
ptg

From the Library of Lee Bogdanoff

ptg

Refactoring

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

The Addison-Wesley Professional Ruby Series provides readers

with practical, people-oriented, and in-depth information about

applying the Ruby platform to create dynamic technology solutions.

The series is based on the premise that the need for expert reference

books, written by experienced practitioners, will never be satisfied solely

by blogs and the Internet.

Visit informit.com/ruby for a complete list of available products.

Addison-Wesley

Professional Ruby Series
Obie Fernandez, Series Editor

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Refactoring
Ruby Edition

Jay Fields
Shane Harvie
Martin Fowler

with Kent Black

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Cape Town • Sydney • Tokyo • Singapore • Mexico City

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The authors and publisher have taken care in the preparation of this
book, but make no expressed or implied warranty of any kind and
assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered
in quantity for bulk purchases or special sales, which may include
electronic versions and/or custom covers and content particular to your
business, training goals, marketing focus, and branding interests. For
more information, please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419

corpsales@pearsontechgroup.com

For sales outside the United States please contact:

 International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Fields, Jay, 1979-

 Refactoring / Jay Fields, Shane Harvie, and Martin Fowler. -- Ruby ed.

 p. cm.

 ISBN-13: 978-0-321-60350-0 (hardback : alk. paper)

 ISBN-10: 0-321-60350-8 (hardback : alk. paper) 1. Software refactoring. 2. Ruby (Computer
program

language) I. Harvie, Shane, 1980- II. Fowler, Martin, 1963- III. Title.

 QA76.76.R42F54 2010

 005.1’17--dc22

 2009027577

Copyright © 2010 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

 Pearson Education, Inc.
 Rights and Contracts Department
 501 Boylston Street, Suite 900
 Boston, MA 02116
 Fax (617) 671 3447

ISBN-13: 978-0-321-60350-0

ISBN-10: 0-321-60350-8

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana .

First printing October 2009

Associate Publisher
Mark Taub

Acquisitions Editor
Greg Doench

Managing Editor
Kristy Hart

Project Editor
Andy Beaster

Copy Editor
Geneil Breeze

Indexer
Erika Millen

Proofreader
Jennifer Gallant

Technical Reviewers
Chad Fowler
Clinton Begin
Justin Gehtland

Publishing
Coordinator
Michelle Housley

Cover Designer
Chuti Prasertsith

Compositor
Jake McFarland

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

“To Dana, the love of my life, thank you for your endless patience

and support”

—Jay Fields

“To Jan, my sounding board for many a bad idea and questionable opinion,

thank you for never judging”

—Shane Harvie

“For Cindy”

—Martin Fowler

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Contents

Foreword . xiii

Preface .xv

Acknowledgments . xx

About the Authors . xxii

Chapter 1: Refactoring, a First Example . 1

The Starting Point. 2

The First Step in Refactoring . 6

Decomposing and Redistributing the Statement Method 7

Replacing the Conditional Logic on Price Code with Polymorphism 32

Final Thoughts . 50

Chapter 2: Principles in Refactoring . 51

Where Did Refactoring Come From? . 51

Defining Refactoring. 52

Why Should You Refactor?. 54

When Should You Refactor? . 57

Why Refactoring Works . 60

What Do I Tell My Manager? . 61

Indirection and Refactoring . 61

Problems with Refactoring . 63

Refactoring and Design. 67

It Takes A While to Create Nothing . 69

Refactoring and Performance . 70

Optimizing a Payroll System . 71

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Contentsviii

Chapter 3: Bad Smells in Code . 73

Duplicated Code . 74

Long Method . 74

Large Class . 76

Long Parameter List . 76

Divergent Change . 77

Shotgun Surgery . 78

Feature Envy. 78

Data Clumps. 79

Primitive Obsession . 79

Case Statements . 80

Parallel Inheritance Hierarchies . 81

Lazy Class. 81

Speculative Generality. 81

Temporary Field . 82

Message Chains . 82

Middle Man . 83

Inappropriate Intimacy . 83

Alternative Classes with Different Interfaces. 83

Incomplete Library Class . 84

Data Class . 84

Refused Bequest . 84

Comments . 85

Metaprogramming Madness . 86

Disjointed API . 86

Repetitive Boilerplate . 86

Chapter 4: Building Tests . 87

The Value of Self-Testing Code . 87

The Test::Unit Testing Framework . 88

Developer and Quality Assurance Tests . 91

Adding More Tests . 92

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Contents ix

Chapter 5: Toward a Catalog of Refactorings. 97

Format of the Refactorings . 97

Finding References . 99

Chapter 6: Composing Methods . 101

Extract Method . 102

Inline Method . 108

Inline Temp. 110

Replace Temp with Query. 111

Replace Temp with Chain . 114

Introduce Explaining Variable. 117

Split Temporary Variable . 121

Remove Assignments to Parameters . 124

Replace Method with Method Object. 127

Substitute Algorithm. 131

Replace Loop with Collection Closure Method 133

Extract Surrounding Method . 135

Introduce Class Annotation . 139

Introduce Named Parameter . 142

Remove Named Parameter . 147

Remove Unused Default Parameter. 150

Dynamic Method Definition . 152

Replace Dynamic Receptor with Dynamic Method
Definition . 158

Isolate Dynamic Receptor . 160

Move Eval from Runtime to Parse Time . 165

Chapter 7: Moving Features Between Objects. 167

Move Method. 167

Move Field . 172

Extract Class. 175

Inline Class . 179

Hide Delegate . 181

Remove Middle Man . 185

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Contentsx

Chapter 8: Organizing Data . 187

Self Encapsulate Field . 188

Replace Data Value with Object . 191

Change Value to Reference . 194

Change Reference to Value . 198

Replace Array with Object . 201

Replace Hash with Object . 206

Change Unidirectional Association to Bidirectional 210

Change Bidirectional Association to Unidirectional 213

Replace Magic Number with Symbolic Constant 217

Encapsulate Collection . 219

Replace Record with Data Class . 224

Replace Type Code with Polymorphism . 225

Replace Type Code with Module Extension . 232

Replace Type Code with State/Strategy . 239

Replace Subclass with Fields . 251

Lazily Initialized Attribute . 255

Eagerly Initialized Attribute . 257

Chapter 9: Simplifying Conditional Expressions 261

Decompose Conditional . 261

Recompose Conditional . 264

Consolidate Conditional Expression . 265

Consolidate Duplicate Conditional Fragments . 268

Remove Control Flag . 269

Replace Nested Conditional with Guard Clauses 274

Replace Conditional with Polymorphism . 279

Introduce Null Object. 284

Introduce Assertion. 292

Chapter 10: Making Method Calls Simpler. 297

Rename Method . 298

Add Parameter . 300

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Contents xi

Remove Parameter . 302

Separate Query from Modifier . 303

Parameterize Method . 307

Replace Parameter with Explicit Methods . 310

Preserve Whole Object . 313

Replace Parameter with Method. 317

Introduce Parameter Object . 320

Remove Setting Method . 324

Hide Method . 327

Replace Constructor with Factory Method . 328

Replace Error Code with Exception . 332

Replace Exception with Test . 337

Introduce Gateway . 341

Introduce Expression Builder . 346

Chapter 11: Dealing with Generalization . 353

Pull Up Method . 353

Push Down Method . 356

Extract Module. 357

Inline Module . 362

Extract Subclass . 363

Introduce Inheritance . 368

Collapse Heirarchy . 371

Form Template Method . 372

Replace Inheritance with Delegation. 386

Replace Delegation with Hierarchy. 389

Replace Abstract Superclass with Module. 392

Chapter 12: Big Refactorings . 397

The Nature of the Game . 397

Why Big Refactorings Are Important . 398

Four Big Refactorings . 398

Tease Apart Inheritance . 399

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Contentsxii

Convert Procedural Design to Objects . 405

Separate Domain from Presentation . 406

Extract Hierarchy . 412

Chapter 13: Putting It All Together. 417

References . 421

Index. 423

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Foreword

I remember what it was like to learn object-oriented (OO) programming; As
I learned OO, I was left with a low-grade tension—a feeling that I was missing
something. Some new concepts felt simple and familiar in a way that told you
there was a depth underlying them waiting to be discovered. That can be an
unsettling feeling.

I read the literature on design patterns with great interest but, disappoint-
ingly, derived little enlightenment. I talked to other developers, browsed the
Web, read books, and perused source code but remained convinced that there
was something important that wasn’t coming through. I understood how the
tools of object orientation worked, but I was unable to apply them in a way that
felt right to me.

Then I picked up the first edition of this book.
Software is not created in one inspired moment. The usual focus on the arti-

facts of the development process obscures the fact that software development
is in fact a process. More specifically, as Refactoring taught me, it is a series of
small decisions and actions all made through the filter of a set of values and the
desire to create something excellent.

Understanding that software development is a constant activity and not a
static event helps us to remember that code can and should be organic. Good
code is easy to change. Bad code can incrementally be made easier to change.
Code that’s easy to change is fun to work with. Code that’s hard to change is
stressful to work with. And the more changes you make, without refactoring it,
the more stressful working with it becomes.

So becoming a software developer is less about what good code is than about
how to make good code. Software doesn’t just spring into being. It’s created by
humans, one keystroke at a time. Refactoring is the book from which I learned
how to do that process well. It taught me how to sit down and write great code,
one tiny piece at a time.

When I initially read Refactoring, I was on a small team whose responsibility
was to help larger groups write better software. At meetings and code reviews,

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Forewordxiv

I would carry the hard-covered book around with me, wielding it as both a
weapon and a shield. I was passionate about my job and (more strongly) the
craft of software development, and I’m sure that the developers we worked with
often dreaded the sight of me and this book heading toward their cubicles. I
didn’t so much refer to the book’s contents in these meetings as just have it with
me as a reminder of what it represented for me: Our work can be great if we
always remember that it should be great and we take the simple steps to make
it great.

Looking back on that time with the advantage of hindsight, I realize that the
languages and tools we were using were working against us. The techniques
in this book were born out of Smalltalk development. In a dynamic environ-
ment, refactoring flourishes. So it’s only fitting that they should be reborn here
in Ruby. As a longtime Rubyist it is thrilling to see the book that made such a
profound difference for me become available to developers who speak Ruby as
their primary programming language.

Refactoring: Ruby Edition will serve as a guiding light for a new generation
of Rubyists who will learn to create better, more flexible software and (I hope)
to love the craft of software development as much as I have.

—Chad Fowler
Co-Director, Ruby Central, Inc.
CTO, InfoEther, Inc.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Preface

Just over a decade ago I (Martin) worked on a project with Kent Beck. This
project, called C3, became rather known as the project that marked the birth of
extreme programming and helped fuel the visibility of what we now know as
the agile software movement.

We learned a lot of things on that project, but one thing that particularly
struck me was Kent’s methodical way of continually reworking and improv-
ing the design of the system. I had always been a fan of writing clear code, and
felt it was worthwhile to spend time cleaning up problematic code to allow a
team to develop features swiftly. Kent introduced me to a technique, used by
a number of leading Smalltalkers, that did this far more effectively than I had
done it before. It’s a technique they called refactoring, and soon I wanted to
talk about it wherever I went. However, there was no book or similar resource I
could point people to so that they could learn about this technique themselves.
Kent and the other Smalltalkers weren’t inclined to write one, so I took on the
project.

My Refactoring book was popular and appears to have played a significant
role in making refactoring a mainstream technique. With the growth of Ruby
in the past few years, it made sense to put together a Ruby version of the book,
this is where Jay and Shane stepped in.

What Is Refactoring?

Refactoring is the process of changing a software system in such a way that it
does not alter the external behavior of the code yet improves its internal struc-
ture. It is a disciplined way to clean up code that minimizes the chances of intro-
ducing bugs. In essence when you refactor you are improving the design of the
code after it has been written.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Prefacexvi

Many people find the phrase improving the design after it has been written
rather odd. For many years most people believed that design comes first, and
the coding comes second. Over time the code gets modified, and the integrity
of the system, its structure according to that design, gradually fades. The code
slowly sinks from engineering to hacking.

Refactoring is the opposite of this practice. With refactoring you can take a
bad design, chaos even, and rework it into well-designed code. Each step is sim-
ple, even simplistic. You move an instance variable from one class to another,
pull some code out of a method to make into its own method, and push some
code up or down a hierarchy. Yet the cumulative effect of these small changes
can radically improve the design. It is the exact reverse of the normal notion of
software decay.

With refactoring you find the balance of work changes. You find that design,
rather than occurring all up front, occurs continuously during development.
You learn from building the system how to improve the design. The resulting
interaction leads to a program with a design that stays good as development
continues.

What’s in This Book?

This book is a guide to refactoring; it is written for a professional Ruby
programmer. Our aim is to show you how to do refactoring in a controlled and
efficient manner. You learn to refactor in such a way that you don’t introduce
bugs into the code but instead methodically improve the structure.

It’s traditional to start books with an introduction. Although I agree with
that principle, I don’t find it easy to introduce refactoring with a generalized
discussion or definitions. So we start with an example. Chapter 1 takes a small
program with some common design flaws and refactors it into a more accept-
able object-oriented program. Along the way we see both the process of refac-
toring and the application of several useful refactorings. This is the key chapter
to read if you want to understand what refactoring really is about.

In Chapter 2 we cover more of the general principles of refactoring, some
definitions, and the reasons for doing refactoring. We outline some of the prob-
lems with refactoring. In Chapter 3 Kent Beck helps us describe how to find
bad smells in code and how to clean them up with refactorings. Testing plays
an important role in refactoring, so Chapter 4 describes how to build tests into
code with a simple testing framework.

The heart of the book, the catalog of refactorings, stretches from Chapter
5 through Chapter 12. This is by no means a comprehensive catalog. It is the

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Preface xvii

beginning of such a catalog. It includes the refactorings that we have written
down so far in our work in this field. When we want to do something, such as
Replace Conditional with Polymorphism, the catalog reminds us how to do it
in a safe, step-by-step manner. We hope this is the section of the book you come
back to often.

Refactoring in Ruby

When I wrote the original Refactoring book, I used Java to illustrate the
techniques, mainly because Java was a widely read language. Most of the refac-
toring techniques apply whatever the language, so many people have used the
original book to help them in their refactoring outside Java.

But obviously it helps you to learn refactoring in the language that you mostly
program in. With many people learning the Ruby language, and with refactor-
ing being a core part of the Ruby culture, we felt it was particularly important
to provide a way for Rubyists to learn about refactoring—particularly if they
don’t have a background in curly-brace languages.

So Jay and Shane took on the task of going through my original book, and
reworking it for Ruby. They started with the original text and meticulously
went through it to remove all the Javaisms and rework the text to make sense in
a Ruby context. They are experienced Ruby programmers who also have a good
background in Java and C#, so they have the right background to do this well.

They also added some new refactorings that are particular to Ruby. Truth be
told most of the refactorings are the same as those you need in any other object-
oriented language, but there are a few new ones that come into play.

Who Should Read This Book?

This book is aimed at a professional programmer, someone who writes soft-
ware for a living. The examples and discussion include a lot of code to read and
understand.

Although it is focused on the code, refactoring has a large impact on the
design of a system. It is vital for senior designers and architects to understand
the principles of refactoring and to use them in their projects. Refactoring is best
introduced by a respected and experienced developer. Such a developer can best
understand the principles behind refactoring and adapt those principles to the
specific workplace.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Prefacexviii

Here’s how to get the most from this book without reading all of it.

• If you want to understand what refactoring is, read Chapter 1; the exam-
ple should make the process clear.

• If you want to understand why you should refactor, read the first two
chapters. They will tell you what refactoring is and why you should do it.

• If you want to find where you should refactor, read Chapter 3. It tells you
the signs that suggest the need for refactoring.

• If you want to actually do refactoring, read the first four chapters com-
pletely. Then skip-read the catalog. Read enough of the catalog to know
roughly what is in there. You don’t have to understand all the details.
When you actually need to carry out a refactoring, read the refactoring
in detail and use it to help you. The catalog is a reference section, so you
probably won’t want to read it in one go.

We wrote this book assuming you haven’t come across refactoring before and
haven’t read the original book, so you can treat this as a fully blown introduc-
tion to the subject. You start with either this book or the original, depending on
which language you prefer as your focus.

I Have the Original Book—Should I Get This?

Probably not. If you’re familiar with the original book you won’t find a lot
of new material here. You’ll need to adjust the original refactorings to the Ruby
language, but if you’re like us you shouldn’t find that an inordinate challenge.

There are a couple of reasons where we think an owner of the original book
might consider getting a copy of the Ruby edition. The first reason is if you’re
not too familiar with Java and found the original book hard to follow because
of that unfamiliarity. If so we hope you find a Ruby-focused book easier to
work with. The second reason is if you’re leading a Ruby team that has people
who would struggle with the original book’s Java focus. In that case a Ruby
book would be a better tool to help pass on your understanding of refactoring.

Building on the Foundations Laid by Others

Occasionally people referred to me (Martin) as something like, “The Father
of Refactoring.” I always cringe when they do this because, although my book

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Preface xix

has helped to popularize refactoring, it certainly isn’t my creation. In particular
I built my work on the foundations laid by some leading people in the Smalltalk
community

Two of the leading developers of refactoring were Ward Cunningham and
Kent Beck. They used it as a central part of their development process in the
early days and adapted their development processes to take advantage of it. In
particular it was my collaboration with Kent that really showed me the impor-
tance of refactoring, an inspiration that led directly to this book.

Ralph Johnson leads a group at the University of Illinois at Urbana-
Champaign that is notable for its long series of practical contributions to object
technology. Ralph has long been a champion of refactoring, and several of his
students have worked on the topic. Bill Opdyke developed the first detailed
written work on refactoring in his doctoral thesis. John Brant and Don Roberts
developed the world’s first automated refactoring tool: the Smalltalk Refactor-
ing Browser.

Many people have developed ideas in refactoring since my book. In particu-
lar, tool development has exploded. Any serious IDE now needs a “refactor-
ing” menu, and many people now treat refactoring as an essential part of their
development tools. It’s important to point out that you can refactor effectively
without a tool—but it sure makes it easier!

Making the Ruby Edition

People often wonder about how a book gets made, particularly when there’s
several people involved.

Martin began the original Refactoring book in early 1997. He did it by mak-
ing notes of refactorings he did while programming, so these notes could remind
him how to do certain refactorings efficiently. (These turned into the mechanics
section of the book.) The book was published in 1999 and has sold steadily—
around 15,000 copies a year.

Jay approached Martin in 2006 about doing a Ruby version. Jay looked
around for people to help, and Shane was soon contributing enough to be a full
author. Martin hasn’t done much on this edition as his writing attention has
been on other projects, but we left his name on the cover since he essentially
provided the first draft, much of which is still there.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Acknowledgments

Refactoring is and always has been my (Jay’s) favorite book. It was the gate-
way book that opened my eyes to how I could become a better programmer. I
like the original version, but I wanted to lower the barrier for the many Ruby
adopters. In late 2006 I had the idea to write a Ruby version. I called Martin
and asked how he felt about the idea, and to my surprise he was very support-
ive. Unfortunately, the project didn’t kick off for several months. At one point, a
friend even said, “Why don’t we just sit down this weekend and do it?”

Around January 2007 we finally got started working on it. Despite reusing
much of the content, this book still took a significant amount of effort from
several people. It took much longer than a weekend, and would not be possible
without the contributions of those who helped out.

Ali Aghareza contributed several sections and the majority of the images.
John Hume and Stephen Chu both contributed several sections.
Even though the book is very similar to the original, the level of quality has

been greatly raised by those who reviewed it and made suggestions: Brian Guth-
rie, Chris Stevenson, Clinton Begin, Dave Astels, Dave Hoover, George Malami-
dis, Justin Gehtland, Ola Bini, Ricky Lui, Ryan Plate, and Steve Deobald. I’m
sure there are others who I’ve forgotten; I apologize and offer my thanks.

Stuart Halloway also reviewed the book and pushed us to add even more
new content. I believe the book is better thanks to his nudge.

—Jay and Shane

My big thanks here go to Jay and Shane for doing the work to make a Ruby
edition happen. This is certainly the easiest book I’ve ever had my name on, all
I had to do was sit back and let them do it—if only all writing was this easy!

—Martin

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Acknowledgments xxi

Martin Fowler
Melrose, Massachusetts
fowler@acm.org
http://www.martinfowler.com
http://www.refactoring.com

Jay Fields
New York, New York
jay@jayfields.com
http://www.jayfields.com

Shane Harvie
Melbourne, Australia
shane@shaneharvie.com
http://www.shaneharvie.com

From the Library of Lee Bogdanoff

Download at WoweBook.Com

http://www.martinfowler.com
http://www.refactoring.com
http://www.jayfields.com
http://www.shaneharvie.com

ptg

About the Authors

Jay Fields is a software developer for DRW Trading and a frequent confer-
ence presenter. Jay has a passion for discovering and maturing innovative solu-
tions. Jay’s website is available at www.jayfields.com.

Shane Harvie has delivered software in Agile environments in the USA, India, and
Australia. He works for DRW Trading in Chicago and blogs at www.shaneharvie.com.

Martin Fowler is chief scientist at ThoughtWorks and describes himself as
“an author, speaker, consultant, and general loud-mouth on software develop-
ment. I concentrate on designing enterprise software—looking at what makes
a good design and what practices are needed to come up with good design.
I’ve been a pioneer of object-oriented technology, refactoring, patterns, agile
methodologies, domain modeling, the Unified Modeling Language (UML), and
Extreme Programming. For the last decade I’ve worked at ThoughtWorks, a
really rather good system delivery and consulting firm.”

From the Library of Lee Bogdanoff

Download at WoweBook.Com

www.jayfields.com
www.shaneharvie.com

ptg

1

Chapter 1

Refactoring, a First Example

When I wrote the original edition of Refactoring I had to decide how to open
the book. Traditionally technical books start with a general introduction that
outlines things like history and broad principles. When someone does that at a
conference, I get slightly sleepy. My mind starts wandering with a low-priority
background process that polls the speaker until he or she gives an example. The
examples wake me up because it is with examples that I can see what is going
on. With principles it is too easy to make generalizations, too hard to figure out
how to apply things. An example helps make things clear.

So I decided to start the book with an example of refactoring. Several review-
ers saw it as an unusual and somewhat brave move. But I’ve never regretted it.
I used the same example for many talks I gave on refactoring too—and found
that an example made a very good introduction. Although the specifics in the
example were specific, you can use the concrete example to illustrate many
broader issues.

It’s no surprise then, that we wanted to start off with an example for this
Ruby version. I’m using exactly the same example as I did for Java, although Jay
translated it into Ruby. I reworked the text considerably to introduce things I’ve
learned when talking about this example over the years. If you’re familiar with
the book we hope you’ll enjoy some of the new discussion. If this book is new
to you you’re probably hoping I’ll start with the content.

As with any introductory example, however, there is a big problem. If I pick a
large program, describing it and how it is refactored is too complicated for any
reader to work through. (I tried and even a slightly complicated example ran to
more than 100 pages.) However, if I pick a program that is small enough to be
comprehensible, refactoring does not look like it is worthwhile.

Thus I’m in the classic bind of anyone who wants to describe techniques
that are useful for real-world programs. Frankly it is not worth the effort to do
the refactoring that I’m going to show you on a small program like the one I’m
going to use. But if the code I’m showing you is part of a larger system, then the
refactoring soon becomes important. So I have to ask you to look at this and
imagine it in the context of a much larger system.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 1 Refactoring, a First Example2

The Starting
Point The Starting Point

The sample program is simple. It is a program to calculate and print a statement
of a customer’s charges at a video store. The program is told which movies a
customer rented and for how long. It then calculates the charges, which depend
on how long the movie is rented, and identifies the type of movie. There are
three kinds of movies: regular, children’s, and new releases. In addition to calcu-
lating charges, the statement also computes frequent renter points, which vary
depending on whether the film is a new release.

Several classes represent various video elements. Here’s a class diagram to
show them (see Figure 1.1).

I’ll show the code for each of these classes in turn.

Movie

Movie is just a simple data class.

 class Movie
 REGULAR = 0
 NEW_RELEASE = 1
 CHILDRENS = 2

 attr_reader :title
 attr_accessor :price_code

 def initialize(title, price_code)
 @title, @price_code = title, price_code
 end
 end

1

1

1
Movie

price_code ** *
Rental

days_rented
Customer

statement()

Figure 1.1 Class diagram of the starting point classes. Only the most important fea-
tures are shown. The notation is Unified Modeling Language (UML) [Fowler, UML].

Rental

The rental class represents a customer renting a movie.

 class Rental
 attr_reader :movie, :days_rented

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

The Starting Point 3

The Starting
Point

 def initialize(movie, days_rented)
 @movie, @days_rented = movie, days_rented
 end
 end

Customer

The customer class represents the customer of the store. Like the other classes it
has data and accessors:

 class Customer
 attr_reader :name

 def initialize(name)
 @name = name
 @rentals = []
 end

 def add_rental(arg)
 @rentals << arg
 end

Customer also has the method that produces a statement. Figure 1.2 shows the
interactions for this method.

statement

a customer a rental a movie

* [for all rentals]

movie

price_code

days_rented

Figure 1.2 Interactions for the statement method .

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 1 Refactoring, a First Example4

The Starting
Point

 def statement
 total_amount, frequent_renter_points = 0, 0
 result = "Rental Record for #{@name}\n"
 @rentals.each do |element|
 this_amount = 0

 # determine amounts for each line
 case element.movie.price_code
 when Movie::REGULAR
 this_amount += 2
 this_amount += (element.days_rented - 2) * 1.5 if element.days_rented > 2
 when Movie::NEW_RELEASE
 this_amount += element.days_rented * 3
 when Movie::CHILDRENS
 this_amount += 1.5
 this_amount += (element.days_rented - 3) * 1.5 if element.days_rented > 3
 end

 # add frequent renter points
 frequent_renter_points += 1
 # add bonus for a two day new release rental
 if element.movie.price_code == Movie.NEW_RELEASE && element.days_rented > 1
 frequent_renter_points += 1
 end
 # show figures for this rental
 result += "\t" + element.movie.title + "\t" + this_amount.to_s + "\n"
 total_amount += this_amount
 end
 # add footer lines
 result += "Amount owed is #{total_amount}\n"
 result += "You earned #{frequent_renter_points} frequent renter points"
 result
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

The Starting Point 5

The Starting
Point

 Comments on the Starting Program

What are your impressions about the design of this program? I would describe
it as not well designed and certainly not object oriented. For a simple program
like this, that does not really matter. There’s nothing wrong with a quick and
dirty simple program. But if this is a representative fragment of a more complex
system, then I have some real problems with this program. That long statement
routine in the Customer class does far too much. Many of the things that it does
should really be done by the other classes.

Even so, the program works. Is this not just an aesthetic judgment, a dislike
of ugly code? It is until we want to change the system. The interpreter doesn’t
care whether the code is ugly or clean. But when we change the system, there
is a human involved, and humans do care. A poorly designed system is hard to
change. Hard because it is hard to figure out where the changes are needed. If it
is hard to figure out what to change, there is a strong chance that the program-
mer will make a mistake and introduce bugs.

In this case we have a couple of changes that the users would like to make.
First they want a statement printed in HTML so that the statement can be Web
enabled and more buzzword compliant. Consider the impact this change would
have. As you look at the code you can see that it is impossible to reuse any of the
behavior of the current statement method for an HTML statement. Your only
recourse is to write a whole new method that duplicates much of the behavior of
statement. Now, of course, this is not too onerous. You can just copy the state-
ment method and make whatever changes you need.

But what happens when the charging rules change? You have to fix both
statement and html_statement and ensure the fixes are consistent. The problem
with copying and pasting code comes when you have to change it later. If you
are writing a program that you don’t expect to change, then cut and paste is
fine. If the program is long lived and likely to change, then cut and paste is a
menace.

This brings me to a second change. The users want to make changes to the
way they classify movies, but they haven’t yet decided on the change they are
going to make. They have a number of changes in mind. These changes will
affect both the way renters are charged for movies and the way that frequent
renter points are calculated. As an experienced developer you are sure that
whatever scheme the users come up with, the only guarantee you’re going to
have is that they will change it again within six months.

The statement method is where the changes have to be made to deal with
changes in classification and charging rules. If, however, we copy the statement
to an HTML statement, we need to ensure that any changes are completely

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 1 Refactoring, a First Example6

The First
Step in

Refactoring

consistent. Furthermore, as the rules grow in complexity it’s going to be harder
to figure out where to make the changes and harder to make them without mak-
ing a mistake.

You may be tempted to make the fewest possible changes to the program;
after all, it works fine. Remember the old engineering adage: “if it ain’t broke,
don’t fix it.” The program may not be broken, but it does hurt. It is making
your life more difficult because you find it hard to make the changes your users
want. This is where refactoring comes in.

Tip When you find you have to add a feature to a program, and
the program’s code is not structured in a convenient way to add the
feature, first refactor the program to make it easy to add the feature,
then add the feature.

The First Step in Refactoring

Whenever I do refactoring, the first step is always the same. I need to build a
solid set of tests for that section of code. The tests are essential because even
though I follow refactorings structured to avoid most of the opportunities for
introducing bugs, I’m still human and still make mistakes. Thus I need solid
tests.

Because the statement result produces a string, I create a few customers, give
each customer a few rentals of various kinds of films, and generate the state-
ment strings. I then do a string comparison between the new string and some
reference strings that I have hand checked. I set up all of these tests so I can run
them using Test::Unit. The tests take only a few seconds to run, and as you will
see, I run them often.

An important part of the tests is the way they report their results. They either
print “X tests, X assertions, 0 failures, 0 errors” meaning that all the strings are
identical to the reference strings, or they print a list of failures: lines that turned
out differently. The tests are thus self-checking. It is vital to make tests self-
checking. If you don’t, you end up spending time hand checking some numbers
from the test against some numbers on a desk pad, and that slows you down.

When I wrote the original version of this book, testing like this was still a
rarity. Many people were first introduced to this style of testing through that
book. Since then, this kind of testing has spread widely through software devel-
opment. We’re happy that this approach has become a core style to both the

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Decomposing and Redistributing the Statement Method 7

Decomposing and

Redist ributing

the Statement

Method

Ruby and Rails communities. You’re not going to be taken seriously as a Ruby
developer unless you use Test::Unit or Rspec to write tests as you write code.

As we do the refactoring, we will lean on the tests. I’m going to rely on the
tests to tell me whether I introduce a bug. It is essential for refactoring that
you have good tests. It’s worth spending the time to build the tests, because the
tests give you the security you need to change the program later. This is such an
important part of refactoring that I go into more detail on testing in Chapter 4,
“Building Tests.”

Tip Before you start refactoring, check that you have a solid suite of
tests. These tests must be self-checking.

Decomposing and Redistributing the Statement Method

The obvious first target of my attention is the overly long statement method.
When I look at a long method like that, I am looking to decompose the method
into smaller pieces. Smaller pieces of code tend to make things more manage-
able. They are easier to work with and move around.

The first phase of the refactorings in this chapter show how I split up the long
method and move the pieces to better classes. My aim is to make it easier to
write an HTML statement method with much less duplication of code.

My first step is to find a logical clump of code and use Extract Method. An
obvious piece here is the case statement. This looks like it would make a good
chunk to extract into its own method.

When I extract a method, as in any refactoring, I need to know what can go
wrong. If I do the extraction badly, I could introduce a bug into the program. So
before I do the refactoring I need to figure out how to do it safely. I’ve done this
refactoring a few times before, so I’ve written down the safe steps in the catalog.

First I need to look in the fragment for any variables that are local in scope
to the method we are looking at; the local variables and parameters. This seg-
ment of code uses two: rental and this_amount. Of these, rental is not modified by
the code, but this_amount is modified. Any nonmodified variable I can pass in as a
parameter. Modified variables need more care. If there is only one, I can return
it. The temp is initialized to 0 each time around the loop and is not altered until
the case gets to it. So I can just assign the result.

The next two pages show the code before and after refactoring. The before
code is on the left, the resulting code on the right. The code I’m extracting from

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 1 Refactoring, a First Example8

Decomposing and

Redist ributing

the Statement

Method

the original and any changes in the new code that I don’t think are immediately
obvious are in boldface type. As I continue with this chapter, I’ll continue with this
left-right convention.

 def statement
 total_amount, frequent_renter_points = 0, 0
 result = "Rental Record for #{@name}\n"
 @rentals.each do |element|
 this_amount = 0

 # determine amounts for each line
 case element.movie.price_code
 when Movie::REGULAR
 this_amount += 2
 this_amount += (element.days_rented - 2) * 1.5 if element.days_rented > 2
 when Movie::NEW_RELEASE
 this_amount += element.days_rented * 3
 when Movie::CHILDRENS
 this_amount += 1.5
 this_amount += (element.days_rented - 3) * 1.5 if element.days_rented > 3
 end

 # add frequent renter points
 frequent_renter_points += 1
 # add bonus for a two day new release rental
 if element.movie.price_code == Movie.NEW_RELEASE &&
 element.days_rented > 1
 frequent_renter_points += 1
 end

 # show figures for this rental
 result += "\t" + each.movie.title + "\t" + this_amount.to_s + "\n"
 total_amount += this_amount
 end
 # add footer lines
 result += "Amount owed is #{total_amount}\n"
 result += "You earned #{frequent_renter_points} frequent renter points"
 result
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Decomposing and Redistributing the Statement Method 9

Decomposing and

Redist ributing

the Statement

Method

 def statement
 total_amount, frequent_renter_points = 0, 0
 result = "Rental Record for #{@name}\n"
 @rentals.each do |element|
 this_amount = amount_for(element)

 # add frequent renter points
 frequent_renter_points += 1
 # add bonus for a two day new release rental
 if element.movie.price_code == Movie.NEW_RELEASE &&
 element.days_rented > 1
 frequent_renter_points += 1
 end

 # show figures for this rental
 result += "\t" + each.movie.title + "\t" + this_amount.to_s + "\n"
 total_amount += this_amount
 end
 # add footer lines
 result += "Amount owed is #{total_amount}\n"
 result += "You earned #{frequent_renter_points} frequent renter points"
 result
 end

 def amount_for(element)
 this_amount = 0
 case element.movie.price_code
 when Movie::REGULAR
 this_amount += 2
 this_amount += (element.days_rented - 2) * 1.5 if element.days_rented > 2
 when Movie::NEW_RELEASE
 this_amount += element.days_rented * 3
 when Movie::CHILDRENS
 this_amount += 1.5
 this_amount += (element.days_rented - 3) * 1.5 if element.days_rented > 3
 end
 end

Whenever I make a change like this, I test. When I wrote the original version
of this book, I actually had the tests fail at this point. There I am, writing a book
on refactoring, and I screw up the very first refactoring I show in the book. It
wasn’t my proudest moment. (The actual error isn’t something you can see in
Ruby as it was a subtle type error that wasn’t caught by Java’s type checking
system.) While I felt bad at the time, it was actually a great illustration of why
frequent testing is vital as these kind of errors can be difficult to track down if

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 1 Refactoring, a First Example10

Decomposing and

Redist ributing

the Statement

Method

you make a lot of changes. But because I test after every tiny step, I don’t have
to look far to find where the error is. So whenever I give a (Java) talk on this I
always replay that error to show the point. The key to testing is running tests
after every small change so when you mess up you don’t have to look in many
places to find the problem. Comparing the failing version of code to a previous
working version (which I call Diff Debugging) is a useful technique, particularly
so when the diffs are small. Because each change is so small, any errors are easy
to find. You don’t spend a long time debugging, even if you are as careless as I
am.

