and

GET requests are done through the BES. To force them to go directly, we just have to

add a BlackBerry-specific parameter to the end of the URL when we call

Connector.open. The parameter we want is ;deviceside=true, so the URL for the web

application becomes:

http://b eginningblackberry.appspot.com;deviceside=true

Modify the run method of HttpRequestDispatcher to add this automatically:

 HttpConnection connection = (HttpConnection)Connector.open(url + ";deviceside=true");

We can actually test this on the simulator because it respects this parameter, too. If we

specify deviceside=true, the simulator won’t connect through the MDS simulator. So,

uncheck the appropriate Launch Mobile Data System check box, ensure the MDS

command window isn’t open (if it is, just close it), and then run the application again.

We’ll be able to make connections without the MDS simulator running!

Making a Connection Using WAP 2.0
I mentioned that WAP 2.0 was a better choice than direct TCP/IP because of

configuration issues. It’s a little more difficult to use, as it requires an extra parameter at

the end of the URL that includes the UID of the service record for the WAP 2.0 protocol.

We’ll start by creating a method in HttpRequestDispatcher to find this service book.

The WAP 2.0 service book record has a CID of WPTCP, but this CID is used for a few

other connection methods, so the recommended algorithm for finding the correct

record is to look for a record with a CID of WPTCP and a UID that doesn’t contain WIFI

or MMS.

First, add the following imports to the top of the file to get access to the service book-

related classes:

import net.rim.device.api.servicebook.ServiceBook;
import net.rim.device.api.servicebook.ServiceRecord;

The code for the method follows:

 private ServiceRecord getWAP2ServiceRecord() {
 ServiceBook sb = ServiceBook.getSB();
 ServiceRecord[] records = sb.getRecords();

 for(int i = 0; i < records.length; i++) {
 String cid = records[i].getCid().toLowerCase();
 String uid = records[i].getUid().toLowerCase();

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 185

 if (cid.indexOf("wptcp") != -1 &&
 uid.indexOf("wifi") == -1 &&
 uid.indexOf("mms") == -1) {
 return records[i];
 }
 }
 return null;
 }

If a matching service record isn’t found, WAP 2.0 isn’t configured on the device, and the

method will return null. In that case, default back to a direct TCP/IP connection.

Otherwise, we’ll add the parameter ConnectionUID=<UID of the record> to indicate that

we want to connect using WAP 2.0. Modify the code in the run method of

HttpRequestDispatcher as follows:

 ServiceRecord record = getWAP2ServiceRecord();
 String connectionParameters = ";deviceside=true";
 if (record != null) {
 connectionParameters += ";ConnectionUID=" + record.getUid();
 }
 HttpConnection connection = (HttpConnection)Connector.open(url +
connectionParameters);

Making a Connection Using BIS
What about using the BIS connection method described at the beginning of this

chapter? Applications are approved to use BIS to connect on a case-by-case basis, but

you have to be a member of the BlackBerry Alliance Program to get access. Generally,

the BlackBerry Alliance Program is good to get involved with as an independent

software vendor for BlackBerry. More information about the Alliance Program is

available at:

http://na.blackberry.com/eng/partners/alliance.jsp

For those reasons, making a connection using BIS is outside the scope of this book, but

if you understand the basics of connecting using BES/MDS and direct TCP/IP, you

shouldn’t have any trouble connecting over BIS.

Making a WiFi Connection
Connecting via WiFi is easy if the device has been configured to use a WiFi

access point.

Remember, if your application is used on a device that’s activated on a BES, and you’re

using the BES/MDS or default connection method, your connection is made over WiFi

as per the device configuration.

To explicitly force a direct WiFi connection, append the parameter ;interface=wifi to

the end of the connection string. For example, modify the connector call to be:

 HttpConnection connection = (HttpConnection)Connector.open(url +
";interface=wifi");

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 186

Note that this bypasses any other wireless network connection method, so if the device

is not within range of an appropriate WiFi access point, the connection will fail.

Determining Network Availabilty
We’ve covered how to make network connections through various methods, but how

do you determine which ones you can use? There are a couple of classes in the

BlackBerry API that provide an easy way to do this.

Using CoverageInfo
The net.rim.device.api.system.CoverageInfo class enables you to determine which

connection methods are currently available to the BlackBerry device. It looks at the

device’s radio, current network coverage, and service book, and it provides information

about what types of network connections are possible.

The API for this class has changed somewhat between OS 4.2 and OS 4.5. We’ll cover

the OS 4.5 version.

The main method to determine coverage is the getCoverageStatus method. The no-

parameter form of this method returns a bitmask of the different connection methods

available over all physical network types (usually mobile network and WiFi, but also

Bluetooth and USB connections to the computer if applicable). For example, if we called

the method in an area with full network coverage on a device that’s activated on a BES

and with a wireless service plan that allows direct TCP/IP access, we’d expect

getCoverageStatus to return COVERAGE_MDS | COVERAGE_DIRECT | COVERAGE_BIS_B

Note that the different COVERAGE values can each indicate several types of available

connection methods:

 COVERAGE_MDS means you can make connections using the

BES/MDS connection method.

 COVERAGE_DIRECT means you can make conections using direct

TCP/IP or WAP.

 COVERAGE_BIS_B means you can make connections using BIS.

Using WLANInfo
The net.rim.device.api.system.WLANInfo class, available in OS 4.3 and later, lets you

determine if you can make a direct WiFi connection.

Usage of the class is easy. If the getWLANState method returns

WLANInfo.WLAN_STATE_CONNECTED, then the device’s WiFi is turned on and connected to a

wireless access point, and you can make direct WiFi connections.

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 187

Putting It All Together
We’ll modify our run method one last time to use CoverageInfo and WLANInfo to

determine which connection methods are available and connect in our preferred order.

For our application, we’ll look for available connection methods in the following order:

 WiFi

 WAP 2.0

 BES/MDS

 Direct TCP/IP

We’ve left out BIS because it’s only available to approved applications, and we left out

WAP 1.0 because it’s generally not recommended.

Before we proceed with the code, remember to add the imports for WLANInfo and

CoverageInfo to the top of HttpRequestDispatcher.java:

import net.rim.device.api.system.CoverageInfo;
import net.rim.device.api.system.WLANInfo;

The new connection code for HttpRequestDispatcher’s run method to attempt

connections in the given order follows:

 String connectionParameters = "";
 if (WLANInfo.getWLANState() == WLANInfo.WLAN_STATE_CONNECTED) {
 // Connected to a WiFi access point
 connectionParameters = ";interface=wifi";
 } else {
 int coverageStatus = CoverageInfo.getCoverageStatus();
 ServiceRecord record = getWAP2ServiceRecord();
 if (record != null
 && (coverageStatus & CoverageInfo.COVERAGE_DIRECT) ==
 CoverageInfo.COVERAGE_DIRECT) {
 // Have network coverage and a WAP 2.0 service book record
 connectionParameters = ";deviceside=true;ConnectionUID="
 + record.getUid();
 } else if ((coverageStatus & CoverageInfo.COVERAGE_MDS) ==
 CoverageInfo.COVERAGE_MDS) {
 // Have an MDS service book and network coverage
 connectionParameters = ";deviceside=false";
 } else if ((coverageStatus & CoverageInfo.COVERAGE_DIRECT) ==
 CoverageInfo.COVERAGE_DIRECT) {
 // Have network coverage but no WAP 2.0 service book record
 connectionParameters = ";deviceside=true";
 }

The previous code will work with JDE 4.5 and higher. This is because of the use of

CoverageInfo.COVERAGE_DIRECT, which replaced CoverageInfo.COVERAGE_CARRIER from

JDE 4.5 and above. You can, however, make the code compile in all versions of the JDE

4.3 and higher by replacing CoverageInfo.COVERAGE_DIRECT with its constant value of 1,

which is the same value that is used for CoverageInfo.COVERAGE_CARRIER in earlier

JDE versions.

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 188

Notice that we have to check the service book to know if we should attempt a WAP 2.0

connection because CoverageInfo tells us only that the device has network coverage to

the carrier, but CoverageInfo by itself can tell us if the device is able to connect via

BES/MDS. It’s able to check both the network coverage and service book status.

If you have a BlackBerry device that is WiFi capable, try running it with different

combinations of WiFi and mobile network settings, such as turning either WiFi or the

mobile network on or off.. You should be able to connect in a variety of configurations.

TCP Socket Connections
Some applications require a lower level of network access than HTTP provides. For

example, connecting to a streaming media server, FTP server, or any other non-web

server requires a lower level of network access than HTTP provides. In these cases, you

can open a TCP socket in much the same way as an HTTP connection by substituting

socket:// for http:// - or ssl:// or tls:// for a secure connection.

A Simple Socket Application
We’ll make some simple modifications to the Networking application to perform an

HTTP GET using a socket connection instead of the HTTP connection functionality.

Because the mechanics are so similar to HTTP connections, and this is a simple (and

somewhat contrived) example, we’ll go fairly quickly.

Create a new class to perform socket connections. This is analogous to

HttpRequestDispatcher but uses SocketConnection instead. We’ll present the code and

then discuss it:

package com.beginningblackberry.networking;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

import javax.microedition.io.Connector;
import javax.microedition.io.SocketConnection;

public class SocketConnector extends Thread {
 private String host;
 private NetworkingMainScreen screen;

 public SocketConnector(String host, NetworkingMainScreen screen) {
 this.host = host;
 this.screen = screen;
 }

 public void run() {
 try {

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 189

 SocketConnection connection =
(SocketConnection)Connector.open("socket://" + host + ":80");
 OutputStream out = connection.openOutputStream();
 InputStream in = connection.openInputStream();
 String request = "GET / HTTP/1.1\r\n" +
 "Host:" + host + "\r\n" +
 "\r\n" +
 "\r\n";
 out.write(request.getBytes());
 out.flush();
 ByteArrayOutputStream baos = new ByteArrayOutputStream();

 int firstByte = in.read();
 if (firstByte >= 0) {
 baos.write((byte)firstByte);
 int bytesAvailable = in.available();
 while(bytesAvailable > 0) {
 byte[] buffer = new byte[bytesAvailable];
 in.read(buffer);
 baos.write(buffer);
 bytesAvailable = in.available();
 }
 }
 baos.close();
 connection.close();

 screen.requestSucceeded(baos.toByteArray(), "text/plain");
 } catch (IOException ex) {
 screen.requestFailed(ex.getMessage());
 }
 }

}

Along with the screen parameter to let us write output, we’re passing in a host. We use

this to open the socket connection to port 80, the usual web server port, and to

construct the HTTP request because a Host header is required by the HTTP protocol.

NOTE: that you should always specify a port number when opening a socket connection.
HTTP connections default to port 80, and HTTPS to port 443, but there’s no concept of a
“default” port for a socket connection.

The HTTP request is constructed according to the HTTP protocol specification. we write

only the Host header, as it’s the only required one.

The first step in reading the response from the socket is this line:

 int firstByte = in.read();

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 190

This lets us wait for the server to write the first byte of the response back to the socket.

Remember, at the socket level, there’s no built-in concept of request-response. The

server can theoretically write back at any point or wait any length of time before writing

data, so we have to wait and check that the first value we get is not –1, which indicates

the server has closed the connection.

We then read only as long as bytes are available. In this case, we know the behavior of

the server—that it’ll write the entire response as one chunk. In other cases,

InputStream.available() tells you only the number of bytes currently available to be

read back. More bytes might be available after you’ve finished reading the initial number

returned by available.

Adding Socket Support to the Main Screen
To give access to the TCP socket functionality from the main screen, we’ll have the URL

field double as a hostname field, so no changes are required to the onscreen controls,

just an additional menu item.

Add the following lines to makeMenu:

 menu.add(new MenuItem("Socket Get", 10, 10) {
 public void run() {
 socketGet();
 }
 });

Add the following method to NetworkingMainScreen:

 private void socketGet() {
 SocketConnector connector = new SocketConnector(urlField.getText(), this);
 connector.start();
 }

Testing It
Because we’re back to using an MDS connection, remember to enable the MDS in the

simulator debug options (or run it from the Start menu). Run the application again and in

the URL field, type beginningblackberry.appspot.com. Don’t type a scheme portion for

the URL. (See Figure 7-15.) Then, in the menu, click Socket Get:

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 191

Figure 7-15. Retrieving the web application’s main page using a TCP socket

We’re displaying the raw HTTP request, not just the body portion. If you scroll down,

you’ll see the same data as we got with the HTTP GET.

Summary
In this chapter, we threw open the doors of the BlackBerry handheld and built an

application that could talk to the world. We discussed the various networking options

available to BlackBerry devices and the connection framework that makes them all

available.

We started by building an application that used the HTTP connection framework to talk

to a web application by retrieving HTML and images and sending data back to the

application. We then saw how it was easy to extend this to a secure connection

using HTTPS.

Finally, we briefly explored TCP sockets by retrieving the web application’s main

page over a TCP socket connection without going through the BlackBerry platform’s

HTTP layer.

The examples here have all been fairly simple, but if you worked through them and

understood them, you have the knowledge to create most kinds of network-ready

BlackBerry applications.

Download at WoweBook.Com

CHAPTER 7: Hello Out There! Making a Network-Enabled Application 192

At this point, you’ve seen enough of the BlackBerry API to create a wide range of useful

applications. The next chapter deals with something less general, but still extremely

valuable for a growing number of application types—location-based services. We finish

by talking about how you can package and distribute your applications. So take a deep

breath, we’re almost done!

Download at WoweBook.Com

193

193

 Chapter

Where Am I?
Using Location-Based
Services

The BlackBerry API includes functionality to determine where in the world your device is

and information such as the speed of the device. This information is obtained using the

Global Positioning System (GPS) hardware that’s built in to many current devices, or it is

obtained optionally from an external Bluetooth GPS receiver.

In addition, the BlackBerry device includes a mapping application called BlackBerry

Maps with an API that applications can call to show a map opened to any location in the

world, routes from location to location, and points of interest on a map.

In OS 4.5 and higher, you can embed a map in your appliction’s user interface as a

control, giving you more power over how you use BlackBerry Maps.

Location-based services can help you create compelling applications for BlackBerry,

but you must be aware of the limitations in device and OS support for various types

of functionality.

In this chapter, we build an application that lets you explore all aspects of location-

based services. You start by simply retrieving the device’s location using the GPS

functionality, you will move on to explore BlackBerry Maps, you learn how to launch the

application from your application, and then you mark your device’s position (or any

coordinates) on a map. Finally, we discuss embedding a map control in your

application’s user interface.

GPS Support on BlackBerry Devices
The Location API for retrieving device latitude and longitude has been available on

BlackBerry since OS 4.0.2. Although all devices running OS 4.2 and later support an

external Bluetooth GPS receiver, at the time of writing, GPS was built in to only the

following devices (the list includes devices from the 8100 Pearl and later):

8

Download at WoweBook.Com

CHAPTER 8: Where Am I? Using Location-Based Services 194

BlackBerry Pearl 8110

BlackBerry Pearl 8130

BlackBerry Curve 8310

BlackBerry Curve 8330

BlackBerry Curve 8350i

BlackBerry Pearl Flip 8230

BlackBerry 8800

BlackBerry 8820

BlackBerry 8830

BlackBerry Bold

BlackBerry Storm

BlackBerry Curve 8900

BlackBerry Tour

For the most up-to-date list, visit http://www.blackberry.com.

The device’s preferred source for GPS information—the internal GPS hardware or an

external GPS receiver—is configured by the user. The location API uses whichever

source is configured to provide information.

The Location API
The BlackBerry uses the Java ME Location API to get location information, such as

latitude, longitude, altitude, speed, and course (direction). This package is located in

javax.microedition.location.

GPS Modes
You can use GPS in three main modes: Cell Site, Assisted GPS, and Unassisted GPS.

All are supported by any device that supports GPS (or has an external GPS receiver)

though Assisted GPS can only be used where the wireless network supports it. These

modes are discussed in the following sections.

Cell Site
The Cell Site mode determines the location of the device solely based on cell tower

locations and signal strengths. This provides only location, not speed or other route

information. The accuracy is generally poor. Unlike the real GPS methods, it is

almost instantaneous.

Download at WoweBook.Com

CHAPTER 1: Welcome to the Jungle 195

Assisted GPS
Assisted GPS uses GPS hardware and assistance from the wireless network to do

things such as locate the GPS satellites to speed up the satellite acquisition and location

process. Generally, this provides high accuracy, and although it is slower than Cell Site

location, it is faster than Unassisted GPS location.

Unassisted GPS
Unassisted GPS uses only the GPS hardware for location. This provides a high degree

of accuracy, but it might take two minutes or longer to acquire satellite signals and

determine the device’s location. Of course, it works whether there is wireless network

coverage available to the device or not.

Specifying a GPS Mode
GPS modes are specified using the javax.microedition.location.Criteria class,

which enables you to specify the requirements for the location provider. You create an

instance of the Criteria class and pass it into

javax.microedition.location.LocationProvider.getInstance. Based on your

requirements, the BlackBerry then chooses the appropriate location mode.

The BlackBerry Javadocs provide a chart telling you which values determine which

mode is used, but it’s helpful to understand what some of the main criteria mean and

why they affect location mode. This is discussed in the following sections.

Longitudinal and Latidunal Accuracy
These are specified in metres: horizontal for longitude and vertical for latitude. Cell Site

location is the least accurate; Assisted GPS and Unassisted GPS are both accurate:

 criteria.setHorizontalAccuracy(accuracy);
 criteria.setVerticalAccuracy(accuracy);

If any value is specified for these, Cell Site location is ruled out.

Power Consumption
Specifies the maximum allowable power consumption for location. Cell Site mode

requires the lowest power, Assisted GPS requires the highest, and Unassisted GPS is

somewhere between them:

 criteria.setPreferredPowerConsumption(Criteria.POWER_USAGE_HIGH);

Download at WoweBook.Com

CHAPTER 8: Where Am I? Using Location-Based Services 196

Altitude and Speed and Course
Cell Site location cannot provide either of these, so setting either to true rules it out:

 criteria.setAltitudeRequired(true);

 criteria.setSpeedAndCourseRequired(true);

Cost
Because Assisted GPS and Cell Site location use wireless networking, data cost might

be associated with each. Unassisted GPS doesn’t use the wireless network, so there’s

no chance that the user can incur additional costs by using location services, so not

allowing cost means that Unassisted GPS is the

only choice:

 criteria.setCostAllowed(true);

With all of these interacting criteria, there are several ways to select each of the location

modes; the following sections provide an example of criteria that will result in each

mode being selected.

To Use Cell Site Location
With this criteria, accuracy is not required, cost is allowed, and preferred power

consumption is low:

Criteria criteria = new Criteria();
criteria.setHorizontalAccuracy(Criteria.NO_REQUIREMENT);
criteria.setVerticalAccuracy(Criteria.NO_REQUIREMENT);
criteria.setCostAllowed(true);
criteria.setPreferredPowerConsumption(Criteria.POWER_USAGE_LOW);

To Use Assisted GPS Location
With this criteria, accuracy is not required, cost is allowed, and preferred power

consumption is medium:

Criteria criteria = new Criteria();
criteria.setHorizontalAccuracy(Criteria.NO_REQUIREMENT);
criteria.setVerticalAccuracy(Criteria.NO_REQUIREMENT);
criteria.setCostAllowed(true);
criteria.setPreferredPowerConsumption(Criteria.POWER_USAGE_MEDIUM);

To Use Assisted and Unassisted Modes
 With this criteria, the initial location is retrieved using Assisted GPS; subsequent

locations are fully unassisted:

Download at WoweBook.Com

CHAPTER 1: Welcome to the Jungle 197

Accuracy is 50 metres, cost is allowed, and preferred power consumption is high:

Criteria criteria = new Criteria();
criteria.setHorizontalAccuracy(50);
criteria.setVerticalAccuracy(50);
criteria.setCostAllowed(true);
criteria.setPreferredPowerConsumption(Criteria.POWER_USAGE_HIGH);

To Use Only Unassisted Mode
Unassisted GPS is used for the first and all subsequent location retrievals.

Accuracy is 50 meters, cost is not allowed, and power consumption is high or at no

requirement:

Criteria criteria = new Criteria();
criteria.setHorizontalAccuracy(50);
criteria.setVerticalAccuracy(50);
criteria.setCostAllowed(false);
criteria.setPreferredPowerConsumption(Criteria.POWER_USAGE_HIGH);

The Location Application
Now let’s put all this knowledge to use and create an application that uses the

location API.

As you should expect by now, you’ll start by creating a new BlackBerry CLDC

application. Call it Location. Create a main application class and a main screen class

called LocationApp and LocationMainScreen, respectively; both are in the

com.beginningblackberry.location package. You’ll add a few fields to

LocationMainScreen, a menu item to update the location, and a skeleton update

method. The initial versions of the classes are as follows:

package com.beginningblackberry.location;

import net.rim.device.api.ui.UiApplication;

public class LocationApp extends UiApplication {
 public LocationApp() {
 LocationMainScreen screen = new LocationMainScreen();
 pushScreen(screen);
 }

 public static void main(String[] args) {
 LocationApp app = new LocationApp();
 app.enterEventDispatcher();
 }
}

Download at WoweBook.Com

CHAPTER 8: Where Am I? Using Location-Based Services 198

LocationMainScreen.java:

package com.beginningblackberry.location;

import net.rim.device.api.ui.MenuItem;
import net.rim.device.api.ui.component.LabelField;
import net.rim.device.api.ui.component.Menu;
import net.rim.device.api.ui.UiApplication;
import net.rim.device.api.ui.component.RichTextField;
import net.rim.device.api.ui.container.HorizontalFieldManager;
import net.rim.device.api.ui.container.MainScreen;

public class LocationMainScreen extends MainScreen {

 private LabelField latitudeLabel;
 private LabelField longitudeLabel;
 private RichTextField messageField;

 public LocationMainScreen() {
 HorizontalFieldManager latManager = new HorizontalFieldManager();
 latManager.add(new LabelField("Latitude:"));
 latitudeLabel = new LabelField("");
 latManager.add(latitudeLabel);

 add(latManager);

 HorizontalFieldManager longManager = new HorizontalFieldManager();
 longManager.add(new LabelField("Longitude:"));
 longitudeLabel = new LabelField("");
 longManager.add(longitudeLabel);

 add(longManager);

 messageField = new RichTextField();
 add(messageField);
 }

 private void update() {
 }

 protected void makeMenu(Menu menu, int instance) {
 super.makeMenu(menu, instance);
 menu.add(new MenuItem("Update", 10, 10) {
 public void run() {
 update();
 }
 });
 }

}

Download at WoweBook.Com

CHAPTER 1: Welcome to the Jungle 199

Using the location API is another one of those things; like networking, it must be done

outside the UI thread. The reason should be clear: getting a fix on GPS satellites can

take some time, so the UI thread shouldn’t be locked up.

Follow a similar pattern to the Networking example and create a new class to handle the

details of working with the location API. First, add a couple of methods to

LocationMainScreen to enable the new class to display results to the screen. Add the

following to LocationMainScreen:

 public void setLocation(double longitude, double latitude) {
 synchronized(UiApplication.getEventLock()) {
 longitudeLabel.setText(Double.toString(longitude));
 latitudeLabel.setText(Double.toString(latitude));
 }
 }

 public void setMessage(String message) {
 synchronized (UiApplication.getEventLock()) {
 messageField.setText(message);

 }
 }

Location coordinates, as you might have guessed, are returned as double values

representing the degrees of longitude and latitude. The message area gives you a

freeform spot to print some other interesting information, such as the location method

that was actually used and the accuracy of the results.

Create a class called LocationHandler that extends Thread. It will contain an instance of

LocationMainScreen so it can update the UI:

package com.beginningblackberry.location;

public class LocationHandler extends Thread {
 private LocationMainScreen screen;

 public LocationHandler(LocationMainScreen screen) {
 this.screen = screen;
 }

 public void run() {
 }

}

It’s time to start using the location API. Add the following imports to the top of

LocationHandler.java:

import javax.microedition.location.Criteria;
import javax.microedition.location.Location;
import javax.microedition.location.LocationException;
import javax.microedition.location.LocationProvider;
import javax.microedition.location.QualifiedCoordinates;

Download at WoweBook.Com

CHAPTER 8: Where Am I? Using Location-Based Services 200

Now you fill in the run method. Basically you fill in the criteria as described earlier (use

the Assisted GPS / Unassisted GPS hybrid) and get an instance of LocationProvider

that you can then use to obtain an actual location. The code is fairly self-explanatory; we

present it here and then discuss it:

public void run() {
 Criteria criteria = new Criteria();
 criteria.setVerticalAccuracy(50);
 criteria.setHorizontalAccuracy(50);
 criteria.setCostAllowed(true);
 criteria.setPreferredPowerConsumption(
 Criteria.POWER_USAGE_HIGH);

 try {
 screen.setMessage("Getting location...");
 LocationProvider provider =

 LocationProvider.getInstance(criteria);
 Location location = provider.getLocation(-1);

 QualifiedCoordinates qualifiedCoordinates =
 location.getQualifiedCoordinates();

 screen.setLocation(qualifiedCoordinates.getLongitude(),
 qualifiedCoordinates.getLatitude());

 String message = "Successfully got location, method:";
 int method = location.getLocationMethod();
 if ((method & Location.MTA_ASSISTED) ==
 Location.MTA_ASSISTED) {
 message += " Assisted GPS";
 }
 if ((method & Location.MTA_UNASSISTED) ==
 Location.MTA_UNASSISTED) {
 message += " Unassisted GPS";
 }
 if ((method & Location.MTE_CELLID) ==
 Location.MTE_CELLID) {
 message += " Cell Site";
 }

 message += "\nHorizontal (Longitude) Accuracy: ";

 message += qualifiedCoordinates.getHorizontalAccuracy();

 message += "\nVertical (Latitude) Accuracy: ";

 message += qualifiedCoordinates.getVerticalAccuracy();
 screen.setMessage(message);
 } catch (LocationException e) {
 screen.setMessage("LocationException: " +
 e.getMessage());
 } catch (InterruptedException e) {
 screen.setMessage("InterruptedException: " +
 e.getMessage());
 }
}

Download at WoweBook.Com

CHAPTER 1: Welcome to the Jungle 201

The location method is determined by the criteria that you have specified. In this case,

you’d expect it to be Assisted GPS based on the discussion earlier.

We’ve specified –1 as the parameter to LocationProvider.getLocation. This is the

timeout parameter in milliseconds. –1 means you use the default for that provider.

The Location you receive is qualified; that is, there’s some degree of error associated

with it, represented by the accuracy values in the QualifiedCoordinates class. GPS

coordinates will always be qualitifed. The unqualified Coordinates class is used mainly

to specify coordinates that you want plotted on a map.