Tip Refactoring changes the programs in small steps. If you make a
mistake, it is easy to find the bug.

Extract Method is a common refactoring task to do, it can also be a bit intri-
cate since you have to look at these local variables. For programmers in many
languages these days, this effort has been reduced to near-zero by automated
refactoring tools. Such a tool can analyze the method, do the kind of analysis
we see in the previous example, and leave the programmer with only having to
choose the name of the new method. The first such refactoring tool was written
for Smalltalk; these kinds of tools are now commonly used in Java and C#. As I
write this Ruby tools are steadily becoming available.

Now that I’ve broken the original method down into chunks, I can work on
them separately. I don’t like some of the variable names in amount_for, and this is
a good place to change them.

Here’s the original code:

 def amount_for(element)
 this_amount = 0
 case element.movie.price_code
 when Movie::REGULAR
 this_amount += 2
 this_amount += (element.days_rented - 2) * 1.5 if element.days_rented > 2
 when Movie::NEW_RELEASE
 this_amount += element.days_rented * 3
 when Movie::CHILDRENS
 this_amount += 1.5
 this_amount += (element.days_rented - 3) * 1.5 if element.days_rented > 3
 end
 this_amount
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Decomposing and Redistributing the Statement Method 11

Decomposing and

Redist ributing

the Statement

Method

Here is the renamed code:

 def amount_for(rental)
 result = 0
 case rental.movie.price_code
 when Movie::REGULAR
 result += 2
 result += (rental .days_rented - 2) * 1.5 if rental .days_rented > 2
 when Movie::NEW_RELEASE
 result += rental .days_rented * 3
 when Movie::CHILDRENS
 result += 1.5
 result += (rental .days_rented - 3) * 1.5 if rental .days_rented > 3
 end
 result
 end

Once I’ve done the renaming, I test to ensure I haven’t broken anything.
Is renaming worth the effort? Absolutely. Good code should communicate

what it is doing clearly, and variable names are a key to clear code. Never be
afraid to change the names of things to improve clarity. With good find and
replace tools, it is usually not difficult (and automated refactoring tools can
make it even easier). Testing highlights anything you miss. Remember this tip:

Tip Any fool can write code that a computer can understand. Good
programmers write code that humans can understand.

Code that communicates its purpose is very important. I often refactor just
when I’m reading some code. That way as I gain understanding about the pro-
gram, I embed that understanding into the code for later so I don’t forget what
I learned.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 1 Refactoring, a First Example12

Decomposing and

Redist ributing

the Statement

Method

Moving the Amount Calculation

As I look at amount_for, I can see that it uses information from the rental, but does
not use information from the customer.

 class Customer
 def amount_for(rental)
 result = 0
 case rental.movie.price_code
 when Movie::REGULAR
 result += 2
 result += (rental.days_rented - 2) * 1.5 if rental.days_rented > 2
 when Movie::NEW_RELEASE
 result += rental.days_rented * 3
 when Movie::CHILDRENS
 result += 1.5
 result += (rental.days_rented - 3) * 1.5 if rental.days_rented > 3
 end
 result
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Decomposing and Redistributing the Statement Method 13

Decomposing and

Redist ributing

the Statement

Method

This immediately raises my suspicions that the method is on the wrong
object. In most cases a method should be on the object whose data it uses; thus
the method should be moved to the rental. To do this I use Move Method. With
this you first copy the code over to rental and adjust it to fit in its new home,
as follows:

 class Rental
 def charge
 result = 0
 case movie.price_code
 when Movie::REGULAR
 result += 2
 result += (days_rented - 2) * 1.5 if days_rented > 2
 when Movie::NEW_RELEASE
 result += days_rented * 3
 when Movie::CHILDRENS
 result += 1.5
 result += (days_rented - 3) * 1.5 if days_rented > 3
 end
 result
 end
 end

In this case fitting into its new home means removing the parameter. I also
renamed the method as I did the move.

I can now test to see whether this method works. To do this I replace the
body of Customer.amount_for to delegate to the new method.

 class Customer
 def amount_for(rental)
 rental.charge
 end
 end

I can now test to see whether I’ve broken anything.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 1 Refactoring, a First Example14

Decomposing and

Redist ributing

the Statement

Method

The next step is to find every reference to the old method and adjust the ref-
erence to use the new method, as follows:

 class Customer
 def statement
 total_amount, frequent_renter_points = 0, 0
 result = "Rental Record for #{@name}\n"
 @rentals.each do |element|
 this_amount = amount_for(element)

 # add frequent renter points
 frequent_renter_points += 1
 # add bonus for a two day new release rental
 if element.movie.price_code == Movie.NEW_RELEASE &&
 element.days_rented > 1
 frequent_renter_points += 1
 end

 # show figures for this rental
 result += "\t" + each.movie.title + "\t" + this_amount.to_s + "\n"
 total_amount += this_amount
 end
 # add footer lines
 result += "Amount owed is #{total_amount}\n"
 result += "You earned #{frequent_renter_points} frequent renter points"
 result
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Decomposing and Redistributing the Statement Method 15

Decomposing and

Redist ributing

the Statement

Method

In this case this step is easy because we just created the method, and it is in
only one place. In general, however, you need to search across all the classes that
might be using that method:

 class Customer
 def statement
 total_amount, frequent_renter_points = 0, 0
 result = "Rental Record for #{@name}\n"
 @rentals.each do |element|
 this_amount = element.charge

 # add frequent renter points
 frequent_renter_points += 1
 # add bonus for a two day new release rental
 if element.movie.price_code == Movie.NEW_RELEASE &&
 element.days_rented > 1
 frequent_renter_points += 1
 end

 # show figures for this rental
 result += "\t" + each.movie.title + "\t" + this_amount.to_s + "\n"
 total_amount += this_amount
 end
 # add footer lines
 result += "Amount owed is #{total_amount}\n"
 result += "You earned #{frequent_renter_points} frequent renter points"
 result
 end
 end

1Movie
price_code

*
Customer

statement()

*
Rental

days_rented
charge()

Figure 1.3 State of classes after moving the charge method .

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 1 Refactoring, a First Example16

Decomposing and

Redist ributing

the Statement

Method

When I’ve made the change (see Figure 1.3) the next thing is to remove the
old method. The tests should tell me whether I missed or broke anything.

Sometimes I leave the old method to delegate to the new method. This is use-
ful if it is a public method and I don’t want to change the interface of the other
class.

There is certainly some more I would like to do to Rental.charge but I will leave
it for the moment and return to Customer.statement.

 class Customer
 def statement
 total_amount, frequent_renter_points = 0, 0
 result = "Rental Record for #{@name}\n"
 @rentals.each do |element|
 this_amount = element.charge

 # add frequent renter points
 frequent_renter_points += 1
 # add bonus for a two day new release rental
 if element.movie.price_code == Movie.NEW_RELEASE &&
 element.days_rented > 1
 frequent_renter_points += 1
 end

 # show figures for this rental
 result += "\t" + each.movie.title + "\t" + this_amount.to_s + "\n"
 total_amount += this_amount
 end
 # add footer lines
 result += "Amount owed is #{total_amount}\n"
 result += "You earned #{frequent_renter_points} frequent renter points"
 result
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Decomposing and Redistributing the Statement Method 17

Decomposing and

Redist ributing

the Statement

Method

The next thing that strikes me is that this_amount is now redundant. It is set
to the result of element.charge and not changed afterward. Thus I can eliminate
this_amount by using Replace Temp with Query:

 class Customer
 def statement
 total_amount, frequent_renter_points = 0, 0
 result = "Rental Record for #{@name}\n"
 @rentals.each do |element|

 # add frequent renter points
 frequent_renter_points += 1
 # add bonus for a two day new release rental
 if element.movie.price_code == Movie.NEW_RELEASE &&
 element.days_rented > 1
 frequent_renter_points += 1
 end

 # show figures for this rental
 result += "\t" + each.movie.title + "\t" + element.charge .to_s + "\n"
 total_amount += element.charge
 end
 # add footer lines
 result += "Amount owed is #{total_amount}\n"
 result += "You earned #{frequent_renter_points} frequent renter points"
 result
 end
 end

Once I’ve made that change I test to make sure I haven’t broken anything.
Whenever I’ve gone through this example in a talk, this refactoring leads to angst

from at least some people in the audience. The biggest source of angst is perfor-
mance. By removing the temporary variable I’m calling the charge method twice
instead of once. Some people would avoid making this change solely for that rea-
son. However this kind of thinking about performance isn’t a good way to get good
performance (see the section in Chapter 2 named “Refactoring and Performance”).
While refactoring you should focus on clarity, and then later focus on performance
as a separate activity. Almost all the time extra method calls won’t matter; in the
rare cases they do, they can be dealt with later. Indeed by refactoring you often get
opportunities to make better performance improvements.

The bigger danger area in this refactoring is that you have to be sure that the
charge method is idempotent. Usually a method like this is a query method and
thus has no side effects. In this case you can call it as often as you like without
changing anything. Good tests would expose this fault if it’s there.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 1 Refactoring, a First Example18

Decomposing and

Redist ributing

the Statement

Method

When breaking down large methods I find this refactoring useful. Temps are
often a problem in that they cause a lot of parameters to be passed around when
they don’t have to be. You can easily lose track of what they are there for. By
getting rid of them you can focus more clearly on what the code’s trying to do
rather than how to shuffle data around.

Extracting Frequent Renter Points

The next step is to do a similar thing for the frequent renter points. The rules
vary with the kind of tape, although there is less variation than with charging.
It seems reasonable to put the responsibility on the rental. First we need to use
Extract Method on the frequent renter points part of the code (in boldface type):

 class Customer
 def statement
 total_amount, frequent_renter_points = 0, 0
 result = "Rental Record for #{@name}\n"
 @rentals.each do |element|

 # add frequent renter points
 frequent_renter_points += 1
 # add bonus for a two day new release rental
 if element.movie.price_code == Movie.NEW_RELEASE &&
 element.days_rented > 1
 frequent_renter_points += 1
 end

 # show figures for this rental
 result += "\t" + each.movie.title + "\t" + element.charge.to_s + "\n"
 total_amount += element.charge
 end
 # add footer lines
 result += "Amount owed is #{total_amount}\n"
 result += "You earned #{frequent_renter_points} frequent renter points"
 result
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Decomposing and Redistributing the Statement Method 19

Decomposing and

Redist ributing

the Statement

Method

Again we look at the use of locally scoped variables. Again element is used
and can be passed in as a parameter. The other temp used is frequent_renter_points.
In this case frequent_renter_points does have a value beforehand. The body of the
extracted method doesn’t read the value, however, so we don’t need to pass it in
as a parameter as long as we use an appending assignment.

I did the extraction and tested and then did a move and tested again. With
refactoring, small steps are the best; that way less tends to go wrong.

 class Customer
 def statement
 total_amount, frequent_renter_points = 0, 0
 result = "Rental Record for #{@name}\n"
 @rentals.each do |element|
 frequent_renter_points += element.frequent_renter_points

 # show figures for this rental
 result += "\t" + each.movie.title + "\t" + element.charge.to_s + "\n"
 total_amount += element.charge
 end
 # add footer lines
 result += "Amount owed is #{total_amount}\n"
 result += "You earned #{frequent_renter_points} frequent renter points"
 result
 end
 end

 class Rental
 def frequent_renter_points
 (movie.price_code == Movie.NEW_RELEASE && days_rented > 1) ? 2 : 1
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 1 Refactoring, a First Example20

Decomposing and

Redist ributing

the Statement

Method

I’ll summarize the changes I just made with some before-and-after Unified
Modeling Language (UML) diagrams (see Figures 1.4 through 1.7). Again
the diagrams on the left are before the change; those on the right are after the
change.

1Movie
price_code *

Customer

statement()

*
Rental

days_rented
charge()

Figure 1.4 Class diagram before extraction and movement of the frequent renter
points calculation .

statement

a customer a rental a movie

* [for all rentals]

charge

price_code

days_rented

Figure 1.5 Sequence diagrams before extraction and movement of the frequent renter
points calculation .

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Decomposing and Redistributing the Statement Method 21

Decomposing and

Redist ributing

the Statement

Method

11Movie
price_code *

Customer

statement()

**
Rental

days_rented
charge()
frequent_renter_points()

Figure 1.6 Class diagram after extraction and movement of the frequent renter points
calculation.

statement

a customer a rental a movie

* [for all rentals]

charge

price_code

price_code

frequent_renter_points

p

p

Figure 1.7 Sequence diagram after extraction and movement of the frequent renter
points calculation .

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 1 Refactoring, a First Example22

Decomposing and

Redist ributing

the Statement

Method

Removing Temps

As I suggested before, temporary variables can be a problem. They are useful
only within their own routine, and thus they encourage long, complex routines.
In this case we have two temporary variables, both of which are being used to
get a total from the rentals attached to the customer. Both the ASCII and HTML
versions require these totals. I like to use Replace Temp with Query to replace
total_amount and frequent_renter_points with query methods. Queries are accessible
to any method in the class and thus encourage a cleaner design without long,
complex methods:

 class Customer
 def statement
 total_amount, frequent_renter_points = 0, 0
 result = "Rental Record for #{@name}\n"
 @rentals.each do |element|
 frequent_renter_points += element.frequent_renter_points

 # show figures for this rental
 result += "\t" + each.movie.title + "\t" + element.charge.to_s + "\n"
 total_amount += element.charge
 end
 # add footer lines
 result += "Amount owed is #{total_amount}\n"
 result += "You earned #{frequent_renter_points} frequent renter points"
 result
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Decomposing and Redistributing the Statement Method 23

Decomposing and

Redist ributing

the Statement

Method

I began by replacing total_amount with a total_charge method on customer:

 class Customer
 def statement
 frequent_renter_points = 0
 result = "Rental Record for #{@name}\n"
 @rentals.each do |element|
 frequent_renter_points += element.frequent_renter_points

 # show figures for this rental
 result += "\t" + each.movie.title + "\t" + element.charge.to_s + "\n"
 end
 # add footer lines
 result += "Amount owed is #{ total_charge }\n"
 result += "You earned #{frequent_renter_points} frequent renter points"
 result
 end

 private

 def total_charge
 result = 0
 @rentals.each do |element|
 result += element.charge
 end
 result
 end
 end

This isn’t the simplest case of Replace Temp with Query since total_amount
was assigned to within the loop, so I have to copy the loop into the query
method.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 1 Refactoring, a First Example24

Decomposing and

Redist ributing

the Statement

Method

The total_charge method is short:

 Customer
 def total_charge
 result = 0
 @rentals.each do |element|
 result += element.charge
 end
 result
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Decomposing and Redistributing the Statement Method 25

Decomposing and

Redist ributing

the Statement

Method

However, it can be made even more concise by applying Collection Closure
Method and using inject.

 class Customer
 def total_charge
 @rentals.inject(0) { |sum, rental| sum + rental.charge }
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 1 Refactoring, a First Example26

Decomposing and

Redist ributing

the Statement

Method

After testing that refactoring, I did the same for frequent_renter_points:

 class Customer
 def statement
 frequent_renter_points = 0
 result = "Rental Record for #{@name}\n"
 @rentals.each do |element|
 frequent_renter_points += element.frequent_renter_points

 # show figures for this rental
 result += "\t" + each.movie.title + "\t" + element.charge.to_s + "\n"
 end
 # add footer lines
 result += "Amount owed is #{total_charge}\n"
 result += "You earned #{frequent_renter_points} frequent renter points"
 result
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Decomposing and Redistributing the Statement Method 27

Decomposing and

Redist ributing

the Statement

Method

 class Customer
 def statement
 result = "Rental Record for #{@name}\n"
 @rentals.each do |element|
 # show figures for this rental
 result += "\t" + each.movie.title + "\t" + element.charge.to_s + "\n"
 end
 # add footer lines
 result += "Amount owed is #{total_charge}\n"
 result += "You earned #{ total_frequent_renter_points } frequent renter points"
 result
 end

 private

 def total_frequent_renter_points
 @rentals.inject(0) { |sum, rental| sum + rental.frequent_renter_points }
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 1 Refactoring, a First Example28

Decomposing and

Redist ributing

the Statement

Method

Figures 1.8 through 1.11 show the change for these refactorings in the class
diagrams and the interaction diagram for the statement method.

11Movie
price_code *

Customer

statement()

* **
Rental

days_rented
charge()
frequent_renter_points()

Figure 1.8 Class diagram before extraction of the totals .

statement

a customer a rental a movie

* [for all rentals]

charge

price_code

price_code

frequent_renter_points

p

p

Figure 1.9 Sequence diagram before extraction of the totals .

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Decomposing and Redistributing the Statement Method 29

Decomposing and

Redist ributing

the Statement

Method

11Movie
price_code *

Customer

statement()
* **

Rental
days_rented
charge()
frequent_renter_points() charge()

total_frequent_renter_points()

Figure 1.10 Class diagram after extraction of the totals .

statement

a customer a rental a movie

total charge

price_code

price_code

total_frequent_renter_points

* [for all rentals] charge

* [for all rentals] frequent_renter_points

Figure 1.11 Sequence diagram after extraction of the totals .

As with Replace Temp With Query, this change can cause performance wor-
ries to inexperienced programmers. The same advice applies; make the code
clean first and then use a profiler to deal with performance issues.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 1 Refactoring, a First Example30

Decomposing and

Redist ributing

the Statement

Method

These queries are now available for any code written in the customer class.
They can easily be added to the public interface of the class should other parts
of the system need this information. Without queries like these, other methods
have to deal with knowing about the rentals and building the enumerations. In a
complex system, that leads to much more code to write and maintain.

You can see the difference immediately with the html_statement. I am now at the
point where I take off my refactoring hat and put on my adding function hat. I
can write html_statement as follows and add appropriate tests:

 class Customer
 def html_statement
 result = "<h1>Rentals for #{@name}</h1><p>\n"
 @rentals.each do |element|
 # show figures for this rental
 result += "\t" + each.movie.title + ": " + element.charge.to_s + "
\n"
 end
 # add footer lines
 result += "<p>You owe #{total_charge}<p>\n"
 result += "On this rental you earned " +
 "#{total_frequent_renter_points} " +
 "frequent renter points<p>"
 result
 end
 end

By extracting the calculations I can create the html_statement method and reuse all
of the calculation code that was in the original statement method. I didn’t copy and
paste, so if the calculation rules change I have only one place in the code to go to.
Any other kind of statement will be really quick and easy to prepare. The refactor-
ing did not take long. I spent most of the time figuring out what the code did, and I
would have had to do that anyway.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Decomposing and Redistributing the Statement Method 31

Decomposing and

Redist ributing

the Statement

Method

Some code is copied from the ASCII version, mainly due to setting up
the loop. Further refactoring could clean that up. Extracting methods for
header, footer, and detail line are one route I could take. You can see how
to do this in the example for Form Template Method. Further work could
lead to using string formatting statements instead of the concatenation, the
Builder library to produce the HTML, or a templating system like ERB.

But now the users are clamoring again. They are getting ready to change the
classification of the movies in the store. It’s still not clear what changes they
want to make, but it sounds like new classifications will be introduced, and the
existing ones could well be changed. The charges and frequent renter point allo-
cations for these classifications are to be decided. At the moment, making these
kind of changes is awkward. I have to get into the charge and frequent renter
point methods and alter the conditional code to make changes to film classifica-
tions. Back on with the refactoring hat.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 1 Refactoring, a First Example32

Replacing the

Conditional Logic

on Price Code

with Polymorphism

Replacing the Conditional Logic on Price Code with
Polymorphism

The first part of this problem is that case statement. It is a bad idea to do a case
based on an attribute of another object. If you must use a case statement, it
should be on your own data, not on someone else’s.

 class Rental
 def charge
 result = 0
 case movie.price_code
 when Movie::REGULAR
 result += 2
 result += (days_rented - 2) * 1.5 if days_rented > 2
 when Movie::NEW_RELEASE
 result += days_rented * 3
 when Movie::CHILDRENS
 result += 1.5
 result += (days_rented - 3) * 1.5 if days_rented > 3
 end
 result
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replacing the Conditional Logic on Price Code with Polymorphism 33

Replacing the

Conditional Logic

on Price Code

with Polymorphism

This implies that the charge method should move onto movie:

 class Movie
 def charge(days_rented)
 result = 0
 case price_code
 when REGULAR
 result += 2
 result += (days_rented - 2) * 1.5 if days_rented > 2
 when NEW_RELEASE
 result += days_rented * 3
 when CHILDRENS
 result += 1.5
 result += (days_rented - 3) * 1.5 if days_rented > 3
 end
 result
 end
 end

For this to work I had to pass in the length of the rental, which of course is
data from the rental. The method effectively uses two pieces of data, the length
of the rental and the type of the movie. Why do I prefer to pass the length of
rental to the movie rather than the movie type to the rental? It’s because the pro-
posed changes are all about adding new types. Type information generally tends
to be more volatile. If I change the movie type, I want the least ripple effect, so I
prefer to calculate the charge within the movie.

I added the method into movie and then changed the charge on rental to use
the new method (see Figures 1.12 and 1.13):

 class Rental
 def charge
 movie.charge(days_rented)
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 1 Refactoring, a First Example34

Replacing the

Conditional Logic

on Price Code

with Polymorphism

Once I’ve moved the charge method, I do the same with the frequent renter
point calculation. That keeps both things that vary with the type together on the
class that has the type:

 class Rental
 def frequent_renter_points
 (movie.price_code == Movie::NEW_RELEASE && days_rented > 1) ? 2 : 1
 end
 end

1

Movie
price_code

*

Customer

**
Rental

days_rented
charge()
frequent_renter_points()

statement()
html_statement()
total_charge()
total_frequent_renter_points()

Figure 1.12 Class diagram before moving methods to movie .

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replacing the Conditional Logic on Price Code with Polymorphism 35

Replacing the

Conditional Logic

on Price Code

with Polymorphism

 class Rental
 def frequent_renter_points
 movie.frequent_renter_points(days_rented)
 end
 end

 class Movie
 def frequent_renter_points(days_rented)
 (price_code == NEW_RELEASE && days_rented > 1) ? 2 : 1
 end
 end

1

Movie
price_code

*

Customer

**
Rental

days_rented
charge()
frequent_renter_points()

statement()
html_statement()
total_charge()
total_frequent_renter_points()

charge(days_rented)
frequent_renter_points(days_rented)

Figure 1.13 Class diagram after moving methods to movie .

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

At Last...Inheritance

We have several types of movie that have different ways of answering the same
question. This sounds like a job for subclasses. We can have three subclasses of
movie, each of which can have its own version of charge (see Figure 1.14).

Regular Movie

charge

Childrens Movie

charge

New Release Movie

charge

Movie

Figure 1.14 Using inheritance on movie.

This allows me to replace the case statement by using polymorphism. Sadly
it has one slight flaw: It doesn’t work. A movie can change its classification dur-
ing its lifetime. An object cannot change its class during its lifetime. All is not
lost, however. We can remove the case statement with the state pattern [Gang
of Four].

With the state pattern the classes look like Figure 1.15. By adding the indirec-
tion we can change the price whenever we need to.

If you are familiar with the Gang of Four patterns, you may wonder, “Is this
a state, or is it a strategy?” Does the price class represent an algorithm for cal-
culating the price (in which case I prefer to call it Pricer or), or does it represent
a state of the movie (Star Trek X is a new release)? At this stage the choice of
pattern (and name) reflects how you want to think about the structure. At the
moment I’m thinking about this as a state of movie. If I later decide a strategy
communicates my intention better, I will refactor to do this by changing the
names.

Chapter 1 Refactoring, a First Example36

Replacing the

Conditional Logic

on Price Code

with Polymorphism

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Movie

Regular Movie

charge

charge

price
price

Childrens Price

charge

New Release Movie

charge

1*

price.charge

charge

<<protocol>>

Figure 1.15 Using the state pattern on movie .*

 *To show this in UML, I’ve made a «protocol» stereotype. This doesn’t correspond to a class,
or any explicit Ruby construct, but to the expectation the movie has of its price. UML does
not have an accepted way to handle dynamic typed polymorphism like this.

Replacing the Conditional Logic on Price Code with Polymorphism 37

Replacing the

Conditional Logic

on Price Code

with Polymorphism

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

The refactoring I’m going to use here is Replace Type Code with State/Strategy.
The first step is to use Self Encapsulate Field on the type code to ensure that
all uses of the type code go through getting and setting methods. Because most
of the code came from other classes, most methods already use the getting
method. However, the constructor does access the price code:

 class Movie
 attr_accessor :price_code

 def initialize(title, price_code)
 @title, @price_code = title, price_code
 end
 end

Chapter 1 Refactoring, a First Example38

Replacing the

Conditional Logic

on Price Code

with Polymorphism

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

I introduce a custom setter method (because it’s going to do something more
interesting soon), and call it from the constructor.

 class Movie
 attr_reader :price_code

 def price_code=(value)
 @price_code = value
 end

 def initialize(title, the_price_code)
 @title, self.price_code = title, the_price_code
 end
 end

I test to make sure I didn’t break anything. Now I add the new classes that
add the type code behavior.

 class RegularPrice

 end

 class NewReleasePrice

 end

 class ChildrensPrice

 end

Replacing the Conditional Logic on Price Code with Polymorphism 39

Replacing the

Conditional Logic

on Price Code

with Polymorphism

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Now I do the interesting thing with the custom price code setter:

 class Movie...

 def price_code=(value)
 @price_code = value
 end

Chapter 1 Refactoring, a First Example40

Replacing the

Conditional Logic

on Price Code

with Polymorphism

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

I set a new instance variable called price to an instance of the appropriate
type class.

 class Movie...

 def price_code=(value)
 @price_code = value
 @price = case price_code
 when REGULAR: RegularPrice.new
 when NEW_RELEASE: NewReleasePrice.new
 when CHILDRENS: ChildrensPrice.new
 end
 end
 end

You may notice the irony here. I’m putting in polymorphism to get rid of
conditional logic, and the first thing I do is put a case in. The point is that once
I’m done this will be the only case left. Depending on what else is going on I
may be able to eliminate this one too.

Replacing the Conditional Logic on Price Code with Polymorphism 41

Replacing the

Conditional Logic

on Price Code

with Polymorphism

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Next I choose one of the methods that needs to behave polymorphically. I
start with charge.

 class Movie
 def charge(days_rented)
 result = 0
 case price_code
 when REGULAR
 result += 2
 result += (days_rented - 2) * 1.5 if days_rented > 2
 when NEW_RELEASE
 result += days_rented * 3
 when CHILDRENS
 result += 1.5
 result += (days_rented - 3) * 1.5 if days_rented > 3
 end
 result
 end
 end

Chapter 1 Refactoring, a First Example42

Replacing the

Conditional Logic

on Price Code

with Polymorphism

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

I need to implement the charge method on one of the new price objects.

 class RegularPrice
 def charge(days_rented)
 result = 2
 result += (days_rented - 2) * 1.5 if days_rented > 2
 result
 end
 end

I call the new method from Movie’s charge method. I need to pass in days_
rented.

 class Movie...
 def charge(days_rented)
 result = 0
 case price_code
 when REGULAR
 return @price.charge(days_rented)
 when NEW_RELEASE
 result += days_rented * 3
 when CHILDRENS
 result += 1.5
 result += (days_rented - 3) * 1.5 if days_rented > 3
 end
 result
 end

Replacing the Conditional Logic on Price Code with Polymorphism 43

Replacing the

Conditional Logic

on Price Code

with Polymorphism

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

All going well, my tests should pass. I can then do the same for the other type
classes.

 class Movie...
 def charge(days_rented)
 result = 0
 case price_code
 when REGULAR
 return @price.charge(days_rented)
 when NEW_RELEASE
 result += days_rented * 3
 when CHILDRENS
 result += 1.5
 result += (days_rented - 3) * 1.5 if days_rented > 3
 end
 result
 end

Chapter 1 Refactoring, a First Example44

Replacing the

Conditional Logic

on Price Code

with Polymorphism

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

 class NewReleasePrice

 def charge(days_rented)
 days_rented * 3
 end

 end

 class ChildrensPrice

 def charge(days_rented)
 result = 1.5
 result += (days_rented - 3) * 1.5 if days_rented > 3
 result
 end
 end

I turn Movie’s charge method into a simple delegator when I’m done.

 class Movie

 def charge(days_rented)
 @price.charge(days_rented)
 end

Replacing the Conditional Logic on Price Code with Polymorphism 45

Replacing the

Conditional Logic

on Price Code

with Polymorphism

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

The next method to tackle is frequent_renter_points.

 class Movie
 def frequent_renter_points(days_rented)
 (price_code == NEW_RELEASE && days_rented > 1) ? 2 : 1
 end
 end

Chapter 1 Refactoring, a First Example46

Replacing the

Conditional Logic

on Price Code

with Polymorphism

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

We want frequent_renter_points to be the same for ChildrensPrice and RegularPrice, but
be different for NewReleasePrice. I use Extract Module and include the module into
RegularPrice and ChildrensPrice. I then implement the special frequent_renter_points on
NewReleasePrice.

 module DefaultPrice
 def frequent_renter_points(days_rented)
 1
 end
 end

 class RegularPrice...
 include Price

 end

 class NewReleasePrice...

 def frequent_renter_points(days_rented)
 days_rented > 1 ? 2 : 1
 end
 end

 class ChildrensPrice...
 include Price

 end

Like charge, frequent_renter_points on Movie now becomes a simple delegator.

 class Movie...

 def frequent_renter_points(days_rented)
 @price.frequent_renter_points(days_rented)
 end
 end

Replacing the Conditional Logic on Price Code with Polymorphism 47

Replacing the

Conditional Logic

on Price Code

with Polymorphism

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

As a final step, I can remove the case statement from the price_code setter
method.

 # calling code
 movie = Movie.new("The Watchmen", Movie::NEW_RELEASE)
 # and later...
 movie.price_code = Movie::REGULAR

 class Movie...

 def price_code=(value)
 @price_code = value
 @price = case price_code
 when REGULAR: RegularPrice.new
 when NEW_RELEASE: NewReleasePrice.new
 when CHILDRENS: ChildrensPrice.new
 end
 end
 end

Chapter 1 Refactoring, a First Example48

Replacing the

Conditional Logic

on Price Code

with Polymorphism

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

I can make the callers pass in an instance of the type themselves.

 # calling code
 movie = Movie.new("The Watchmen", NewReleasePrice.new)
 # and later...
 movie.price = RegularPrice.new

 class Movie
 attr_writer :price

Putting in the state pattern was quite an effort. Was it worth it? The gain is
that if I change any of price’s behavior, add new prices, or add extra price-
dependent behavior, the change will be much easier to make. The rest of the
application does not know about the use of the state pattern. For the tiny
amount of behavior I currently have, it is not a big deal. In a more complex
system with a dozen or so price-dependent methods, this would make a big dif-
ference. All these changes were small steps. It seems slow to write it this way,
but not once did I have to open the debugger, so the process actually flowed
quite quickly. It took me much longer to write this section of the book than it
did to change the code.

I’ve now completed the second major refactoring. It is going to be much
easier to change the classification structure of movies, and to alter the rules for
charging and the frequent renter point system. Figures 1.16 and 1.17 show how
the state pattern works with price information.

statement

total charge

total_frequent_renter_points

* [for all rentals] charge

a movie

frequent_renter_points(days_rented)

* [for all rentals] frequent_renter_points

charge(days_rented)

charge(days_rented)

a price

frequent_renter_points(days_rented)

a rentala customer

Figure 1.16 Interactions using the state pattern .

Replacing the Conditional Logic on Price Code with Polymorphism 49

Replacing the

Conditional Logic

on Price Code

with Polymorphism

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

price

New Release Movie

1

1

*

charge(days_rented)

charge(days_rented)
frequent_renter_points(days_rented)

<<module>>
Default Price

frequent_renter_points(days_rented)

Regular Price

charge(days_rented)

Childrens Price

charge(days_rented)
frequent_renter_points

Rental
days_rented

Customer
name
statement()
html_statement()
total_charge()
total_frequent_renter_points()

*
<<protocol>>

charge(days_rented)
*

Movie
title
charge(days_rented)
frequent_renter_points(days_rented)

Figure 1.17 Class diagram after addition of the state pattern .

Final Thoughts

This is a simple example, yet I hope it gives you the feeling of what refactoring
is like. I used several refactorings, including Extract Method, Move Method,
and Replace Type Code with State/Strategy. All these lead to better-distributed
responsibilities and code that is easier to maintain. It does look rather different
from procedural style code, and that takes some getting used to. But once you
are used to it, it is hard to go back to procedural programs.

The most important lesson from this example is the rhythm of refactoring:
test, small change, test, small change, test, small change. It is that rhythm that
allows refactoring to move quickly and safely.

If you’re with me this far, you should now understand what refactoring is
all about. We can now move on to some background, principles, and theory
(although not too much!)

Chapter 1 Refactoring, a First Example50

Final
Thoughts

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

51

Chapter 2

Principles in Refactoring

The example in Chapter 1, “Refactoring, a First Example,” should give you a
good feel for what refactoring is all about. Now it’s time to step back and look
at the key principles of refactoring and at some of the issues you need to think
about in using refactoring.

Where Did Refactoring Come From?

I’ve not succeeded in pinning down the real birth of the term refactoring. Good
programmers certainly have spent at least some time cleaning up their code.
They do this because they have learned that clean code is easier to change than
complex and messy code, and good programmers know that they rarely write
clean code the first time around.

Refactoring goes beyond this. In this book I’m advocating refactoring as a
key element in the whole process of software development. Two of the first
people to recognize the importance of refactoring were Ward Cunningham and
Kent Beck, who worked with Smalltalk from the 1980s onward. Smalltalk is
an environment that even then was particularly hospitable to refactoring. It
is a dynamic environment that allows you quickly to write highly functional
software. Smalltalk has a short compile-link-execute cycle, which makes it easy
to change things quickly. It is also object oriented and thus provides powerful
tools for minimizing the impact of change behind well-defined interfaces. Ward
and Kent worked hard at developing a software development process geared
to working with this kind of environment. (Kent used this style as inspiration
for his book eXtreme Programming eXplained [Beck, XP].) They realized that
refactoring was important in improving their productivity and ever since have
been working with refactoring, applying it to serious software projects, and
refining the process.

Ward and Kent’s ideas have always been a strong influence on the Smalltalk
community, and the notion of refactoring has become an important element in
the Smalltalk culture. Ralph Johnson and Don Roberts, both of the University

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 2 Principles in Refactoring52

Defining
Refactoring

of Illinois, were also pioneers in Smalltalk refactoring. Ralph is famous as one
of the Gang of Four [Gang of Four], and explored how refactoring can help
develop an efficient and flexible framework.

Bill Opdyke was one of Ralph’s doctoral students and is particularly inter-
ested in frameworks. He saw the potential value of refactoring and saw that
it could be applied to much more than Smalltalk. His background was in tele-
phone switch development, in which a great deal of complexity accrues over
time, and changes are difficult to make. Bill’s doctoral research looked at refac-
toring from a tool builder’s perspective. Bill investigated the refactorings that
would be useful for C++ framework development and researched the necessary
semantics-preserving refactorings, how to prove they were semantics preserv-
ing, and how a tool could implement these ideas.

I remember meeting Bill at the OOPSLA conference in 1992. We sat in a café
and discussed some of the work I’d done in building a conceptual framework
for health care. Bill told me about his research, and I remember thinking, “Inter-
esting, but not really that important.” Boy was I wrong!

And me? I’d always been inclined to clean code, but I’d never considered it
to be that important. Then I worked on a project with Kent and saw the way he
used refactoring. I saw the difference it made in productivity and quality. That
experience convinced me that refactoring was an important technique. I was
frustrated, however, because there was no book that I could give to a working
programmer, and none of the experts mentioned previously had any plans to
write such a book. So, with their help, we wrote the first edition of Refactor-
ing. Now, with Jay and Shane, we’ve been able to update the book with our
learnings over the past nine years and add material that applies to Ruby, and
dynamic languages in general.

Defining Refactoring

I’m always a little leery of definitions because everyone has his or her own, but
when you write a book you get to choose your own definitions. In this case I’m
basing my definitions on the work done by Ralph Johnson’s group and assorted
associates.

The first thing to say about this is that the word refactoring has two defini-
tions depending on context. You might find this annoying (I certainly do), but it
serves as yet another example of the realities of working with natural language.

The first definition is the noun form.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Defining Refactoring 53

Defining
Refactoring

Tip Refactoring (noun): A change made to the internal structure of
software to make it easier to understand and cheaper to modify with-
out changing its observable behavior.

You can find examples of refactorings in the catalog, such as Extract Method
and Replace Hash with Object. As such, a refactoring is usually a small change
to the software, although one refactoring can involve others. For example, Extract
Class usually involves Move Method and Move Field.

The other usage of refactoring is the verb form.

Tip Refactor (verb): To restructure software by applying a series of
refactorings without changing its observable behavior.

So you might spend a few hours refactoring, during which you might apply a
couple of dozen individual refactorings.

I’ve been asked, “Is refactoring just cleaning up code?” In a way the answer
is yes, but I think refactoring goes further because it provides a technique for
cleaning up code in a more efficient and controlled manner. Since I’ve been
using refactoring, I’ve noticed that I clean code far more effectively than I did
before. This is because I know which refactorings to use, I know how to use
them in a manner that minimizes bugs, and I test at every possible opportunity.

I should amplify a couple of points in my definitions. First, the purpose of
refactoring is to make the software easier to understand and modify. You can
make many changes in software that make little or no change in the observ-
able behavior. Only changes that make the software easier to understand are
refactorings. A good contrast is performance optimization. Like refactoring,
performance optimization does not usually change the behavior of a component
(other than its speed); it only alters the internal structure. However, the purpose
is different. Performance optimization often makes code harder to understand,
but you need to do it to get the performance you need.

The second thing I want to highlight is that refactoring does not change the
observable behavior of the software. The software still carries out the same
function that it did before. Any user, whether an end user or another program-
mer, cannot tell that things have changed.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 2 Principles in Refactoring54

Why Should
You

Refactor?

The Two Hats

This second point leads to Kent Beck’s metaphor of two hats. When you use
refactoring to develop software, you divide your time between two distinct activ-
ities: adding function and refactoring. When you add function, you shouldn’t be
changing existing code; you are just adding new capabilities. You can measure
your progress by adding tests and getting the tests to work. When you refactor,
you make a point of not adding function; you only restructure the code. You
don’t add any tests (unless you find a case you missed earlier); you only restruc-
ture the code. Additionally, you only change tests when you absolutely need to
in order to cope with a change in an interface.

As you develop software, you probably find yourself swapping hats fre-
quently. You start by trying to add a new function, and you realize this would
be much easier if the code were structured differently. So you swap hats and
refactor for a while. Once the code is better structured, you swap hats and
add the new function. Once you get the new function working, you realize you
coded it in a way that’s awkward to understand, so you swap hats again and
refactor. All this might take only ten minutes, but during this time you should
always be aware of which hat you’re wearing.

Why Should You Refactor?

I don’t want to proclaim refactoring as the cure for all software ills. It is no “sil-
ver bullet.” Yet it is a valuable tool, a pair of silver pliers that helps you keep a
good grip on your code. Refactoring is a tool that can, and should, be used for
several purposes.

Refactoring Improves the Design of Software

Without refactoring, the design of the program will decay. As people change
code—whether changes to realize short-term goals or changes made without
a full comprehension of the design of the code—the code loses its structure. It
becomes harder to see the design by reading the code. Refactoring is rather like
tidying up the code. Work is done to remove bits that aren’t really in the right
place. Loss of the structure of code has a cumulative effect. The harder it is to
see the design in the code, the harder it is to preserve it, and the more rapidly it
decays. Regular refactoring helps code retain its shape.

Poorly designed code usually takes more code to do the same things, often
because the code literally does the same thing in several places. Thus an impor-

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Why Should You Refactor? 55

Why Should
You
Refactor?

tant aspect of improving design is to eliminate duplicate code. The importance
of this lies in future modifications to the code. Reducing the amount of code
won’t make the system run any faster, because the effect on the footprint of
the programs rarely is significant. Reducing the amount of code does, however,
make a big difference in modification of the code. The more code there is, the
harder it is to modify correctly. There’s more code to understand. You change
this bit of code here, but the system doesn’t do what you expect because you
didn’t change that bit over there that does much the same thing in a slightly
different context. By eliminating the duplicates, you ensure that the code says
everything once and only once, which is the essence of good design.

Refactoring Makes Software Easier to Understand

Programming is in many ways a conversation with a computer. You write code
that tells the computer what to do, and it responds by doing exactly what you
tell it. In time you close the gap between what you want it to do and what
you tell it to do. Programming in this mode is all about saying exactly what you
want. But there is another user of your source code. Someone will try to read
your code in a few months’ time to make some changes. We easily forget that
extra user of the code, yet that user is actually the most important. Who cares
if the computer takes a few more cycles to execute something? It does matter if
it takes a programmer a week to make a change that would have taken only an
hour if she had understood your code.

The trouble is that when you are trying to get the program to work, you are
not thinking about that future developer. It takes a change of rhythm to make
changes that make the code easier to understand. Refactoring helps you to make
your code more readable. When refactoring you have code that works but is
not ideally structured. A little time spent refactoring can make the code better
communicate its purpose. Programming in this mode is all about saying exactly
what you mean.

I’m not necessarily being altruistic about this. Often this future developer
is me. Here refactoring is particularly important. I’m a very lazy programmer.
One form of my laziness is that I never remember things about the code I write.
Indeed, I deliberately try not remember anything I can look up, because I’m
afraid my brain will get full. I make a point of trying to put everything I should
remember into the code so I don’t have to remember it.

This understandability works another way, too. I use refactoring to help me
understand unfamiliar code. When I look at unfamiliar code, I have to try to
understand what it does. I look at a couple of lines and say to myself, oh yes,
that’s what this bit of code is doing. With refactoring I don’t stop at the mental

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 2 Principles in Refactoring56

Why Should
You

Refactor?

note. I actually change the code to better reflect my understanding, and then I
test that understanding by rerunning the code to see if it still works.

Early on I do refactoring like this on little details. As the code gets clearer,
I find I can see things about the design that I could not see before. Had I not
changed the code, I probably never would have seen these things, because I’m
just not clever enough to visualize all this in my head. Ralph Johnson describes
these early refactorings as wiping the dirt off a window so you can see beyond.
When I’m studying code I find refactoring leads me to higher levels of under-
standing that otherwise I would miss.

Refactoring Helps You Find Bugs

Help in understanding the code also helps me spot bugs. I admit I’m not terri-
bly good at finding bugs. Some people can read a lump of code and see bugs; I
cannot. However, I find that if I refactor code, I work deeply on understanding
what the code does, and I put that new understanding right back into the code.
By clarifying the structure of the program, I clarify certain assumptions I’ve
made, to the point at which even I can’t avoid spotting the bugs.

It reminds me of a statement Kent Beck often makes about himself, “I’m not
a great programmer; I’m just a good programmer with great habits.” Refactor-
ing helps me be much more effective at writing robust code.

Refactoring Helps You Program Faster

In the end, all the earlier points come down to this: Refactoring helps you
develop code more quickly.

This sounds counterintuitive. When I talk about refactoring, people can eas-
ily see that it improves quality. Improving design, improving readability, reduc-
ing bugs, all these improve quality. But doesn’t all this reduce the speed of
development?

I strongly believe that a good design is essential for rapid software develop-
ment. Indeed, the whole point of having a good design is to allow rapid devel-
opment. Without a good design, you can progress quickly for a while, but soon
the poor design starts to slow you down. You spend time finding and fixing
bugs instead of adding new function. Changes take longer as you try to under-
stand the system and find the duplicate code. New features need more coding as
you patch over a patch that patches a patch on the original code base.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

When Should You Refactor? 57

When
Should
You
Refactor?

A good design is essential to maintaining speed in software development.
Refactoring helps you develop software more rapidly, because it stops the design
of the system from decaying. It can even improve a design.

When Should You Refactor?

When I talk about refactoring, I’m often asked about how it should be sched-
uled. Should we allocate two weeks every couple of months to refactoring?

In almost all cases, I’m opposed to setting aside time for refactoring. In my
view refactoring is not an activity you set aside time to do. Refactoring is some-
thing you do all the time in little bursts. You don’t decide to refactor, you refac-
tor because you want to do something else, and refactoring helps you do that
other thing.

The Rule of Three

Here’s a guideline Don Roberts gave me: The first time you do something, you
just do it. The second time you do something similar, you wince at the duplica-
tion, but you do the duplicate thing anyway. The third time you do something
similar, you refactor.

Tip Three strikes and you refactor.

Refactor When You Add Function

The most common time to refactor is when I want to add a new feature to some
software. Often the first reason to refactor here is to help me understand some
code I need to modify. This code may have been written by someone else, or I
may have written it. Whenever I have to think to understand what the code is
doing, I ask myself if I can refactor the code to make that understanding more
immediately apparent. Then I refactor it. This is partly for the next time I pass
by here, but mostly it’s because I can understand more things if I clarify the code
as I’m going along.

The other driver of refactoring here is a design that does not help me add a
feature easily. I look at the design and say to myself, “If only I’d designed the
code this way, adding this feature would be easy.” In this case I don’t fret over
my past misdeeds—I fix them by refactoring. I do this partly to make future

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 2 Principles in Refactoring58

When
Should

You
Refactor?

enhancements easy, but mostly I do it because I’ve found it’s the fastest way.
Refactoring is a quick and smooth process. Once I’ve refactored, adding the
feature can go much more quickly and smoothly.

Sometimes a new framework is released or a new technique is found that
may replace a portion of your application. Developers are often eager to both
remove existing pain points and experiment with new solutions. Refactoring
when you add function always needs Return on Investment (ROI) consider-
ation; however, there is often hidden ROI. For example, replacing a section of
your code with a framework means there is less code for the existing team and
new members to understand. Of course, this must be weighed against the fact
that the framework likely isn’t bulletproof. However, when using a framework
you can not only utilize your team to diagnose problems, you can also utilize
the community that uses the framework. Another hidden ROI for utilizing new
frameworks or ideas is that you may fail when attempting to put it in your
code base; however, failure is often as important as success. If you never try the
framework (or technique) you will never know where it applies and where it
doesn’t. Today’s failure may result in a deeper understanding of the framework
that may lead to a great gain in the future when it is utilized in a successful way.

Refactor When You Need to Fix a Bug

In fixing bugs much of the use of refactoring comes from making code more
understandable. As I look at the code trying to understand it, I refactor to help
improve my understanding. Often I find that this active process of working
with the code helps in finding the bug. One way to look at it is that if you do
get a bug report, it’s a sign you need refactoring, because the code was not clear
enough for you to see there was a bug.

Refactor As You Do a Code Review

Some organizations do regular code reviews; those that don’t would do better
if they did. Code reviews help spread knowledge through a development team.
Reviews help more experienced developers pass knowledge to less experienced
people. They help more people understand more aspects of a large software
system. They are also important in writing clear code. My code may look clear
to me but not to my team. That’s inevitable—it’s hard for people to put them-
selves in the shoes of someone unfamiliar with the things they are working on.
Reviews also give the opportunity for more people to suggest useful ideas. I can
only think of so many good ideas in a week. Having other people contribute
makes my life easier, so I always look for many reviews.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

When Should You Refactor? 59

When
Should
You
Refactor?

I’ve found that refactoring helps me review someone else’s code. Before I
started using refactoring, I could read the code, understand some degree of it,
and make suggestions. Now when I come up with ideas, I consider whether
they can be easily implemented then and there with refactoring. If so, I refactor.
When I do it a few times, I can see more clearly what the code looks like with
the suggestions in place. I don’t have to imagine what it would be like, I can
see what it is like. As a result, I can come up with a second level of ideas that I
would never have realized had I not refactored.

Refactoring also helps the code review have more concrete results. Not only
are there suggestions, but also many suggestions are implemented there and
then. You end up with much more of a sense of accomplishment from the exer-
cise.

To make this process work, you have to have small review groups. My expe-
rience suggests having one reviewer and the original author work on the code
together. The reviewer suggests changes, and they both decide whether the
changes can be easily refactored in. If so, they make the changes.

With larger design reviews it is often better to obtain several opinions
in a larger group. Showing code often is not the best device for this. I pre-
fer UML diagrams and walking through scenarios with Class-Responsibility-
Collaboration (CRC) cards. So I do design reviews with groups and code reviews
with individual reviewers.

This idea of active code review is taken to its limit with the extreme program-
ming [Beck, XP] practice of pair programming. With this technique all serious
development is done with two developers at one machine. In effect it’s a con-
tinuous code review folded into the development process, and the refactoring
that takes place is folded in as well.

Refactoring for Greater Understanding (aka, Refactor to the
Same Thing)

A senior developer once joined a team I was leading, halfway through the proj-
ect. When he joined he saw things that he didn’t agree with and suggested that
we refactor the code toward a better domain model. Anxious to learn from
the senior developer, I paired with him over the next few days while we made
various changes to the domain model. Unfortunately, many of the changes that
the senior developer suggested could not be implemented due to additional con-
straints imposed by required features. In the end, the code was refactored to be
slightly better; however, the largest benefit was the deep understanding that the
senior developer gained from the refactoring. From that point forward he deliv-
ered value at the level you would expect from a team member who has been on

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 2 Principles in Refactoring60

Why
Refactoring

Works

the project from day one. The project lost two development days toward new
features; however, it gained a fully productive senior developer only two days
after joining the project. That developer’s contribution in the following months
greatly outweighed the original slowdown.

I see refactoring for greater understanding fairly often; however, I don’t think
it’s a bad thing. When developers have a deeper understanding of the code base
they can be more effective at adding to it and suggesting how to improve it.

Why Refactoring Works

Kent Beck
Programs have two kinds of value: What they can do for you today and what

they can do for you tomorrow. Most times when programming, we are focused
on what we want the program to do today. Whether we are fixing a bug or add-
ing a feature, we are making today’s program more valuable by making it more
capable.

You can’t program long without realizing that what the system does today
is only a part of the story. If you can get today’s work done today, but you do
it in such a way that you can’t possibly get tomorrow’s work done tomorrow,
then you lose. Notice, though, that you know what you need to do today, but
you’re not quite sure about tomorrow. Maybe you’ll do this, maybe that, maybe
something you haven’t imagined yet.

I know enough to do today’s work. I don’t know enough to do tomorrow’s.
But if I only work for today, I won’t be able to work tomorrow at all.

Refactoring is one way out of the bind. When you find that yesterday’s deci-
sion doesn’t make sense today, you change the decision. Now you can do today’s
work. Tomorrow, some of your understanding as of today will seem naive, so
you’ll change that, too.

What makes programs hard to work with? I can think of four things:

• Programs that are hard to read are hard to modify.

• Programs that have duplicated logic are hard to modify.

• Programs that require additional behavior that requires you to change run-
ning code are hard to modify.

• Programs with complex conditional logic are hard to modify.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Indirection and Refactoring 61

Indirection
and
Refactoring

So, we want programs that are easy to read, that have all logic specified in
one and only one place, that do not allow changes to endanger existing behav-
ior, and that allow conditional logic to be expressed as simply as possible.

Refactoring is the process of taking a running program and adding to its
value, not by changing its behavior but by giving it more of these qualities that
enable us to continue developing at speed.

What Do I Tell My Manager?

How to tell a manager about refactoring is one of the most common questions
I’ve been asked. If the manager is technically savvy, introducing the subject may
not be that hard. If the manager is genuinely quality oriented, then the thing to
stress is the quality aspect. Here using refactoring in the review process is a good
way to work things. Many studies show that technical reviews are an important
way to reduce bugs and thus speed up development. Take a look at any book
on reviews, inspections, or the software development process for the latest cita-
tions. These should convince most managers of the value of reviews. It is then
a short step to introduce refactoring as a way of getting review comments into
the code.

Of course, many people say they are driven by quality but are more driven by
schedule. In these cases I give my more controversial advice: Don’t tell!

Subversive? I don’t think so. Software developers are professionals. Our job
is to build effective software as rapidly as we can. My experience is that refac-
toring is a big aid to building software quickly. If I need to add a new function
and the design does not suit the change, I find it’s quicker to refactor first and
then add the function. If I need to fix a bug, I need to understand how the
software works and I find refactoring is the fastest way to do this. A schedule-
driven manager wants me to do things the fastest way I can; how I do it is my
business. The fastest way is to refactor; therefore I refactor.

Indirection and Refactoring

Kent Beck
Computer science is the discipline that believes all problems can be solved

with one more layer of indirection. —Dennis DeBruler
Given software engineers’ infatuation with indirection, it may not surprise

you to learn that most refactoring introduces more indirection into a program.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 2 Principles in Refactoring62

Indirection
and

Refactoring

Refactoring tends to break big objects and big methods into several smaller
ones.

Indirection is a two-edged sword, however. Every time you break one thing
into two pieces, you have more things to manage. It also can make a program
harder to read as an object delegates to an object delegating to an object. So
you’d like to minimize indirection.

Not so fast, buddy. Indirection can pay for itself. Here are some of the ways:

• To enable sharing of logic. For example, a submethod invoked in two dif-
ferent places or a method in a superclass shared by all subclasses.

• To explain intention and implementation separately. Choosing the name
of each class and the name of each method gives you an opportunity to
explain what you intend. The internals of the class or method explain how
the intention is realized. If the internals also are written in terms of inten-
tion in yet smaller pieces, you can write code that communicates most of
the important information about its own structure.

• To isolate change. I use an object in two different places. I want to change
the behavior in one of the two cases. If I change the object, I risk changing
both. So I first make a subclass and refer to it in the case that is changing.
Now I can modify the subclass without risking an inadvertent change to
the other case.

• To encode conditional logic. Objects have a fabulous mechanism, poly-
morphic messages, to flexibly but clearly express conditional logic. By
changing explicit conditionals to messages, you can often reduce duplica-
tion, add clarity, and increase flexibility all at the same time.

Here is the refactoring game: Maintaining the current behavior of the system,
how can you make your system more valuable, either by increasing its quality
or by reducing its cost?

The most common variant of the game is to look at your program. Identify a
place where it is missing one or more of the benefits of indirection. Put in that
indirection without changing the existing behavior. Now you have a more valu-
able program because it has more qualities that we will appreciate tomorrow.

Contrast this with careful up-front design. Speculative design is an attempt
to put all the good qualities into the system before any code is written. Then the
code can just be hung on the sturdy skeleton. The problem with this process is
that it is too easy to guess wrong. With refactoring, you are never in danger of
being completely wrong. The program always behaves at the end as it did at the
beginning. In addition, you have the opportunity to add valuable qualities to
the code.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Problems with Refactoring 63

Problems
with
Refactoring

There is a second, rarer refactoring game. Identify indirection that isn’t pay-
ing for itself and take it out. Often this takes the form of intermediate methods
that used to serve a purpose but no longer do. Or it could be a component that
you expected to be shared or polymorphic but turned out to be used in only one
place. When you find parasitic indirection, take it out. Again, you will have a
more valuable program, not because there is more of one of the four qualities
listed earlier but because it costs less indirection to get the same amount from
the qualities.

Problems with Refactoring

When you learn a new technique that greatly improves your productivity, it is
hard to see when it does not apply. Usually you learn it within a specific con-
text, often just a single project. It is hard to see what causes the technique to be
less effective, even harmful. When writing the original book, refactoring was a
relatively new practice, and it was difficult to identify potential problems. Now,
refactoring is a mature practice, and we can speak more confidently about the
benefits and potential pitfalls.

Changing Interfaces

One of the important things about objects is that they allow you to change the
implementation of a software module separately from changing the interface.
You can safely change the internals of an object without anyone else’s worrying
about it, but the interface is important—change that and anything can happen.

Something disturbing about refactoring is that many of the refactorings do
change an interface. Something as simple as Rename Method is all about chang-
ing an interface. So what does this do to the treasured notion of encapsulation?

There is no problem changing a method name if you have access to all the
code that calls that method. Even if the method is public, as long as you can
reach and change all the callers, you can rename the method. There is a prob-
lem only if the interface is being used by code that you cannot find and change.
When this happens, I say that the interface becomes a published interface (a step
beyond a public interface). Once you publish an interface, you can no longer
safely change it and just edit the callers. You need a somewhat more compli-
cated process.

This notion changes the question. Now the problem is: What do you do
about refactorings that change published interfaces?

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 2 Principles in Refactoring64

Problems
with

Refactoring

In short, if a refactoring changes a published interface, you have to retain
both the old interface and the new one, at least until your users have had a
chance to react to the change. Fortunately, this is not too awkward. You can
usually arrange things so that the old interface still works. Try to do this so that
the old interface calls the new interface. In this way when you change the name
of a method, keep the old one, and just let it call the new one. Don’t copy the
method body—that leads you down the path to damnation by way of dupli-
cated code. You should also create some type of deprecation facility; that way
your callers will know that something is up (See the “Refactor with Depreca-
tion” section of “Replace Array with Object” in Chapter 8 for details).

Protecting interfaces usually is doable, but it is a pain. You have to build and
maintain these extra methods, at least for a time. The methods complicate the
interface, making it harder to use. There is an alternative: Don’t publish the
interface. Now I’m not talking about a total ban here, clearly you have to have
published interfaces. If you are building APIs for outside consumption, as Sun
does, then you have to have published interfaces. I say this because I often see
development groups using published interfaces far too much. I’ve seen a team of
three people operate in such a way that each person published interfaces to the
other two. This led to all sorts of gyrations to maintain interfaces when it would
have been easier to go into the code base and make the edits. Organizations
with an overly strong notion of code ownership tend to behave this way. Using
published interfaces is useful, but it comes with a cost. So don’t publish inter-
faces unless you really need to. This may mean modifying your code owner-
ship rules to allow people to change other people’s code to support an interface
change. Often it is a good idea to do this with pair programming.

Tip Don’t publish interfaces prematurely. Modify your code owner-
ship policies to smooth refactoring.

Databases

One problem area for refactoring is databases. Many business applications are
tightly coupled to the database schema that support them. That’s one reason
that the database is difficult to change. Another reason is data migration. Even
if you have carefully layered your system to minimize the dependencies between
the database schema and the object model, changing the database schema forces
you to migrate the data, which can be a long and fraught task. The addition of
a rigorous one-click deployment process with database migrations as part of

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Problems with Refactoring 65

Problems
with
Refactoring

that process certainly helps. Write your migrations to modify the schema and
migrate the data. Use temporary tables if you need to preserve the data while
you modify the schema. Write tests for your migrations.

The migration task can still take a very long time, and in some systems regu-
lar modification of the schema may not be feasible. One way to deal with this
problem is to place a separate layer of software between your object model and
your database model. That way you can isolate the changes to the two different
models. As you update one model, you don’t need to update the other. You just
update the intermediate layer. Such a layer adds complexity but gives you a lot
of flexibility. Even without refactoring it is very important in situations in which
you have multiple databases or a complex database model that you don’t have
control over.

You don’t have to start with a separate layer. You can create the layer as you
notice parts of your object model becoming volatile. This way you get the great-
est leverage for your changes.

For more information on Refactoring databases see Pramod Sadalage and
Scott Ambler’s book Refactoring Databases [Sadalage].

Design Changes That Are Difficult to Refactor

Can you refactor your way out of any design mistake, or are some design deci-
sions so central that you cannot count on refactoring to change your mind later?
In the vast majority of situations, refactoring will see you through. Certain
architectural decisions, such as the choice of framework or choice of integra-
tion technology are harder to refactor away from, but certainly possible. In one
project we wanted to move to a message-oriented architecture to improve per-
formance and decouple components of the system, but the business was reluc-
tant to pay for a wholesale change. So when it came time to introduce a new
set of features, we implemented them using the message-oriented architecture.
We were able to stand up the required infrastructure for these relatively simple
features, and as modifications were requested of the old features, we refactored
them one-by-one to use the new architecture. It took time, but in the end we
were successful, and the business was able to receive new features throughout
the entire process.

That said, choice of framework and integration architecture should not be
made lightly. But once these decisions are made, proceed forward with confi-
dence that by applying refactoring techniques, mistakes made today can easily
be reversed tomorrow. As you consider design alternatives, ask yourself how
difficult it would be to refactor from one design into another. If it seems easy,
don’t worry too much about the choice, and pick the simplest design, even if

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 2 Principles in Refactoring66

Problems
with

Refactoring

it does not cover all the potential requirements. However, if you cannot see a
simple way to refactor, then put more effort into the design. You should find
such situations are in the minority.

When Shouldn’t You Refactor?

There are times when you should not refactor at all. The principle example is
when you should rewrite from scratch instead. There are times when the exist-
ing code is such a mess that although you could refactor it, it would be easier to
start from the beginning. This decision is not an easy one to make, and I admit
that I don’t really have good guidelines for it.

A clear sign of the need to rewrite is when the current code just does not
work. You may discover this only by trying to test it and discovering that the
code is so full of bugs that you cannot stabilize it. Remember, code has to work
mostly correctly before you refactor.

A compromise route is to refactor a large piece of software into components
with strong encapsulation. Then you can make a refactor-versus-rebuild deci-
sion for one component at a time. Perform Extract Class and Move Method on
coherent pieces of behavior. If the behavior is not tested, write tests for it.

Another time you should avoid refactoring is when you are close to a dead-
line. At that point the productivity gain from refactoring would appear after
the deadline and thus be too late. Ward Cunningham has a good way to think
of this. He describes unfinished refactoring as going into debt. Most compa-
nies need some debt to function efficiently. However, with debt comes inter-
est payments, that is, the extra cost of maintenance and extension caused by
overly complex code. You can bear some interest payments, but if the payments
become too great, you will be overwhelmed. It is important to manage your
debt, paying parts of it off by means of refactoring.

Other than when you are very close to a deadline, however, you should not
put off refactoring because you haven’t got time. Experience with several proj-
ects has shown that a bout of refactoring results in increased productivity. Not
having enough time usually is a sign that you need to do some refactoring.

The most costly refactoring is refactoring for academic purposes. Refactoring
for academic purposes is in direct conflict with delivering working software. In
your career you will likely find many lines of code that you do not agree with;
however, disagreeing with implementation is not a good enough reason to refac-
tor code. If the code currently hinders your ability to deliver software (or will
in the future), you can refactor, but changing code because you philosophically
disagree is simply wrong.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Refactoring and Design 67

Refactoring
and
Design

For example, if you believe that state-based testing is the only way to test,
that isn’t a good enough reason to alter the existing tests that utilize mocks.
If those tests become a maintenance problem, that’s another issue, but simply
disliking mocks does not give you the right to remove them. Creating a beauti-
ful code base should always be a priority; however, creating working software
is the number one priority. To make matters worse, when you refactor for aca-
demic purposes you do not always improve the quality of the code, thus you
don’t increase your ability to deliver new features.

Slowing delivery generally upsets the business sponsors and project manag-
ers. Refactoring is a good thing and everyone should be on board with it. If you
can’t prove to the business and the project manager that a refactoring is worth
doing, you might be refactoring for academic purposes.

Refactoring and Design

Refactoring has a special role as a complement to design. When I first learned
to program, I just wrote the program and muddled my way through it. In time
I learned that thinking about the design in advance helped me avoid costly
rework, and I got more into this style of up-front design. Many people consider
design to be the key piece and programming just mechanics. The analogy is,
design is an engineering drawing and code is the construction work. But soft-
ware is different from physical machines. It is much more malleable, and it is all
about thinking. As Alistair Cockburn, codeveloper of the Agile Manifesto puts
it, “With design I can think very fast, but my thinking is full of little holes.”

One argument is that refactoring can be an alternative to up-front design.
In this scenario you don’t do any design at all. You just code the first approach
that comes into your head, get it working, and then refactor it into shape. Actu-
ally, this approach can work. I’ve seen people do this and come out with a well-
designed piece of software. Those who support extreme programming [Beck,
XP] often are portrayed as advocating this approach.

Although doing only refactoring does work, it is not the most efficient way
to work. Even the extreme programmers do some design first. They will try out
various ideas with CRC cards or the like until they have a plausible first solu-
tion. Only after generating a plausible first shot will they code and then refactor.
The point is that refactoring changes the role of up-front design. If you don’t
refactor, there is a lot of pressure in getting that up-front design right. The sense
is that any changes to the design later are going to be expensive. Thus you put
more time and effort into the up-front design to avoid the need for such changes.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 2 Principles in Refactoring68

Refactoring
and

Design

With refactoring the emphasis changes. You still do up-front design, but now
you don’t try to find the perfect solution. Instead all you want is a reasonable
solution. You know that as you build the functionality, as you understand more
about the problem, you may realize that the best solution is different from the
one you originally came up with. With refactoring this is not a problem, for it
no longer is expensive to make the changes.

An important result of this change in emphasis is a greater movement toward
simplicity of design. Before I used refactoring, I always looked for flexible solu-
tions. With any requirement I would wonder how that requirement would
change during the life of the system. Because design changes were expensive, I
would look to build a design that would stand up to the changes I could foresee.
The problem with building a flexible solution is that flexibility costs. Flexible
solutions are more complex than simple ones. The resulting software is more
difficult to maintain in general, although it is easier to flex in the direction I had
in mind. Even there, however, you have to understand how to flex the design.
For one or two aspects this is no big deal, but changes occur throughout the sys-
tem. Building flexibility in all these places makes the overall system a lot more
complex and expensive to maintain. The big frustration, of course, is that all
this flexibility is not needed. Some of it is, but it’s impossible to predict which
pieces those are. To gain flexibility, you are forced to put in a lot more flexibility
than you actually need.

With refactoring you approach the risks of change differently. You still
think about potential changes; you still consider flexible solutions. But instead
of implementing these flexible solutions, you ask yourself, “How difficult is
it going to be to refactor a simple solution into the flexible solution?” If, as
happens most of the time, the answer is “pretty easy,” you just implement the
simple solution.

Refactoring can lead to simpler designs without sacrificing flexibility. This
makes the design process easier and less stressful. Once you have a broad sense
of things that refactor easily, you don’t even think of the flexible solutions. You
have the confidence to refactor if the time comes. You build the simplest thing
that can possibly work. As for the flexible, complex design, most of the time
you aren’t going to need it.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

It Takes A While to Create Nothing 69

It Takes
a While to
Create
Nothing

It Takes A While to Create Nothing

Ron Jeffries
The Chrysler Comprehensive Compensation pay process was running too

slowly. Although we were still in development, it began to bother us, because it
was slowing down the tests.

Kent Beck, Martin Fowler, and I decided we’d fix it up. While I waited for
us to get together, I was speculating, on the basis of my extensive knowledge of
the system, about what was probably slowing it down. I thought of several pos-
sibilities and chatted with folks about the changes that were probably necessary.
We came up with some really good ideas about what would make the system
go faster.