Finally, don’t forget to fill out the update method in LocationMainScreen:

 private void update() {
 LocationHandler handler = new LocationHandler(this);
 handler.start();
 }

Now start the simulator or load on to your device and give it a try.

NOTE: that if you’re running on the simulator, you can simulate a GPS location from the
Simulate ➤ GPS Location menu. Click Update, and you should see your current latitude and
longitude.

Figure 8-1. Getting the device’s location using Assisted GPS

Feel free to substitute some of the other criteria values from the previous location modes

section to see how they affect things. You should notice that Cell Site location is much

quicker than a GPS mode, but generally doesn’t have nearly as good accuracy. In many

applications, a good approach is to get a rough idea of the user’s location using the Cell

Site mode, and then refine it using GPS if and when it’s available.

Download at WoweBook.Com

CHAPTER 8: Where Am I? Using Location-Based Services 202

Getting Periodic Location Updates Using LocationListener
The location API provides a method to receive regular updates of the device’s location

using the LocationListener interface. You specify an interval to receive notifications at

and a maximum age parameter to indicate how recent the location results must be.

Setting a maximum age enables the device to re-use previous location information from

the GPS provider. Establishing a GPS location uses processor power and battery life

(and potentially network data), so you should specify maximum age as large as possible

to help the user’s device run efficiently.

You will add support for periodic updates to your application.

Because you want essentially the same functionality for an automatic location update as

for a manual location update, you need LocationHandler to act as the LocationListener

and move some code around.

First, add an import for LocationListener and change the signature of

LocationListener to implement the interface. Also add a boolean flag to indicate

whether you want to register for periodic location updates and a constructor to initialize

the flag. So you can see your coordinates update, add

one more thing, a Vector to store a list of the coordinates, so you can display the

distance between location updates:

import java.util.Vector;
import javax.microedition.location.LocationListener;

//...

public class LocationHandler extends Thread implements LocationListener {
 private LocationMainScreen screen;
 private boolean periodicUpdates;
 private Vector coordinateHistory = new Vector();

 public LocationHandler(LocationMainScreen screen, boolean update) {
 this.screen = screen;
 this.periodicUpdates = update;
 }

LocationListener includes two methods: providerStateChanged, which is invoked

whenever the availability of the provider specified by the location criteria changes (for

example, if GPS coverage is lost) and locationUpdated, which gives us the actual

location updates. For this application you’ll provide an empty implementation for

providerStateChanged, though in a real-world application you’d generally want to take

some action:

 public void providerStateChanged(LocationProvider provider, int newState) {
 // Do nothing for our application
 }

Download at WoweBook.Com

CHAPTER 1: Welcome to the Jungle 203

The implementation of locationUpdated is taken directly from the run method of

LocationHandler. Add a timestamp to the message so you can see the location being

updated in the application. Also check to see if there were previous coordinates (if the

history isn’t empty) and display the distance between the current set and the last set of

coordinates. First, add the following imports to LocationHandler.java to bring in the

date/time and coordinate-handling classes:

import net.rim.device.api.i18n.SimpleDateFormat;
import java.util.Date;
import javax.microedition.location.Coordinates;

The locationUpdatedMethod follows:

 public void locationUpdated(LocationProvider provider, Location location) {
 QualifiedCoordinates qualifiedCoordinates =
location.getQualifiedCoordinates();

 screen.setLocation(qualifiedCoordinates.getLongitude(),
qualifiedCoordinates.getLatitude());

 String message = "Successfully got location at ";
 SimpleDateFormat simpleDateFormat = new SimpleDateFormat("HH:mm:ss");
 message += simpleDateFormat.format(new Date(location.getTimestamp()));

 if (coordinateHistory.size() > 0) {
 Coordinates lastCoordinates =
(Coordinates)coordinateHistory.lastElement();
 message += "\nDistance from last update:" +
lastCoordinates.distance(qualifiedCoordinates);
 }

 coordinateHistory.addElement(qualifiedCoordinates);

 message += "\nMethod:";
 int method = location.getLocationMethod();
 if ((method & Location.MTA_ASSISTED) == Location.MTA_ASSISTED) {
 message += " Assisted GPS";
 }
 if ((method & Location.MTA_UNASSISTED) == Location.MTA_UNASSISTED) {
 message += " Unassisted GPS";
 }
 if ((method & Location.MTE_CELLID) == Location.MTE_CELLID) {
 message += " Cell Site";
 }

 message += "\nHorizontal (Longitude) Accuracy: ";

 message += qualifiedCoordinates.getHorizontalAccuracy();

 message += "\nVertical (Latitude) Accuracy: ";

 message += qualifiedCoordinates.getVerticalAccuracy();

 screen.setMessage(message);

 }

Download at WoweBook.Com

CHAPTER 8: Where Am I? Using Location-Based Services 204

Coordinates have a handy built-in method that can calculate distance in mneters

between two geographical locations. You use that here. The interval is ten seconds.

Usually, the first acquisition of GPS satellites takes longer than that, but after that’s

done, subsequent updates can happen quickly.

NOTE: net.rim.device.api.i18n.SimpleDateFormat is an easy way to format
date/time values into strings. The output format is specified using a format string, where
different letters specify different components of the date/time to display. For example, if you
have a Date object representing August 12, 2007, 9:57 p.m, you can get the following
representations:

EEEE, MMMM dd yyyy at HH:mm:ss would give Sunday, August 12, 2007 at
21:57

hh:mm:ss a would give 9:57 PM

yyyy-MM-dd would give 2007-08-12

A full explanation of all the format characters is available in the Javadocs for
SimpleDateFormat.

The run method will change to optionally add the listener and to remove the code that

updates the UI in favor of calling locationUpdated. Replace the current try/catch block

in LocationHandler.run() with the following:

 try {
 screen.setMessage("Getting location...");
 LocationProvider provider =
LocationProvider.getInstance(criteria);
 Location location = provider.getLocation(-1);

 locationUpdated(provider, location);
 if (periodicUpdates) {
 provider.setLocationListener(this, 30, -1, -1);
 }
 } catch (LocationException e) {
 screen.setMessage("LocationException occurred getting location:
" + e.getMessage());
 } catch (InterruptedException e) {
 screen.setMessage("InterruptedException occurred getting
location: " + e.getMessage());
 }

You have set the location provider for an update every 30 seconds.

Finally, change the update method in LocationMainScreen to call the new constructor:

 private void update() {
 LocationHandler handler = new LocationHandler(this, true);
 handler.start();
 }

Download at WoweBook.Com

CHAPTER 1: Welcome to the Jungle 205

Start the application, select Update, and leave the application running. You’ll see the

location updated every 30 seconds. If you’re running on a real device, walk around a bit

to see your location being tracked!

Figure 8-2. Device location after a periodic update

Using BlackBerry Maps
We’ve covered basic GPS location functionality. Now let’s see how you can use

BlackBerry Maps to display location in a more visual way.

BlackBerry Maps is included on devices running OS 4.2 and later, so it is available to

most users. The API to interact with BlackBerry Maps is also available on any device

that has BlackBerry Maps installed.

Prior to OS 4.5 an application could use BlackBerry Maps in a number of ways,

including:

 Open BlackBerry Maps and display the default map view (the last

map that the BlackBerry user viewed).

 Open BlackBerry Maps and display a custom map view (latitude,

longitude, and zoom level).

 Open BlackBerry Maps and display a specific location (latitude,

longitude, and zoom level) with a labeled marker.

Download at WoweBook.Com

CHAPTER 8: Where Am I? Using Location-Based Services 206

 Open BlackBerry Maps and display multiple locations (multiple

labeled markers on the same map).

 Open BlackBerry Maps to display a route between locations on a

map.

With OS 4.5 and later, the API provides the capability to embed a map control into the

UI of a BlackBerry application.

The Invoke API
The net.rim.blackberry.api.invoke package contains classes that let an application

interact with some of the BlackBerry system applications, such as email, phone, and

BlackBerry Maps.

Interaction is managed through the invokeApplication method of the Invoke class. This

method takes two arguments: a flag indicating which application is to be invoked and an

instance of an ApplicationArguments subclass specific to that application.

To launch Maps, you use something like the following:

 MapsArguments args = new MapsArguments();
 Invoke.invokeApplication(Invoke.APP_TYPE_MAPS, args);

Launching the Default BlackBerry Maps View
The previous code will in fact launch the BlackBerry Maps application with the default

(last used) view opened. Let’s add a new menu item and method to LocationMainScreen

to do just that. Add the following imports to the top of LocationMainScreen.java:

import net.rim.blackberry.api.invoke.Invoke;
import net.rim.blackberry.api.invoke.MapsArguments;

Then, make the following changes to LocationMainScreen to add a menu item and a

map method containing the previous code:

 private void map() {
 MapsArguments args = new MapsArguments();
 Invoke.invokeApplication(Invoke.APP_TYPE_MAPS, args);
 }

 protected void makeMenu(Menu menu, int instance) {
 super.makeMenu(menu, instance);
 menu.add(new MenuItem("Update", 10, 10) {
 public void run() {
 update();
 }
 });
 menu.add(new MenuItem("Map", 10, 10) {
 public void run() {
 map();
 }
 });
 }

Download at WoweBook.Com

CHAPTER 1: Welcome to the Jungle 207

Run the application and click Map to see the default BlackBerry Maps view pop up.

Figure 8-3. Invoking the default BlackBerry Maps view

This actually runs the Maps application and pushes the screen on top of y application.

When you close Maps, you are back at the Location application’s main screen.

Location Documents
BlackBerry Maps defines an XML document format that you can use to specify view

information, location markers, and route information while invoking BlackBerry maps.

The basic format of a document showing one or more locations is:

<lbs>
<location y='latitude' x='longitude' label='Location_Label' description='Description'/>
<location y='latitude' x='longitude' label='Location_Label' description='Description'/>
<location y='latitude' x='longitude' label='Location_Label' description='Description'/>
....</lbs>

Each of the latitude and longitude values is an integer; you can multiply the decimal

latitude and longitude by 100,000 to get the integer value.

Modify the Location application to take the list of coordinates in LocationHandler’s

history and map them when you select Map from the menu.

First, you need a way to get the list of coordinates. Add the following method to

LocationHandler:

Download at WoweBook.Com

CHAPTER 8: Where Am I? Using Location-Based Services 208

 public Coordinates[] getCoordinateHistory() {
 Coordinates[] coordinates = new Coordinates[coordinateHistory.size()];
 coordinateHistory.copyInto(coordinates);
 return coordinates;
 }

LocationMainScreen needs to have access to the location handler you invoke in the

update method. You make it into a member variable by adding the following declaration

to the top of the class:

 private LocationHandler locationHandler = new LocationHandler(this, true);

Then, modify LocationHandler’s update method to refer to this variable:

 private void update() {
 locationHandler.start();
 }

Next, you modify the map method to construct a map XML document using coordinates

from LocationHandler. Remember that the x and y values for the locations are integers

that you get by multiplying the decimal latitude and longitude by 100000:

 private void map() {
 String document = "<lbs>";
 Coordinates[] coordinates = locationHandler.getCoordinateHistory();
 for (int i = 0; i < coordinates.length; i++) {
 document += "<location x='"
 + (int) (coordinates[i].getLongitude() * 100000) + "'
y='"
 + (int) (coordinates[i].getLatitude() * 100000)
 + "' label='Location " + i
 + "' description='Marker for history coordinate " + i
 + "'/>";
 }
 document += "</lbs>";
 MapsArguments args = new
MapsArguments(MapsArguments.ARG_LOCATION_DOCUMENT, document);
 Invoke.invokeApplication(Invoke.APP_TYPE_MAPS, args);
 }

One final thing before you try this; increase the time interval for location notifications to a

couple of minutes or else you’ll have a huge number of points located close together on

the map. Change the appropriate line in LocationHandler.run to something like the

following:

 if (periodicUpdates) {
 // Update every 3 minutes
 provider.setLocationListener(this, 180, -1, 10);
 }

Now, if you’re up for it, load this on to your device, click Update, and then go outside

and walk around for a bit. Then, click Map and you should see all your points displayed

in BlackBerry Maps. The map view is automatically sized to display all of the points you

give it.

Download at WoweBook.Com

CHAPTER 1: Welcome to the Jungle 209

Figure 8-4. Displaying a few locations in BlackBerry Maps

Displaying a Custom Map View
In addition to letting BlackBerry Maps automatically position and zoom the view, you

can specify a view in terms of a latitude, longitude, and zoom level.

To create a custom map view, you create an instance of

net.rim.blackberry.api.maps.MapView with a latitude, longitude, and zoom. The zoom

level ranges from 0 (zoomed all the way in) to MapView.MAX_ZOOM (zoomed all the way

out). The view will be centered on the given latitude and longitude.

Let’s add this functionality to our Location program. You’ll first add a menu item to open

a view zoomed in to 0 (all the way in) on the last updated coordinate.

Add the following import to the top of LocationMainScreen:

import net.rim.blackberry.api.maps.MapView;

Create a method called customView in LocationMainScreen; the code follows:

 private void customView() {
 Coordinates[] coordinates = locationHandler.getCoordinateHistory();
 if (coordinates.length > 0) {
 MapView view = new MapView();
 Coordinates lastCoordinates = coordinates[coordinates.length -
1];
 view.setLatitude((int)(lastCoordinates.getLatitude() * 100000));
 view.setLongitude((int)(lastCoordinates.getLongitude() *
100000));
 view.setZoom(0);

Download at WoweBook.Com

CHAPTER 8: Where Am I? Using Location-Based Services 210

 MapsArguments args = new MapsArguments(view);
 Invoke.invokeApplication(Invoke.APP_TYPE_MAPS, args);
 }
 }

MapView expects latitude and longitude in the same format as the location XML

documents—an integer that is the latitude or longitude from the GPS location multiplied

by 100000. We use another constructor for MapsArguments, which takes an instance of

MapView and invokes the BlackBerry Maps application the same way. Finally, modify

makeMenu to add a new menu item to invoke the customView method:

menu.add(new MenuItem("Custom View", 10, 10) {
public void run() {

 customView();
 }
});

Now try it out and you should see a zoomed-in view of your last location.

Figure 8-5. BlackBerry Maps zoomed all the way in to our last location

MapField: Embedding BlackBerry Maps in Your UI
From OS 4.5 and above, the BlackBerry platform provides the capability to embed a

BlackBerry Maps view into your application’s user interface.

You will add a map field to the user interface and have it update whenever a new

location update happens. Because this works only with JDE v4.5 and higher, be sure

that you’re running an appropriate version of the JDE or that you’ve set your Eclipse

workspace to use JDE v4.5 or higher.

Download at WoweBook.Com

CHAPTER 1: Welcome to the Jungle 211

The MapField lets you set a map position, but it doesn’t support adding location markers

to a map. So, you need to center the map on the new longitude and latitude and zoom

in to maximum (level 0).

Add the following import to the top of LocationMainScreen.java:

import net.rim.device.api.lbs.MapField;

Add a new member variable for the MapField at the top of LocationMainScreen:

 private MapField mapField;

In the constructor, initialize MapField. MapField enables you to set a preferred width and

height using the setPreferredSize method. If you don’t use this, the MapField’s preferred

size will be the size of the display, so just choose 200 x 100 and center it horizontally.

Make the following modifications to the bottom of LocationMainField’s constructor to

place the MapField just above the RichTextField:

 mapField = new MapField(MapField.FIELD_HCENTER);
 mapField.setPreferredSize(200, 150);
 add(mapField);

 messageField = new RichTextField();
 add(messageField);

Finally, modify LocationMainScreen.setLocation to set the mapField’s location and

zoom level whenever you get a location update. Remember, you have to multiply latitude

and longitude by 100000:

 public void setLocation(double longitude, double latitude) {
 synchronized(UiApplication.getEventLock()) {
 longitudeLabel.setText(Double.toString(longitude));
 latitudeLabel.setText(Double.toString(latitude));
 mapField.moveTo((int)(latitude * 100000), (int)(longitude *
100000));
 mapField.setZoom(0);
 }
 }

Now run the application. Before the first location update, you’ll see a map field with

diagonal lines, indicating that it’s set to an invalid location. Click the Update menu

item, and when the location comes through, the map field should be centered on

that location.

Download at WoweBook.Com

CHAPTER 8: Where Am I? Using Location-Based Services 212

Figure 8-6. Embedded map field before Figure 8-7. The embedded map field after getting a
setting a location location update

Unlike BlackBerry Maps, the MapField doesn’t support location makers. You can

replicate this functionality (and do a lot more) by subclassing MapField and overriding

the paint method. The convertWorldToField and convertFieldToWorld methods let you

convert between latitude/longitude and pixels onscreen.

Summary
In this chapter, we covered the basics of location-based services on the BlackBerry.

You built an application that retrieved the current location from the device’s GPS

receiver, and then extended the application to receive automatic periodic location

updates. Then, you explored the BlackBerry Maps API, enabling you to plot the location

updates on a map. Finally, you looked at the MapField, which enabled you to embed a

map control into the applicaton’s user interface.

There’s more functionality available from location-based services on the BlackBerry,

such as BlackBerry Maps, which can map locations based on street address and

determine routes between two locations. We encourage you to take a look at the

Javadocs and developer guides and explore more.

You now have the basic knowledge to make your application location-aware, opening

up all kinds of new possibilities. At this point, we’ve explored as much of the BlackBerry

API as we’re going to in this book. In the next and final chapter, we talk about how to

package and distribute your application to users.

Download at WoweBook.Com

213

213

 Chapter

Getting Your App Out
There: Packaging and
Publishing

Now you know the basics of using the BlackBerry API to develop applications. This
chapter is going to be a bit different. The best application is only successful if people
actually use it, and to do that, they have to be able to find it and install it onto their
BlackBerry devices. Of course, I’ve talked about signing your application and loading it
onto a device using the command-line javaloader utility, but that was only to allow you
to continue to explore BlackBerry development.

Until recently there have been a few main ways of installing an application onto the
BlackBerry:

 Over the air: The app is downloaded using the BlackBerry browser
from a web site on the Internet or your intranet.

 Desktop: The app is downloaded to the user’s computer and, using
the BlackBerry Desktop Manager, is loaded via a USB cable onto
their device.

 BES push: In corporate environments, the BES administrator
remotely installs an application onto the devices of some users.

Recently, a new way of installing apps debuted and is fast becoming the preferred
method for distributing BlackBerry applications: BlackBerry App World.

In this chapter, we’ll talk about both over-the-air and desktop installation, what you need
to do to enable your app to be distributed in those ways, and what to look out for.
Installation via BES push requires configuration by the BES administrator and a lot of
knowledge about BES administration and so is outside the scope of this book.

9

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 214

We’ll also talk about BlackBerry App World—how to set up an account, how to submit
and manage an application, and what licensing options are available and how they affect
your application’s design. In addition, we’ll explore some of the App World API that’s
available to allow your application to interact with App World in very useful ways.

We’ll also briefly explore a couple of other leading third-party sites for selling and
distributing your application.

Setting Application Properties
We touched on this in Chapter 2 by setting the title of the project, but when you’re
deploying an application to end users, you generally want to at least have a title and
version (and probably vendor and description). Using the Eclipse plug-in, you can
access properties by right-clicking the project name, selecting Properties, and then
clicking BlackBerry Project Properties (Figure 9-1).

Figure 9-1. Setting application properties in Eclipse

Using the JDE, you can access application properties by right-clicking the project name,
selecting Properties, and clicking the General tab (Figure 9-2).

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 215

Figure 9-2. Setting application properties in the JDE

These properties will be visible to users installing your application over the air or via
Desktop Manager, so it is important to fill them in with something that makes sense.

Over-the-Air Installation
The BlackBerry browser can be used to install a BlackBerry application from any web
site that’s accessible from the BlackBerry. For the most part, this means anywhere on
the Internet or the corporate intranet if the device is activated on a BES. This is called
over-the-air (OTA) installation.

Sibling COD Files
BlackBerry applications are compiled into COD files (with the extension .cod). When a
compiled application contains more than 64KB of code or static data (including, among
other things, resource files and static string data), the BlackBerry compiler breaks the
COD file up into two or more COD files, naming them in increasing numerical order. For
example, if we add bunch of images to our UiFun application, the COD files would be
named as follows:

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 216

UiFun.cod
UiFun-1.cod
UiFun-2.cod
UiFun-3.cod
...

The compiler then takes these COD files, which are known as sibling COD files, and
adds them all to a zip archive, which is then named the same thing as the first COD file:
UiFun.cod.

The point of all this is that if a user is trying to download a COD file OTA containing
sibling COD files and isn’t connecting through the BES/MDS, the application will fail to
install.

So, what we have to do in this case is unzip the main COD file and deploy all the sibling
COD files to the web server instead. The steps for our example would be as follows:

1. Rename UiFun.cod to UiFun.zip.

2. Using a zip file program or the built-in Windows support for zip files,

unzip the COD files.

3. Deploy the unzipped COD files to the web server—not the original zip

file.

Note that if step 2 fails with a message that the zip archive is invalid, then you don’t
have sibling COD files and can safely deploy the single COD file to the web server.

The JAD File
Over-the-air installation requires a descriptor file called a Java application descriptor
(JAD) file, which is a structured text file with the extension .jad.

Both the JDE and the JDE Plug-in for Eclipse generate JAD files automatically with your
build. The JAD file will be named the same thing as your base COD file name, but with a
.jad extension.

Since a JAD file is just a text file, you can use any text editor to change the contents.

Here’s an example UiFun.jad file:

Manifest-Version: 1.0
MIDlet-Version: 1.0.1
MIDlet-Jar-Size: 395389
RIM-COD-URL-3: UiFun-3.cod
RIM-COD-SHA1-3: ff fb 53 97 7d 45 55 46 4b 0b 62 b5 8c 64 22 72 89 12 0f 4f
RIM-COD-URL-2: UiFun-2.cod
MicroEdition-Configuration: CLDC-1.1
MIDlet-Jar-URL: UiFun.jar
RIM-COD-Module-Dependencies: net_rim_cldc
RIM-COD-SHA1-2: a3 43 1d c9 fa b3 dc 74 af 9c 96 ea 8a 30 55 84 dd 0d 39 8e
RIM-COD-URL-1: UiFun-1.cod
RIM-COD-SHA1-1: 04 02 d3 d0 ef a3 1a 88 b5 bd a5 c1 9d b6 23 d6 9d 52 00 37
RIM-COD-Size-3: 29240

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 217

RIM-COD-Size-2: 56696
RIM-MIDlet-Flags-1: 0
RIM-COD-Size-1: 54096
RIM-COD-Module-Name: UiFun
MIDlet-Name: UiFun
RIM-COD-Size: 60208
RIM-COD-Creation-Time: 1250882363
MIDlet-1: UI Fun Application,,
RIM-COD-URL: UiFun.cod
MIDlet-Description: The Beginning BlackBerry UI Fun Application
RIM-COD-SHA1: b4 6b f1 d5 91 88 4a 8e e5 6a 40 8a 7b 12 5d 93 d1 20 bb 44
MicroEdition-Profile: MIDP-2.0
MIDlet-Vendor: Anthony Rizk

You can safely change a few of these values in the file—including MIDlet-Vendor and
MIDlet-Description—but generally it’s better to let the development tools take care of
it. Later we’ll see another way of generating JAD files using Apache Ant.

Content Types (MIME Types)
Before being able to download an application OTA from a web server, the web server
needs to send the correct content types, or MIME types, along with the JAD and COD
files. Table 9-1 describes these types.

Table 9-1. MIME Types

File Type MIME Type

JAD text/vnd.sun.j2me.app-descriptor

COD application/vnd.rim.cod

How you set these types varies depending on your web server—consult your server
administrator or hosting provider for more information.

Uploading Your Application
The last step to complete the setup of your OTA download is to upload your JAD file and
your COD files to your web server. Make sure that your JAD file and COD files are all
accessible at the same level of the web server. For example, if your JAD file is available
at http://www.mycompany.com/UiFun.jad, the COD files should be available at
http://www.mycompany.com/UiFun.cod, and so on. Users will only have to worry about
the location of the JAD file, but the BlackBerry will need to access all the COD files
as well.

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 218

Downloading the Application
Once all of these things are taken care of, you just have to open your BlackBerry
browser and enter the URL to the .jad file into the web address field, and you will be
shown a page that lets you download the application to your device (Figure 9-3).

Figure 9-3. Over-the-air download—notice the application properties we set earlier.

Desktop Installation
BlackBerry applications can be installed from a computer to a device using a USB cable
and the BlackBerry Desktop Manager. For large applications, desktop installation may
save wireless data costs, and downloading an application is a lot faster over a
broadband Internet connection than a 2.5G network connection. There may also be
cases where wireless data access is not available on a BlackBerry device—if a user
hasn’t subscribed to a data plan or an IT policy forbids certain types of network access
from the BlackBerry device. Generally, though, desktop installation is more complex and
involves more steps than OTA installation, making it more difficult for users.

Unlike OTA installation, you don’t have to worry about sibling CODs with desktop
installation.

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 219

The ALX File
Desktop installation requires a different type of descriptor file than OTA installation. For
desktop installation, the file is XML based and has the extension .alx.

Here’s an example ALX file for UiFun:

<loader version="1.0">
 <application id="UiFun">
 <name >
 UI Fun Application
 </name>
 <description >
 The Beginning BlackBerry UI Fun Application
 </description>
 <version >
 1.0.1
 </version>
 <vendor >
 Anthony Rizk
 </vendor>
 <copyright >
 Copyright (c) 2009 Anthony Rizk
 </copyright>
 <fileset Java="1.39">
 <directory >

 </directory>
 <files >
 UiFun.cod
 </files>
 </fileset>
 </application>
</loader>

The ALX file format allows you to support more complex installation scenarios, such as
different COD files for different devices. This is outside the scope of this book, but
documentation is available on the BlackBerry Developer Zone.

To generate an ALX file using Eclipse or the JDE, right-click the BlackBerry project and
select Generate ALX file (Figure 9-4 and Figure 9-5). The file will have the same base
name as your project.

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 220

Figure 9-4. To generate an ALX file from Eclipse, right-click the project and select Generate ALX file.

Figure 9-5. To generate an ALX file from the JDE, right-click the project and select Generate ALX file.

Distributing an application for desktop installation is easy—just give the ALX and COD
files to the user.

The process of installing is a bit more complex:

1. Connect the device to the computer using a USB cable.

2. If it’s not already running, start the BlackBerry Desktop Manager.

3. Select the Application Loader.

4. Click Add/Remove Applications.

5. Click Browse, and find the ALX file for your application.

6. Make sure the check box next to your application is checked

(Figure 9-6), and click Next and complete the wizard.