Then we measured performance using Kent’s profiler. None of the possibili-
ties I had thought of had anything to do with the problem. Instead, we found
that the system was spending half its time creating instances of date. Even more
interesting was that all the instances had the same couple of values.

When we looked at the date-creation logic, we saw some opportunities for
optimizing how these dates were created. They were all going through a string
conversion even though no external inputs were involved. The code was just
using string conversion for convenience of typing. Maybe we could optimize
that.

Then we looked at how these dates were being used. It turned out that the
huge bulk of them were all creating instances of date range, an object with a
“from date” and a “to date.” Looking around a little more, we realized that
most of these date ranges were empty!

As we worked with date range, we used the convention that any date range
that ended before it started was empty. It’s a good convention and fits in well
with how the class works. Soon after we started using this convention, we real-
ized that just creating a date range that starts after it ends wasn’t clear code, so
we extracted that behavior into a factory method for empty date ranges.

We had made that change to make the code clearer, but we received an unex-
pected payoff. We created a constant empty date range and adjusted the fac-
tory method to return that object instead of creating it every time. That change
doubled the speed of the system, enough for the tests to be bearable. It took us
about five minutes.

I had speculated with various members of the team (Kent and Martin deny
participating in the speculation) on what was likely wrong with the code we
knew very well. We had even sketched some designs for improvements without
first measuring what was going on.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 2 Principles in Refactoring70

Refactoring
and

Performance

We were completely wrong. Aside from having a really interesting conversa-
tion, we were doing no good at all.

The lesson is: Even if you know exactly what is going on in your system,
measure performance; don’t speculate. You’ll learn something, and nine times
out of ten, it won’t be that you were right!

Refactoring and Performance

A common concern with refactoring is the effect it has on the performance of a
program. To make the software easier to understand, you often make changes
that will cause the program to run more slowly. This is an important issue. I’m
not one of the school of thought that ignores performance in favor of design
purity or in hopes of faster hardware. Software has been rejected for being too
slow, and faster machines merely move the goalposts. Refactoring certainly will
make software go more slowly, but it also makes the software more amenable
to performance tuning. The secret to fast software, in all but hard real-time con-
texts, is to write tunable software first and then to tune it for sufficient speed.

I’ve seen three general approaches to writing fast software. The most serious
of these is time budgeting, used often in hard real-time systems. In this situation,
as you decompose the design you give each component a budget for resources—
time and footprint. That component must not exceed its budget, although a
mechanism for exchanging budgeted times is allowed. Such a mechanism
focuses hard attention on hard performance times. It is essential for systems
such as heart pacemakers, in which late data is always bad data. This technique
is overkill for other kinds of systems, such as the corporate information systems
with which I usually work.

The second approach is the constant attention approach. With this approach
every programmer, all the time, does whatever he or she can to keep perfor-
mance high. This is a common approach and has intuitive attraction, but it does
not work very well. Changes that improve performance usually make the pro-
gram harder to work with. This slows development. This would be a cost worth
paying if the resulting software were quicker, but usually it is not. The perfor-
mance improvements are spread all around the program, and each improvement
is made with a narrow perspective of the program’s behavior.

The interesting thing about performance is that if you analyze most pro-
grams, you find that they waste most of their time in a small fraction of the
code. If you optimize all the code equally, you end up with 90 percent of the
optimizations wasted, because you are optimizing code that isn’t run much. The

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Optimizing a Payroll System 71

Optimizing
a Payroll
System

time spent making the program fast, the time lost because of lack of clarity, is
all wasted time.

The third approach to performance improvement takes advantage of this 90
percent statistic. In this approach you build your program in a well-factored
manner without paying attention to performance until you begin a performance
optimization stage, usually fairly late in development. During the performance
optimization stage, you follow a specific process to tune the program.

You begin by running the program under a profiler that monitors the pro-
gram and tells you where it is consuming time and space. This way you can
find that small part of the program where the performance hot spots lie. Then
you focus on those performance hot spots and use the same optimizations you
would use if you were using the constant attention approach. But because you
are focusing your attention on a hot spot, you are having much more effect for
less work. Even so you remain cautious. As in refactoring you make the changes
in small steps. After each step you test and rerun the profiler. If you haven’t
improved performance, you back out the change. You continue the process of
finding and removing hot spots until you get the performance that satisfies your
users. McConnel [McConnel] gives more information on this technique in his
book Code Complete: A Practical Handbook of Software Construction.

Having a well-factored program helps with this style of optimization in two
ways. First, it gives you time to spend on performance tuning. Because you have
well-factored code, you can add function more quickly. This gives you more
time to focus on performance. (Profiling ensures you focus that time on the
right place.) Second, with a well-factored program you have finer granularity
for your performance analysis. Your profiler leads you to smaller parts of the
code, which are easier to tune. Because the code is clearer, you have a better
understanding of your options and of what kind of tuning will work.

I’ve found that refactoring helps me write fast software. It slows the software
in the short term while I’m refactoring, but it makes the software easier to tune
during optimization. I end up well ahead.

Optimizing a Payroll System

Rich Garzaniti
We had been developing the Chrysler Comprehensive Compensation System

for quite a while before we started to move it to GemStone. Naturally, when
we did that, we found that the program wasn’t fast enough. We brought in Jim
Haungs, a master GemSmith, to help us optimize the system.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 2 Principles in Refactoring72

Optimizing
a Payroll
System

After a little time with the team to learn how the system worked, Jim used
GemStone’s ProfMonitor feature to write a profiling tool that plugged into our
functional tests. The tool displayed the numbers of objects that were being cre-
ated and where they were being created.

To our surprise, the biggest offender turned out to be the creation of strings.
The biggest of the big was repeated creation of 12,000-byte strings. This was
a particular problem because the string was so big that GemStone’s usual gar-
bage-collection facilities wouldn’t deal with it. Because of the size, GemStone
was paging the string to disk every time it was created. It turned out the strings
were being built way down in our IO framework, and they were being built
three at a time for every output record!

Our first fix was to cache a single 12,000-byte string, which solved most of
the problem. Later, we changed the framework to write directly to a file stream,
which eliminated the creation of even the one string.

Once the huge string was out of the way, Jim’s profiler found similar prob-
lems with some smaller strings: 800 bytes, 500 bytes, and so on. Converting
these to use the file stream facility solved them as well.

With these techniques we steadily improved the performance of the system.
During development it looked like it would take more than 1,000 hours to
run the payroll. When we actually got ready to start, it took 40 hours. After a
month we got it down to around 18; when we launched we were at 12. After a
year of running and enhancing the system for a new group of employees, it was
down to 9 hours.

Our biggest improvement was to run the program in multiple threads on a
multiprocessor machine. The system wasn’t designed with threads in mind, but
because it was so well factored, it took us only three days to run in multiple
threads. Now the payroll takes a couple of hours to run.

Before Jim provided a tool that measured the system in actual operation, we
had good ideas about what was wrong. But it was a long time before our good
ideas were the ones that needed to be implemented. The real measurements
pointed in a different direction and made a much bigger difference.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

73

Chapter 3

Bad Smells in Code

If it stinks, change it.

Grandma Beck, discussing child-rearing philosophy

By now you have a good idea of how refactoring works. But just because you
know how doesn’t mean you know when. Deciding when to start refactoring,
and when to stop, is just as important to refactoring as knowing how to operate
the mechanics of a refactoring.

Now comes the dilemma. It is easy to explain how to delete an instance vari-
able or create a hierarchy. These are simple matters. Trying to explain when you
should do these things is not so cut-and-dried. Rather than appealing to some
vague notion of programming aesthetics (which frankly is what we consultants
usually do), I wanted something a bit more solid.

I was mulling over this tricky issue when I visited Kent Beck in Zurich. Per-
haps he was under the influence of the odors of his newborn daughter at the
time, but he had come up with the notion describing the “when” of refactoring
in terms of smells. “Smells,” you say, “and that is supposed to be better than
vague aesthetics?” Well, yes. We look at lots of code, written for projects that
span the gamut from wildly successful to nearly dead. In doing so, we have
learned to look for certain structures in the code that suggest (sometimes they
scream for) the possibility of refactoring. (We are switching over to “we” in this
chapter to reflect the fact that Kent and I wrote this chapter jointly. You can tell
the difference because the funny jokes are mine and the others are his.)

One thing we won’t try to do here is give you precise criteria for when a
refactoring is overdue. In our experience no set of metrics rivals informed
human intuition. What we will do is give you indications that there is trouble
that can be solved by a refactoring. You will have to develop your own sense
of how many instance variables are too many instance variables and how many
lines of code in a method are too many lines.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 3 Bad Smells in Code74

Long
Method

You should use this chapter and the table on the inside back cover as a way
to give you inspiration when you’re not sure what refactorings to do. Read the
chapter (or skim the table) to try to identify what it is you’re smelling, and then
go to the refactorings we suggest to see whether they will help you. You may
not find the exact smell you can detect, but hopefully it should point you in the
right direction.

Duplicated Code

Number one in the stink parade is duplicated code. If you see the same code
structure in more than one place, you can be sure that your program will be bet-
ter if you find a way to unify them.

The simplest duplicated code problem is when you have the same expression
in two methods of the same class. Then all you have to do is Extract Method
and invoke the code from both places.

Another common duplication problem is when you have the same expression
in two sibling subclasses. You can eliminate this duplication by using Extract
Method in both classes and then Pull Up Method. If the code is similar but
not the same, you need to use Extract Method to separate the similar bits from
the different bits. You may then find you can use Form Template Method. If
the methods do the same thing with a different algorithm, you can choose the
clearer of the two algorithms and use Substitute Algorithm. If the duplication is
in the middle of the method, use Extract Surrounding Method.

If you have duplicated code in two unrelated classes, consider using Extract
Class or Extract Module in one class and then use the new component in the
other. Another possibility is that the method really belongs only in one of the
classes and should be invoked by the other class or that the method belongs in
a third class that should be referred to by both of the original classes. You have
to decide where the method makes sense and ensure it is there and nowhere else.

Long Method

The object programs that live best and longest are those with short methods.
Programmers new to objects often feel that no computation ever takes place,
that object programs are endless sequences of delegation. When you have lived
with such a program for a few years, however, you learn just how valuable all
those little methods are. All of the payoffs of indirection—explanation, sharing,

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Long Method 75

Long
Method

and choosing—are supported by little methods (see the section “Indirection and
Refactoring” in Chapter 2, “Principles in Refactoring.”)

Since the early days of programming people have realized that the longer a
procedure is, the more difficult it is to understand. Older languages carried an
overhead in subroutine calls, which deterred people from small methods. Mod-
ern Object Oriented languages have pretty much eliminated that overhead for
in-process calls. There is still an overhead to the reader of the code because you
have to switch context to see what the subprocedure does. Development envi-
ronments that allow you to see two methods at once help to eliminate this step,
but the real key to making it easy to understand small methods is good naming.
If you have a good name for a method you don’t need to look at the body.

The net effect is that you should be much more aggressive about decompos-
ing methods. A heuristic we follow is that whenever we feel the need to com-
ment something, we write a method instead. Such a method contains the code
that was commented but is named after the intention of the code rather than
how it does it. We may do this on a group of lines or on as little as a single line
of code. We do this even if the method call is longer than the code it replaces,
provided the method name explains the purpose of the code. The key here is not
method length but the semantic distance between what the method does and
how it does it.

Ninety-nine percent of the time, all you have to do to shorten a method is
Extract Method. Find parts of the method that seem to go nicely together and
make a new method.

If you have a method with many parameters and temporary variables, these
elements get in the way of extracting methods. If you try to use Extract Method,
you end up passing so many of the parameters and temporary variables as
parameters to the extracted method that the result is scarcely more readable
than the original. You can often use Replace Temp with Query or Replace Temp
with Chain to eliminate the temps. Long lists of parameters can be slimmed
down with Introduce Parameter Object and Preserve Whole Object.

If you’ve tried that, and you still have too many temps and parameters, it’s
time to get out the heavy artillery: Replace Method with Method Object.

How do you identify the clumps of code to extract? A good technique is to
look for comments. They often signal this kind of semantic distance. A block of
code with a comment that tells you what it is doing can be replaced by a method
whose name is based on the comment. Even a single line is worth extracting if
it needs explanation.

Conditionals and loops also give signs for extractions. Use Decompose Con-
ditional to deal with conditional expressions. Replace loops with Collection

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 3 Bad Smells in Code76

Long
Parameter

List

Closure Methods and consider using Extract Method on the call to the closure
method and the closure itself.

Large Class

When a class is trying to do too much, it often shows up as too many instance
variables. When a class has too many instance variables, duplicated code cannot
be far behind.

You can Extract Class to bundle a number of the variables. Choose vari-
ables to go together in the component that makes sense for each. For example,
deposit_amount and deposit_currency are likely to belong together in a component.
More generally, common prefixes or suffixes for some subset of the variables in
a class suggest the opportunity for a component. If the component makes sense
as a subclass, you’ll find Extract Subclass often is easier. Another option if the
component doesn’t make sense as a delegate is Extract Module.

Sometimes a class does not use all of its instance variables all of the time. If
so, you may be able to Extract Class, Extract Module, or Extract Subclass many
times.

As with a class with too many instance variables, a class with too much
code is prime breeding ground for duplicated code, chaos, and death. The sim-
plest solution (have we mentioned that we like simple solutions?) is to eliminate
redundancy in the class itself. If you have five hundred-line methods with a lot
of duplicate code, you may be able to turn them into five ten-line methods with
another ten two-line methods extracted from the original.

As with a class with a huge wad of variables, the usual solution for a class
with too much code is either to Extract Class, Extract Module, or Extract Sub-
class. A useful trick is to determine how clients use the class and to use Extract
Module for each of these uses. That may give you ideas on how you can further
break up the class.

Long Parameter List

In our early programming days we were taught to pass in as parameters every-
thing needed by a routine. This was understandable because the alternative was
global data, and global data is evil and usually painful. Objects change this
situation because if you don’t have something you need, you can always ask
another object to get it for you. Thus with objects you don’t pass in every-
thing the method needs; instead you pass enough so that the method can get to

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Divergent Change 77

Divergent
Change

everything it needs. A lot of what a method needs is available on the method’s
host class. In object-oriented programs parameter lists tend to be much smaller
than in traditional programs.

This is good because long parameter lists are hard to understand, because
they become inconsistent and difficult to use, and because you are forever
changing them as you need more data. Most changes are removed by passing
objects because you are much more likely to need to make only a couple of
requests to get at a new piece of data.

Use Replace Parameter with Method when you can get the data in one
parameter by making a request of an object you already know about. This
object might be an instance variable or it might be another parameter. Use Pre-
serve Whole Object to take a bunch of data gleaned from an object and replace
it with the object itself. If you have several data items with no logical object,
use Introduce Parameter Object to clump them together, or Introduce Named
Parameter to improve the fluency.

There is one important exception to making these changes. This is when you
explicitly do not want to create a dependency from the called object to the
larger object. In those cases, unpacking data and sending it along as parameters
is reasonable, but pay attention to the pain involved. If the parameter list is too
long or changes too often, you need to rethink your dependency structure.

Divergent Change

We structure our software to make change easier; after all, software is meant to
be soft. When we make a change we want to be able to jump to a single clear
point in the system and make the change. When you can’t do this you are smell-
ing one of two closely related pungencies.

Divergent change occurs when one class is commonly changed in different
ways for different reasons. If you look at a class and say, “Well, I will have to
change these three methods every time I get a new database; I have to change
these four methods every time there is a new financial instrument,” you likely
have a situation in which two objects are better than one. That way each object
is changed only as a result of one kind of change. Of course, you often dis-
cover this only after you’ve added a few databases or financial instruments. Any
change to handle a variation should change a single class or module, and all the
typing in the new class/module should express the variation. To clean this up
you identify everything that changes for a particular cause and use Extract Class
to put them all together.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 3 Bad Smells in Code78

Feature
Envy

Shotgun Surgery

Shotgun surgery is similar to divergent change but is the opposite. You whiff
this when every time you make a kind of change, you have to make a lot of little
changes to a lot of different classes. When the changes are all over the place,
they are hard to find, and it’s easy to miss an important change.

In this case you want to use Move Method and Move Field to put all the
changes into a single class. If no current class looks like a good candidate, create
one. Often you can use Inline Class to bring a whole bunch of behavior together.
You get a small dose of divergent change, but you can easily deal with that.

Divergent change is one class that suffers many kinds of changes, and shotgun
surgery is one change that alters many classes. Either way you want to arrange
things so that, ideally, there is a one-to-one link between common changes and
classes.

Feature Envy

The whole point of objects is that they are a technique to package data with
the processes used on that data. A classic smell is a method that seems more
interested in a class other than the one it actually is in. The most common focus
of the envy is the data. We’ve lost count of the times we’ve seen a method that
invokes half a dozen getting methods on another object to calculate some value.
Fortunately the cure is obvious, the method clearly wants to be elsewhere, so
you use Move Method to get it there. Sometimes only part of the method suffers
from envy; in that case use Extract Method on the jealous bit and Move Method
to give it a dream home.

Of course not all cases are cut-and-dried. Often a method uses features of
several classes, so which one should it live with? The heuristic we use is to deter-
mine which class has most of the data and put the method with that data. This
step is often made easier if Extract Method is used to break the method into
pieces that go into different places.

Of course there are several sophisticated patterns that break this rule. From
the Gang of Four [Gang of Four] Strategy and Visitor immediately leap to mind.
Kent Beck’s Self-Delegation pattern from his Smalltalk Best Practices book
[Beck] is another. You use these to combat the divergent change smell. The fun-
damental rule of thumb is to put things together that change together. Data and
the behavior that references that data usually change together, but there are

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Primitive Obsession 79

Primitive
Obsession

exceptions. When the exceptions occur, we move the behavior to keep changes
in one place. Strategy and Visitor allow you to change behavior easily, because
they isolate the small amount of behavior that needs to be overridden, at the
cost of further indirection.

Data Clumps

Data items tend to be like children; they enjoy hanging around in groups
together. Often you’ll see the same three or four data items together in many
places: instance variables in a couple of classes, and parameters in many method
signatures. Bunches of data that hang around together really ought to be made
into their own object. The first step is to look for where the clumps appear as
instance variables. Use Extract Class on the instance variables to turn the clumps
into an object. Then turn your attention to method signatures using Introduce
Parameter Object or Preserve Whole Object to slim them down. The immediate
benefit is that you can shrink a lot of parameter lists and simplify method call-
ing. Don’t worry about data clumps that use only some of the attributes of the
new object. As long as you are replacing two or more instance variables with the
new object, you’ll come out ahead.

A good test is to consider deleting one of the data values: If you did this,
would the others make any sense? If they don’t, it’s a sure sign that you have an
object that’s dying to be born.

Reducing instance variable lists and parameter lists will certainly remove
a few bad smells, but once you have the objects, you get the opportunity to
make a nice perfume. You can now look for cases of feature envy, which suggest
behavior that can be moved into your new classes. Before long these classes will
be productive members of society.

Primitive Obsession

Most programming environments have two kinds of data. Record types allow
you to structure data into meaningful groups. Primitive types are your building
blocks. Records always carry a certain amount of overhead: They may mean
tables in a database, or they may be awkward to create when you want them for
only one or two things.

One of the valuable things about objects is that they blur or even break the
line between primitive and larger classes. You can easily write little classes that

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 3 Bad Smells in Code80

Case
Statements

are indistinguishable from the built-in types of the language. Ruby makes every-
thing an object, but for the sake of this discussion, we’re designating built-in
types such as Fixnum and String as primitives.

People new to objects are usually reluctant to use small objects for small
tasks, such as money classes that combine number and currency, and special
strings such as telephone numbers and ZIP codes. You can move out of the cave
into the centrally heated world of objects by using Replace Data Value with
Object on individual data values. If you have conditionals that depend on a
type code, use Replace Type Code with Polymorphism, Replace Type Code with
Module Extension, or Replace Type Code with State/Strategy.

If you have a group of instance variables that should go together, use Extract
Class. If you see these primitives in parameter lists, try a civilizing dose of Intro-
duce Parameter Object. If you find yourself picking apart an array, use Replace
Array with Object.

Case Statements

One of the most obvious symptoms of object-oriented code is its comparative
lack of case statements. The problem with case statements is essentially that of
duplication. Often you find the same case statement scattered about a program
in different places. If you add a new clause to the case, you have to find all these
case statements and change them. The object-oriented notion of polymorphism
gives you an elegant way to deal with this problem.

Most times when you see a case statement you should consider polymor-
phism. The issue is where the polymorphism should occur. Often the case state-
ment matches on a type code. You want the method or class that hosts the type
code value. So use Extract Method to extract the case statement and then Move
Method to get it onto the class where the polymorphism is needed. At that point
you have to decide whether to Replace Type Code with Polymorphism, Replace
Type Code with Module Extension, or Replace Type Code with State/Strategy.

If you only have a few cases that affect a single method, and you don’t expect
them to change, then polymorphism is overkill. In this case Replace Parameter
with Explicit Methods is a good option. If one of your conditional cases is a
null, try Introduce Null Object.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Speculative Generality 81

Speculative
Generality

Parallel Inheritance Hierarchies

Parallel inheritance hierarchies is really a special case of shotgun surgery. In this
case, every time you make a subclass of one class, you also have to make a sub-
class of another. You can recognize this smell because the prefixes of the class
names in one hierarchy are the same as the prefixes in another hierarchy.

The general strategy for eliminating the duplication is to make sure that
instances of one hierarchy refer to instances of the other. If you use Move
Method and Move Field, the hierarchy on the referring class disappears.

Lazy Class

Each class you create costs money to maintain and understand. A class that isn’t
doing enough to pay for itself should be eliminated. Often this might be a class
that used to pay its way but has been downsized with refactoring. Or it might
be a class that was added because of changes that were planned but not made.
Either way, you let the class die with dignity. If you have subclasses or modules
that aren’t doing enough, try to use Collapse Hierarchy. Nearly useless compo-
nents should be subjected to Inline Class or Inline Module.

Speculative Generality

Speculative generality is a smell to which we are very sensitive. You get it when
people say, “Oh, I think we need the ability to do this kind of thing some-
day” and thus want all sorts of hooks and special cases to handle things that
aren’t required. The result often is harder to understand and maintain. If all
this machinery were being used, it would be worth it. But if it isn’t, it isn’t. The
machinery just gets in the way, so get rid of it.

If you have classes or modules that aren’t doing much, use Collapse Hierar-
chy. Unnecessary delegation can be removed with Inline Class. Methods with
unused parameters should be subject to Remove Parameter. Methods named
with odd names should be brought down to earth with Rename Method.

Speculative generality can be spotted when the only users of a method, a code
branch, or an entire class are test cases. If you find this type of code, delete it
and the test case that exercises it. If you have a method or class that is a helper
for a test case that exercises legitimate functionality, you have to leave it in, of
course.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 3 Bad Smells in Code82

Message
Chains

Temporary Field

Sometimes you see an object in which an instance variable is set only in cer-
tain circumstances. Such code is difficult to understand, because you expect an
object to need all of its variables. Trying to understand why a variable is there
when it doesn’t seem to be used can drive you nuts.

Use Extract Class to create a home for the poor orphan variables. Put all the
code that concerns the variables into the component. You may also be able to
eliminate conditional code by using Introduce Null Object to create an alterna-
tive component for when the variables aren’t valid.

A common case of temporary field occurs when a complicated algorithm
needs several variables. Because the implementer didn’t want to pass around
a huge parameter list (who does?), he put them in instance variables. But the
instance variables are valid only during the algorithm; in other contexts they are
just plain confusing. In this case you can use Extract Class with these variables
and the methods that require them. The new object is a Method Object [Beck].

Message Chains

You see message chains when a client asks one object for another object, which
the client then asks for yet another object, which the client then asks for yet
another object, and so on. You may see these as a long line of get_this methods,
or as a sequence of temps. Navigating this way means the client is coupled to
the structure of the navigation. Any change to the intermediate relationships
causes the client to have to change.

The move to use here is Hide Delegate. In principle you can apply Hide Del-
egate to potentially every object in the chain, but doing this often turns every
intermediate object into a middle man. Often a better alternative is to see what
the resulting object is used for. See whether you can use Extract Method to take
a piece of the code that uses it and then Move Method to push it down the
chain. If several clients of one of the objects in the chain want to navigate the
rest of the way, add a method to do that.

Some people consider any method chain to be a terrible thing. We are known
for our calm, reasoned moderation. Well, at least in this case we are.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Alternative Classes with Different Interfaces 83

Alternative
Classes with
Different
Interfaces

Middle Man

One of the prime features of objects is encapsulation—hiding internal details
from the rest of the world. Encapsulation often comes with delegation. You ask
a director whether she is free for a meeting; she delegates the message to her
diary and gives you an answer. All well and good. There is no need to know
whether the director uses a diary, an electronic gizmo, or a secretary to keep
track of her appointments.

However, this can go too far. You look at a class’s interface and find half the
methods are delegating to this other class. After a while it is time to use Remove
Middle Man and talk to the object that really knows what’s going on. If only a
few methods aren’t doing much, use Inline Method to inline them into the caller.
If there is additional behavior, you can use Replace Delegation with Hierarchy
to turn the real object into a module and include it in the middle man. That
allows you to extend behavior without chasing all that delegation.

Inappropriate Intimacy

Sometimes classes become far too intimate and spend too much time delving
into each other’s private parts. We may not be prudes when it comes to people,
but we think our classes should follow strict, puritan rules.

Overly intimate classes need to be broken up as lovers were in ancient days.
Use Move Method and Move Field to separate the pieces to reduce the intimacy.
See whether you can arrange a Change Bidirectional Association to Unidirec-
tional. If the classes do have common interests, use Extract Class to put the
commonality in a safe place and make honest classes of them. Or use Hide Del-
egate to let another class act as go-between.

Inheritance often can lead to over-intimacy. Subclasses are always going to
know more about their parents than their parents would like them to know. If
it’s time to leave home, apply Replace Inheritance with Delegation.

Alternative Classes with Different Interfaces

Use Rename Method on any methods that do the same thing but have different
signatures for what they do. Often this doesn’t go far enough. In these cases the
classes aren’t yet doing enough. Keep using Move Method to move behavior to
the classes until the protocols are the same. If you have to redundantly move

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 3 Bad Smells in Code84

Refused
Bequest

code to accomplish this, you may be able to use Extract Module or Introduce
Inheritance to atone.

Incomplete Library Class

Reuse is often touted as the purpose of objects. We think reuse is overrated (we
just use). However, we can’t deny that much of our programming skill is based
on library classes so that nobody can tell whether we’ve forgotten our sort algo-
rithms.

Builders of library classes are rarely omniscient. We don’t blame them for
that; after all, we can rarely figure out a design until we’ve mostly built it, so
library builders have a really tough job.

In other languages extending an existing library class can be impossible or
messy. However, Ruby’s open classes make this easy to fix using Move Method
to move the behavior needed directly to the library class.

Data Class

These are classes that have attributes, and nothing else. Such classes are dumb
data holders and are almost certainly being manipulated in far too much detail
by other classes. Use Remove Setting Method on any instance variable that
should not be changed. If you have collection instance variables, check to see
whether they are properly encapsulated and apply Encapsulate Collection if
they aren’t.

Look for where these getting and setting methods are used by other classes.
Try to use Move Method to move behavior into the data class. If you can’t move
a whole method, use Extract Method to create a method that can be moved.
After a while you can start using Hide Method on the getters and setters.

Data classes are like children. They are okay as a starting point, but to par-
ticipate as a grownup object, they need to take some responsibility.

Refused Bequest

Subclasses get to inherit the methods and data of their parents. But what if they
don’t want or need what they are given? They are given all these great gifts and
pick just a few to play with.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Comments 85

Comments

The traditional story is that this means the hierarchy is wrong. You need to
create a new sibling class and use Push Down Method to push all the unused
methods to the sibling. That way the parent holds only what is common.

You’ll guess from our snide use of “traditional” that we aren’t going to advise
this, at least not all the time. We do subclassing to reuse a bit of behavior all the
time, and we find it a perfectly good way of doing business. There is a smell,
we can’t deny it, but usually it isn’t a strong smell. So we say that if the refused
bequest is causing confusion and problems, follow the traditional advice. How-
ever, don’t feel you have to do it all the time. Nine times out of ten this smell is
too faint to be worth cleaning.

The smell of refused bequest is much stronger if the subclass is reusing behav-
ior but does not want to support the public methods of the superclass. We don’t
mind refusing implementations, but refusing public methods gets us on our high
horses. In this case, however, don’t fiddle with the hierarchy; you want to gut it
by applying Replace Inheritance with Delegation.

Comments

Don’t worry, we aren’t saying that people shouldn’t write comments. In our
olfactory analogy, comments aren’t a bad smell; indeed they are a sweet smell.
The reason we mention comments here is that comments often are used as a
deodorant. It’s surprising how often you look at thickly commented code and
notice that the comments are there because the code is bad.

Comments lead us to bad code that has all the rotten whiffs we’ve discussed
in the rest of this chapter. Our first action is to remove the bad smells by refac-
toring. When we’re finished, we often find that the comments are superfluous.

If you need a comment to explain what a block of code does, try Extract
Method. If the method is already extracted but you still need a comment to
explain what it does, use Rename Method. If you need to state some rules about
the required state of the system, use Introduce Assertion.

Tip When you feel the need to write a comment, first try to refactor
the code so that any comment becomes superfluous.

A good time to use a comment is when you don’t know what to do. In addi-
tion to describing what is going on, comments can indicate areas in which you
aren’t sure. A comment is a good place to say why you did something. This kind
of information helps future modifiers, especially forgetful ones.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 3 Bad Smells in Code86

Repetitive
Boilerplate

Metaprogramming Madness

While in most cases Ruby’s dynamic nature provides great benefits, it can be
misused. Some metaprogramming techniques can result in obfuscated code. The
 method_missing hook, for example, often results in code that is difficult to under-
stand. It can be a powerful tool if an object’s interface cannot be determined at
coding time, but unless it’s absolutely necessary I use Replace Dynamic Receptor
with Dynamic Method Definition or even a simple Extract Method to remove
the method_missing definition. If the method_missing definition is truly needed, I might
use Isolate Dynamic Receptor to separate concerns.

Disjointed API

Libraries are often written with flexibility as the number one priority. The
author needs to build in this flexibility so that her library can be used by many
different people in many different ways. This flexibility often presents itself as a
relatively fine-grained, disjointed API, with many configuration options.

More often than not, an individual project will not take advantage of all the
configuration options. The same configuration options will be used over and
over. If this is the case, use Introduce Gateway to interact with the API in a
simplified way.

Introduce Expression Builder can be applied to both internal and external
APIs to interact with the public interface in a more fluent manner.

Repetitive Boilerplate

One of the easiest ways to remove duplication is Extract Method. Extract the
method and call it from multiple places. Some kinds of methods become so
commonplace that we can go even further. Take for example attr_reader in Ruby.
Implementing attribute readers is so common in object-oriented languages that
the author of Ruby decided to provide a succinct way to declare them. Intro-
duce Class Annotation involves annotating a class by calling a class method
from the class definition in the same way that attr_reader is called. Most code
isn’t simple enough to declare in this way, but when the purpose of the code can
be captured clearly in a declarative statement, Introduce Class Annotation can
clarify the intention of your code.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

87

Chapter 4

Building Tests

When Martin originally wrote Refactoring , tests were anything but main-
stream. However, even back then he knew: If you want to refactor, the essential
precondition is having solid tests. Even if you are fortunate enough to have a
tool that can automate the refactorings, you still need tests.

Since the days of the original Refactoring book, creating self-testing code has
become a much more common activity. And, while this book isn’t about testing,
if you want to refactor, you must have tests.

The Value of Self-Testing Code

If you look at how most programmers who do not write self-testing code spend
their time, you’ll find that writing code actually is quite a small fraction. Some
time is spent figuring out what ought to be going on, some time is spent design-
ing, but most time is spent debugging. Those programmers can tell a story of
a bug that took a whole day (or more) to find. Fixing the bug is usually pretty
quick, but finding it is a nightmare. Some stand by this style of development;
however, I’ve found life to be much easier if I have a test suite to lean on.

The event that started Martin on the road to self-testing code was a talk at
OOPSLA in 1992. Someone (I think it was Dave Thomas, coauthor of The
Pragmatic Programmer) said offhandedly, “Classes should contain their own
tests.” And thus were the early days of self-testing code.

Since those days, it’s become a standard to follow the Red/Green/Refactor
movement. In short, you write a failing test, make it pass, and then refactor
the code to the best of your ability. This process is done many times a day, at
least once with each new feature added. As you add features to the system, you
build a regression suite that verifies that an application runs as expected. When
developing in this manner you can complete large refactorings and have the
confidence that you haven’t broken existing features of the system. The result
is a tremendous productivity gain. Additionally, I find I hardly ever spend more
than a few minutes debugging per day.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 4 Building Tests88

The Test::
Unit Testing
Framework

Of course, it is not so easy to persuade others to follow this route. Tests
themselves are a lot of extra code to write. Unless you have actually experienced
the way it speeds programming, self-testing does not seem to make sense. This
is not helped by the fact that many people have never learned to write tests or
even to think about tests.

As the Red/Green/Refactor movement advocates, one of the most useful
times to write tests is before you start programming. When you need to add a
feature, begin by writing the test. This isn’t as backward as it sounds. By writing
the test you are asking yourself what needs to be done to add the function. Writ-
ing the test also concentrates on the interface rather than the implementation
(which is always a good thing). It also means you have a clear point at which
you are done coding—when the test works.

This notion of frequent testing is an important part of extreme programming
[Beck, XP]. The name conjures up notions of programmers who are fast and
loose hackers. But extreme programmers are dedicated testers. They want to
develop software as fast as possible, and they know that tests help you to go as
fast as you possibly can.

That’s enough of the polemic. Although I believe everyone would benefit by
writing self-testing code, it is not the point of this book. This book is about
refactoring. Refactoring requires tests. If you want to refactor, you have to write
tests. This chapter gives you a start in doing this for Ruby. This is not a testing
book, so I’m not going to go into much detail. But with testing I’ve found that a
remarkably small amount can have surprisingly big benefits.