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 221

Figure 9-6. Loading UiFun onto a device using the Application Loader from the Desktop Manager

BlackBerry App World
In April 2009, BlackBerry launched BlackBerry App World—an on-device and web-
based BlackBerry application store (Figure 9-6). App World is already the best way to
distribute almost all BlackBerry applications. It offers a way for users to find
applications, install them, and purchase them. Fortunately for developers, App World
also takes away a lot of the headaches of deploying applications, making it easy to
manage updates, deploy multiple versions for different devices and OS versions, and
accept payment.

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 222

Figure 9-7. BlackBerry App World

Getting an App World Account
The first step in deploying your application on App World is signing up for an account.

Prerequisites
Whether you intend to sell applications or just deploy them for free, you’ll need a PayPal
account—a Personal, Premier, or Business account will work fine. App World processes
payments in USD. To sign up for PayPal, go to http://www.paypal.com.

You will also require some documentation to validate the company information you
provide (address and company name), or if you’re applying as an individual, you will
be e-mailed a statement of identification that must be filled out and signed by a
certified notary.

The sign-up fee for App World is $200 USD. This allows you to submit up to ten
applications.

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 223

Signing Up
If you’re ready with the prerequisites, sign up for App World, and go to the App World
Vendor Portal at https://appworld.blackberry.com/isvportal/ (Figure 9-8).

Figure 9-8. The BlackBerry App World Vendor Portal

Click the Get Started button, and follow the steps. You’ll be asked to create one
account when you sign up but can create more (if you want to let more than one person
manage your applications) once your account has been activated.

If all goes well, you’ll receive an e-mail shortly after either asking you for more
information or informing you that you’re now able to submit applications to App World.

Distributing Your Application on App World
App World applications are all managed through the Vendor Portal. Before we walk
through an application submission, let’s talk a bit about pricing and licensing.

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 224

Licensing Options
Applications on App World can be one of the following three types:

 Free

 Paid

 Try & Buy

Free applications are just that—free. The user pays nothing to download and use the
application.

Paid applications require the user to pay a price that you set before downloading the
application to their device.

Try & Buy applications allow the user to download the application free, but the user can
pay to get a license key that either unlocks additional functionality or prevents the
application from expiring (the actual functionality is up to you—App World just manages
selling and distributing the license keys).

Paid and Try & Buy applications can be set up to use four different types of license
models:

 Static

 Single Key

 Key Pool

 Dynamic Key

With the Static model, a license key is not required—when the user purchases the app,
they download the unlocked version. For Try & Buy, this means you’ll upload both a trial
version and a full version of your application. This means you don’t have to worry about
a license key algorithm, but users must download another copy of your application when
they buy.

With the Single Key model, there is one license key for all copies of the application.
When the user pays, they receive this license key that they can use to unlock the
application. It’s simple but with one license key—anyone who gets the key can unlock
your application.

With the Key Pool model, you provide a list of up to 2,000 license keys to App World,
and these are handed out one at a time to each user who purchases the application. The
advantage of this over the Single Key model is that you can track users by license keys,
so if a key is being passed around, you may be able to deactivate or otherwise deal with
it. To use the Key Pool model, you need to produce a text file, with one license key per
line, to upload to App World along with your application.

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 225

With the Dynamic Key model, the App World server contacts your web server when a
user has purchased the application and a new key is needed. Your server can then
generate the key based on information about the application and the user’s PIN or
e-mail address. This lets you produce a key for each user, so there’s much less danger
of anyone else being able to unlock the application, but it requires more work on your
part—hosting a server capable of responding to license key requests.

Implementing License Keys
What should a license key actually do? The simple answer is “It’s up to the applicaton.”
That is, your license key just makes a trial application into a full application. What “trial”
means is up to you.

For example, you may develop an application that

 Stops working after 30 days unless a license key is purchased

 Enables only certain functionality until a license key is purchased

 Disables some functionality after two weeks unless a license key is
purchased

 Works only for a certain time period (for example, five minutes) or for
a certain amount of data

License Keys for Try & Buy Apps
When a user purchases a Try & Buy application, they’ll be shown a dialog box with their
license key in the App World client. They’ll be able to copy this key to the device
clipboard, and you should provide a way for them to enter the key into your application
to unlock it. Something as simple as an EditField will work. App World also automatically
injects the license key into your application after it has been installed. See the “App
World API” section later in this chapter for more information about how to retrieve this
key from your application.

License Keys for Paid Apps
If you have to pay for a Paid application before downloading it, why would you want to
provide a license key? Well, it’s still useful for tracking purposes, and as we’ll see later,
App World will inject the downloaded application with the license key in a way that lets
your application retrieve it later. If you choose a nonstatic license model for your
application, the user will see a dialog box with your license key after they’ve purchased
and downloaded your application.

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 226

Pricing
Applications for sale on App World—both Paid and Try & Buy—can priced in the
following pricing tiers (all amounts are in USD but will be converted to the appropriate
currency for the App World user):

 From $2.99 to $19.99 in $1 increments (i.e., $2.99, $3.99, etc.)

 From $19.99 to $99.99 in $10 increments ($19.99, $29.99, etc.)

 From $99.99 to $599.99 in $50 increments ($99.99, $149.99, etc.)

 From $599.99 to $999.99 in $100 increments ($599.99, $699.99,
etc.)

App World takes 20 percent of the purchase price, giving 80 percent to the developer—
not a bad deal for not having to deal with payment headaches, distribution, and so on.

The Submission Process
This section is a bit different from the other walk-throughs earlier in the book. Because
we’re dealing with a real, online submission process (with money involved), you
shouldn’t follow each step literally using the same app name. Rather, look at this as a
step-by-step guide and insert your own application information where appropriate when
you’re ready to submit your BlackBerry application to App World.

The submission process will time out if you sit at any step without doing anything for ten
minutes, so you may want to read through this section before submitting to make sure
you have all the information prepared beforehand.

Starting the Process
Log into your App World account through the Vendor Portal, click Manage Applications,
and then click the Add Application button. There are seven steps to the submission
process

Step 1: Export Control
The questions here are to determine whether your application is bound by any export
restrictions due to use of cryptography. Many applications do—all I can say is to answer
truthfully here. If you think there may be problems with your application using certain
types of encryption and being used in certain geographic areas, then you already know
more information than I can give you.

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 227

Step 2: Main Application Data
You’ll need to provide a few things:

 Your application’s name (ideally you have that by now).

 A 480 × 480 pixel PNG image. This image should be the same as
your application’s icon; it will appear, scaled way down, next to the
application names in the App World category lists (Figure 9-9). It will
also be used as the archive icon if your users decide to archive your
app to their SD card. This means that making this image different
from your application icon will confuse your users. It also means you
should avoid any very fine detail that might be lost when the image
is scaled down.

Figure 9-9. Browsing the top free apps; the icons are scaled-down versions of the 480 × 480 pixel PNG.

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 228

NOTE: You probably have noticed the large images in the featured applications section of App
World (see Figure 9-7)—those are submitted through a separate process, if you’re lucky
enough to get your application featured.

 The category and subcategory your application should belong to.
These should reflect your application accurately, because a lot of
users will discover your app by browsing through categories looking
for an application for some specific purpose.

 The license type and license key information if required, as we
discussed earlier, unless your application is free.

 The price for your application, again unless it’s free.

Step 3: Description
The description can be a maximum of 2,000 words, and you must at least have an
English-language description. You may provide descriptions for a number of other
languages as well. If you do not submit a localized description, your application
description will default to the English description.

Step 4: Distribution
You can choose to have your application available on some or all wireless carriers and in
some or all countries. If you have exclusive agreements with some carriers or other
reasons to restrict distribution of your application, this section makes that easy to
manage.

Step 5: Screenshots
Screenshots can be up to 640 × 640 pixels, and you can provide up to 16 of them. The
simulator is a great way to get screenshots of your application—from the Edit menu,
choose Save LCD Snapshot.

Step 6: Releases
This is another area where App World saves you a lot of distribution headaches. The
Releases section allows you to define each of the releases of your application that you
want to make available on App World. When first submitting your application, you will
probably have only a single release, for example 1.0, but later you can add more
releases. App World will automatically distribute and notify the users of the latest release
of your application.

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 229

With the bundles, you can provide different versions of your application for different
device types, OS versions, or both, and App World will ensure that the correct version is
installed on the correct device.

Don’t worry about extracting sibling CODs—App World will take care of that for
you. You don’t need to provide a JAD file or anything other than the COD files for
your application.

If you want to automate the release process more, App World lets you import all the
information for a release from a zip file. This is handy if you want your build system to
take care of updating the list of supported devices and OS versions for each build.

Different Versions for Different OS Versions and Device Models

There are cases where you may want to have several versions of your application
available, such as if you want to leverage some OS 4.7–specific features to take full
advantage of the Storm’s touch screen but still want a version that supports all devices
with OS 4.2.1 and later. This is easy to handle through App World using file bundles.
We’ll use a couple of examples to illustrate how this can work.

The first example is a version for OS 4.7 devices and a version for OS 4.2.1 devices:

1. Create a bundle called OS 4.2.1.

2. Check Supports All Devices.

3. Set the minimum OS to 4.2.1.

4. Upload your OS 4.2.1 COD file.

5. Create another bundle called OS 4.7.

6. Check Supports All Devices.

7. Set the minimum OS to 4.7.0.

8. Upload your OS 4.7 COD file.

App World will direct devices with OS 4.7 and later to the OS 4.7 version and will direct
other devices to the OS 4.2.1 version.

The second example is a specific version for only the Pearl models, such as if your
application needed a custom build for a small screen device and another version for all
other devices. Follow steps 1–4 from example 1 to create an OS 4.2 version, then
perform the following steps:

1. Create a bundle called Pearl.

2. Set the minimum OS to 4.2.0.

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 230

3. Uncheck Supports All Devices, and move all the 81xx and 82xx devices

to the Supported box.

4. Upload the Pearl COD file.

This is how you can use the bundle distribution system in App World to provide specific
builds of your applications for specific device models or OS versions.

Step 7: Summary
This summarizes the main data from your application submission. You can go back to
any step by clicking the appropriate step in the header.

Done
And that’s it! Your app will generally be approved in 8–10 business days and ready to
distribute or sell to every BlackBerry device with App World installed.

App World API
App World also supports some API calls that let you integrate your application with App
World in some useful ways. To help you get the most out of publishing on App World,
we’ll explore a couple of these features now.

Getting App World Properties for Your Application
App World embeds a number of properties in applications that are downloaded and
purchased
through App World; these properties include the license key (if a license model other
than static was used), the App World application name as specified in the Vendor Portal,
the e-mail of the application purchaser, and others. Through the BlackBerry API, your
application has access to these properties, so, for example, you can easily display
license information to the user or pass license key information to your server as a way of
tracking unique users.

The following code snippet will read a property set by App World from an application on
the BlackBerry device:

 private String loadProperty(String appName, String propertyName) {

CodeModuleGroup group =
CodeModuleGroupManager.load(appName);
if (group!=null) {
return group.getProperty(propertyName);
 }
 return null;
 }

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 231

The appName parameter should be the same as the name you specified for your
application in the App World Vendor Portal. The propertyName parameter can be one of
the following string values:

 RIM_APP_WORLD_ID: The numeric ID of the App World application.
This is useful if you want to launch the App World client to your
specific application details screen, such as when an update is
available or a trial has expired and you want to make it easy for your
user to purchase your application.

 RIM_APP_WORLD_UPDATE_AVAIL: “True” if an updated version is
available on App World, “false” otherwise. You may want to check
this property periodically and have your application display a
message to the user when an update is available.

 RIM_APP_WORLD_LICENSE_KEY: The license key (if any) associated with
a Paid application or a Try & Buy application after the user has
purchased the application and received a license key.

 RIM_APP_WORLD_NAME: The name of the application as specified in the
App World Vendor Portal.

 RIM_APP_WORLD_EMAIL: A hash of the e-mail address of the
purchaser.

 RIM_APP_WORLD_PIN: The hexadecimal value of the device PIN this
application was downloaded onto.

 RIM_APP_WORLD_VERSON: The application version as specified in the
App World Vendor Portal.

So, for example, to load the license key for an application named My Application that
was purchased through App World, you would call the loadProperty method as follows:

 String myAppLicenseKey = loadProperty("My Application",
"RIM_APP_WORLD_LICENSE_KEY");

Launching App World from Your Application
With OS 4.3 and later, you can use the javax.microedition.content package to launch
App World from your BlackBerry application and display a specific application when it
launches. This is useful if you want to provide links to other applications you have
developed or provide a way from your app to
easily open App World for a user to purchase your application after a trial has expired or
download an updated version.

The following code will launch App World and open the application whose ID is
provided:

import java.io.IOException;
import javax.microedition.content.ContentHandler;
import javax.microedition.content.ContentHandlerException;

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 232

import javax.microedition.content.Invocation;
import javax.microedition.content.Registry;
import net.rim.device.api.ui.component.Dialog;

public class AppWorldLauncher {
 public void launchAppWorld(String appId) throws IllegalArgumentException,
 ContentHandlerException, SecurityException, IOException {

 Registry registry = Registry.getRegistry(
SampleApplication.class.getName());

 Invocation invocation = new Invocation(null, null,
 "net.rim.bb.appworld.Content", true,
 ContentHandler.ACTION_OPEN);
 invocation.setArgs(new String[] { appId });

 registry.invoke(invocation);

 Invocation response = registry.getResponse(true);
 if (response.getStatus() != Invocation.OK) {
 Dialog.alert("Unable to launch App World");
 }
 }

}

appId is the numeric application ID given when your application is submitted to the App
World Vendor Portal. You can find this ID when you click Edit on your application details
in the App World Vendor Portal.