As with everything else in this book, I describe the testing approach using
examples. When I develop code, I write the tests as I go. But often when I’m
working with people on refactoring, we have a body of non-self-testing code to
work on. So first we have to make the code self-testing before we refactor.

The standard Ruby idiom for testing is to build separate test classes that
work in a framework to make testing easier. The most popular framework is
Test::Unit, and it is part of the Ruby standard library.

The Test::Unit Testing Framework

A number of testing frameworks are available in Ruby. The original was
Test::Unit, an open-source testing framework developed by Nathaniel Talbott.
The framework is simple, yet it allows you to do all the key things you need
for testing. In this chapter we use this framework to develop tests for some IO
classes. We considered using RSpec for the test examples (another popular test-
ing framework), but decided against it because we felt that test/unit examples
resulted in a lower barrier of entry for the readers.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

The Test::Unit Testing Framework 89

The Test::
Unit Testing
Framework

To begin, I’m going to write some tests for Ruby’s File class. I wouldn’t nor-
mally write tests for a language class—I’d hope that the author of the language
has taken care of that—but it will serve as a good example. To begin I create a
FileTest class. Any class that contains tests must subclass the TestCase class from
the testing framework. The framework uses the composite pattern [Gang of
Four] and groups all the tests into a suite (see Figure 4.1) . This makes it easy to
run all the tests as one suite automatically.

Test::Unit

TestSuite TestCase*

FileReaderTest

Figure 4.1 The composite structure of tests .

My first job is to set up the test data. Because I’m reading a file I need to set
up a test file, as follows:

 Bradman 99.94 52 80 10 6996 334 29
 Pollock 60.97 23 41 4 2256 274 7
 Headley 60.83 22 40 4 2256 270* 10
 Sutcliffe 60.73 54 84 9 4555 194 16

Now that I have the test fixture in place, I can start writing tests. The first is
to test the read method. To do this I read the entire file and then check that the
fourth character is the character I expect.

 require 'test/unit'

 def test_read_4th_character
 contents = File.read('data.txt')
 assert_equal 'd', contents[3,1]
 end

The automatic test is the assert_equal method. If the expected value is equal to
the actual value, all is well. Otherwise we signal an error. I show how the frame-
work does that later.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 4 Building Tests90

The Test::
Unit Testing
Framework

To execute the test, simply use Ruby to run the file.

 ruby file_test.rb

You can take a look at the Test::Unit source code to figure out how it does it.
I just treat it as magic.

It’s easy to run a group of tests simply by requiring each test case.

 Dir['**/*_test.rb'].each { |test| require test }

The preceding code creates the test suite and when I run it I see:

 Loaded suite -
 Started
 .
 Finished in 0.000359 seconds.

 1 tests, 1 assertions, 0 failures, 0 errors

Test::Unit prints a period for each test that runs (so you can see progress). It
tells you how long the tests have taken to run. It then says the number of tests,
assertions, failures, and errors. I can run a thousand tests, and if all goes well,
I’ll see that. This simple feedback is essential to self-testing code. Without it
you’ll never run the tests often enough. With it you can run masses of tests and
see the results immediately.

What happens if something goes wrong? I’ll demonstrate by putting in a
deliberate bug, as follows:

 def test_read_4th_content_is_2
 contents = File.read('data.txt')
 assert_equal '2', contents[3,1]
 end

The result looks like this:

 Loaded suite -
 Started
 F
 Finished in 0.006046 seconds.

 1) Failure:
 test_read(F) [-:6]:
 <"2"> expected but was
 <"d">.

 1 tests, 1 assertions, 1 failures, 0 errors

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Developer and Quality Assurance Tests 91

Developer
and Quality
Assurance
Tests

Again I’ll mention that when I’m writing tests, I start by making them fail.
With existing code I either change it to make it fail (if I can touch the code) or
put an incorrect expected value in the assertion. I do this because I like to prove
to myself that the test does actually run and the test is actually testing what it’s
supposed to (which is why I prefer changing the tested code if I can). This may
be paranoia, but you can really confuse yourself when tests are testing some-
thing other than what you think they are testing.

In addition to catching failures (assertions coming out false), the framework
also catches errors (unexpected exceptions). If I attempt to open a file that
doesn’t exist, I should get an exception. I can test this with :

 def test_read_causes_error_when_file_not_found
 contents = File.read('datas.txt')
 assert_equal '2', contents[3,1]
 end

If I run this I get :

 Loaded suite -
 Started
 E
 Finished in 0.000362 seconds.

 1) Error:
 test_read(Tes):
 Errno::ENOENT: No such file or directory - datas.txt
 -:3:in `read'
 -:3:in `test_read'

 1 tests, 0 assertions, 0 failures, 1 errors

It is useful to differentiate failures and errors, because they tend to turn up
differently and the debugging process is different.

Developer and Quality Assurance Tests

This framework is used for developer tests, so I should mention the difference
between developer tests and quality assurance (QA) tests. The tests I’m talking
about are developer tests. I write them to improve my productivity as a pro-
grammer. Making the quality assurance department happy is just a side effect.

Quality assurance tests are a different animal. They are written to ensure the
software as a whole works. They provide quality assurance to the customer and

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 4 Building Tests92

Adding More
Tests

don’t care about programmer productivity. They should be developed by a dif-
ferent team, one who delights in finding bugs. This team uses heavyweight tools
and techniques to help them do this.

Functional tests typically treat the whole system as a black box as much as
possible. In a GUI-based system, they operate through the GUI. In a file or data-
base update program, the tests just look at how the data is changed for certain
inputs.

When quality assurance testers, or users, find a bug in the software, at least
two things are needed to fix it. Of course you have to change the production
code to remove the bug. But you should also add a developer test that exposes
the bug. Indeed, when I get a bug report, I begin by writing a developer test
that causes the bug to surface. I write more than one test if I need to narrow
the scope of the bug, or if there may be related failures. I use the developer tests
to help pin down the bug and to ensure that a similar bug doesn’t get past my
developer tests again.

Tip When you get a bug report, start by writing a unit test that
exposes the bug.

The Test::Unit framework is designed for writing developer tests. Quality
assurance tests often are performed with other tools. GUI-based test tools are
good examples. Often, however, you write your own application-specific test
tools that make it easier to manage test-cases than do GUI scripts alone. You
can perform quality assurance tests with Test::Unit, but it’s usually not the most
efficient way. For refactoring purposes, I count on the developer tests—the pro-
grammer’s friend.

Adding More Tests

Now we should continue adding more tests. The style I follow is to look at all
the things the class should do and test each one of them for any conditions that
might cause the class to fail. This is not the same as “test every public method,”
which some programmers advocate. Testing should be risk driven; remember,
you are trying to find bugs now or in the future. So I don’t test accessors that
just read and write. Because they are so simple, I’m not likely to find a bug there.

This is important because trying to write too many tests usually leads to
not writing enough. I’ve often read books on testing, and my reaction has
been to shy away from the mountain of stuff I have to do to test. This is

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Adding More Tests 93

Adding More
Tests

counterproductive, because it makes you think that to test you have to do a lot
of work. You get many benefits from testing even if you do only a little testing.
The key is to test the areas that you are most worried about going wrong. That
way you get the most benefit for your testing effort.

Tip It is better to write and run incomplete tests than not to run
complete tests.

At the moment I’m looking at the read method. What else should it do? One
thing it says is that it can return a specified length. Let’s test it.

 def test_read_with_a_length_specified
 contents = File.read('data.txt', 15)
 assert_equal 'Bradman 99.', contents
 end

Running the test file causes each of its tests (the two test-cases) to run. It’s
important to write isolated tests that do not depend on each other. There’s no
guarantee on what order the test runner will run the tests. You wouldn’t want
to get test failures where the code was actually correct, but your test depended
on a previous test running.

Test::Unit identifies each test by finding all the methods that begin with the
“ test_” prefix. Following this convention means that each test I write is auto-
matically added to the suite.

Tip Think of the boundary conditions under which things might go
wrong and concentrate your tests there.

Part of looking for boundaries is looking for special conditions that can cause
the test to fail. For files, empty files are always a good choice:

 def test_read_empty_file_returns_empty_string
 File.open('empty_data.txt', 'w') { }
 contents = File.read('empty_data.txt')
 assert_equal "", contents
 end

What happens if you attempt to read a length larger than the length of the
file? The entire file should be returned with no error. I can easily add another
test to ensure that:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 4 Building Tests94

Adding More
Tests

 def test_read_an_out_of_bounds_length_causes_no_error
 File.open('simple_data.txt', 'w') { |file| file << "simple file" }
 contents = File.read('simple_data.txt', 100)
 assert_equal "simple file", contents
 end

Notice how I’m playing the part of an enemy to code. I’m actively thinking
about how I can break it. I find that state of mind to be both productive and
fun. It indulges the mean-spirited part of my psyche.

When you are doing tests, don’t forget to check that expected errors occur
properly. If you try to read a file that doesn’t exist, you should get an exception.
This too should be tested:

 def test_read_raises_error_when_file_not_found
 begin
 File.read('datas.txt')
 rescue
 rescued = true
 end
 assert_equal true, rescued
 end

In fact, testing that exceptions are correctly raised is common enough that
Test::Unit has an assert_raises method designed for exactly that.

 def test_read_raises_error_when_file_not_found
 assert_raises Errno::ENOENT do
 File.read('datas.txt')
 end
 end

Tip Don’t forget to test that exceptions are raised when things are
expected to go wrong.

Fleshing out the tests continues along these lines. It takes a while to go
through the public methods of some classes to do this, but in the process you
get to really understand the interface of the class. In particular, it helps to think
about error conditions and boundary conditions. That’s another advantage for
writing tests as you write code, or even before you write the production code.

When do you stop? I’m sure you have heard many times that you cannot
prove a program has no bugs by testing. That’s true but does not affect the abil-
ity of testing to speed up programming. I’ve seen various proposals for rules to

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Adding More Tests 95

Adding More
Tests

ensure you have tested every combination of everything. It’s worth taking a look
at these, but don’t let them get to you. There is a point of diminishing returns
with testing, and there is the danger that by trying to write too many tests, you
become discouraged and end up not writing any. You should concentrate on
where the risk is. Look at the code and see where it becomes complex. Look at
the function and consider the likely areas of error. Your tests will not find every
bug, but as you refactor you will understand the program better and thus find
more bugs. Although I always start refactoring with a test suite, I invariably add
to it as I go along.

Tip Don’t let the fear that testing can’t catch all bugs stop you from
writing the tests that will catch most bugs.

One of the tricky things about objects is that the inheritance and polymor-
phism can make testing harder, because there are many combinations to test. If
you have three classes that collaborate and each has three subclasses, you have
nine alternatives but twenty-seven combinations. I don’t always try to test all
the combinations possible, but I do try to test each alternative. It boils down to
the risk in the combinations. If the alternatives are reasonably independent of
each other, I’m not likely to try each combination. There’s always a risk that I’ll
miss something, but it is better to spend a reasonable time to catch most bugs
than to spend ages trying to catch them all.

A difference between test code and production code is that it is okay to copy
and edit test code. When dealing with combinations and alternatives, I often do
that. I begin by writing a test for a “regular pay event” scenario, next I write a
test for a “seniority” scenario, finally I create a test for a “disabled before the
end of the year” scenario. After those tests are passing I create test scenarios
without “seniority” and “disabled before the end of the year,” and so on. With
simple alternatives like that on top of a reasonable test structure, I can generate
tests quickly.

I hope I have given you a feel for writing tests. I can say a lot more on this
topic, but that would obscure the key message. Build a good bug detector and
run it frequently. It is a wonderful tool for any development and is a precondi-
tion for refactoring.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

97

Chapter 5

Toward a Catalog of
Refactorings

Chapters 5 to 12 form an initial catalog of refactorings. They’ve grown from
the notes I’ve made in refactoring over the last few years. This catalog is by no
means comprehensive or watertight, but it should provide a solid starting point
for your own refactoring work.

Format of the Refactorings

As I describe the refactorings in this and other chapters, I use a standard format.
Each refactoring has five parts, as follows:

• I begin with a name. The name is important to building a vocabulary of
refactorings. This is the name I use elsewhere in the book.

• I follow the name with a short summary of the situation in which you need
the refactoring and a summary of what the refactoring does. This helps
you find a refactoring more quickly.

• The motivation describes why the refactoring should be done and describes
circumstances in which it shouldn’t be done.

• The mechanics are a concise, step-by-step description of how to carry out
the refactoring.

• The examples show a simple use of the refactoring to illustrate how it
works.

The summary includes a short statement of the problem that the refactoring
helps you with, a short description of what you do, and a sketch that shows
you a simple before and after example. Sometimes I use code for the sketch and

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 5 Toward a Catalog of Refactorings 98

Format
of the

Refactorings

sometimes Unified Modeling Language (UML), depending on which seems to
best convey the essence of the refactoring. (All UML diagrams in this book are
drawn from the implementation perspective [Fowler, UML].) If you’ve seen the
refactoring before, the sketch should give you a good idea what the refactoring
is about. If not you’ll probably need to work through the example to get a bet-
ter idea.

The mechanics come from my own notes to remember how to do the refac-
toring when I haven’t done it for a while. As such they are somewhat terse,
usually without explanations of why the steps are done that way. I give more
expansive explanations in the example. This way the mechanics are short notes
you can refer to easily when you know the refactoring but need to look up the
steps (at least this is how I use them). You’ll probably need to read the example
when you first do the refactoring.

I’ve written the mechanics in such a way that each step of each refactoring is
as small as possible. I emphasize the safe way of doing the refactoring, which is
to take small steps and test after every one. At work I usually take larger steps
than some of the baby steps described, but if I run into a bug, I back out the step
and take the smaller steps. The steps include a number of references to special
cases. The steps thus also function as a checklist; I often forget these things
myself.

The examples are of the laughably simple textbook kind. My aim with the
example is to help explain the basic refactoring with minimal distractions, so I
hope you’ll forgive the simplicity. (They are certainly not examples of good busi-
ness object design.) I’m sure you’ll be able to apply them to your rather more
complex situations. Some simple refactorings don’t have examples because I
didn’t think an example would add much.

In particular, remember that the examples are included only to illustrate the
one refactoring under discussion. In most cases, there are still problems with the
code at the end, but fixing these problems requires other refactorings. In a few
cases in which refactorings often go together, I carry examples from one refac-
toring to another. In most cases I leave the code as it is after the single refactor-
ing. I do this to make each refactoring self-contained, because the primary role
of the catalog is as a reference.

Don’t take any of these examples as suggestions for how to design employee
or order objects. These examples are there only to illustrate the refactorings,
nothing more.

I use boldface code to highlight changed code where it is buried among code
that has not been changed and may be difficult to spot. I do not use boldface
type for all changed code, because too much defeats the purpose.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Finding References 99

Finding
References

Finding References

Many of the refactorings call for you to find all references to a method, an
instance variable, or a class. When you do this, enlist the computer to help you.
By using the computer you reduce your chances of missing a reference and can
usually do the search much more quickly than you would if you were simply to
eyeball the code.

Most languages treat computer programs as text files. Your best help here
is a suitable text search. Many programming environments allow you to text
search a single file or a group of files. The access control of the feature you are
looking for will tell you the range of files you need to look for.

Don’t just search and replace blindly. Inspect each reference to ensure it really
refers to the thing you are replacing. You can be clever with your search pattern,
but I always check mentally to ensure I am making the right replacement. If
you can use the same method name on different classes or methods of different
signatures on the same class, there are too many chances you will get it wrong.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

101

Chapter 6

Composing Methods

A large part of my refactoring is composing methods to package code prop-
erly. Almost all the time the problems come from methods that are too long.
Long methods are troublesome because they often contain a lot of information,
which gets buried by the complex logic that usually gets dragged in. The key
refactoring is Extract Method, which takes a clump of code and turns it into its
own method. Inline Method is essentially the opposite. You take a method call
and replace it with the body of the code. I need Inline Method when I’ve done
multiple extractions and realize some of the resulting methods are no longer
pulling their weight or if I need to reorganize the way I’ve broken down meth-
ods.

The biggest problem with Extract Method is dealing with local variables, and
temps are one of the main sources of this issue. When I’m working on a method,
I like Replace Temp with Query to get rid of any temporary variables that I can
remove. If the temp is used for many things, I use Split Temporary Variable first
to make the temp easier to replace.

Sometimes, however, the temporary variables are just too tangled to replace.
I need Replace Method with Method Object. This allows me to break up even
the most tangled method, at the cost of introducing a new class for the job.

Parameters are less of a problem than temps, provided you don’t assign to
them. If you do, you need Remove Assignments to Parameters.

Once the method is broken down, I can understand how it works much bet-
ter. I may also find that the algorithm can be improved to make it clearer. I then
use Substitute Algorithm to introduce the clearer algorithm.

To improve the fluency of code I use Introduce Named Parameter. If I find
later that the fluency the named parameter brings is no longer worth the com-
plexity on the receiver, I can remove it with Remove Named Parameter.

When a default parameter becomes unused, I need to remove it using Remove
Unused Default Parameter.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods102

Extract
Method

Extract Method

You have a code fragment that can be grouped together.

Turn the fragment into a method whose name explains the purpose of the
method.

 def print_owing(amount)
 print_banner
 puts "name: #{@name}"
 puts "amount: #{amount}"
 end

 def print_owing(amount)
 print_banner
 print_details amount
 end

 def print_details(amount)
 puts "name: #{@name}"
 puts "amount: #{amount}"
 end

Motivation

Extract Method is one of the most common refactorings I do. I look at a method
that is too long or look at code that needs a comment to understand its purpose.
I then turn that fragment of code into its own method.

I prefer short, well-named methods for several reasons. First, it increases
the chances that other methods can use a method when the method is finely
grained. Second, it allows the higher-level methods to read more like a series of
comments. Overriding also is easier when the methods are finely grained.

It does take a little getting used to if you are used to seeing larger methods.
And small methods really work only when you have good names, so you need
to pay attention to naming. People sometimes ask me what length I look for in a
method. To me length is not the issue. The key is the semantic distance between
the method name and the method body. If extracting improves clarity, do it,
even if the name is longer than the code you have extracted.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Extract Method 103

Extract
Method

Mechanics

1. Create a new method, and name it after the intention of the method
(name it by what it does, not by how it does it).

If the code you want to extract is very simple, such as a single
message or function call, you should extract it if the name of the new
method reveals the intention of the code in a better way. If you can’t
come up with a more meaningful name, don’t extract the code.

2. Copy the extracted code from the source method into the new target
method.

3. Scan the extracted code for references to any variables that are local in
scope to the source method. These are local variables and parameters to
the method.

4. See whether any temporary variables are used only within this extracted
code. If so, declare them in the target method as temporary variables.

5. Look to see whether any of these local-scope variables are modified by
the extracted code. If one variable is modified, see whether you can treat
the extracted code as a query and assign the result to the variable con-
cerned. If this is awkward, or if there is more than one such variable, you
can’t extract the method as it stands. You may need to use Split Tempo-
rary Variable and try again. You can eliminate temporary variables with
Replace Temp with Query (see the discussion in the examples).

6. Pass into the target method as parameters local-scope variables that are
read from the extracted code.

7. Replace the extracted code in the source method with a call to the target
method.

If you moved any temporary variables over to the target method,
look to see whether they were declared outside the extracted code. If so,
you can now remove the declaration.

8. Test.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods104

Extract
Method

Example: No Local Variables

In the simplest case, Extract Method is trivially easy. Take the following method:

 def print_owing
 outstanding = 0.0

 # print banner
 puts "*************************"
 puts "***** Customer Owes *****"
 puts "*************************"

 # calculate outstanding
 @orders.each do |order|
 outstanding += order.amount
 end

 # print details
 puts "name: #{@name}"
 puts "amount: #{outstanding}"
 end

Tip Comments often identify pieces of a method that can be extract-
ed. Additionally, the comment itself can be a potential name for the
extracted method. For example, in the preceding code the print banner
functionality is a primary candidate for extraction.

It is easy to extract the code that prints the banner. I just cut, paste, and put
in a call:

 def print_owing
 outstanding = 0.0

 print_banner

 # calculate outstanding
 @orders.each do |order|
 outstanding += order.amount
 end

 # print details
 puts "name: #{@name}"

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Extract Method 105

Extract
Method

 puts "amount: #{outstanding}"
 end

 def print_banner
 # print banner
 puts "*************************"
 puts "***** Customer Owes *****"
 puts "*************************"
 end

Example: Using Local Variables

So what’s the problem? The problem is local variables: parameters passed into
the original method and temporaries declared within the original method. Local
variables are only in scope in that method, so when I use Extract Method, these
variables cause me extra work. In some cases they even prevent me from doing
the refactoring at all.

The easiest case with local variables is when the variables are read but not
changed. In this case I can just pass them in as a parameter. So if I have the fol-
lowing method:

 def print_owing
 outstanding = 0.0

 print_banner

 # calculate outstanding
 @orders.each do |order|
 outstanding += order.amount
 end

 # print details
 puts "name: #{@name}"
 puts "amount: #{outstanding}"
 end

 def print_banner
 # print banner
 puts "*************************"
 puts "***** Customer Owes *****"
 puts "*************************"
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods106

Extract
Method

I can extract the printing of details with a method with one parameter:

 def print_owing
 outstanding = 0.0

 print_banner

 # calculate outstanding
 @orders.each do |order|
 outstanding += order.amount
 end

 print_details outstanding
 end

 def print_details(outstanding)
 puts "name: #{@name}"
 puts "amount: #{outstanding}"
 end

Example: Reassigning a Local Variable

It’s the assignment to local variables that becomes complicated. In this case
we’re only talking about temps. If you see an assignment to a parameter, you
should immediately use Remove Assignments to Parameters.

For temps that are assigned to, there are two cases. The simpler case is that in
which the variable is a temporary variable used only within the extracted code.
When that happens, you can move the temp into the extracted code. The other
case is use of the variable outside the code. If the variable is not used after the
code is extracted, you can make the change in just the extracted code. If it is
used afterward, you need to make the extracted code return the changed value
of the variable. I can illustrate this with the following method:

 def print_owing
 outstanding = 0.0

 print_banner

 # calculate outstanding
 @orders.each do |order|
 outstanding += order.amount
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Extract Method 107

Extract
Method

 print_details outstanding
 end

Now I extract the calculation:

 def print_owing
 print_banner
 outstanding = calculate_outstanding
 print_details outstanding
 end

 def calculate_outstanding
 outstanding = 0.0
 @orders.each do |order|
 outstanding += order.amount
 end
 outstanding
 end

Once I’ve tested for the extraction, I use the inject Collection Closure Method
on Array:

 def calculate_outstanding
 @orders.inject(0.0) { |result, order| result + order.amount }
 end

In this case the outstanding variable is initialized only to an obvious ini-
tial value, so I can initialize it only within the extracted method. If something
more involved happens to the variable, I have to pass in the previous value as a
parameter. The initial code for this variation might look like this:

 def print_owing(previous_amount)
 outstanding = previous_amount * 1.2

 print_banner

 # calculate outstanding
 @orders.each do |order|
 outstanding += order.amount
 end

 print_details outstanding
 end

In this case the extraction would look like this:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods108

Inline
Method

 def print_owing(previous_amount)
 outstanding = previous_amount * 1.2
 print_banner
 outstanding = calculate_outstanding(outstanding)
 print_details outstanding
 end

 def calculate_outstanding(initial_value)
 @orders.inject(initial_value) { |result, order| result + order.amount }
 end

After I test this, I clear up the way the outstanding variable is initialized:

 def print_owing(previous_amount)
 print_banner
 outstanding = calculate_outstanding(previous_amount * 1.2)
 print_details outstanding
 end

At this point you may be wondering, “What happens if more than one vari-
able needs to be returned?”

Though parallel assignment can be used to return multiple values, I prefer
to use single return values as much as possible. In this case, I try to do multiple
extractions with each extraction only returning one value.

Temporary variables often are so plentiful that they make extraction very
awkward. In these cases I try to reduce the temps by using Replace Temp with
Query. If whatever I do things are still awkward, I resort to Replace Method
with Method Object. This refactoring doesn’t care how many temporaries you
have or what you do with them.

Inline Method

A method’s body is just as clear as its name.

Put the method’s body into the body of its callers and remove the method.

 def get_rating
 more_than_five_late_deliveries ? 2 : 1
 end

 def more_than_five_late_deliveries
 @number_of_late_deliveries > 5
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Inline Method 109

Inline
Method

 def get_rating
 @number_of_late_deliveries > 5 ? 2 : 1
 end

Motivation

A theme of this book is to use short methods named to show their intention,
because these methods lead to clearer and easier to read code. But sometimes
you do come across a method in which the body is as clear as the name. Or you
refactor the body of the code into something that is just as clear as the name.
When this happens, you should then get rid of the method. Indirection can be
helpful, but needless indirection is irritating.

Another time to use Inline Method is when you have a group of methods
that seem badly factored. You can inline them all into one big method and then
re-extract the methods. Kent Beck finds it is often good to do this before using
Replace Method with Method Object. You inline the various calls made by the
method that have behavior you want to have in the method object. It’s easier to
move one method than to move the method and its called methods.

I commonly use Inline Method when someone is using too much indirection,
and it seems that every method does simple delegation to another method, and
I get lost in all the delegation. In these cases some of the indirection is worth-
while, but not all of it. By trying to inline I can flush out the useful ones and
eliminate the rest.

Mechanics

1. Check that the method is not polymorphic.

Don’t inline if subclasses override the method; they cannot over-
ride a method that isn’t there.

2. Find all calls to the method.

3. Replace each call with the method body.

4. Test.

5. Remove the method definition.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods110

Inline
Temp

Written this way, Inline Method is simple. In general it isn’t. I could write pages
on how to handle recursion, multiple return points, inlining into another object
when you don’t have accessors, and the like. The reason I don’t is that if you
encounter these complexities, you shouldn’t do this refactoring.

Inline Temp

You have a temp that is assigned to once with a simple expression, and the temp
is getting in the way of other refactorings.

Replace all references to that temp with the expression.

 base_price = an_order.base_price
 return (base_price > 1000)

 return (an_order.base_price > 1000)

Motivation

Most of the time Inline Temp is used as part of Replace Temp with Query, so the
real motivation is there. The only time Inline Temp is used on its own is when
you find a temp that is assigned the value of a method call. Often this temp isn’t
doing any harm and you can safely leave it there. If the temp is getting in the
way of other refactorings, such as Extract Method, it’s time to inline it.

Mechanics

1. Find all references to the temp and replace them with the right-hand side
of the assignment.

2. Test after each change.

3. Remove the declaration and the assignment of the temp.

4. Test.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Temp with Query 111

Replace
Temp with
Query

Replace Temp with Query

You are using a temporary variable to hold the result of an expression.

 Extract the expression into a method. Replace all references to the temp with
the expression. The new method can then be used in other methods.

 base_price = @quantity * @item_price

 if (base_price > 1000)
 base_price * 0.95
 else
 base_price * 0.98
 end

 if (base_price > 1000)
 base_price * 0.95
 else
 base_price * 0.98
 end

 def base_price
 @quantity * @item_price
 end

Motivation

The problem with temps is that they are temporary and local. Because they can
be seen only in the context of the method in which they are used, temps tend to
encourage longer methods, because that’s the only way you can reach the temp.
By replacing the temp with a query method, any method in the class can get at
the information. That helps a lot in coming up with cleaner code for the class.

Replace Temp with Query often is a vital step before Extract Method. Local
variables make it difficult to extract, so replace as many variables as you can
with queries.

The straightforward cases of this refactoring are those in which temps are
assigned only to once and those in which the expression that generates the
assignment is free of side effects. Other cases are trickier but possible. You may

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods112

Replace
Temp with

Query

need to use Split Temporary Variable or Separate Query from Modifier first to
make things easier. If the temp is used to collect a result (such as summing over
a loop), you need to copy some logic into the query method.

Mechanics

Here is the simple case:

1. Extract the right-hand side of the assignment into a method.

Initially mark the method as private. You may find more use for it
later, but you can easily relax the protection then.

Ensure the extracted method is free of side effects—that is, it does
not modify any object. If it is not free of side effects, use Separate Query
from Modifier.

2. Test.

3. Inline Temp on the temp.

Temps often are used to store summary information in loops. The entire
loop can be extracted into a method; this removes several lines of noisy code.
Sometimes a loop may be used to sum up multiple values, as in the total_charge

method in the Decomposing and Redistributing the Statement Method section
in Chapter 1. When this is the case, duplicate the loop for each temp so that you
can replace each temp with a query. The loop should be simple, so there is little
danger in duplicating the code.

You may be concerned about performance in this case. As with other perfor-
mance issues, let it slide for the moment. Nine times out of ten, it won’t mat-
ter. When it does matter, you will fix the problem during optimization. With
your code better factored, you often find more powerful optimizations that you
would have missed without refactoring. If worse comes to worst, it’s easy to put
the temp back.

Example

I start with a simple method:

 def price
 base_price = @quantity * @item_price
 if base_price > 1000
 discount_factor = 0.95
 else

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Temp with Query 113

Replace
Temp with
Query

 discount_factor = 0.98
 end
 base_price * discount_factor
 end

I replace the temps one at a time. First I extract the right-hand side of the
assignment:

 def price
 a_base_price = base_price
 if a_base_price > 1000
 discount_factor = 0.95
 else
 discount_factor = 0.98
 end
 a_base_price * discount_factor
 end

 def base_price
 @quantity * @item_price
 end

I test; then I begin with Inline Temp. First I replace the first reference to the
temp:

 def price
 a_base_price = base_price
 if base_price > 1000
 discount_factor = 0.95
 else
 discount_factor = 0.98
 end
 a_base_price * discount_factor
 end

 def base_price
 @quantity * @item_price
 end

Test and do the next (sounds like a caller at a line dance). Because it’s the last,
I also remove the temp assignment:

 def price
 if base_price > 1000
 discount_factor = 0.95
 else
 discount_factor = 0.98

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods114

Replace
Temp with

Chain

 end
 base_price * discount_factor
 end

 def base_price
 @quantity * @item_price
 end

With that gone I can extract discount_factor in a similar way:

 def price
 a_discount_factor = discount_factor
 base_price * a_discount_factor
 end

 def discount_factor
 base_price > 1000 ? 0.95 : 0.98
 end

See how it would have been difficult to extract discount_factor if I had not
replaced base_price with a query?

The price method ends up as follows:

 def price
 base_price * discount_factor
 end

Replace Temp with Chain

You are using a temporary variable to hold the result of an expression.

Change the methods to support chaining, thus removing the need for a temp.

 mock = Mock.new
 expectation = mock.expects(:a_method_name)
 expectation.with("arguments")
 expectation.returns([1, :array])

 mock = Mock.new
 mock.expects(:a_method_name).with("arguments").returns([1, :array])

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Temp with Chain 115

Replace
Temp with
Chain

Motivation

Calling methods on different lines gets the job done, but at times it makes sense
to chain method calls together and provide a more fluent interface. In the pre-
vious example, assigning an expectation to a local variable is only necessary
so that the arguments and return value can be specified. The solution utilizing
Method Chaining removes the need for the local variable. Method Chaining
can also improve maintainability by providing an interface that allows you to
compose code that reads naturally.

At first glance, Replace Temp With Chain might seem to be in direct contrast
to Hide Delegate. The important difference is that Hide Delegate should be
used to hide the fact that an object of one type needs to delegate to an object
of another type. It is about encapsulation—the calling object should not reach
down through a series of subordinate objects to request information—it should
tell the nearest object to do a job for it. Replace Temp With Chain, on the other
hand, involves only one object. It’s about improving the fluency of one object by
allowing chaining of its method calls.

Mechanics

1. Return self from methods that you want to allow chaining from.

2. Test.

3. Remove the local variable and chain the method calls.

4. Test.

Example

Suppose you were designing a library for creating HTML elements. This library
would likely contain a method that created a select drop-down and allowed you
to add options to the select. The following code contains the Select class that
could enable creating the example HTML and an example usage of the Select

class.

 class Select
 def options
 @options ||= []
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods116

Replace
Temp with

Chain

 def add_option(arg)
 options << arg
 end
 end

 select = Select.new
 select.add_option(1999)
 select.add_option(2000)
 select.add_option(2001)
 select.add_option(2002)
 select # => #<Select:0x28708 @options=[1999, 2000, 2001, 2002]>

The first step in creating a Method Chained solution is to create a method
that creates the Select instance and adds an option.

 class Select
 def self.with_option(option)
 select = self.new
 select.options << option
 select
 end

 # ...
 end

 select = Select.with_option(1999)
 select.add_option(2000)
 select.add_option(2001)
 select.add_option(2002)
 select # => #<Select:0x28488 @options=[1999, 2000, 2001, 2002]>

Next, change the method that adds options to return self so that it can be
chained.

 class Select
 # ...

 def add_option(arg)
 options << arg
 self
 end
 end

 select = Select.with_option(1999).add_option(2000).add_option(2001).
 add_option(2002)

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Explaining Variable 117

Introduce
Explaining
Variable

 select # => #<Select:0x28578 @options=[1999, 2000, 2001, 2002]>

Finally, rename the add_option method to something that reads more flu-
ently, such as “ and”.

 class Select
 def self.with_option(option)
 select = self.new
 select.options << option
 select
 end

 def options
 @options ||= []
 end

 def and(arg)
 options << arg
 self
 end
 end

 select = Select.with_option(1999).and(2000).and(2001).and(2002)

 select # => #<Select:0x28578 @options=[1999, 2000, 2001, 2002]>

Introduce Explaining Variable

You have a complicated expression.

Put the result of the expression, or parts of the expression, in a temporary vari-
able with a name that explains the purpose.

 if (platform.upcase.index("MAC") &&
 browser.upcase.index("IE") &&
 initialized? &&
 resize > 0
)
 # do something
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods118

Introduce
Explaining

Variable

 is_mac_os = platform.upcase.index("MAC")
 is_ie_browser = browser.upcase.index("IE")
 was_resized = resize > 0

 if (is_mac_os && is_ie_browser && initialized? && was_resized)
 # do something
 end

Motivation

Expressions can become complex and hard to read. In such situations tempo-
rary variables can be helpful to break down the expression into something more
manageable.