Other Application Stores
App World is certainly getting most of the press these days, but one of the great things
about BlackBerry is that it’s an open platform—as we’ve seen, you can post your app on
your own web site, and there are several other application resellers that you can use
besides BlackBerry App World. We’ll mention a couple of the leading ones briefly, what
they offer, and how you can publish your application through them.

MobiHand
MobiHand sells applications for most mobile devices, including BlackBerry. It also
operates branded application stores for many other leading BlackBerry-related sites
such as BlackBerryCool (http://www.blackberrycool.com), BerryReview
(http://www.berryreview.com), BBGeeks (http://www.bbgeeks.com), CrackBerry
(http://www.crackberry.com), and others. All of this means that MobiHand has a large
audience and can help get your application noticed by more users.

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 233

MobiHand also produces an on-device app store client, called App Store for BlackBerry,
which operates in a similar way to BlackBerry App World—though it’s not quite as
elegant. It allows users to search and browse applications, descriptions, and reviews
and ratings, and it opens the mobile version of the MobiHand (or affiliate) web site for
download and purchase of the application through the BlackBerry browser.

Signing Up for a MobiHand Account
You can sign up for a MobiHand account at
http://corporate.mobihand.com/sda_dev.asp.

You’ll need much the same information as for an App World account, including your
company’s name, address, and other relevant information. A MobiHand developer
account is free, and you should be approved within about 24 hours.

MobiHand sells applications for devices other than BlackBerry, so if you plan to sell for
other platforms, indicate that in your submission. Obviously that is outside the scope of
this book!

Submitting and Managing Applications
The developer portal for MobiHand and all its associated stores is located at
http://www.mobireach.com. When your account is activated, log into the portal, and
select Products ➤ BlackBerry from the navigation bar to go to a list of your BlackBerry
products (Figure 9-10).

Figure 9-10. The MobiHand developer portal showing BlackBerry applications

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 234

Rather than walk through a whole application submission, we’ll just discuss the options
you have.

Product Types
There are three general types of product listings:

 Standard: Just a normal application listing.

 Master: A listing containing only pricing and application description
information but no application—this is the method to handle
applications with different builds for different device and OS
versions. Master products are never directly listed on MobiHand.

 Slave: A listing containing information specific to a build of an
application. The application must be associated with a master, so
you need to create the master beforehand. These are listed on
MobiHand with a name that’s a combination of the master name
and the slave differentiator. If your master is named My Applicaton,
specify your slave differentiator as something like “for Storm” to
have the product listing “My Application for Storm” listed on
MobiHand.

Pricing
You can set any price you want for your application. Leave the price field blank for free
applications. Prices are specified in USD and automatically converted to the other
supported currencies, but you can override these conversion amounts.

You can also set a promotional price, with an expiry date, to enable you to have limited
time sales on your applications.

Product Features
MobiHand will automatically determine which devices your application supports based
on what you choose (you can manually change supported devices later). Even if you
plan to manually change things later, it’s a good idea to be as accurate as possible here
so that when new devices are added they’ll be handled correctly with minimal
intervention on your part.

Activation
MobiHand supports several registration models, including free, paid, and a number of
licensing models.

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 235

Additional Selling and Pricing Features
MobiHand provides some powerful tools to help support different sales strategies,
including bundling applications together for one price, cross-selling (discounting later
application purchases if a customer has purchased one application), and coupons.

Other Sites
Two other sites that you may want to look at as additional places to distribute and sell
your applications are Handango (http://www.handango.com) and Handmark
(http://www.handmark.com). Both—like MobiHand—sell software for a range of mobile
devices, not just BlackBerry, and both may help you get your application into the hands
of more users.

Summary
In this chapter, we’ve finished our introduction to the world of BlackBerry
development by learning how to get an application distributed and loaded onto
users’ BlackBerry devices.

We looked at the basics of distributing an application on your own—including OTA
downloading and loading via the BlackBerry Desktop Manager. Then we looked at
BlackBerry App World, which lets you easily distribute your application and provides a
way for users to pay for it. We explored the App World APIs that let you integrate your
BlackBerry application with App World’s functionality in a number of useful ways.
Finally, we discussed third-party application stores, including MobiHand and others.

We’re now very nearly done. You now know enough to get started building the next
world-beating BlackBerry application. The next and final chapter will point you to a few
additional resources that you may find useful as you continue to explore and build your
knowledge of BlackBerry application development.

Download at WoweBook.Com

CHAPTER 9: Getting Your App Out There: Packaging and Publishing 236

Download at WoweBook.Com

 237

 Chapter

Next Steps
We’ve come quite a way since starting out on our journey. You may have started with

little or no knowledge of how to develop BlackBerry applications, but by this point you

should be familiar with the basics of developing user interfaces and creating

applications that use—among other things—persistent storage, wireless networking,

and location-based services.

At this point, you’re more than ready to start building the application of your dreams, but

of course there’s always more to know. The BlackBerry platform has been around for a

while and has changed quite a bit in that time. It continues to evolve today—like the rest

of the mobile world—at a faster pace than ever. BlackBerry App World is the first of

many great additions to the platform that will come to the platform in the next while.

Mobile application development is still in its infancy, and BlackBerry is going to be

around and growing with the mobile industry for a long time. So, part of your job as a

BlackBerry developer will be staying on top of everything that happens, learning and

evaluating new platform capabilities, and seeing if the new features would make your

applications even better.

Keeping Up-to-Date
The main source for up-to-date information about BlackBerry is the first one I mentioned

in this book, the BlackBerry Developer Zone:

http://www.blackberry.com/developers

Along with being the source for all your BlackBerry application development tools, the

Resources section contains a lot of useful information and should be among the first

places you turn to get a question answered:

http://www.blackberry.com/developers/resources

Among other things, the knowledge base, developer documentation (including

development guidelines, white papers, and online versions of the Javadocs), tutorials,

and videos are all very useful.

10

Download at WoweBook.Com

CHAPTER 10: Next Steps 238

Forums
Several useful developer forums exist. The first one to check is the official BlackBerry

Support Community Forms—specifically the Developer Forum:

http://www.blackberry.com/developers/forum

This forum is very active, and if you can’t find an answer there, posting a question will

usually at least let you find someone else who’s had the same problem.

In addition to the official forums, a couple of third parties host fairly active developer

forums, including BlackBerryForums:

http://www.blackberryforums.com/developer-forum/

Newsletters, Blogs, and Other Resources
All developers should subscribe to the BlackBerry Developer newsletter. It’s free and

delivers a new issue monthly:

https://www.blackberry.com/DeveloperUpdates/

A couple of useful blogs are also available. RIM in the last couple of months has

launched its own BlackBerry Developer’s Blog:

http://www.blackberry.com/developers/blog

This gives you the inside scoop from developers at RIM about a variety of development

topics.

The Inside BlackBerry blog can also be useful for general happenings with BlackBerry:

http://blogs.blackberry.com

Finally, I maintain a blog called Thinking BlackBerry:

http://www.thinkingblackberry.com/

The official web site for this book is also a good source for source code for all the

examples, errata, and other recent information:

http://www.beginningblackberry.com

If you can’t find an answer to your question, contact me through either of those last two

sites, and I’ll do my best to help solve your problem!

Farewell
That’s all! Thanks for reading all this way, and best of luck with all your BlackBerry

development in the future!

Download at WoweBook.Com

 239

Index

■ Special Characters
. . . (ellipsis), 96

■ A
Access Point Name (APN), 161

accounts

BlackBerry App World

prerequisites for, 222

signing up, 223

MobiHand, 233

activate method, 54

alternate entry points, creating, 58–60

altitude, Location API, 194, 196

ALX file, 219–220

animation

sublayout method, 128–129

verticalOffset variable, 127–128

animationStart method, 128

anonymous inner classes, 145

APN (Access Point Name), 161

App Store for BlackBerry, 233

App World API. See also BlackBerry App

World

getting properties for application, 230–

231

launching from application, 231–232

appendLabelText method, 52

Application Loader, Desktop Manager, 221

Application tab, Eclipse plug-in, 59

applications. See BlackBerry applications

appName parameter, 231

Assisted GPS mode, Location API, 195–197

automatic location update, 202

available() method, InputStream class, 190

Available Software tab, 7

■ B
Background class, 123–124

BackgroundFactory class, 123–124

backgrounding

detecting, 54–55

sending application to background, 55

battery life, GPS usage and, 202

BBGeeks Web site, 232

BerryReview Web site, 232

BES/MDS (BlackBerry Enterprise

Server/Mobile Data Service), 160–

161, 163, 184, 213

BIS. See BlackBerry Internet Service

BlackBerry App World, 221–232

accounts

prerequisites for, 222

signing up, 223

App World API

getting properties for application,

230–231

launching from application, 231–232

distributing applications, 223–225

license keys, 225

pricing, 226

submission process

description, 228

distribution, 228

export control, 226

main application data, 227–228

releases, 228–230

screenshots, 228

starting process, 226

BlackBerry applications

backgrounding

detecting, 54–55

sending application to background,

55

building, 13

different devices, 13

distributing, 14

Download at WoweBook.Com

Index 240

Hello World

creating with BlackBerry JDE, 17–32

creating with BlackBerry JDE Plug-in

for Eclipse, 32–41

icon, 43–45

setting title in project properties, 42

Java, 12

Javadocs, 47–48

life cycle

creating applications, 49

exiting applications, 50

invoking event thread, 50

processing events, 50

starting applications, 49

limited CPU and memory, 12

limited screen size, 13

loading from computer to device, 9

location-based

BlackBerry Maps, 205–212

GPS support, 193–194

Location API, 194–197

Location application, 197–205

network-enabled

connection methods, 159–163, 184–

186

determining network availability, 186–

188

MIDP connection framework, 165–

167

Networking application, 168–183

service book, 163–164

TCP socket connections, 188–191

overview, 14

project types

alternate entry points, 58–60

libraries, 56–58

MIDP and MIDlet projects, 61

publishing

BlackBerry App World, 221–232

desktop installation, 218–220

miscellaneous application stores, 232

MobiHand, 232–235

over-the-air installation, 215–218

setting application properties, 214–

215

storing data

FileConnection API, 133, 143–157

overview, 131

Persistent Store, 132–143

RMS, 132

Runtime Store, 132

SQLite, 133

threading

knowing when application is on event

thread, 51

updating UI from other, 51–53

user interface

animation, 127–129

with BlackBerry Storm, 125–127

components of, 64–73

fields, 90–105

fonts, 85–86

Graphics class, 87–89

managers, custom, 105–116

menus, 78–82

overview, 1, 13–14, 63–64, 83–84

polishing, 116–117, 122–124

screen, 117–122

user interaction, 74–77

BlackBerry Desktop Manager, 9, 218, 221

BlackBerry Developer Zone, 2, 8

BlackBerry Developer's Blog, 238

BlackBerry Enterprise Server/Mobile Data

Service (BES/MDS), 160–161, 163,

184, 213

BlackBerry Internet Service (BIS)

making connections, 185

overview, 162

BlackBerry Java Development Environment

(JDE)