Introduce Explaining Variable is particularly valuable with conditional logic
in which it is useful to take each clause of a condition and explain what the
condition means with a well-named temp. Another case is a long algorithm, in
which each step in the computation can be explained with a temp.

Note In this, and the two refactorings that follow, we introduce
temporary variables. It should be stated that temps should not be in-
troduced lightly. Extraneous temporary variables are not a good thing:
They can clutter method bodies and distract the reader, hindering their
understanding of the code. So why do we introduce them? It turns out
that in some circumstances, temporary variables can make code a little
less ugly. But whenever I’m tempted to introduce a temporary variable,
I ask myself if there’s another option. In the case of Introduce Explain-
ing Variable, I almost always prefer to use Extract Method if I can. A
temp can only be used within the context of one method. A method
is useful throughout the object and to other objects. There are times,
however, when other local variables make it difficult to use Extract
Method. That’s when I bite the bullet and use a temp.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Explaining Variable 119

Introduce
Explaining
Variable

Mechanics

1. Assign a temporary variable to the result of part of the complex
expression.

2. Replace the result part of the expression with the value of the temp.

If the result part of the expression is repeated, you can replace the
repeats one at a time.

3. Test.

4. Repeat for other parts of the expression.

Example

I start with a simple calculation:

 def price
 # price is base price - quantity discount + shipping
 return @quantity * @item_price -
 [0, @quantity - 500].max * @item_price * 0.05 +
 [@quantity * @item_price * 0.1, 100.0].min
 end

Simple it may be, but I can make it easier to follow. First I identify the base
price as the quantity times the item price. I can turn that part of the calculation
into a temp:

 def price
 # price is base price - quantity discount + shipping
 base_price = @quantity * @item_price
 return base_price -
 [0, @quantity - 500].max * @item_price * 0.05 +
 [@quantity * @item_price * 0.1, 100.0].min
 end

Quantity times item price is also used later, so I can substitute with the temp
there as well:

 def price
 # price is base price - quantity discount + shipping
 base_price = @quantity * @item_price
 return base_price -
 [0, @quantity - 500].max * @item_price * 0.05 +

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods120

Introduce
Explaining

Variable

 [base_price * 0.1, 100.0].min
 end

Next I take the quantity discount:

 def price
 # price is base price - quantity discount + shipping
 base_price = @quantity * @item_price
 quantity_discount = [0, @quantity - 500].max * @item_price * 0.05
 return base_price -
 quantity_discount +
 [base_price * 0.1, 100.0].min
 end

Finally, I finish with the shipping. As I do that, I can remove the comment,
too, because now it doesn’t say anything the code doesn’t say:

 def price
 base_price = @quantity * @item_price
 quantity_discount = [0, @quantity - 500].max * @item_price * 0.05
 shipping = [base_price * 0.1, 100.0].min
 return base_price - quantity_discount + shipping
 end

Example with Extract Method

For this example I usually wouldn’t have done the explaining temps; I would
prefer to do that with Extract Method. I start again with

 def price
 # price is base price - quantity discount + shipping
 return @quantity * @item_price -
 [0, @quantity - 500].max * @item_price * 0.05 +
 [@quantity * @item_price * 0.1, 100.0].min
 end

but this time I extract a method for the base price:

 def price
 # price is base price - quantity discount + shipping
 return base_price -
 [0, @quantity - 500].max * @item_price * 0.05 +
 [base_price * 0.1, 100.0].min

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Split Temporary Variable 121

Split
Temporary
Variable

 end

 def base_price
 @quantity * @item_price
 end

I continue one at a time. When I’m finished I get :

 def price
 base_price - quantity_discount + shipping
 end

 def base_price
 @quantity * @item_price
 end

 def quantity_discount
 [0, @quantity - 500].max * @item_price * 0.05
 end

 def shipping
 [base_price * 0.1, 100.0].min
 end

Split Temporary Variable

You have a temporary variable assigned to more than once, but it is not a loop
variable nor a collecting temporary variable.

Make a separate temporary variable for each assignment.

 temp = 2 * (@height + @width)
 puts temp
 temp = @height * @width
 puts temp

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods122

Split
Temporary

Variable

 perimeter = 2 * (@height + @width)
 puts perimeter
 area = @height * @width
 puts area

Motivation

Temporary variables are made for various uses. Some of these uses naturally lead
to the temps being assigned to several times. Loop variables [Beck] change for
each run around a loop. Collecting temporary variables [Beck] collect together
some value that is built up during the method.

Many other temporaries are used to hold the result of a long-winded bit
of code for easy reference later. These kinds of variables should be set only
once. That they are set more than once is a sign that they have more than one
responsibility within the method. Any variable with more than one responsibil-
ity should be replaced with a temp for each responsibility. Using a temp for two
different things is confusing for the reader.

Mechanics

1. Change the name of a temp at its first assignment.

If the later assignments are of the form i = i + some_expression, that
indicates that it is a collecting temporary variable, so don’t split it. The
operator for a collecting temporary variable usually is addition, string
concatenation, writing to a stream, or adding to a collection.

2. Change all references of the temp up to its second assignment.

3. Test.

4. Repeat in stages, each stage renaming at the assignment, and changing
references until the next assignment.

Example

For this example I compute the distance traveled by a haggis. From a standing
start, a haggis experiences an initial force. After a delayed period a second-
ary force kicks in to further accelerate the haggis. Using the common laws of
motion, I can compute the distance traveled as follows:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Split Temporary Variable 123

Split
Temporary
Variable

 def distance_traveled(time)
 acc = @primary_force / @mass
 primary_time = [time, @delay].min
 result = 0.5 * acc * primary_time * primary_time
 secondary_time = time - @delay
 if(secondary_time > 0)
 primary_vel = acc * @delay
 acc = (@prmary_force + @secondary_force) / @mass
 result += primary_vel * secondary_time + 5 * acc * secondary_time *
 secondary_time
 end
 result
 end

A nice awkward little function. The interesting thing for our example is the
way the variable acc is set twice. It has two responsibilities: one to hold the ini-
tial acceleration caused by the first force and another later to hold the accelera-
tion with both forces. This I want to split.

I start at the beginning by changing the name of the temp. Then I change all
references to the temp from that point up to the next assignment:

 def distance_traveled(time)
 primary_acc = @primary_force / @mass
 primary_time = [time, @delay].min
 result = 0.5 * primary_acc * primary_time * primary_time
 secondary_time = time - @delay
 if(secondary_time > 0)
 primary_vel = primary_acc * @delay
 acc = (@prmary_force + @secondary_force) / @mass
 result += primary_vel * secondary_time + 5 * acc * secondary_time *
 secondary_time
 end
 result
 end

I choose the new name to represent only the first use of the temp. My tests
should pass.

I continue on the second assignment of the temp. This removes the original
temp name completely, replacing it with a new temp named for the second use.

 def distance_traveled(time)
 primary_acc = @primary_force / @mass
 primary_time = [time, @delay].min
 result = 0.5 * primary_acc * primary_time * primary_time

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods124

Remove
 Assignments
to Parameters

 secondary_time = time - @delay
 if(secondary_time > 0)
 primary_vel = primary_acc * @delay
 secondary_acc = (@prmary_force + @secondary_force) / @mass
 result += primary_vel * secondary_time + 5 * secondary_acc *
 secondary_time * secondary_time
 end
 result
 end

I’m sure you can think of a lot more refactoring to be done here. Enjoy it.
(I’m sure it’s better than eating the haggis—do you know what they put in those
things?)

Remove Assignments to Parameters

The code assigns to a parameter.

Use a temporary variable instead.

 def discount(input_val, quantity, year_to_date)
 if input_val > 50
 input_val -= 2
 end
 end

 def discount(input_val, quantity, year_to_date)
 result = input_val
 if input_val > 50
 result -= 2
 end
 end

Motivation

First let me make sure we are clear on the phrase “assigns to a parameter.”
If you pass an object named foo as a parameter to a method, assigning to the
parameter means to change foo to refer to a different object. I have no problems

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Remove Assignments to Parameters 125

Remove
Assignments to
Parameters

with doing something to the object that was passed in; I do that all the time. I
just object to changing foo to refer to another object entirely:

 def a_method(foo)
 foo.modify_in_some_way # that's OK
 foo = another_object # trouble and despair will follow you
 end

The reason I don’t like this comes down to lack of clarity and to confusion
between pass by value and pass by reference. Ruby uses pass by value exclu-
sively (see later), and this discussion is based on that usage.

With pass by value, any change to the parameter is not reflected in the calling
routine. Those who have used pass by reference will probably find this confus-
ing.

The other area of confusion is within the body of the code itself. It is much
clearer if you use only the parameter to represent what has been passed in,
because that is a consistent usage.

In Ruby, don’t assign to parameters, and if you see code that does, apply
Remove Assignments to Parameters.

Of course this rule does not necessarily apply to other languages that use
output parameters, although even with these languages I prefer to use output
parameters as little as possible.

Mechanics

1. Create a temporary variable for the parameter.

2. Replace all references to the parameter, made after the assignment, to the
temporary variable.

3. Change the assignment to assign to the temporary variable.

4. Test.

Example

I start with the following simple routine:

 def discount(input_val, quantity, year_to_date)
 input_val -= 2 if input_val > 50
 input_val -= 1 if quantity > 100

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods126

Remove
 Assignments
to Parameters

 input_val -= 4 if year_to_date > 10000
 input_val
 end

Replacing with a temp leads to :

 def discount(input_val, quantity, year_to_date)
 result = inputval
 result -= 2 if input_val > 50
 result -= 1 if quantity > 100
 result -= 4 if year_to_date > 10000
 result
 end

Use of pass by value often is a source of confusion in Ruby. Ruby strictly uses
pass by value in all places, thus the following program:

 x = 5
 def triple(arg)
 arg = arg * 3
 puts "arg in triple: #{arg}"
 end
 triple x
 puts "x after triple #{x}"

produces the following output:

 arg in triple: 15
 x after triple 5

The confusion arises because I can call methods on the object that modify its
state:

 class Ledger

 attr_reader :balance

 def initialize(balance)
 @balance = balance
 end

 def add(arg)
 @balance += arg
 end

 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Method with Method Object 127

Replace
Method with
Method
Object

 class Product

 def self.add_price_by_updating(ledger, price)
 ledger.add(price)
 puts "ledger in add_price_by_updating: #{ledger.balance}"
 end

 def self.add_price_by_replacing(ledger, price)
 ledger = Ledger.new(ledger.balance + price)
 puts "ledger in add_price_by_replacing: #{ledger.balance}"
 end

 end

 l1 = Ledger.new(0)
 Product.add_price_by_updating(l1, 5)
 puts "l1 after add_price_by_updating: #{l1.balance}"

 l2 = Ledger.new(0)
 Product.add_price_by_replacing(l2, 5)
 puts "l2 after add_price_by_replacing: #{l2.balance}"

It produces this output:

 ledger in add_price_by_updating: 5
 l1 after add_price_by_updating: 5
 ledger in add_price_by_replacing: 5
 l2 after add_price_by_replacing: 0

Essentially the object reference is passed by value. I can use the reference to
call methods and make changes to the state that will be reflected further up the
call stack. But if I assign to the reference, the fact that this reference has been
passed by value means that this new assignment will not be reflected outside the
scope of the method body.

Replace Method with Method Object

You have a long method that uses local variables in such a way that you cannot
apply Extract Method.

Turn the method into its own object so that all the local variables become
instance variables on that object. You can then decompose the method into
other methods on the same object.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods128

Replace
Method with

Method
Object

 class Order

 def price
 primary_base_price = 0
 secondary_base_price = 0
 tertiary_base_price = 0
 # long computation
 end

 end

return PriceCalculator.new(self).compute()

1
price()

Order Price

charge

Motivation

In this book I emphasize the beauty of small methods. By extracting pieces out
of a large method, you make things much more comprehensible.

The difficulty in decomposing a method lies in local variables. If they are
rampant, decomposition can be difficult. Using Replace Temp with Query helps
to reduce this burden, but occasionally you may find you cannot break down a
method that needs breaking. In this case you reach deep into the tool bag and
get out your Method Object [Beck].

Applying Replace Method with Method Object turns all these local variables
into attributes on the method object. You can then use Extract Method on this
new object to create additional methods that break down the original method.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Method with Method Object 129

Replace
Method with
Method
Object

Mechanics

Stolen shamelessly from Kent Beck’s Smalltalk Best Practices.

1. Create a new class, name it after the method.

2. Give the new class an attribute for the object that hosted the original
method (the source object) and an attribute for each temporary variable
and each parameter in the method.

3. Give the new class a constructor that takes the source object and each
parameter.

4. Give the new class a method named “ compute”

5. Copy the body of the original method into compute . Use the source object
instance variable for any invocations of methods on the original object.

6. Test.

7. Replace the old method with one that creates the new object and calls
compute.

Now comes the fun part. Because all the local variables are now attributes,
you can freely decompose the method without having to pass any parameters.

Example

A proper example of this requires a long chapter, so I’m showing this refactor-
ing for a method that doesn’t need it. (Don’t ask what the logic of this method
is, I made it up as I went along.)

 class Account

 def gamma(input_val, quantity, year_to_date)
 inportant_value1 = (input_val * quantity) + delta
 important_value2 = (input_val * year_to_date) + 100
 if (year_to_date - important_value1) > 100
 important_value2 -= 20
 end
 important_value3 = important_value2 * 7
 # and so on.
 important_value3 - 2 * important_value1

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods130

Replace
Method with

Method
Object

 end

 end

To turn this into a method object, I begin by declaring a new class. I provide
an attribute for the original object and an attribute for each parameter and tem-
porary variable in the method.

 class Gamma
 attr_reader :account,
 :input_val,
 :quantity,
 :year_to_date,
 :important_value1,
 :important_value2,
 :important_value3

 end

I add a constructor:

 def initialize(account, input_val_arg, quantity_arg, year_to_date_arg)
 @account = account
 @input_val = input_val_arg
 @quantity = quantity_arg
 @year_to_date = year_to_date_arg
 end

Now I can move the original method over. I need to modify any calls of fea-
tures of account to use the @account instance variable.

 def compute
 @inportant_value1 = (input_val * quantity) + @account.delta
 @important_value2 = (input_val * year_to_date) + 100
 if (year_to_date - important_value1) > 100
 @important_value2 -= 20
 end
 @important_value3 = important_value2 * 7
 # and so on.
 @important_value3 - 2 * important_value1
 end

I then modify the old method to delegate to the method object:

 def gamma(input_val, quantity, year_to_date)
 Gamma.new(self, input_val, quantity, year_to_date).compute
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Substitute Algorithm 131

Substitute
Algorithm

That’s the essential refactoring. The benefit is that I can now easily use
Extract Method on the compute method without ever worrying about the argu-
ment’s passing:

 def compute
 @inportant_value1 = (input_val * quantity) + @account.delta
 @important_value2 = (input_val * year_to_date) + 100
 important_thing
 @important_value3 = important_value2 * 7
 # and so on.
 @important_value3 - 2 * important_value1
 end

 def important_thing
 if (year_to_date - important_value1) > 100
 @important_value2 -= 20
 end
 end

Substitute Algorithm

You want to replace an algorithm with one that is clearer.

Replace the body of the method with the new algorithm.

 def found_friends(people)
 friends = []
 people.each do |person|
 if(person == "Don")
 friends << "Don"
 end
 if(person == "John")
 friends << "John"
 end
 if(person == "Kent")
 friends << "Kent"
 end
 end
 return friends
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods132

Substitute
Algorithm

 def found_friends(people)
 people.select do |person|
 %w(Don John Kent).include? person
 end
 end

Motivation

I’ve never tried to skin a cat. I’m told there are several ways to do it. I’m sure
some are easier than others. So it is with algorithms. If you find a clearer way
to do something, you should replace the complicated way with the clearer way.
Refactoring can break down something complex into simpler pieces, but some-
times you just reach the point at which you have to remove the whole algorithm
and replace it with something simpler. This occurs as you learn more about the
problem and realize that there’s an easier way to do it. It also happens if you
start using a library that supplies features that duplicate your code.

Sometimes when you want to change the algorithm to do something slightly
different, it is easier to substitute the algorithm first into something easier for
the change you need to make.

When you have to take this step, make sure you have decomposed the method
as much as you can. Substituting a large, complex algorithm is difficult; only by
making it simple can you make the substitution tractable.

Mechanics

1. Prepare your alternative algorithm.

2. Run the new algorithm against your tests. If the results are the same,
you’re finished.

3. If the results aren’t the same, use the old algorithm for comparison in test-
ing and debugging.

Run each test case with old and new algorithms and watch both
results. That helps you see which test cases are causing trouble, and how .

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Loop with Collection Closure Method 133

Replace Loop
with Collection
Closure
Method

Replace Loop with Collection Closure Method

You are processing the elements of a collection in a loop.

Replace the loop with a collection closure method.

Motivation

In most mainstream programming languages you operate on collections using
loops, grabbing each element one at a time and processing it. It turns out there
are common patterns of processing that you do in loops, but these are difficult
to extract into libraries unless your programming language has closures.

Two of Ruby’s mentor languages are Lisp and Smalltalk, both of which have
closures and library code to manipulate collections easily. Ruby has followed
their lead and offers a really nice set of methods. The Enumberable module,
included in Array and Hash, is a perfect example.

By replacing loops with the relevant collection closure methods you can
make the code easier to follow. The collection closure method hides away the
infrastructure code used to traverse the collection and create derived collections,
allowing us to focus on business logic.

There are times when a more complex task requires a sequence of collection
closure methods chained together.

Mechanics

1. Identify what the basic pattern of the loop is.

2. Replace the loop with the appropriate collection closure methods.

3. Test.

Examples

There are quite a few common cases when different collection closure methods
are useful. Here I show the most common transformations.

 managers = []
 employees.each do |e|
 managers << e if e.manager?
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods134

Replace Loop
with Collection

Closure
Method

 managers = employees.select {|e| e.manager?}

The reject method reverses the test of the filter. In both cases the original col-
lection isn’t touched unless you use the destructive form (select! or reject!).

 offices = []

 employees.each {|e| offices << e.office}

 offices = employees.collect {|e| e.office}

collect is aliased as “ map ”. collect is the Smalltalk word, and map is the Lisp word, so
the choice depends on whether you like parentheses or square brackets.

Often you’ll find loops that include more than one task going on. In this case
you can often replace them with a sequence of collection closure methods.

 managerOffices = []

 employees.each do |e|
 managerOffices << e.office if e.manager?
 end

 managerOffices = employees.select {|e| e.manager?}.
 collect {|e| e.office}

It might be useful to think of this chaining as a series of pipes and filters.
Here, we’ve piped the original collection through the select filter and onto the
collect filter. Also note the way I’ve laid out the code here—listing each filter on
its own line makes the transformations a little clearer. If you finish a line with a
period, Ruby knows not to treat the end of line as a statement terminator.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Extract Surrounding Method 135

Extract
Surrounding
Method

When the series of pipes and filters becomes so complex that it’s no lon-
ger easy to understand, you might want to consider writing a custom traversal
method whose name explains the purpose of the traversal.

If you need to do something in a loop that produces a single value, such as a
sum, consider using the inject method. This can take a bit more getting used to.

 total = 0
 employees.each {|e| total += e.salary}

 total = employees.inject(0) {|sum, e| sum + e.salary}

Extract Surrounding Method

You have two methods that contain nearly identical code. The variance is in the
middle of the method.

Extract the duplication into a method that accepts a block and yields back to
the caller to execute the unique code.

 def charge(amount, credit_card_number)

 begin
 connection = CreditCardServer.connect(...)
 connection.send(amount, credit_card_number)
 rescue IOError => e
 Logger.log "Could not submit order #{@order_number} to the server: #{e}"
 return nil
 ensure
 connection.close
 end
 end

 def charge(amount, credit_card_number)
 connect do |connection|

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods136

Extract
Surrounding

Method

 connection.send(amount, credit_card_number)
 end
 end

 def connect
 begin
 connection = CreditCardServer.connect(...)
 yield connection
 rescue IOError => e
 Logger.log "Could not submit order #{@order_number} to the server: #{e}"
 return nil
 ensure
 connection.close
 end
 end

Motivation

It’s not hard to remove duplication when the offending code is at the top or bot-
tom of a method: Just use Extract Method to move the duplication out of the
way. But what happens when the unique code is in the middle of the method?
You can use Form Template Method, but that involves introducing an inheri-
tance hierarchy, which isn’t always ideal.

Conveniently, Ruby’s blocks allow us to extract the surrounding duplication
and have the extracted method yield back to the calling code to execute the
unique logic. As well as removing duplication, this refactoring can be used to
hide away infrastructure code (for example, code for iterating over a collection
or connecting to an external service), so that the business logic becomes more
prominent.

Mechanics

1. Use Extract Method on one piece of duplication. Name it after the dupli-
cated behavior.

This will become our surrounding method.

For now the surrounding method will still perform the unique
behavior.

2. Test.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Extract Surrounding Method 137

Extract
Surrounding
Method

3. Modify the calling method to pass a block to the surrounding method.
Copy the unique logic from the surrounding method into the block.

4. Replace the unique logic in the extracted method with the yield keyword.

5. Identify any variables in the surrounding method that are needed by the
unique logic and pass them as parameters in the call to yield.

6. Test.

7. Modify any other methods that can use the new surrounding method.

Example

Let’s say that we are modeling family trees, and we have a person class that
has a self-referential one-to-many relationship to itself, called children (see
Figure 6.1).

mother-children

Person

Figure 6.1 A mother can have many children.

For now, we only need to capture the mother of each child. Our person class
looks like this:

 class Person
 attr_reader :mother, :children, :name

 def initialize(name, date_of_birth, date_of_death=nil, mother=nil)
 @name, @mother = name, mother,
 @date_of_birth, @date_of_death = date_of_birth, date_of_death
 @children = []
 @mother.add_child(self) if @mother
 end

 def add_child(child)
 @children << child
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods138

Extract
Surrounding

Method

The person class has two methods that we’re interested in: one for counting
the number of living descendants, and one for counting the number of descen-
dants with a particular name.

 def number_of_living_descendants
 children.inject(0) do |count, child|
 count += 1 if child.alive?
 count + child.number_of_living_descendants
 end
 end

 def number_of_descendants_named(name)
 children.inject(0) do |count, child|
 count += 1 if child.name == name
 count + child.number_of_descendants_named(name)
 end
 end

 def alive?
 @date_of_death.nil?
 end

Both of these methods iterate over the collection of children, recursively
down the family tree. Recursion isn’t trivial, and once I get it correct, I try to
avoid duplication of the recursive logic. But the means to remove this duplica-
tion isn’t always obvious. Extract Method can reduce duplication if you can
parameterize the method in a way that allows its use in different situations. But
in this case, the duplication is in the decision about whether to increment the
count or not—and this decision can’t be made without context as to the state of
the person object that you are examining at each step of the iteration.

Fortunately, Ruby’s blocks allow us to provide this context. We can yield
the person object back to the caller at each iteration step, and the caller can
decide whether we should count. The first step is to perform Extract Method
on one of the duplicates. I start with the number_of_descendants_named method. I name
the extracted method after the common behavior—the counting of descendants
matching a certain criteria. This will become the surrounding method.

 def number_of_descendants_named(name)
 count_descendants_matching(name)
 end

 protected
 def count_descendants_matching(name)
 children.inject(0) do |count, child|

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Class Annotation 139

Introduce
Class
Annotation

 count += 1 if child.name == name
 count + child.count_descendants_matching(name)
 end
 end

Next, I make the calling method pass a block to the surrounding method,
and push the logic that checks for a matching name up into the block. I need to
yield the child back to the caller so that it can perform the check:

 def number_of_descendants_named(name)
 count_descendants_matching { |descendant| descendant.name == name }
 end

 def count_descendants_matching(&block)
 children.inject(0) do |count, child|
 count += 1 if yield child
 count + child.count_descendants_matching(&block)
 end
 end

And finally, I can modify the number_of_living_descendants method to use our new
surrounding method.

 def number_of_living_descendants
 count_descendants_matching { |descendant| descendant.alive? }
 end

The duplication has been removed, and I have the added benefit of having
kept the business logic (the logic determining whether to count the descendant)
up in the public method. I’ve separated this business logic from the infrastruc-
ture logic required to iterate over the collection, which helps during mainte-
nance.

Introduce Class Annotation

You have a method whose implementation steps are so common that they can
safely be hidden away.

Declare the behavior by calling a class method from the class definition.

 class SearchCriteria...

 def initialize(hash)
 @author_id = hash[:author_id]
 @publisher_id = hash[:publisher_id]

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods140

Introduce
Class

Annotation

 @isbn = hash[:isbn]
 end

 class SearchCriteria...

 hash_initializer :author_id, :publisher_id, :isbn

Motivation

Attribute readers and writers are so common in Object-Oriented programming
languages that the author of Ruby decided to provide a succinct way to declare
them. The attr_accessor , attr_reader, and attr_writer methods can be called from the
definition of a class or module with a list of names of attributes. The implemen-
tation of an attribute accessor is so easy to understand that it can be hidden
away and replaced with a class annotation. Most code isn’t this simple, and
hiding it away would serve only to obfuscate the solution. But when the purpose
of the code can be captured clearly in a declarative statement, Introduce Class
Annotation can clarify the intention of your code.

Mechanics

1. Decide on the signature of your class annotation. Declare it in the appro-
priate class.

2. Convert the original method to a class method. Make the appropriate
changes so that the method works at class scope.

Make sure the class method is declared before the class annota-
tion is called; otherwise, you’ll get an exception when the parser tries to
execute the annotation.

3. Test.

4. Consider using Extract Module on the class method to make the annota-
tion more prominent in your class definition.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Class Annotation 141

Introduce
Class
Annotation

5. Test.

Example

For this example, we have a SearchCriteria class that takes a Hash of parameters and
assigns them to instance variables.

 class SearchCriteria...

 def initialize(hash)
 @author_id = hash[:author_id]
 @publisher_id = hash[:publisher_id]
 @isbn = hash[:isbn]
 end

Since we’re dealing with initialize here, we’ll use Rename Method as well as
change the method to class scope, just to make things a little clearer. We want
to define the initialize method dynamically so that we can handle any list of key-
names.

 class SearchCriteria

 def self.hash_initializer(*attribute_names)
 define_method(:initialize) do |*args|
 data = args.first || {}
 attribute_names.each do |attribute_name|
 instance_variable_set "@#{attribute_name}", data[attribute_name]
 end
 end
 end

 hash_initializer :author_id, :publisher_id, :isbn

 end

The unfortunate thing here is that we’re not really taking advantage of our
succinct class annotation with the ugliness of the hash_initializer standing above
it. Since we’ll probably use hash_initializer in a lot of classes, it makes sense to
extract it to a module and move it to class Class.

 module CustomInitializers

 def hash_initializer(*attribute_names)
 define_method(:initialize) do |*args|

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods142

Introduce
Named

Parameter

 data = args.first || {}
 attribute_names.each do |attribute_name|
 instance_variable_set "@#{attribute_name}", data[attribute_name]
 end
 end
 end

 end

 Class.send :include, CustomInitializers

 class SearchCriteria...

 hash_initializer :author_id, :publisher_id, :isbn

Introduce Named Parameter

The parameters in a method call cannot easily be deduced from the name of the
method you are calling.

Convert the parameter list into a Hash, and use the keys of the Hash as names
for the parameters.

 SearchCriteria.new(5, 8, "0201485672")

 SearchCriteria.new(:author_id => 5, :publisher_id => 8, :isbn =>"0201485672")

Motivation

So much of object-oriented design depends on the effectiveness of the abstractions
that you create. Let’s say you have object A that delegates to object B, which in turn
delegates to object C. It is much easier to understand the algorithm if each object
can be synthesized in isolation by the reader. To provide for this, the clarity of the
public interface of the object being delegated to is important. If object B’s pub-
lic interface represents a cohesive piece of behavior with a well-named class, well-
named methods, and parameter lists that make sense given the name of the method,
a reader is less likely to have to delve into the details of object B to understand
object A. Without this clear abstraction around the behavior of object B, the reader
will have to move back and forth between object A and object B (and perhaps
object C as well), and understanding of the algorithm will be much more difficult.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Named Parameter 143

Introduce
Named
Parameter

Ruby’s Hash object provides another way to improve the readability of a
method. By replacing a list of parameters with a Hash of key-value pairs, with
the key representing the name of the parameter and the value representing the
parameter itself, the fluency of the calling code can be improved significantly.
The reader of the calling code can see how the parameters might relate to one
another and deduce how the method might use them. It’s particularly useful for
optional parameters—parameters that are only used in some of the calls can be
extra hard to understand.

Mechanics

1. Choose the parameters that you want to name. If you are not naming all
of the parameters, move the parameters that you want to name to the end
of the parameter list.

That way your calling code does not need to wrap the named
parameters in curly braces.

2. Test

3. Replace the parameters in the calling code with name/value pairs

4. Replace the parameters with a Hash object in the receiving method. Modify
the receiving method to use the new Hash.

5. Test.

Example 1: Naming All of the Parameters

We start with a SearchCriteria object that is responsible for finding books. Its
constructor takes an author_id , publisher_id, and isbn.

 class SearchCriteria...

 attr_reader :author_id, :publisher_id, :isbn

 def initialize(author_id, publisher_id, isbn)
 @author_id = author_id
 @publisher_id = publisher_id
 @isbn = isbn
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods144

Introduce
Named

Parameter

Some client code might look like this:

 criteria = SearchCriteria.new(5, 8, "0201485672")

Without looking at the class definition, it’s hard to know what the param-
eters are. And without knowing what the parameters are, it’s hard to infer how
the SearchCriteria object might behave.

First we change the calling code to pass key-value pairs to the constructor.

 criteria = SearchCriteria.new(
 :author_id => 5, :publisher_id => 8, :isbn =>"0201485672")

Next we change the initialize method to take a Hash, and initialize the instance
variables with the values from the Hash.

 class SearchCriteria...

 def initialize(params)
 @author_id = params[:author_id]
 @publisher_id = params[:publisher_id]
 @isbn = params[:isbn]
 end

Our calling code is a lot cleaner, but if a developer is looking at the class defini-
tion and wants to know the required parameters for the method, she needs to
examine the method definition to find all that are used. For initialize methods
such as this that simply assign instance variables of the same name as the keys in
the Hash , I like to use Introduce Class Annotation to declare the initialize method.

 class SearchCriteria...

 def initialize(hash)
 @author_id = hash[:author_id]
 @publisher_id = hash[:publisher_id]
 @isbn = hash[:isbn]
 end

becomes

 class SearchCriteria...

 hash_initializer :author_id, :publisher_id, :isbn

To do this, we add a method to the Class class:

 module CustomInitializers

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Named Parameter 145

Introduce
Named
Parameter

 def hash_initializer(*attribute_names)
 define_method(:initialize) do |*args|
 data = args.first || {}
 attribute_names.each do |attribute_name|
 instance_variable_set "@#{attribute_name}", data[attribute_name]
 end
 end
 end

 end

 Class.send :include, CustomInitializers

And then we can use our hash_initializer method in any class definition.

Example 2: Naming Only the Optional Parameters

It can be useful to distinguish between optional and required parameters to bet-
ter communicate the method’s use to the developer trying to call the method.
Take for example the following SQL-building code:

 class Books...

 def self.find(selector, conditions="", *joins)
 sql = ["SELECT * FROM books"]
 joins.each do |join_table|
 sql << "LEFT OUTER JOIN #{join_table} ON"
 sql << "books.#{join_table.to_s.chap}_id"
 sql << " = #{join_table}.id"
 end
 sql << "WHERE #{conditions}" unless conditions.empty?
 sql << "LIMIT 1" if selector == :first

 connection.find(sql.join(" "))
 end

Both the conditions and joins parameters are optional, but the selector is required.
The selector can be either :all, or :first. The former brings back all records that
meet the given criteria, and the latter brings back only the first record that meets
the criteria. Here are some clients of this code:

 Books.find(:all)
 Books.find(:all, "title like '%Voodoo Economics'")
 Books.find(:all, "authors.name = 'Jenny James'", :authors)
 Books.find(:first, "authors.name = 'Jenny James'", :authors)

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods146

Introduce
Named

Parameter

While the conditions parameter might be reasonably intuitive to a developer
who understands SQL, the joins parameter is not as clear. The following syntax
better communicates the use of the parameters:

 Books.find(:all)
 Books.find(:all, :conditions => "title like '%Voodoo Economics'")
 Books.find(:all, :conditions => "authors.name = 'Jenny James'",
 :joins =>[:authors])
 Books.find(:first, :conditions => "authors.name = 'Jenny James'",
 :joins =>[:authors])

Since the parameters we want to name are already at the end of the param-
eter list, we don’t need to move them.

We convert the conditions and joins parameters to a Hash, and modify the
method definition accordingly.

 class Books...

 def self.find(selector, hash={})
 hash[:joins] ||= []
 hash[:conditions] ||= ""

 sql = ["SELECT * FROM books"]
 hash[:joins] .each do |join_table|
 sql << "LEFT OUTER JOIN #{join_table} ON"
 sql << "books.#{join_table.to_s.chop}_id"
 sql << "= #{join_table}.id"
 end

 sql << "WHERE #{ hash[:conditions] }" unless hash[:conditions] .empty?
 sql << "LIMIT 1" if selector == :first

 connection.find(sql.join(" "))
 end

Our calling code is more fluent, but if we are looking at the class definition, we
have to look through the entire method to know the parameters that we need to
pass in. We can improve this by using Introduce Assertion. We’ll add the asser-
tion to the Hash object itself.

 module AssertValidKeys
 def assert_valid_keys(*valid_keys)
 unknown_keys = keys - [valid_keys].flatten
 if unknown_keys.any?
 raise(ArgumentError, "Unknown key(s): #{unknown_keys.join(", ")}")
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Remove Named Parameter 147

Remove
Named
Parameter

 Hash.send(:include, AssertValidKeys)

 class Books...
 def self.find(selector, hash={})
 hash.assert_valid_keys :conditions, :joins

 hash[:joins] ||= []
 hash[:conditions] ||= ""

 sql = ["SELECT * FROM books"]
 hash[:joins].each do |join_table|
 sql << "LEFT OUTER JOIN #{join_table}"
 sql << "ON books.#{join_table.to_s.chop}_id = #{join_table}.id"
 end

 sql << "WHERE #{hash[:conditions]}" unless hash[:conditions].empty?
 sql << "LIMIT 1" if selector == :first

 connection.find(sql.join(" "))
 end

This has two advantages: We get quick feedback on misspelled keys that we
pass to the method, and the assertion serves as a declarative statement to com-
municate to any reader the expected parameters.