code signing keys, 9–12

creating Hello World application with

application classes, 19–25

debugger, 28–32

with different JDE versions, 27–28

icon, 43–44

loading onto device, 28

overview, 17–18

project, 18–19

running simulator, 25–27

signing, 27

workspace, 18–19

installing, 3–5

overview, 3

versions of, 5–8

BlackBerry Java Development Environment

(JDE) Plug-in for Eclipse

creating Hello World application with

application classes, 35–37

debugging, 41

with different JDE versions, 40–41

icon, 45

Download at WoweBook.Com

Index 241

overview, 32–33

project, 33–34

running simulator, 37–40

signing, 40

installing, 5–6

overview, 3

BlackBerry Maps application, 205–212

displaying custom view, 209–210

embedding in UI, 210–212

invoking API, 206

launching default view, 206–207

location documents, 207–208

BlackBerry Persistent Store, 133–143

clearing persistent data

from device, 143

from simulator, 142

Hashtable object, 140

keys, 134

loading and saving data, 138–139, 141

modifying UI, 140

overview, 132

persistable objects, 135–136

PersistentObject, 134–135, 137

BlackBerry Runtime Store, 132

BlackBerry Storm

touch screen, 4

user interface, 125–127

BlackBerry Support Community Forums,

238

BlackBerryCool Web site, 232

blogs, 238

Bluetooth GPS receiver, external, 193

boolean flag, 202

breakpoints, 29–31, 39–40

buttons, 98–104

arranging horizontally, 72–73

Clear, UI Fun application, 75–76, 79–82

creating, 71–72

CustomButtonFields class, 99–100

event handling, 103–104

focus

drawing, 101–103

overview, 100–101

layout method, 98

Login, UI Fun application

defining new screen, 76–77

implementing menu items, 79–82

paint method, 99

■ C
C# language, 2

C++ language, 2

Cell Site mode, Location API, 194–196

CID identifier, 164

ClassNotFoundException exception, 86

CLDC application, 13, 197

Clear button, UI Fun application, 75–76, 79–

82

clearing persistent data

from device, 143

from simulator, 142

COD files

App World, 229

libraries, 56

MIME type, 217

over-the-air installation, 215–216

uploading, 217

code signing keys

getting, 9–10

installing, 10–12

registering with JDE, 11

colors

background, 124

focused button, 101

screen, 90–91

columns, 109–112

component pack, 7

concurrency, 51

Connection class, 165

Connector class, 146, 165

CONSUME_CLICK style flag, 154

content types (MIME types), 217

contentType method, 176

Convert [Selected Text] to long option, JDE,

134

Convert String to Long option, Eclipse plug-

in, 134

convertFieldToWorld methods method, 212

convertWorldToField method, 212

coordinates, location, 199

cost, Location API, 196

course (direction), Location API, 194, 196

COVERAGE_BIS_B value, 186

COVERAGE_DIRECT value, 186

COVERAGE_MDS value, 186

CoverageInfo class, 186

CrackBerry Web site, 232

Create new file dialog, JDE, 57

Criteria class, 195

CustomButtonField class, 98–99

Download at WoweBook.Com

Index 242

CustomButtonFields class, 99–100

CustomHashtable class, 143

CustomLabelField class, 90–94

customView method, 209

■ D
data storage. See storing data

DateField class, 140

deactivate method, 54

Debug perspective, 39–40

debugging, 28–32, 41

delegate managers, 88, 118

desktop installation, 213, 218–220

Desktop Manager, 9, 218, 221

Developer Forum, 238

developer portal, MobiHand, 233

Developer Zone, 2, 8

Developer's Blog, 238

direct TCP/IP

default, 163

making connections, 184–185

overview, 161

direction (course), Location API, 194, 196

Domain field and check box, UI Fun

application, 70–71

downloading applications, 218

drawBitmap method, 94

drawing to screen, 87–89

drawText method, 96

duplicate classes, 58

Dynamic Key license model, App World, 225

dynamic menu item, 152–153

■ E
Eclipse, using different JDE versions with,

6–8. See also BlackBerry JDE Plug-

in for Eclipse

ellipsis (. . .), 96

EncodedImage class, 148, 151

enterEventDispatcher() method, 50

Erase File System option, Eclipse plug-in,

142

event lock, 50, 53

event thread

invoking, 50

knowing when application is on, 51

events

handling, 74, 103–104

processing, 50

exit() method, 50

exiting applications, 50

export control, App World, 226

external GPS receivers, 193–194

■ F
FIELD_HCENTER style flag, 114

FIELD_LEFT style flag, 122

FIELD_RIGHT style flag, 106, 113

fieldChanged method, 121

FieldChangeListener class, 121

fieldChangeNotify method, 103

fields

adding, 120–121

button

arranging horizontally, 72–73

creating, 71–72

CustomButtonFields class, 99–100

event handling, 103–104

focus, 100–103

layout method, 98

paint method, 99

custom, 105

Domain field and check box, 70–71

field style flags, 69

label

aligning, 113–114

changing into member variables, 51

completing, 95–98

constructor, 90–91

CustomLabelField class, 90–94

images, adding, 93–94

layout method, 91

paint method, 92

testing, 92

password, 70

username, 70

file bundles, 229–230

FileConnection API, 143–157

Fixed32 numbers, 151–152

framework, 143–145

images

ImageDisplayScreen object, 148

loading from file system, 149

scaling, 151

testing in simulator, 149–151

viewing, 148

listing directory contents, 146–147

opening, 145–146

Download at WoweBook.Com

Index 243

overview, 133

writing to file system

copying files, 155–156

dynamic menu item, 152–153

FileNameScreen class, 154

FileConnectionApplication class, 144

FileConnectionScreen class, 144, 152

FileNameScreen class, 154

Fixed32 class, 151

focus

drawing, 101–103

GridFieldManager, 114–115

overview, 100–101

Font class, 85–86

FontFamily class, 85

fonts, 85–86

foregrounding, detecting, 54–55

forName method, 85

forums, 238

Free applications, App World, 224

■ G
Generate ALX file option

Eclipse plug-in, 219–220

JDE, 219–220

GET method, HTTP, 166

getAdvance method, 96

getCoverageStatus method, 186

getEventLock() method, 51

getHeight method, 91

getInstance method, 195

getPersistentObject method, 134

getPreferredHeight method, 95–96

getPreferredWidth method, 95, 97

getUiApplication() method, 49

getURL method, 172

getWidth method, 91

getWLANState method, 186

Global Positioning System (GPS) support,

193–194

Graphics class

laying out screen, 88–89

paint method, 87–88

painting to screen, 89

GridFieldManager object

aligning labels, 113–114

focus movement, 114–115

implementing framework, 108

overview, 108

sublayout method, 109–112

testing, 112–113

■ H
Handango Web site, 235

Handmark Web site, 235

Hashtable object, 140

header background

Background class, 123–124

BackgroundFactory class, 123–124

overview, 122–123

subclassing HorizontalFieldManager,

123

headers, HTTP, 167

height parameter, 88, 96

Hello World application, 17–46

creating with BlackBerry JDE

application classes, 19–25

debugger, 28–32

loading onto device, 28

overview, 17–18

project, 18–19

running simulator, 25–27

signing, 27

using different JDE versions, 27–28

workspace, 18–19

creating with BlackBerry JDE Plug-in for

Eclipse, 32–41

application classes, 35–37

debugging, 41

with different JDE versions, 40–41

project, 33–34

running simulator, 37–40

signing, 40

icon, 43–45

setting title in project properties, 42

HelloWorldApp class

backgrounding and foregrounding, 54

modifying constructor, 60

HelloWorldMainScreen class, 59

horizontal orientation, 125–126

HorizontalFieldManager class, 105, 122–123

HTML forms, 179

HTTP

headers, 167

methods, 166

Networking application, 169

requests and responses, 166

HttpConnection class, 171

HttpRequestDispatcher class

Download at WoweBook.Com

Index 244

displaying response failed notification,

172

HTTPS connections, 182

initiating connection, 172

modifying, 179–180

overview, 169–170

run method, 170–172

HTTPS (secure HTTP) connections, 181–183

HttpsConnection class, 182

■ I
icon, Hello World application

adding with JDE, 43–44

adding with JDE Plug-in for Eclipse, 45

IDE (integrated development environment), 5

ImageDisplayScreen class, 148

images

adding to label field, 93–94

ImageDisplayScreen object, 148

loading from file system, 149

scaling, 151

testing in simulator, 149–151

viewing, 148

inal variable, 127

Inside BlackBerry blog, 238

Install Signature Keys option, 10

installing

BlackBerry JDE, 3–8

BlackBerry JDE Plug-in for Eclipse, 5–6

code signing keys, 10–12

Desktop Manager, 9

simulators, 8

integrated development environment (IDE), 5

internal flash memory, 131, 133

internal GPS hardware, 194

invokeAndWait method, 51

invokeApplication method, 206

invokeLater method, 51, 172

isDirectory method, 147

isEventDispatchThread() method, 51

isFocus method, 102

isFocusable method, 101

■ J
JAD (Java application descriptor) files

App World, 229

MIME type, 217

over-the-air installation, 216–217

uploading, 217

Java, overview, 12

Java application descriptor files. See JAD

files

Java Development Environment (JDE). See

BlackBerry JDE

Java Development Environment (JDE) Plug-

in for Eclipse. See BlackBerry JDE

Plug-in for Eclipse

Java Development Kit (JDK), 4

Java EE (Java Enterprise Edition), 2

Java ME (Java Micro Edition), 2

Java SE (Java Standard Edition), 2

Java Specification Request 75 (JSR-75), 133

Javadocs, 47–48, 195

javax.microedition.content package, 231

javax.microedition.io.Connector class, 165

JDE. See BlackBerry JDE

JDE Plug-in for Eclipse. See BlackBerry JDE

Plug-in for Eclipse

JDK (Java Development Kit), 4

JSR (Java Specification Request) 75, 133

■ K
key database format, 10

Key Pool license model, App World, 224

key request form, 10

keyboard, 13

keyChar method, 104

KeypadListener class, 104

■ L
label fields

aligning, 113–114

changing into member variables, 51

completing, 95–98

constructor, 90–91

CustomLabelField class, 90–94

images, adding, 93–94

layout method, 91

paint method, 92

testing, 92

latitude, Location API, 194–195, 209

Launch Mobile Data Service (MDS) with

simulator option, JDE, 174

Launch Mobile Data System Connection

Service (MDS-CS) with simulator

option, Eclipse, 173

Download at WoweBook.Com

Index 245

layout method, 88, 91, 93, 97–98

layoutChild method, 109, 111

libraries

creating, 56–57

using in applications, 57–58

licensing, App World, 224–225

life cycle, application

creating applications, 49

exiting applications, 50

invoking event thread, 50

processing events, 50

starting applications, 49

loadFile method, 147–149

loading applications onto device, 28

loadProperty method, 231

Location API

altitude, 196

Assisted GPS mode, 195–197

Cell Site mode, 194–196

cost, 196

course, 196

longitudinal and latitudinal accuracy, 195

power consumption, 195

specifying modes, 195–197

speed, 196

Unassisted GPS mode, 195–197

Location application

LocationListener class, 202–205

overview, 197–201

location notifications, time interval for, 208

location-based services, 193–212

BlackBerry Maps

displaying custom view, 209–210

embedding in UI, 210–212

invoking API, 206

launching default view, 206–207

location documents, 207–208

overview, 205–206

GPS support, 193–194

Location API

altitude, 196

Assisted GPS mode, 195–197

Cell Site mode, 194–196

cost, 196

course, 196

longitudinal and latitudinal accuracy,

195

power consumption, 195

specifying modes, 195–197

speed, 196

Unassisted GPS mode, 195–197

Location application

LocationListener class, 202–205

overview, 197–201

LocationListener class, 202–205

LocationMainScreen object, 206

locationUpdated method, 202

Login button, UI Fun application

defining new screen, 76–77

implementing menu items, 79–82

LoginSuccessScreen class, 116–117

logo image

adding to project, 66–67

adding to screen, 67–68

field style flags, 69

long value, using as keys, 134

longitude, Location API, 194–195, 209

■ M
main method, 49

MainScreen class, 23–25

MainScreenUpdaterThread class

changing run method, 53

creating, 52

makeMenu method, 145, 153

Manager class, 108

managers, custom

GridFieldManager object

aligning labels, 113–114

focus movement, 114–115

implementing framework, 108

overview, 108

sublayout method, 109–112

testing, 112–113

overview, 105–108

manual location update, 202

Maps application. See BlackBerry Maps

application

Master product listing, MobiHand, 234

MDS. See Mobile Data Service

memory, limited, 12

menus, 78–82

MIDlet projects, 61

MIDP (Mobile Information Device Profile)

connection framework

connection types, 165–166

Connector class, 165

HTTP, 166–167

Test Web application, 167

projects, 61

MIME types (content types), 217

Download at WoweBook.Com

Index 246

MobiHand

overview, 232–233

signing up for accounts, 233

submitting and managing applications

activation, 234

overview, 233–234

pricing, 234–235

product features, 234–235

product types, 234

Mobile Data Service (MDS)

BES/MDS, 160–161, 163, 184, 213

simulator

launching manually, 174

overview, 173

running application in, 175–176

Mobile Information Device Profile. See MIDP

■ N
navigationClick method, overriding, 103

navigationMovement method, overriding,

115

network-enabled applications, 159–192

connection methods

BES/MDS, 160–161

BIS, 162, 185

direct TCP/IP, 161, 184–185

overview, 159–160

WAP, 162–163

WAP 2.0, 184–185

WiFi, 162, 185–186

determining network availability, 186–

188

MIDP connection framework

connection types, 165–166

Connector class, 165

HTTP, 166–167

Test Web application, 167

Networking application

controls, 168–169

HTTP connection, 169

HttpRequestDispatcher class, 169–

172

sending data via HTTP POST, 179–

183

testing, 173–179

service book, 163–164

TCP socket connections

adding socket support to main

screen, 190

simple, 188–190

testing, 190–191

Networking application

controls, 168–169

HTTP connection, 169

HttpRequestDispatcher class

displaying response failed

notification, 172

initiating connection, 172

overview, 169–170

Run method, 170–172

sending data via HTTP POST

HTML forms, 179

HttpRequestDispatcher, 179–180

NetworkingMainScreen, 180–181

secure HTTP connections, 181–183

testing

handling successful requests, 176–

177

MDS simulator, 173–174

running application, 175–176

NetworkingApplication class, 168

NetworkingMainScreen class, 168, 170, 172,

180–181

newsletters, 238

NumericChoiceField class, 140

■ O
Objective-C language, 2

ObjectListField class, 145

object-oriented language, 2

onFocus method, 102

onUnfocus method, 102

operating system (OS), 4

over-the-air (OTA) installation

content types, 217

downloading applications, 218

JAD files, 216–217

overview, 213

sibling COD files, 215–216

uploading applications, 217

■ P
Paid applications, App World, 224–225

paint method

BlackBerry Maps application, 212

button fields, 99

label fields, 92, 94

overview, 87–89

Download at WoweBook.Com

Index 247

speed of, 89

paintBackground method, 121

painting

background, 121–122

to screen, 89

password

private key, 10

UI Fun application, 70

PayPal, signing up for, 222

Persistable application

loading data, 138

overview, 136–137

PersistentObject, 137

save method, 138–139

Persistable class, 135, 143

PersistenceScreen class, 137, 140

Persistent Store. See BlackBerry Persistent

Store

PersistentObject object, 134–137

Personal Information Management (PIM)