Remove Named Parameter

The fluency that the named parameter brings is no longer worth the complexity
on the receiver.

Convert the named parameter Hash to a standard parameter list.

 IsbnSearch.new(:isbn => "0201485672")

 IsbnSearch.new("0201485672")

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods148

Remove
Named

Parameter

Motivation

Introduce Named Parameter brings a fluency to the calling code that can be
beneficial. But named parameters do come at a price—they add complexity to
the receiving method. The parameters are clumped together into one Hash, which
can rarely have a better name than “ params” or “ options”, because the param-
eters contained within the Hash are not cohesive enough to have a domain-related
name. Even if they are named well, it is impossible to tell exactly the contents
of the Hash, without examining the method body or the calling code. Most of
the time, this added complexity is worth the increased readability on the calling
side, but sometimes the receiver changes in such a way that the added complex-
ity is no longer justified. Perhaps the number of parameters has reduced, or one
of the optional parameters becomes required, so we remove the required param-
eter from the named parameter Hash. Or perhaps we perform Extract Method or
Extract Class and take only one of the parameters with us. The newly created
method or class might now be able to be named in such a way that the param-
eter is obvious. In these cases, you want to remove the named parameter.

Mechanics

1. Choose the parameter that you want to remove from the named param-
eter Hash. In the receiving method, replace the named parameter with a
standard parameter in the parameter list.

If you have other named parameters that you don’t want to
remove, place the unnamed parameter earlier in the parameter list than
the named parameters, so that you can still call the method without curly
braces for your named parameter Hash.

2. Replace the named parameter in the calling code with a standard param-
eter.

3. Test.

Example

Let’s go back to our books example, but this time suppose that all of the param-
eters have been implemented as named parameters. They are all optional. This
means that the calling code can call the method in many different ways:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Remove Named Parameter 149

Remove
Named
Parameter

 Books.find
 Books.find(:selector => :all,
 :conditions => "authors.name = 'Jenny James'",
 :joins => [:authors])
 Books.find(:selector => :first,
 :conditions => "authors.name = 'JennyJames'",
 :joins => [:authors])

This code has a couple of problems. For starters, without looking at the
implementation of the find method, it is difficult to predict the result of calling
 Books.find without any parameters. Does it return one result? Does it return all
results? For this, I need to go to the implementation:

 class Books...

 def self.find(hash={})
 hash[:joins] ||= []
 hash[:conditions] ||= ""

 sql = ["SELECT * FROM books"]
 hash[:joins].each do |join_table|
 sql << "LEFT OUTER JOIN #{join_table}"
 sql << "ON books.#{join_table.to_s.chop}_id = #{join_table}.id"
 end

 sql << "WHERE #{hash[:conditions]}" unless hash[:conditions].empty?
 sql << "LIMIT 1" if hash[:selector] == :first

 connection.find(sql.join(" "))
 end

After sifting through the entire method, I see that if I don’t provide any param-
eters, all books will be returned. So we’ve introduced named parameters, but
haven’t removed the need to switch to the implementation to understand the
calling code.

The second problem is the name of the :selector parameter. “ :selector” doesn’t
mean anything in the domain of SQL. “ :limit” would perhaps be a better name,
but :limit => :all is a little strange. Changing the selector parameter to be required
will solve both problems. The name “ selector ” will be removed, and if we want
to return all books we will use the syntax Books.find(:all) .

The first step is to introduce the selector parameter into the find method:

 def self.find(selector , hash={})
 hash[:joins] ||= []
 hash[:conditions] ||= ""

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods150

Remove
Unused
Default

Parameter

 sql = ["SELECT * FROM books"]
 hash[:joins].each do |join_table|
 sql << "LEFT OUTER JOIN #{join_table} ON"
 sql << "books.#{join_table.to_s.chop}_id = #{join_table}.id"
 end

 sql << "WHERE #{hash[:conditions]}" unless hash[:conditions].empty?
 sql << "LIMIT 1" if selector == :first

 connection.find(sql.join(" "))
 end

The next step is to modify the calling code :

 Books.find

becomes

 Books.find(:all)

 Books.find(:selector => :all,
 :conditions => "authors.name = 'Jenny James'",
 :joins => [:authors])

becomes

 Books.find(:all, :conditions => "authors.name = 'Jenny James'",
 :joins =>[:authors])

and

 Books.find(:selector => :first,
 :conditions => "authors.name = 'JennyJames'",
 :joins => [:authors])

becomes

 Books.find(:first, :conditions => "authors.name = 'Jenny James'",
 :joins =>[:authors])

Remove Unused Default Parameter

A parameter has a default value, but the method is never called without the
parameter.

Remove the default value.

 def product_count_items(search_criteria=nil)

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Remove Unused Default Parameter 151

Remove
Unused
Default
Parameter

 criteria = search_criteria | @search_criteria
 ProductCountItem.find_all_by_criteria(criteria)
 end

 def product_count_items(search_criteria)
 ProductCountItem.find_all_by_criteria(search_criteria)
 end

Motivation

Adding a default value to a parameter can improve the fluency of calling code. Without
the default, callers that don’t require the parameter will have to explicitly pass nil or an
empty collection to the method when they don’t require it, and the fluency of the call-
ing code is reduced. When required, default values are a good thing. But sometimes, as
code evolves over time, fewer and fewer callers require the default value, until finally
the default value is unused. Unused flexibility in software is a bad thing. Maintenance
of this flexibility takes time, allows opportunities for bugs, and makes refactoring more
difficult. Unused default parameters should be removed.

Mechanics

1. Remove the default from the parameter in the method signature.

2. Test .

3. Remove any code within the method that checks for the default value.

4. Test.

Example

In this example, search_criteria defaults to nil in the parameter list, but then per-
forms some conditional logic to use the @search_criteria instance variable if search_
criteria isn’t explicitly passed in:

 def product_count_items(search_criteria=nil)
 criteria = search_criteria | @search_criteria
 ProductCountItem.find_all_by_criteria(criteria)
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods152

Dynamic
Method

Definition

If we never call product_count_items without a parameter, then the use of @search_
criteria is misleading. If this is the only use of the instance variable within the
class, then our default value is preventing us from removing the instance vari-
able entirely.

First, we remove the default value:

 def product_count_items(search_criteria = nil)
 criteria = search_criteria | @search_criteria
 ProductCountItem.find_all_by_criteria(criteria)
 end

Our tests should still pass since no one calls the method without a parameter.
All going well, we should now be able to remove the conditional logic:

 def product_count_items(search_criteria)
 ProductCountItem.find_all_by_criteria(search_criteria)
 end

We now have the option to perform Inline Method, which could remove a
layer of indirection and simplify our code.

Dynamic Method Definition

You have methods that can be defined more concisely if defined dynamically.

Define the methods dynamically.

 def failure
 self.state = :failure
 end

 def error
 self.state = :error
 end

 def_each :failure, :error do |method_name|
 self.state = method_name
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Dynamic Method Definition 153

Dynamic
Method
Definition

Motivation

I use Dynamic Method Definition frequently. Of course, I default to defining
methods explicitly, but at the point when duplication begins to appear I quickly
move to the dynamic definitions.

Dynamically defined methods can help guard against method definition mis-
takes, since adding another method usually means adding one more argument;
however, this is not the primary reason for Dynamic Method Definition.

The primary goal for Dynamic Method Definition is to more concisely
express the method definition in a readable and maintainable format.

Mechanics

1. Dynamically define one of the similar methods.

2. Test.

3. Convert the additional similar methods to use the dynamic definition.

4. Test.

Example: Using def_each to Define Similar Methods

Defining several similar methods is verbose and often unnecessary. For example,
each of the following methods is simply calling the state method.

 def failure
 self.state = :failure
 end

 def error
 self.state = :error
 end

 def success
 self.state = :success
 end

The preceding code executes perfectly well, but it’s too similar to justify 11
lines in our source file. The following example could be a first step to removing
the duplication.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods154

Dynamic
Method

Definition

 [:failure, :error, :success].each do |method|
 define_method method do
 self.state = method
 end
 end

Dynamically defining methods in a loop creates a more concise definition,
but it’s not a particularly readable one. To address this issue I define the def_each
method. The motivation for defining a def_each method is that it is easy to notice
and understand while scanning a source file.

 class Class
 def def_each(*method_names, &block)
 method_names.each do |method_name|
 define_method method_name do
 instance_exec method_name, &block
 end
 end
 end
 end

The instance_exec Method

Ruby 1.9 includes instance_exec by default; however, Ruby 1.8 has no such
feature. To address this limitation I generally include the following code created
by Mauricio Fernandez.

 class Object
 module InstanceExecHelper; end
 include InstanceExecHelper
 def instance_exec(*args, &block)
 begin
 old_critical, Thread.critical = Thread.critical, true
 n = 0
 n += 1 while respond_to?(mname="__instance_exec#{n}")
 InstanceExecHelper.module_eval{ define_method(mname, &block) }
 ensure
 Thread.critical = old_critical
 end
 begin
 ret = send(mname, *args)
 ensure
 InstanceExecHelper.module_eval{ remove_method(mname) } rescue nil
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Dynamic Method Definition 155

Dynamic
Method
Definition

 ret
 end
 end

With def_each now available I can define the methods like so:

 def_each :failure, :error, :success do |method_name|
 self.state = method_name
 end

Example: Defining Instance Methods with a Class Annotation

The def_each method is a great tool for defining several similar methods, but often
the similar methods represent a concept that can be used within code to make
the code itself more descriptive.

For example, the previous method definitions were all about setting the state
of the class. Instead of using def_each you could use Introduce Class Annotation
to generate the state setting methods. Defining a states class annotation helps
create more expressive code.

 def error
 self.state = :error
 end

 def failure
 self.state = :failure
 end

 def success
 self.state = :success
 end

 class Post
 def self.states(*args)
 args.each do |arg|
 define_method arg do
 self.state = arg
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods156

Dynamic
Method

Definition

 end

 states :failure, :error, :success
 end

Example: Defining Methods By Extending a Dynamically Defined
Module

Sometimes you have an object and you simply want to delegate method calls to
another object. For example, you might want your object to decorate a Hash so
that you can get values by calling methods that match keys of that Hash.

As long as you know what keys to expect, you could define the decorator
explicitly.

 class PostData
 def initialize(post_data)
 @post_data = post_data
 end

 def params
 @post_data[:params]
 end

 def session
 @post_data[:session]
 end
 end

While this works, it’s truly unnecessary in Ruby. Additionally, it’s a headache
if you want to add new delegation methods. You could define method_missing to
delegate directly to the Hash, but I find debugging method_missing problematic and
avoid it whenever possible. I’m going to skip straight to defining the methods
dynamically from the keys of the Hash. Let’s also assume that the PostData instances
can be passed different Hashes, thus we’ll need to define the methods on indi-
vidual instances of PostData instead of defining the methods on the class itself.

 class PostData
 def initialize(post_data)
 (class << self; self; end).class_eval do
 post_data.each_pair do |key, value|
 define_method key.to_sym do
 value
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Dynamic Method Definition 157

Dynamic
Method
Definition

 end
 end
 end
 end

The preceding code works perfectly well, but it suffers from readability pain.
In cases like these I like to take a step back and look at what I’m trying to
accomplish.

What I’m looking for is the keys of the Hash to become methods and the values
of the Hash to be returned by those respective methods. The two ways to add
methods to an instance are to define methods on the metaclass and to extend a
module.

Fortunately, Ruby allows me to define anonymous modules. I have a Hash and
a decorator, but what I want is a way to define methods of the decorator by
extending a Hash, so I simply need to convert the Hash to a module.

The following code converts a Hash to a module with a method for each key
that returns the associated value.

 class Hash
 def to_module
 hash = self
 Module.new do
 hash.each_pair do |key, value|
 define_method key do
 value
 end
 end
 end
 end
 end

With the preceding code in place, it’s possible to define the PostData class like
the following example.

 class PostData
 def initialize(post_data)
 self.extend post_data.to_module
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods158

Replace Dynamic

Receptor with

Dynamic Method

Definition

Replace Dynamic Receptor with Dynamic Method Defi-
nition

You have methods you want to handle dynamically without the pain of debug-
ging method_missing.

Use dynamic method definition to define the necessary methods.

Motivation

Debugging classes that use method_missing can often be painful. At best you often
get a NoMethodError on an object that you didn’t expect, and at worst you get stack
level too deep (SystemStackError).

There are times that method_missing is required. If the object must support unex-
pected method calls you may not be able to avoid the use of method_missing. How-
ever, often you know how an object will be used and using Dynamic Method
Definition you can achieve the same behavior without relying on method_missing.

Mechanics

1. Dynamically define the necessary methods.

2. Test.

3. Remove method_missing.

4. Test.

Example: Dynamic Delegation Without method_missing

Delegation is a common task while developing software. Delegation can be
handled explicitly by defining methods yourself or by utilizing something from
the Ruby Standard Library such as Forwardable. (See the Hide Delegate section in
Chapter 7 for an explanation of Forwardable.) Using these techniques gives you
control over what methods you want to delegate to the subject object; however,
sometimes you want to delegate all methods without specifying them. Ruby’s
Standard Library also provides this capability with the delegate library, but
we’ll assume we need to implement our own for this example.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Dynamic Receptor with Dynamic Method Definition 159

Replace Dynamic

Receptor with

Dynamic Method

Definition

The simple way to handle delegation (ignoring the fact that you would want
to undefine all the standard methods a class gets by default) is to use method_missing

to pass any method calls straight to the subject.

 class Decorator
 def initialize(subject)
 @subject = subject
 end

 def method_missing(sym, *args, &block)
 @subject.send sym, *args, &block
 end
 end

This solution does work, but it can be problematic when mistakes are made.
For example, calling a method that does not exist on the subject results in the
subject raising a NoMethodError. Since the method call is being called on the decora-
tor but the subject is raising the error, it may be painful to track down where the
problem resides.

The wrong object raising a NoMethodError is significantly better than the dreaded
stack level too deep (SystemStackError). This can be caused by something as simple
as forgetting to use the subject instance variable and trying to use a nonexistent
subject method or any misspelled method. When this happens the only feedback
you have is that something went wrong, but Ruby isn’t sure exactly what it was.

These problems can be avoided entirely by using the available data to dynam-
ically define methods at runtime. The following example defines an instance
method on the decorator for each public method of the subject.

 class Decorator
 def initialize(subject)
 subject.public_methods(false).each do |meth|
 (class << self; self; end).class_eval do
 define_method meth do |*args|
 subject.send meth, *args
 end
 end
 end
 end
 end

Using this technique any invalid method calls will be correctly reported as
NoMethodErrors on the decorator. Additionally, there’s no method_missing defini-
tion, which should help avoid the stack level too deep problem entirely.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods160

Isolate
Dynamic
Receptor

Example: Using User-Defined Data to Define Methods

Often you can use the information from a class definition to define methods
instead of relying on method_missing. For example, the following code relies on
method_missing to determine whether any of the attributes are nil.

 class Person
 attr_accessor :name, :age

 def method_missing(sym, *args, &block)
 empty?(sym.to_s.sub(/^empty_/,"").chomp("?"))
 end

 def empty?(sym)
 self.send(sym).nil?
 end
 end

The code works, but it suffers from the same debugging issues that the previ-
ous example does. Utilizing Dynamic Method Definition and Introduce Class
Annotation the issue can be avoided by defining the attributes and creating the
empty_attribute? methods at the same time.

 class Person
 def self.attrs_with_empty_predicate(*args)
 attr_accessor *args

 args.each do |attribute|
 define_method "empty_#{attribute}?" do
 self.send(attribute).nil?
 end
 end
 end

 attrs_with_empty_predicate :name, :age
 end

Isolate Dynamic Receptor

A class utilizing method_missing has become painful to alter.

Introduce a new class and move the method_missing logic to that class.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Isolate Dynamic Receptor 161

Isolate Dynamic
Receptor

Command Center

start()
stop()

1

Recorder

messages
method_missing()
play_for()

messages

Message Collector

messages()
method_missing()

messages

messagesmessages
Command Center

start()
stop()

Recorder
message_collector

Play_for()
record

1

1

Motivation

As I mentioned in the section “ Replace Dynamic Receptor with Dynamic
Method Definition ” earlier in the chapter, objects that use method_missing often
raise NoMethodError errors unexpectedly. Even worse is when you get no more infor-
mation than stack level too deep (SystemStackError).

Despite the added complexity, method_missing is a powerful tool that needs
to be used when the interface of a class cannot be predetermined. On those
occasions I like to use Isolate Dynamic Receptor to move the method_missing

behavior to a new class: a class whose sole responsibility is to handle the
 method_missing cases.

The ActiveRecord::Base (AR::B) class defines method_missing to handle dynamic find
messages. The implementation of method_missing allows you to send find messages
that use attributes of a class as limiting conditions for the results that will be
returned by the dynamic find messages. For example, given a Person subclass of
AR::B that has both a first name and a ssn attribute, it’s possible to send the mes-
sages Person.find_by_first_name, Person.find_by_ssn, and Person.find_by_first_name_and_ssn.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods162

Isolate
Dynamic
Receptor

It’s possible, though not realistic, to dynamically define methods for all pos-
sible combinations of the attributes of an AR::B subclass. Utilizing method_missing
is a good alternative. However, by defining method_missing on the AR::B class itself
the complexity of the class is increased significantly. AR::B would benefit from a
maintainability perspective if instead the dynamic finder logic were defined on
a class whose single responsibility was to handle dynamic find messages. For
example, the previous Person class could support find with the following syntax:
Person.find.by_first_name, Person.find.by_ssn, or Person.find.by_first_name_and_ssn.

Tip Very often it’s possible to know all valid method calls ahead of
time, in which case I prefer Replace Dynamic Receptor with Dynamic
Method Definition.

Mechanics

1. Create a new class whose sole responsibility is to handle the dynamic
method calls.

2. Copy the logic from method_missing on the original class to the method_missing of
the focused class.

3. Create a method on the original class to return an instance of the focused
class.

4. Change all client code that previously called the dynamic methods on the
original object to call the new method first.

5. Remove the method_missing from the original object.

6. Test.

Example

The following example is a Recorder class that records all calls to method_missing.

 class Recorder
 instance_methods.each do |meth|
 undef_method meth unless meth =~ /^(__|inspect)/
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Isolate Dynamic Receptor 163

Isolate
Dynamic
Receptor

 def messages
 @messages ||= []
 end

 def method_missing(sym, *args)
 messages << [sym, args]
 self
 end
 end

The Recorder class may need additional behavior such as the ability to play
back all the messages on an object and the ability to represent all the calls as
Strings.

 class Recorder...
 def play_for(obj)
 messages.inject(obj) do |result, message|
 result.send message.first, *message.last
 end
 end

 def to_s
 messages.inject([]) do |result, message|
 result << "#{message.first}(args: #{message.last.inspect})"
 end.join(".")
 end
 end

It might be used like this:

 class CommandCenter

 def start(command_string)
 ...
 self
 end

 def stop(command_string)
 ...
 self
 end

 end

 recorder = Recorder.new
 recorder.start("LRMMMMRL")

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods164

Isolate
Dynamic
Receptor

 recorder.stop("LRMMMMRL")
 recorder.play_for(CommandCenter.new)

As the behavior of Recorder grows it becomes harder to identify the messages
that are dynamically handled from those that are actually explicitly defined.
By design the functionality of method_missing should handle any unknown mes-
sage, but how do you know if you’ve broken something by adding an explicitly
defined method?

The solution to this problem is to introduce an additional class that has the
single responsibility of handling the dynamic method calls. In this case we have
a class Recorder that handles recording unknown messages as well as playing
back the messages or printing them. To reduce complexity we will introduce the
MesageCollector class that handles the method_missing calls.

 class MessageCollector
 instance_methods.each do |meth|
 undef_method meth unless meth =~ /^(__|inspect)/
 end

 def messages
 @messages ||= []
 end

 def method_missing(sym, *args)
 messages << [sym, args]
 self
 end
 end

The record method of Recorder will create a new instance of the MessageCollector class
and each additional chained call will be recorded. The play back and printing
capabilities will remain on the Recorder object.

 class Recorder
 def play_for(obj)
 @message_collector.messages.inject(obj) do |result, message|
 result.send message.first, *message.last
 end
 end

 def record
 @message_collector ||= MessageCollector.new
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Move Eval from Runtime to Parse Time 165

Move Eval
from
Runtime to
Parse Time

 def to_s
 @message_collector.messages.inject([]) do |result, message|
 result << "#{message.first}(args: #{message.last.inspect})"
 end.join(".")
 end
 end

And now our usage will change to call the record method:

 recorder = Recorder.new
 recorder. record .start("LRMMMMRL")
 recorder. record .stop("LRMMMMRL")
 recorder.play_for(CommandCenter.new)

Move Eval from Runtime to Parse Time

You need to use eval but want to limit the number of times eval is necessary.

Move the use of eval from within the method definition to defining the method
itself.

 class Person
 def self.attr_with_default(options)
 options.each_pair do |attribute, default_value|
 define_method attribute do
 eval "@#{attribute} ||= #{default_value}"
 end
 end
 end

 attr_with_default :emails => "[]",
 :employee_number =>"EmployeeNumberGenerator.next"
 end

 class Person
 def self.attr_with_default(options)
 options.each_pair do |attribute, default_value|
 eval "define_method #{attribute} do

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 6 Composing Methods166

Move Eval
from

Runtime to
Parse Time

 @#{attribute} ||= #{default_value}
 end"
 end
 end

 attr_with_default :emails => "[]",
 :employee_number =>"EmployeeNumberGenerator.next"
 end

Motivation

As Donald Knuth once said, “Premature optimization is the root of all evil”. I’ll
never advocate for premature optimization, but this refactoring can be helpful
when you determine that eval is a source of performance pain. The Kernel#eval
method can be the right solution in some cases, but it is almost always more
expensive (in terms of performance) than its alternatives. In the cases where eval

is necessary, it’s often better to move an eval call from runtime to parse time.

Mechanics

1. Expand the scope of the string being eval’d.

2. Test.

It’s also worth noting that evaluating the entire method definition allows you
to change the define_method to def in this example. All current versions of Ruby
execute methods defined with def significantly faster than methods defined using
define_method; therefore, this refactoring could yield benefits for multiple reasons.
Of course, you should always measure to ensure that you’ve actually refactored
in the right direction.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

167

Chapter 7

Moving Features Between
Objects

One of the most fundamental, if not the fundamental, decision in object
design is deciding where to put responsibilities. I’ve been working with objects
for more than a decade, but I still never get it right the first time. That used to
bother me, but now I realize that I can use refactoring to change my mind in
these cases.

Often I can resolve these problems simply by using Move Method and Move
Field to move the behavior around. If I need to use both, I prefer to use Move
Field first and then Move Method.

Often classes become bloated with too many responsibilities. In this case I
use Extract Class or Extract Module to separate some of these responsibilities.
If a class becomes too irresponsible, I use Inline Class to merge it into another
class. The same applies to modules. If another class is being used, it often is
helpful to hide this fact with Hide Delegate. Sometimes hiding the delegate class
results in constantly changing the owner’s interface, in which case you need to
use Remove Middle Man.

Move Method

A method is, or will be, using or used by more features of another class than the
class on which it is defined.

Create a new method with a similar body in the class it uses most. Either turn
the old method into a simple delegation, or remove it altogether.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 7 Moving Features Between Objects168

Move
Method

Class 1

a_method()

a_method()

Class 2 Class 2

Class 1

Motivation

Moving methods is the bread and butter of refactoring. I move methods when
classes have too much behavior or when classes are collaborating too much
and are too highly coupled. By moving methods around, I can make the classes
simpler, and they end up being a more crisp implementation of a set of respon-
sibilities.

I usually look through the methods on a class to find a method that seems
to reference another object more than the object it lives on. A good time to do
this is after I have moved some attributes. Once I see a likely method to move,
I take a look at the methods that call it, the methods it calls, and any redefining
methods in the hierarchy. I assess whether to go ahead on the basis of the object
with which the method seems to have more interaction.

It’s not always an easy decision to make. If I am not sure whether to move a
method, I go on to look at other methods. Moving other methods often makes
the decision easier. Sometimes the decision still is hard to make. Actually it is
then no big deal. If it is difficult to make the decision, it probably does not mat-
ter that much. Then I choose according to instinct; after all, I can always change
it again later.

Mechanics

1. Examine all features used by the source method that are defined on the
source class. Consider whether they also should be moved.

If a feature is used only by the method you are about to move,
you might as well move it, too. If the feature is used by other methods,
consider moving them as well. Sometimes it is easier to move a clutch of
methods than to move them one at a time.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Move Method 169

Move
Method

2. Check the sub- and superclasses of the source class for other definitions of
the method.

If there are any other definitions, you may not be able to make the
move, unless the polymorphism can also be expressed on the target.

3. Define the method in the target class.

You may choose to use a different name, one that makes more
sense in the target class .

4. Copy the code from the source method to the target. Adjust the method
to make it work in its new home.

If the method uses its source, you need to determine how to refer-
ence the source object from the target method. If there is no mechanism
in the target class, pass the source object reference to the new method as a
parameter.

If the method includes exception handlers, decide which class
should logically handle the exception. If the source class should be
responsible, leave the handlers behind.

5. Determine how to reference the correct target object from the source.

There may be an existing attribute or method that will give you
the target. If not, see whether you can easily create a method that will do
so. Failing that, you need to create a new attribute in the source that can
store the target. This may be a permanent change, but you can also make
it temporarily until you have refactored enough to remove it.

6. Turn the source method into a delegating method.

7. Test.

8. Decide whether to remove the source method or retain it as a delegating
method.

Leaving the source as a delegating method is easier if you have
many references.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 7 Moving Features Between Objects170

Move
Method

9. If you remove the source method, replace all the references with refer-
ences to the target method.

You can test after changing each reference, although it is usually
easier to change all references with one search and replace .

10. Test.

Example

An account class illustrates this refactoring:

 class Account...
 def overdraft_charge
 if @account_type.premium?
 result = 10
 result += (@days_overdrawn - 7) * 0.85 if @days_overdrawn > 7
 result
 else
 @days_overdrawn * 1.75
 end
 end

 def bank_charge
 result = 4.5
 result += overdraft_charge if @days_overdrawn > 0
 result
 end

Let’s imagine that there are going to be several new account types, each of which
has its own rule for calculating the overdraft charge. So I want to move the
overdraft_charge method over to the account type.

The first step is to look at the features that the overdraft_charge method uses and
consider whether it is worth moving a batch of methods together. In this case I
need the @days_overdrawn instance variable to remain on the account class, because
that will vary with individual accounts.

Next I copy the method body over to the account type and get it to fit.

 class AccountType...
 def overdraft_charge(days_overdrawn)
 if premium?
 result = 10
 result += (days_overdrawn - 7) * 0.85 if days_overdrawn > 7

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Move Method 171

Move
Method

 result
 else
 days_overdrawn * 1.75
 end
 end

In this case fitting means removing the @account_type from uses of features of the
account type, and doing something about the features of account that I still
need. When I need to use a feature of the source class I can do one of four
things: (1) move this feature to the target class as well, (2) create or use a refer-
ence from the target class to the source, (3) pass the source object as a param-
eter to the method, or (4) if the feature is a variable, pass it in as a parameter.

In this case I pass the variable as a parameter.
Once the method fits in the target class, I can replace the source method body

with a simple delegation:

 class Account...
 def overdraft_charge
 @account_type.overdraft_charge(@days_overdrawn)
 end

At this point I can test.
I can leave things like this, or I can remove the method in the source class. To

remove the method I need to find all callers of the method and redirect them to
call the method in account type:

 class Account...
 def bank_charge
 result = 4.5
 if @days_overdrawn > 0
 result += @account_type.overdraft_charge(@days_overdrawn)
 end
 result
 end

Once I’ve replaced all the callers, I can remove the method definition in account.
I can test after each removal, or do them in a batch. If the method isn’t private, I
need to look for other classes that use this method. In a statically typed language
like Java or C#, the compilation after removal of the source definition finds any-
thing I missed. In an interpreted language such as Ruby, there’s no compilation
to catch these mistakes. A comprehensive test suite is vitally important, even
more-so in dynamic languages!

In this case the method referred only to a single instance variable, so I could
just pass this instance variable in as a variable. If the method called for another

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 7 Moving Features Between Objects172

Move
Field

method on the account, I wouldn’t have been able to do that. In those cases I
need to pass in the source object:

 class AccountType...
 def overdraft_charge(account)
 if premium?
 result = 10
 if (account.days_overdrawn > 7)
 result += (account.days_overdrawn - 7) * 0.85
 end
 result
 else
 account.days_overdrawn * 1.75
 end
 end

I also pass in the source object if I need several features of the class, although if
there are too many, further refactoring is needed. Typically I need to decompose
and move some pieces back.

Move Field

A field is, or will be, used by another class more than the class on which it is
defined.

Create a new attribute reader (and if necessary, a writer) in the target class, and
change all its users.

Class 1
a_field

Class 2
a_field

Class 2

Class 1

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Move Field 173

Move
Field

Motivation

Moving state and behavior between classes is the essence of refactoring. As
the system develops, you find the need for new classes and the need to shuffle
responsibilities around. A design decision that is reasonable and correct one
week can become incorrect in another. That is not a problem; the only problem
is not to do something about it.

I consider moving a field if I see more methods on another class using the
information in the field than the class itself. I may choose to move the methods;
this decision is based on interface. But if the methods seem sensible where they
are, I move the field.

Another reason for field moving is when doing Extract Class. In that case the
fields go first and then the methods.

Mechanics

1. If you are likely to be moving the methods that access the field frequently
or if a lot of methods access the field, you may find it useful to use Self
Encapsulate Field.

2. Test.

3. Create in the target class an attribute reader and, if necessary, a writer.

4. Determine how to reference the target object from the source.

An existing field or method may give you the target. If not, see
whether you can easily create a method that will do so. Failing that, you
need to create a new field in the source that can store the target. This may
be a permanent change, but you can also do it temporarily until you have
refactored enough to remove it.

5. Replace all references to the source field with references to the appropri-
ate method on the target.

For accesses to the variable, replace the reference with a call to the
target object’s reader; for assignments, replace the reference with a call to
the writer.

Look in all the subclasses of the source for references to the field.

6. Test.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 7 Moving Features Between Objects174

Move
Field

Example

Here is part of an account class:

 class Account...

 def interest_for_amount_days(amount, days)
 @interest_rate * amount * days / 365;
 end

I want to move the @interest_rate field to the account type. There are several meth-
ods with that reference, of which interest_for_amount_days is one example. I next
create the attribute in the account type:

 class AccountType...
 attr_accessor :interest_rate

Now I redirect the methods from the account class to use the account type and
remove the interest rate instance variable in the account.

 def interest_for_amount_days(amount, days)
 @account_type.interest_rate * amount * days / 365
 end

Example: Using Self-Encapsulation

If a lot of methods use the interest rate instance variable, I might start by using
Self Encapsulate Field:

 class Account...
 attr_accessor :interest_rate

 def interest_for_amount_days(amount, days)
 interest_rate * amount * days / 365
 end

That way I only need to do the redirection for the appropriate accessors:

 class Account...

 attr_accessor :interest_rate

 def interest_for_amount_and_days(amount, days)

 interest_rate * amount * days / 365
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Extract Class 175

Extract
Class

 def interest_rate
 @account_type.interest_rate
 end

Or, I can extend Forwardable and declare delegating accessors like this:

 extend Forwardable

 def_delegator :@account_type, :interest_rate, :interest_rate=

 def interest_for_amount_and_days(amount, days)
 interest_rate * amount * days / 365
 end

I can redirect the clients of the accessors to use the new object later if I want.
Using self-encapsulation allows me to take a smaller step. This is useful if I’m
doing a lot of things with the class. In particular, it simplifies use of Move
Method to move methods to the target class. If they refer to the accessor, such
references don’t need to change Self Encapsulate Field.

Extract Class

You have one class doing work that should be done by two.

Create a new class and move the relevant fields and methods from the old class
into the new class.

name
office_area_code
office_number

telephone_number()

Person
name

telephone_number()

Person
area_code
number

telephone_number()

Telephone Number

office_telephone

1

Motivation

You’ve probably heard that a class should be a crisp abstraction, handle a few
clear responsibilities, or some similar guideline. In practice, classes grow. You
add some operations here, a bit of data there. You add a responsibility to a
class feeling that it’s not worth a separate class, but as that responsibility grows
and breeds, the class becomes too complicated. Soon your class is as crisp as a
microwaved duck.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 7 Moving Features Between Objects176

Extract
Class

Such a class is one with many methods and a lot of data—a class that is too
big to understand easily. You need to consider where it can be split, and you
split it. A good sign is that a subset of the data and a subset of the methods seem
to go together. Other good signs are subsets of data that usually change together
or are particularly dependent on each other. A useful test is to ask yourself what
would happen if you removed a piece of data or a method. What other fields
and methods would become nonsense?

One sign that often crops up later in development is the way the class is
subtyped. You may find that subtyping affects only a few features or that some
features need to be subtyped one way and other features a different way.

Mechanics

1. Decide how to split the responsibilities of the class.

2. Create a new class to express the split-off responsibilities.

If the responsibilities of the old class no longer match its name,
rename the old class.

3. Make a link from the old to the new class.

You may need a two-way link. But don’t make the back link until
you find you need it.

4. Use Move Field on each field you want to move.

5. Test after each move.

6. Use Move Method to move methods over from old to new. Start with
lower-level methods (called rather than calling) and build to the higher
level.