APIs, 133

pictures directory, 149–150

PNG images, 227

points, font, 86

PopupScreen class, 118, 154

port numbers, 189

POST method, HTTP

HTML forms, 179

HttpRequestDispatcher, 179–180

NetworkingMainScreen, 180–181

overview, 166

secure HTTP connections, 181–183

postData variable, 179

postURL method, 180

power consumption

GPS usage, 202

Location API, 195

pricing, MobiHand, 234–235

processing events, 50

processor speed, 13

Project References option, Eclipse plug-in,

57

projects

Hello World application, 33–34

types of, 56–61

alternate entry point, 58–60

libraries, 56–58

MIDP and MIDlet, 61

Properties dialog

Eclipse plug-in, 56, 214

JDE, 215

propertyName parameter, 231

providerStateChanged method, 202

public/private key pair, 10

publishing applications, 213–235

BlackBerry App World

accounts, 222–223

App World API, 230–232

distributing applications, 223–225

license keys, 225

overview, 221–222

pricing, 226

submission process, 226–230

desktop installation, 218–220

miscellaneous application stores, 232

MobiHand

overview, 232–233

signing up for accounts, 233

submission process, 233–235

over-the-air installation

content types, 217

downloading applications, 218

JAD files, 216–217

sibling COD files, 215–216

setting application properties, 214–215

pushModalScreen method, 155

■ Q
qualified location, 201

QualifiedCoordinates class, 201

QWERTY keyboards, 13

■ R
RAM, 12

rapid application development (RAD), 1

Record Management System (RMS), 132

relative positioning, 125

requestBackground() method, 55

requestFailed method, 172, 175

requests, HTTP, 166, 176–177

Research in Motion (RIM), 1, 8

Resources section, 237

response codes, HTTP, 166, 176

RichTextField class, 168–169, 176

RIM (Research in Motion), 1, 8

RIM_APP_WORLD_EMAIL value, 231

RIM_APP_WORLD_ID value, 231

RIM_APP_WORLD_LICENSE_KEY value,

231

Download at WoweBook.Com

Index 248

RIM_APP_WORLD_NAME value, 231

RIM_APP_WORLD_PIN value, 231

RIM_APP_WORLD_UPDATE_AVAIL value,

231

RIM_APP_WORLD_VERSON value, 231

RMS (Record Management System), 132

RRGGBB format, 91

run method, 170–172, 204

Runtime Store, 132

■ S
save method, 138, 141

Save prompt, Persistence application, 139

scaling images, 151

screen

adding fields, 120–121

delegate managers, 118

drawing to, 87–89

laying out, 88–89

limited size, 13

overview, 117–118

painting background, 121–122

painting to, 89

resolution, 13

sublayout method, 119–120

Screen class, 118

screenshots, App World, 228

SD cards, 131, 133

secure HTTP (HTTPS) connections, 181–183

secure socket (TLS and SSL) connections,

183

service book, 163–164

setContents method, 141

setExtent method, 109

setFont method, 86

setGlobalAlpha method, 102

setPosition method, 119

setPositionChild method, 109, 111

setRequestProperty method, 180

signing applications, 27, 40

sigtool.csk file, 11

sigtool.db file, 11

sigtool.set file, 11

simulators

changing, 28–29

clearing persistent data from, 142

downloading additional, 8

installing, 8

MDS

launching manually, 174

overview, 173

running applications in, 175–176

running applications in, 25–27, 37–40

screenshots, 228

testing images, 149–151

Simulators Download page, 8

Single Key license model, App World, 224

Slave product listing, MobiHand, 234

SocketConnection class, 188

software updates dialog, Eclipse plug-in, 7

speed

Location API, 194, 196

paint method, 89

processor, 13

SQLite, 133

SSL (secure socket) connections, 183

Standard product listing, MobiHand, 234

starting applications, 49

statement of identification, 222

Static license model, App World, 224

storing data, 131–157

FileConnection API

Fixed32 numbers, 151–152

framework, 143–145

images, 148–151

listing directory contents, 146–147

opening, 145–146

overview, 133

writing to file system, 152–157

overview, 131

Persistent Store

clearing persistent data, 142–143

Hashtable object, 140

keys, 134

loading and saving data, 141

modifying UI, 140

overview, 132–133

Persistable application, 136–139

persistable objects, 135–136

PersistentObject, 134–135

RMS, 132

Runtime Store, 132

SQLite, 133

Storm

touch screen, 4

user interface, 125–127

String class, 142, 145

style flags, 69

sublayout method

animation, 128–129

GridFieldManager, 108–112

Download at WoweBook.Com

Index 249

screen, 88, 119–120

submission process

BlackBerry App World

description, 228

distribution, 228

export control, 226

main application data, 227–228

releases, 228–230

screenshots, 228

starting process, 226

MobiHand

activation, 234

additional features, 235

overview, 232–233

pricing, 234

product features, 234

product types, 234

SureType keyboard, 13

■ T
TCP socket connections

adding socket support to main screen,

190

simple, 188–190

testing, 190–191

TCP/IP, direct

default, 163

making connections, 184–185

overview, 161

Test Web application, 167

testing

GridFieldManager, 112–113

label field, 92

Networking application

handling successful requests, 176–

177

MDS simulator, 173–174

running, 175–176

Thinking BlackBerry blog, 238

third party forums, 238

threading

event thread

invoking, 50

knowing when application is on, 51

updating UI from other, 51–53

time interval, location notifications, 208

title, setting in project properties, 42

TLS (secure socket) connections, 183

touch screen, BlackBerry Storm, 4

trackball, 13

transitions, 127

transparency, 102

Try & Buy applications, App World, 224–225

■ U
UI. See user interface

UI Fun application

animation

sublayout method, 128–129

verticalOffset variable, 127–128

with BlackBerry Storm, 125–127

components of

buttons, 71–73

creating application, 65–66

fields, 69–73

logo image, 66–69

overview, 64–65

fields

button, 98–104

event handling, 104–105

label, 90–98

fonts, 85–86

Graphics class

laying out screen, 88–89

paint method, 87–88

painting to screen, 89

managers, custom

GridFieldManager, 108–116

overview, 105–108

menus

implementing items, 79–82

types of items, 78

overview, 63–64, 83–84

polishing

header background, 122–124

LoginSuccessScreen class, 116–117

screen

adding fields, 120–121

delegate managers, 118

overview, 117–118

painting background, 121–122

sublayout method, 119–120

user interaction

Clear button, 75–76

Login button, 76–77

UI events, 74

UiApplication class, 22–23, 49

UID identifier, 164

Unassisted GPS mode, Location API, 195–

197

Download at WoweBook.Com

Index 250

unqualified Coordinates class, 201

uploading applications, over-the-air

installation, 217

URLEncodedPostData class, 180

USE_ALL_WIDTH style flag, 97, 116

user interface (UI)

animation

sublayout method, 128–129

verticalOffset variable, 127–128

with BlackBerry Storm, 125–127

components of

buttons, 71–73

creating application, 65–66

fields, 69–73

logo image, 66–69

overview, 64–65

fields

button, 98–104

event handling, 104–105

label, 90–98

fonts, 85–86

Graphics class

laying out screen, 88–89

paint method, 87–88

painting to screen, 89

managers, custom

GridFieldManager, 108–116

overview, 105–108

menus

implementing items, 79–82

types of items, 78

overview, 1, 13–14, 63–64, 83–84

polishing

header background, 122–124

LoginSuccessScreen class, 116–117

screen

adding fields, 120–121

delegate managers, 118

overview, 117–118

painting background, 121–122

sublayout method, 119–120

user interaction

Clear button, 75–76

Login button, 76–77

UI events, 74

username field, UI Fun application, 70

■ V
Vendor Portal, App World, 223

vertical orientation, 125–126

VerticalFieldManager class, 106, 119

verticalOffset method, 127–128

virtual machine (VM), Java, 12

■ W
WAP (Wireless Application Protocol)

2.0, 162–163, 184–185

overview, 163

width parameter, 88, 91

WiFi

making connections, 185–186

overview, 162

Wireless Application Protocol. See WAP

wireless networking, 14, 196

WLANInfo class, 186

workspace, Hello World application, 18–19

■ X
XML document format, 207

■ Z
zip files, 216

zoom level, 209

Download at WoweBook.Com

	Beginning BlackBerry Development
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Setting the Stage
	What You Need to Know Before You Can Begin
	Setting Up Your Development Environment
	Installing the BlackBerry JDE
	Other JDE Versions
	Installing the BlackBerry JDE Plug-in for Eclipse
	Using Other JDE Versions with Eclipse
	Downloading Additional Simulators
	Installing Desktop Software
	Installing Your Code Signing Keys
	Installing the Signing Keys for Different JDE Versions

	What’s Different About Developing for BlackBerry
	What’s in This Book

	Hello World
	Creating an Application with the BlackBerry JDE
	UiApplication
	Adding Basic Fields
	Changing Simulators and Settings
	Setting Breakpoints
	Debugging on a BlackBerry Device

	Creating an Application with the BlackBerry JDE Plug-in for Eclipse
	Creating the Main Application Class
	Creating the Main Screen Class
	Filling in the Hello World Classes
	Using Breakpoints and the Debug Perspective

	Polishing the Application
	Adding an Icon with the JDE
	Adding an Icon with the JDE Plug-in for Eclipse

	Summary

	What Makes a BlackBerry
	Application?
	Javadocs
	The BlackBerry Application Life Cycle
	Threading and the Event Thread
	Using the Event Lock

	Running Background Applications
	Understanding the Types of Projects
	Creating a Library
	Using Libraries in Your Application

	Summary

	User Interface Basics
	The UI Fun Application
	The Components of a BlackBerry UI
	Adding the Image to the Project
	Adding the Image to the Screen
	Field Style Flags
	Creating the Username and Password Fields
	Creating the Domain Field and Check Box
	Creating the Buttons
	Arranging the Buttons Horizontally

	Handling User Interaction
	Defining a New Screen

	Creating Menus
	Supporting Different Menu Instances

	Summary

	Beyond the Basics of User
	Interfaces
	Enhancing the UI Fun Application
	Working with Fonts
	Drawing to the Screen Using the Graphics Context
	Laying Out the Screen
	Painting to the Screen

	Creating Custom Fields
	Creating the Basic Field Class
	Creating a Constructor
	Adding the layout Method
	Adding the paint Method
	Trying Out the Label Field
	Adding an Image
	Trying the new CustomLabelField
	Tying Up Some Loose Ends
	Laying Out the Interface
	Painting the Buttons
	Taking a Look
	Making the Button Focusable
	Drawing the Focus
	Handling Events

	Creating Custom Managers
	Understanding GridFieldManager
	Implementing the Basic Framework
	Implementing the sublayout Method
	Seeing the Grid Field Manager in Action
	Aligning the Labels
	Focus Movement

	Creating a Custom Screen
	Adding the Final Touches
	Subclassing HorizontalFieldManager
	Using Background and BackgroundFactory

	Working with the BlackBerry Storm
	Creating Basic Animation
	Summary

	Storing Data
	Storing Data on the BlackBerry
	Choices for Persistence
	BlackBerry Persistent Store
	The Persistent Object
	Loading the Data
	The Save Method
	Modifying the UI
	Using a Hashtable
	Loading and Saving the Data
	Clearing the Old Persistent Data from the Simulator

	The FileConnection API
	Basic Application Framework
	Opening a File Connection
	Listing the Directory Contents
	Viewing Pictures
	The Image Display Screen
	Loading Images from the File System
	Getting Images into the Simulator
	Scaling the Image
	A Dynamic Menu Item
	The File Name Screen
	Copying the File

	Summary

	Hello Out There! Making a
	Network-Enabled Application
	Different Ways to Connect
	Service Book
	The MIDP Connection Framework
	Request and Response
	Methods
	Headers

	The Networking Application
	The Run Method
	Initiating the Connection
	Displaying the Response Failed Notification
	The MDS Simulator
	Launching the MDS Manually
	Running the Application
	Handling Successful Requests
	Try It
	How an HTML Form Works
	Modifying HttpRequestDispatcher
	Modifying NetworkingMainScreen
	Making Secure HTTP (HTTPS) Connections
	Summary: HTTP Networking

	Connection Method: Using Direct TCP/IP Instead of BES/MDS
	Determining Network Availabilty
	TCP Socket Connections
	A Simple Socket Application
	Adding Socket Support to the Main Screen
	Testing It

	Summary

	Where Am I?
	Using Location-Based Services
	GPS Support on BlackBerry Devices
	The Location API
	Cell Site
	Assisted GPS
	Unassisted GPS
	Longitudinal and Latidunal Accuracy
	Power Consumption
	Altitude and Speed and Course
	Cost
	To Use Cell Site Location
	To Use Assisted GPS Location
	To Use Assisted and Unassisted Modes
	To Use Only Unassisted Mode

	The Location Application
	Using BlackBerry Maps
	Summary

	Getting Your App Out
	There: Packaging and Publishing
	Setting Application Properties
	Over-the-Air Installation
	Desktop Installation
	BlackBerry App World
	Prerequisites
	Signing Up
	Licensing Options
	License Keys for Try & Buy Apps
	License Keys for Paid Apps
	Starting the Process
	Step 1: Export Control
	Step 2: Main Application Data
	Step 3: Description
	Step 4: Distribution
	Step 5: Screenshots
	Step 6: Releases
	Step 7: Summary
	Done
	Getting App World Properties for Your Application
	Launching App World from Your Application

	Other Application Stores
	MobiHand
	Product Types
	Pricing
	Product Features
	Activation
	Additional Selling and Pricing Features

	Summary

	Next Steps
	Keeping Up-to-Date
	Farewell

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