7. Test after each move.

8. Review and reduce the interfaces of each class.

If you did have a two-way link, examine to see whether it can be
made one-way.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Extract Class 177

Extract
Class

9. Decide whether multiple clients will be able to access the class. If you do
allow access to multiple clients, decide whether to expose the new class as
a reference object or as an immutable value object.

Example

I start with a simple person class:

 class Person...
 attr_reader :name
 attr_accessor :office_area_code
 attr_accessor :office_number
 def telephone_number
 '(' + @office_area_code + ') ' + @office_number
 end

In this case I can separate the telephone number behavior into its own class. I
start by defining a telephone number class:

 class TelephoneNumber
 end

That was easy! I next make a link from the person to the telephone number:

 class Person...
 def initialize
 @office_telephone = TelephoneNumber.new
 end

Now I use Move Field on one of the fields:

 class TelephoneNumber
 attr_accessor :area_code
 end

 class Person...

 def telephone_number
 '(' + office_area_code + ') ' + @office_number
 end

 def office_area_code
 @office_telephone.area_code
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 7 Moving Features Between Objects178

Extract
Class

 def office_area_code=(arg)
 @office_telephone.area_code = arg
 end

I can then move the other field and use Move Method on the telephone number:

 class Person...
 attr_reader :name

 def initialize
 @office_telephone = TelephoneNumber.new
 end

 def telephone_number
 @office_telephone.telephone_number
 end

 def office_telephone
 @office_telephone
 end

 class TelephoneNumber...
 attr_accessor :area_code, :number

 def telephone_number
 '(' + area_code + ') ' + number
 end

The decision then is how much to expose the new class to my clients. I can
completely hide it by providing delegating methods for its interface, or I can
expose it.

If I choose to expose the class, I need to consider the dangers of aliasing. If I
expose the telephone number and a client changes the area code in that object,
how do I feel about it? It may not be a direct client that makes this change. It
might be the client of a client of a client.

I have the following options:

• I accept that any object may change any part of the telephone number.
This makes the telephone number a reference object, and I should consider
Change Value to Reference. In this case the person would be the access
point for the telephone number.

• I don’t want anybody to change the value of the telephone number without
going through the person. I should make the telephone number immutable.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Inline Class 179

Inline
Class

• A third option that reduces that confusion is to clone and then freeze the
telephone number before passing it out.

Extract Class is a common technique for improving the liveness of a concur-
rent program because it allows you to have separate locks on the two resulting
classes. If you don’t need to lock both objects you don’t have to. For more on
this see Brian Goetz’s book Java Concurrency in Practice [Goetz].

However, there is a danger there. If you need to ensure that both objects are
locked together, you get into the area of transactions and other kinds of shared
locks. This is complex territory and requires heavier machinery than it is typi-
cally worth. Transactions are useful when you use them, but writing transaction
managers is more than most programmers should attempt.

Inline Class

A class isn’t doing very much.

Move all its features into another class and delete it.

1

name

telephone_number()

Person
name
area _code
number

telephone_number()

Person

area_code
number

telephone_number()

Telephone Number

office_telephone

Motivation

Inline Class is the reverse of Extract Class. I use Inline Class if a class is no lon-
ger pulling its weight and shouldn’t be around any more. Often this is the result
of refactoring that moves other responsibilities out of the class so there are little
left. Then I want to fold this class into another class, picking one that seems to
use the runt class the most.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 7 Moving Features Between Objects180

ne
ss

Mechanics

1. Declare the public protocol of the source class onto the absorbing class.
Delegate all these methods to the source class.

2. Change all references from the source class to the absorbing class .

3. Test .

4. Use Move Method and Move Field to move features from the source class
to the absorbing class until there is nothing left .

5. Hold a short, simple funeral service .

Example

Let’s assume that the TelephoneNumber class we extracted in the Extract Class exam-
ple isn’t pulling its weight. I now inline it back into Person. I start with separate
classes:

 class Person...
 attr_reader :name

 def initialize
 @office_telephone = TelephoneNumber.new
 end

 def telephone_number
 @office_telephone.telephone_number
 end

 def office_telephone
 @office_telephone
 end

 class TelephoneNumber...
 attr_accessor :area_code, :number

 def telephone_number

Inline
Class

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Hide Delegate 181

Hide
Delegate

 '(' + area_code + ') ' + number
 end

I begin by declaring all the visible methods on telephone number on person:

 class Person...

 def area_code
 @office_telephone.area_code
 end

 def area_code=(arg)
 @office_telephone.area_code = arg
 end

 def number
 @office_telephone.number
 end

 def number=(arg)
 @office_telephone.number = arg
 end

Now I find clients of telephone number and switch them to use the person’s
interface. So :

 martin = Person.new
 martin.office_telephone.area_code = "781”

becomes

 martin = Person.new
 martin.area_code = "781”

Now I can use Move Method and Move Field until the telephone class is no
more.

Hide Delegate

A client is calling a delegate class of an object.

Create methods on the server to hide the delegate.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 7 Moving Features Between Objects182

Hide
Delegate

department()

Person

manager()

Department manager()

Person

Client Class Client Class

Department

Motivation

One of the keys, if not the key, to objects is encapsulation. Encapsulation means
that objects need to know less about other parts of the system. Then when
things change, fewer objects need to be told about the change—which makes
the change easier to make.

Anyone involved in objects knows that you should hide your fields. As you
become more sophisticated, you realize there is more you can encapsulate.

If a client calls a method defined on one of the fields of the server object,
the client needs to know about this delegate object. If the delegate changes, the
client also may have to change. You can remove this dependency by placing a
simple delegating method on the server, which hides the delegate (see Figure
7.1). Changes become limited to the server and don’t propagate to the client.

method()

Server

method()

Delegate
Client

delegate.method()

Figure 7.1 Simple delegation .

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Hide Delegate 183

Hide
Delegate

You may find it is worthwhile to use Hide Delegate for some clients of the
server or all clients. If you hide from all clients, you can remove all mention of
the delegate from the interface of the server.

Mechanics

1. For each method on the delegate, create a simple delegating method on
the server.

2. Adjust the client to call the server.

3. Test after adjusting each method.

4. If no client needs to access the delegate anymore, remove the server’s
accessor for the delegate.

5. Test.

Example

I start with a person and a department:

 class Person
 attr_accessor :department
 end

 class Department
 attr_reader :manager

 def initialize(manager)
 @manager = manager
 end

 ...

If a client wants to know a person’s manager, it needs to get the department first:

 manager = john.department.manager

This reveals to the client how the department class works and that the depart-
ment is responsible for tracking the manager. I can reduce this coupling by

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 7 Moving Features Between Objects184

Hide
Delegate

hiding the department class from the client. I do this by creating a simple del-
egating method on person:

 def manager

 @department.manager
 end

Or, extend Forwardable and declare the delegating method:

 class Person
 extend Forwardable

 def_delegator :@department, :manager
 ...

Forwardable is a module included within the Ruby Standard Library.
From the documentation:

The Forwardable module provides delegation of specified methods to
a designated object, using the methods #def_delegator and #def_del-
egators. For example, say you have a class RecordCollection which
contains an array +@records+. You could provide the lookup method
#record_number(), which simply calls #[] on the +@records+ array,
like this:

 class RecordCollection
 extend Forwardable
 def_delegator :@records, :[], :record_number
 end

Further, if you wish to provide the methods #size, #<<, and #map, all
of which delegate to @records, this is how you can do it:

 class RecordCollection
 # extend Forwardable, but we did that above
 def_delegators :@records, :size, :<<, :map
 end

I now need to change all clients of person to use this new method:

 manager = john.manager

Once I’ve made the change for all methods of department and for all the cli-
ents of person, I can remove the department reader on person.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Remove Middle Man 185

Remove
Middle
Man

Remove Middle Man

A class is doing too much simple delegation.

Get the client to call the delegate directly.

Client Class

Department

Client Class

department()

Person

manager()

Person

manager()

Department

Motivation

In the motivation for Hide Delegate, I talked about the advantages of encapsu-
lating the use of a delegated object. There is a price for this. The price is that
every time the client wants to use a new feature of the delegate, you have to add
a simple delegating method to the server. After adding features for a while, it
becomes painful. The server class is just a middle man, and perhaps it’s time for
the client to call the delegate directly.

It’s hard to figure out what the right amount of hiding is. Fortunately, with
Hide Delegate and Remove Middle Man it does not matter so much. You can
adjust your system as time goes on. As the system changes, the basis for how
much you hide also changes. A good encapsulation six months ago may be awk-
ward now. Refactoring means you never have to say you’re sorry: You just fix it.

Mechanics

1. Create an accessor for the delegate.

2. For each client use of a delegate method, remove the method from the
server and replace the call in the client to call the method on the delegate.

3. Test after each method.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 7 Moving Features Between Objects186

Remove
Middle

Man

Example

For an example I use person and department flipped the other way. I start with
person hiding the department:

 class Person...

 def initialize(department)
 @department = department
 end

 def manager
 @department.manager
 end

 class Department
 attr_reader :manager

 def initialize(manager)
 @manager = manager
 end
 ...

To find a person’s manager, clients ask:

 manager = john.manager

This is simple to use and encapsulates the department. However, if a lot of
methods are doing this, I end up with too many of these simple delegations on
the person. That’s when it is good to remove the middle man. First I make an
accessor for the delegate:

 class Person...

 attr_reader :department

Then I take each method at a time. I find clients that use the method on person
and change it to first get the delegate. Then I use it:

 manager = john.department.manager

I can then remove the delegating manager method from person. A test run
shows whether I missed anything.

I may want to keep some of these delegations for convenience. I also may
want to hide the delegate from some clients but show it to others. That also will
leave some of the simple delegations in place.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

187

Chapter 8

Organizing Data

In this chapter I discuss several refactorings that make working with data
easier. For many people Self Encapsulate Field seems unnecessary. It’s long been
a matter of good-natured debate about whether an object should access its own
data directly or through accessors. Sometimes you do need the accessors, and
then you can get them with Self Encapsulate Field. I generally use direct access
because I find it simple to do this refactoring when I need it.

One of the useful things about object languages is that they allow you to
define new types that go beyond what can be done with the simple data types
of traditional languages. It takes a while to get used to how to do this, however.
Often you start with a simple data value and then realize that an object would
be more useful. Replace Data Value with Object allows you to turn dumb data
into articulate objects. When you realize that these objects are instances that
will be needed in many parts of the program, you can use Change Value to Ref-
erence to make them into reference objects.

If you see an Array or Hash acting as a data structure, you can make the data
structure clearer with Replace Array with Object or Replace Hash with Object.
In all these cases the object is but the first step. The real advantage comes when
you use Move Method to add behavior to the new objects.

Magic numbers—numbers with special meaning—have long been a problem.
I remember being told in my earliest programming days not to use them. They
do keep appearing, however, and I use Replace Magic Number with Symbolic
Constant to get rid of magic numbers whenever I figure out what they are doing.

Links between objects can be one-way or two-way. One-way links are easier,
but sometimes you need to Change Unidirectional Association to Bidirectional
to support a new function. Change Bidirectional Association to Unidirectional
removes unnecessary complexity should you find you no longer need the two-
way link.

One of the key tenets of Object-Oriented programming is encapsulation. If
a collection is exposed, use Encapsulate Collection to cover it up. If an entire
record is naked, use Replace Record with Data Class.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data188

Self
Encapsulate

Field

One form of data that requires particular treatment is the type code: a special
value that indicates something particular about a type of instance. These are
often implemented as integers. If the behavior of a class is affected by a type
code, try to use Replace Type Code with Polymorphism. If you can’t do that,
use one of the more complicated (but more flexible) Replace Type Code with
Module Extension or Replace Type Code with State/Strategy.

Self Encapsulate Field

You are accessing a field directly, but the coupling to the field is becoming awk-
ward.

Create getting and setting methods for the field and use only those to access the
field.

 def total
 @base_price * (1 + @tax_rate)
 end

 attr_reader :base_price, :tax_rate

 def total
 base_price * (1 + tax_rate)
 end

Motivation

When it comes to accessing fields, there are two schools of thought. One is that
within the class where the variable is defined, you should access the variable
freely (direct variable access). The other school is that even within the class, you
should always use accessors (indirect variable access). Debates between the two
can be heated. (See also the discussion in Smalltalk Best Practices [Beck].)

Essentially the advantages of indirect variable access are that it allows a sub-
class to override how to get that information with a method and that it supports
more flexibility in managing the data, such as lazy initialization, which initial-
izes the value only when you need to use it.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Self Encapsulate Field 189

Self
Encapsulate
Field

The advantage of direct variable access is that the code is easier to read. You
don’t need to stop and say, “This is just a getting method.”

I’m always of two minds with this choice. I’m usually happy to do what the
rest of the team wants to do. Left to myself, though, I like to use direct variable
access as a first resort, until it gets in the way. Once things start becoming awk-
ward, I switch to indirect variable access. Refactoring gives you the freedom to
change your mind.

The most important time to use Self Encapsulate Field is when you are
accessing a field in a superclass but you want to override this variable access
with a computed value in the subclass. Self-encapsulating the field is the first
step. After that you can override the getting and setting methods as you need to.

Mechanics

1. Create a getting and setting method for the field.

2. Find all references to the field and replace them with a getting or setting
method.

Replace accesses to the field with a call to the getting method;
replace assignments with a call to the setting method.

3. Double check that you have caught all references.

4. Test.

Example

This seems almost too simple for an example, but, hey, at least it is quick to
write:

 class Item

 def initialize(base_price, tax_rate)
 @base_price = base_price
 @tax_rate = tax_rate
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data190

Self
Encapsulate

Field

 def raise_base_price_by(percent)
 @base_price = @base_price * (1 + percent/100.0)
 end

 def total
 @base_price * (1 + @tax_rate)
 end

To self-encapsulate I define getting and setting methods (if they don’t already
exist) and use those:

 class Item...

 attr_accessor :base_price, :tax_rate

 def raise_base_price_by(percent)
 self.base_price = base_price * (1 + percent/100.0)
 end

 def total
 base_price * (1 + tax_rate)
 end

When you are using self-encapsulation you have to be careful about using the
setting method in the constructor. Often it is assumed that you use the setting
method for changes after the object is created, so you may have different behav-
ior in the setter than you have when initializing. In cases like this I prefer using
either direct access from the constructor or a separate initialization method:

 def initialize(base_price, tax_rate)
 setup(base_price, tax_rate)
 end

 def setup(base_price, tax_rate)
 @base_price = base_price
 @tax_rate = tax_rate
 end

The value in doing all this comes when you have a subclass, as follows:

 class ImportedItem < Item

 attr_reader :import_duty

 def initialize(base_price, tax_rate, import_duty)

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Data Value with Object 191

Replace
Data Value
with Object

 super(base_price, tax_rate)
 @import_duty = import_duty
 end

 def tax_rate
 super + import_duty
 end

I can override all of the behavior of Item to take into account the import_duty with-
out changing any of that behavior.

Replace Data Value with Object

You have a data item that needs additional data or behavior.

Turn the data item into an object.

Order

Order
customer

Customer
name

1

Motivation

Often in early stages of development you make decisions about representing
simple facts as simple data items. As development proceeds you realize that
those simple items aren’t so simple anymore. A telephone number may be rep-
resented as a string for a while, but later you realize that the telephone needs
special behavior for formatting, extracting the area code, and the like. For one
or two items you may put the methods in the owning object, but quickly the
code smells of duplication and feature envy. When the smell begins, turn the
data value into an object.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data192

Replace
Data Value

with Object

Mechanics

1. Create the class for the value. Give it an equivalent field to the field in the
source class. Add an attribute reader and a constructor that takes the field
as an argument.

2. Change the attribute reader in the source class to call the reader in the
new class.

3. If the field is mentioned in the source class constructor, assign the field
using the constructor of the new class.

4. Change the attribute reader to create a new instance of the new class.

5. Test.

6. You may now need to use Change Value to Reference on the new object.

Example

I start with an Order class that has stored the customer of the order as a string
and wants to turn the customer into an object. This way I have somewhere to
store data, such as an address or credit rating, and useful behavior that uses this
information.

 class Order...
 attr_accessor :customer

 def initialize(customer)
 @customer = customer
 end

Some client code that uses this looks like :

 private

 def self.number_of_orders_for(orders, customer)
 orders.select { |order| order.customer == customer }.size
 end

First I create the new Customer class. I give it a field for a string attribute,
because that is what the order currently uses. I call it name, because that seems

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Data Value with Object 193

Replace
Data Value
with Object

to be what the string is used for. I also add an attribute reader and provide a
constructor that uses the attribute:

 class Customer
 attr_reader :name

 def initialize(name)
 @name = name
 end
 end

Now I change methods that reference the customer field to use the appropri-
ate references on the Customer class. The attribute reader and constructor are obvi-
ous. For the attribute writer I create a new customer:

 class Order...
 attr_accessor :customer

 def initialize(customer)
 @customer = Customer.new(customer)
 end

 def customer
 @customer.name
 end

 def customer=(value)
 @customer = Customer.new(value)
 end

The setter creates a new customer because the old string attribute was a value
object, and thus the customer currently also is a value object. This means that
each order has its own customer object. As a rule, value objects should be immu-
table; this avoids some nasty aliasing bugs. Later I will want customer to be a
reference object, but that’s another refactoring. At this point I can test.

Now I look at the methods on Order that manipulate Customer and make some
changes to make the new state of affairs clearer. With the getter I use Rename
Method to make it clear that it is the name not the object that is returned:

 class Order...

 def customer_name
 @customer.name
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data194

Change
Value to

Reference

On the constructor and attribute writer, I don’t need to change the signature,
but the name of the arguments should change:

 class Order...

 def initialize(customer_name)
 @customer = Customer.new(customer_name)
 end

 def customer=(customer_name)
 @customer = Customer.new(customer_name)
 end

Further refactoring may well cause me to add a new constructor and attribute
writer that take an existing customer.

This finishes this refactoring, but in this case, as in many others, there is
another step. If I want to add such things as credit ratings and addresses to
our customer, I cannot do so now. This is because the customer is treated as a
value object. Each order has its own customer object. To give a customer these
attributes I need to apply Change Value to Reference to the customer so that all
orders for the same customer share the same customer object. You’ll find this
example continued there.

Change Value to Reference

You have a class with many equal instances that you want to replace with a
single object.

Turn the object into a reference object.

Order

Order

1

1

Customer
name

Customer
name

*

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Change Value to Reference 195

Change
Value to
Reference

Motivation

You can make a useful classification of objects in many systems: reference
objects and value objects. Reference objects are things like customer or account.
Each object stands for one object in the real world, and you use the object iden-
tity to test whether they are equal. Value objects are things like date or money.
They are defined entirely through their data values. You don’t mind that copies
exist; you may have hundreds of “1/1/2010” objects around your system. You
do need to tell whether two of the objects are equal, so you need to override the
eql? method (and the hash method too).

The decision between reference and value is not always clear. Sometimes you
start with a simple value with a small amount of immutable data. Then you
want to give it some changeable data and ensure that the changes ripple to
everyone referring to the object. At this point you need to turn it into a reference
object.

Mechanics

1. Use Replace Constructor with Factory Method.

2. Test.

3. Decide what object is responsible for providing access to the objects.

This may be a hash or a registry object.

You may have more than one object that acts as an access point for
the new object.

4. Decide whether the objects are precreated or created on the fly.

If the objects are precreated and you are retrieving them from
memory, you need to ensure they are loaded before they are needed.

5. Alter the factory method to return the reference object.

If the objects are precomputed, you need to decide how to handle
errors if someone asks for an object that does not exist.

You may want to use Rename Method on the factory to convey
that it returns an existing object.

6. Test.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data196

Change
Value to

Reference

Example

I start where I left off in the example for Replace Data Value with Object. I have
the following Customer class:

 class Customer
 attr_reader :name

 def initialize(name)
 @name = name
 end
 end

It is used by an Order class:

 class Order...

 def initialize(customer_name)
 @customer = Customer.new(customer_name)
 end

 def customer=(customer_name)
 @customer = Customer.new(customer_name)
 end

 def customer_name
 @customer.name
 end

and some client code:

 private

 def self.number_of_orders_for(orders, customer)
 orders.select { |order| order.customer_name == customer.name }.size
 end

At the moment Customer is a value object. Each order has its own customer object
even if they are for the same conceptual customer. I want to change this so that
if we have several orders for the same conceptual customer, they share a single
customer object. For this case this means that there should be only one customer
object for each customer name.

I begin by using Replace Constructor with Factory Method. This allows me
to take control of the creation process, which will become important later. I
define the factory method on Customer :

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Change Value to Reference 197

Change
Value to
Reference

 class Customer

 def self.create(name)
 Customer.new(name)
 end

Then I replace the calls to the constructor with calls to the factory:

 class Order

 def initialize(customer_name)
 @customer = Customer.create(customer_name)
 end

Now I have to decide how to access the customers. My preference is to use
another object. Such a situation works well with something like the line items
on an order. The order is responsible for providing access to the line items.
However, in this situation there isn’t such an obvious object. In this situation
I usually create a registry object to be the access point. For simplicity in this
example, however, I store them using a field on Customer , making the Customer class
the access point:

 class Customer...

 Instances = {}

Then I decide whether to create customers on the fly when asked or to create
them in advance. I’ll use the latter. In my application startup code I load the
customers that are in use. These could come from a database or from a file. For
simplicity I use explicit code. I can always use Substitute Algorithm to change
it later.

 class Customer...

 def self.load_customers
 new("Lemon Car Hire").store
 new("Associated Coffee Machines").store
 new("Bilston Gasworks").store
 end

 def store
 Instances[name] = self
 end

Now I alter the factory method to return the precreated customer:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data198

Change
Reference

to Value

 class Customer

 def self.create(name)
 Instances[name]
 end

Because the create method always returns an existing customer, I should make
this clear by using Rename Method.

 class Customer

 def self. with_name (name)
 Instances[name]
 end

Change Reference to Value

You have a reference object that is small, immutable, and awkward to manage.

Turn it into a value object.

Company

Company
1

1 Currency
code

Currency
code

*

Motivation

As with Change Value to Reference, the decision between a reference and a
value object is not always clear. It is a decision that often needs reversing.

The trigger for going from a reference to a value is that working with the
reference object becomes awkward. Reference objects have to be controlled in
some way. You always need to ask the controller for the appropriate object. The

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Change Reference to Value 199

Change
Reference
to Value

memory links also can be awkward. Value objects are particularly useful for
distributed and concurrent systems.

An important property of value objects is that they should be immutable.
Any time you invoke a query on one, you should get the same result. If this is
true, there is no problem having many objects represent the same thing. If the
value is mutable, you have to ensure that changing any object also updates all
the other objects that represent the same thing. That’s so much of a pain that the
easiest thing to do is to make it a reference object.

It’s important to be clear on what immutable means. If you have a money
class with a currency and a value, that’s usually an immutable value object. That
does not mean your salary cannot change. It means that to change your salary,
you need to replace the existing money object with a new money object rather
than changing the amount on an existing money object. Your relationship can
change, but the money object itself does not.

Mechanics

1. Check that the candidate object is immutable or can become immutable.

If the object isn’t currently immutable, use Remove Setting Method
until it is.

If the candidate cannot become immutable, you should abandon
this refactoring.

2. Create an == method and an eql? method (the eql? method can delegate
to the == method).

3. Create a hash method.

4. Test.

5. Consider removing any factory method and making a constructor public.

Example

I begin with a currency class:

 class Currency

 attr_reader :code

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data200

Change
Reference

to Value

 def initialize(code)
 @code = code
 end

All this class does is hold and return a code. It is a reference object, so to get an
instance I need to use use a method that will return the same instance of cur-
rency for a given currency code:

 class Currency...

 def self.get(code)
 ... return currency from a registry
 end

usd = Currency.get("USD")

The currency class maintains a list of instances. I can’t just use a constructor.

 Currency.new("USD") == Currency.new("USD") # returns false

 Currency.new("USD").eql?(Currency.new("USD")) # returns false

To convert this to a value object, the key thing to do is verify that the object is
immutable. If it isn’t, I don’t try to make this change, as a mutable value causes
no end of painful aliasing.

In this case the object is immutable, so the next step is to define an eql?

method:

 def eql?(other)
 self == (other)
 end

 def ==(other)
 other.equal?(self) ||
 (other.instance_of?(self.class) &&
 other.code == code)
 end

I’ve delegated the eql? method to the == method, since I don’t desire different
behavior for these two methods. If I define eql?, I also need to define hash. The
simple way to do this is to take the hash codes of all the fields used in the eql?
method and do a bitwise xor (^) on them. Here it’s easy because there’s only
one:

 def hash
 code.hash
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Array with Object 201

Replace
Array
with Object

With both methods replaced, I can test. I need to do both; otherwise Hash
and any collection that relies on hashing, such as Array ’s uniq method, may act
strangely.

Now I can create as many equal currencies as I like. I can get rid of all the
controller behavior on the class and the factory method and just use the con-
structor.

 Currency.send(:new, "USD") == Currency.new("USD") # returns true
 Currency.send(:new, "USD").eql?(Currency.new("USD")) # returns true

Replace Array with Object

You have an Array in which certain elements mean different things.

Replace the Array with an object that has a field for each element.

 row = []
 row[0] = "Liverpool"
 row[1] = "15"

 row = Performance.new
 row.name = "Liverpool"
 row.wins = "15"

Motivation

Array s are a common structure for organizing data. However, they should be
used only to contain a collection of similar objects in some order. Sometimes,
however, you see them used to contain a number of different things. Conven-
tions such as “the first element on the Array is the person’s name” are hard to
remember. With an object you can use names of fields and methods to convey
this information so you don’t have to remember it or hope the comments are up
to date. You can also encapsulate the information and use Move Method to add
behavior to it.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data202

Replace
Array

with Object

Mechanics

1. Create a new class to represent the information in the Array. Give it a
method called [] so that callers that read the Array can be changed one by
one. Give it a method called []= so that callers that write to the Array can
be changed one by one.

2. Construct the new object wherever the Array was instantiated.

3. Test.

4. One by one, add attribute readers for each element in the Array that is read
by a client. Name the attr_reader after the purpose of the Array element.
Change the clients to use the attr_reader. Test after each change.

5. Add attribute writers for any attribute in the Array that is written to by a
client. Name the attr_writer after the purpose of the Array element. Change
the clients to use the attr_writer. Test after each change.

6. When all Array accesses are replaced by custom accessors, remove the []
and []= methods.

7. Test.

Example

I start with an Array that’s used to hold the name, wins, and losses of a sports
team. It would be declared as follows:

 row = []

It would be used with code such as the following:

 row[0] = "Liverpool"

 row[1] = "15"

 name = row[0]
 wins = row[1].to_i

To turn this into a custom object, I begin by creating a class:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Array with Object 203

Replace
Array
with Object

 class Performance

 end

I then need to implement the Array accessor methods so that I can change the
calling code one-by-one. I also need to initialize my Array to be empty.

 class Performance

 def initialize
 @data = []
 end

 def []=(index, value)
 @data.insert(index, value)
 end

 def [](index)
 @data[index]
 end
 end

Now I find the spots that create the Array , and modify them to construct the
Performance object.

 row = Performance .new

I should be able to run my tests now, because all callers should be able to
interact with the Performance object in the same way they did the Array.

One by one, I add attr_readers for any attributes that are read from the Array by
clients. I start with the name:

 class Performance

 attr_reader :name

 ...

 name = row. name
 wins = row[1].to_i

I can do the same with the second element. To make matters easier, I can
encapsulate the data type conversion:

 class Performance
 attr_reader :name

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data204

Replace
Array

with Object

 def wins
 @wins.to_i
 end

 ...

 name = row.name
 wins = row. wins

One by one, I add attr_writers (or convert attr_readers to attr_accessor s) for any
attributes that are written to the Array. I start with the name:

 class Performance
 attr_accessor :name

 def wins
 @wins.to_i
 end

 ...

 row = Performance.new
 row. name = "Liverpool"
 row[1] = "15"

And then wins:

 class Performance
 attr_accessor :name
 attr_writer :wins

 def wins
 @wins.to_i
 end

 ...

 row = Performance.new
 row.name = "Liverpool"
 row. wins = "15"

Once I’ve done this for each element, I can remove the Array element readers
and writers:

 class Performance...

 def []=(index, value)

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Array with Object 205

Replace
Array
with Object

 @data, insert(index, value)
 end

 def [](index)
 @data[index]
 end
 I now have an object with an interface that reveals the intention of its
attributes. I also have the opportunity now to use Move Method to move any
behavior that relates to the performance onto the Performance object.

Refactor with Deprecation

If you’re developing a library that is being consumed by others, you may not
want to remove old methods (like the Array element readers and writers in the
previous example) straight away. You could deprecate the methods and leave
them on the object, warning consumers that the method will be removed in
future releases. By Adding a method to class Module, this can be done pretty
easily:

 class Module
 def deprecate(methodName, &block)
 module_eval <<-END
 alias_method :deprecated_#{methodName}, :#{methodName}
 def #{methodName}(*args, &block)
 $stderr.puts "Warning: calling deprecated method\
#{self}.#{methodName}. This method will be removed in a future release."
 deprecated_#{methodName}(*args, &block)
 end
 END
 end
 end

Then you can deprecate a method on any class:

 class Foo
 def foo
 puts "in the foo method"
 end

 deprecate :foo
 end

 Foo.new.foo

produces:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data206

Replace
Hash with

Object

 in the foo method
 Warning: calling deprecated method Foo.foo. This method will be removed in a
future release.

Replace Hash with Object

You have a Hash that stores several different types of objects, and is passed around
and used for more than one purpose.

Replace the Hash with an object that has a field for each key.

 new_network = { :nodes => [], :old_networks => [] }

 new_network[:old_networks] << node.network
 new_network[:nodes] << node

 new_network[:name] = new_network[:old_networks].collect do |network|
 network.name
end.join(" - ")

 new_network = NetworkResult.new

 new_network.old_networks << node.network
 new_network.nodes << node

 new_network.name = new_network.old_networks.collect do |network|
 network.name
end.join(" - ")

Motivation

Like Array s, Hashes are a common structure for organizing data. Outside the con-
text of named parameters, they should only be used to store a collection of
similar objects. Sometimes, however, you see them used to contain a number
of different things. If they are then passed around from method to method, it
becomes difficult to remember the keys that the Hash contains. With an object,
you can define a class with a public interface to represent the way the object can
be interacted with, and one does not have to traverse the entire algorithm to see

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Hash with Object 207

Replace
Hash with
Object

how the object might behave. As with Replace Array With Object, you can also
encapsulate the information and use Move Method to add behavior to it.

Mechanics

1. Create a new class to represent the information in the Hash. Give it a
method called [] so that callers that read the Hash can be changed one by
one. Give it a method called []= so that callers that write to the Hash can be
changed one by one.

2. Construct the new object wherever the Hash was instantiated.

3. Test.

4. One by one, add attribute readers for any attribute in the Hash that is read
by a client. Name the attr_reader after the key. Change the clients to use the
attr_reader. Test after each change.

5. Add attribute writers for any attribute in the Hash that is written to by
a client. Name the attr_writer after the key. Change the clients to use the
attr_writer. Test after each change.

6. When all Hash accesses are replaced by custom accessors, remove the []
and []= methods.

7. Test.

Example

I start with a Hash that’s used to store the nodes for a network, and the old net-
works from which the nodes just came:

 new_network = { :nodes => [], :old_networks => [] }

 new_network[:old_networks] << node.network
 new_network[:nodes] << node

 new_network[:name] = new_network[:old_networks].collect do |network|
 network.name
end.join(" - ")

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data208

Replace
Hash with

Object

To turn the Hash into an object, I begin by creating a class:

 class NetworkResult

 end

I then need to implement the Hash accessor methods so that I can change the
calling code one-by-one.

 class NetworkResult

 def [](attribute)
 instance_variable_get "@#{attribute}"
 end

 def []=(attribute, value)
 instance_variable_set "@#{attribute}", value
 end

 end

I need to initialize each of @old_networks and @nodes to an empty Array.

 class NetworkResult...

 def initialize
 @old_networks, @nodes = [], []
 end

I can then instantiate my new object wherever I was instantiating the Hash.

 new_network = { :nodes => [], :old_networks => [] }
becomes

 new_network = NetworkResult.new

My tests should pass if I haven’t made any mistakes.
One-by-one, I can replace each of the calls to the Hash reader with calls to an

attr_reader. First I add an attr_reader for :old_networks.

 class NetworkResult...
 attr_reader :old_networks

and replace calls to the Hash reader using the :old_networks key with calls to our new
attr_reader .

 new_network[:old_networks] << node.network

becomes:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Hash with Object 209

Replace
Hash with
Object

 new_network.old_networks << node.network

Then I can do the same with :nodes:

 new_network[:nodes] << node

becomes

 class NetworkResult...

 attr_reader :old_networks, :nodes

 ...

 new_network. nodes << node

I can then replace calls to the Hash writer with an attr_accessor .

 new_network[:name] = new_network.old_networks.collect do |network|
 network.name
end.join(" - ")

becomes:

 class NetworkResult...
 attr_reader :old_networks, :nodes
 attr_accessor :name

 ...

 new_network. name = new_network.old_networks.collect do |network|
 network.name
 end.join(" - ")

And finally, I can remove my Hash accessor methods from NetworkResult:

 class NetworkResult...

 def [](attribute)
 instance_variable_get "@#{attribute}"
 end

 def []=(attribute, value)
 instance_variable_set "@#{attribute}", value
 end

As with many of these refactorings, the true benefit comes when you can move
behavior onto the newly created object. Take for example, the name attribute,
which is set using data from the old networks. We can make name a method on
 NetworkResult and remove the attr_accessor for name.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data210

Change
Unidirectional
Association to

Bidirectional

 class NetworkResult...
 attr_reader :old_networks, :nodes
 attr_accessor :name

 def name
 @old_networks.collect { | network | network.name }.join(" - ")
 end

Change Unidirectional Association to Bidirectional

You have two classes that need to use each other’s features, but there is only a
one-way link.

Add back pointers, and change modifiers to update both sets.

Order

Order

Customer

Customer
1

1*

*

Motivation

You may find that you have initially set up two classes so that one class refers to
the other. Over time you may find that a client of the referred class needs to get
to the objects that refer to it. This effectively means navigating backward along
the pointer. Pointers are one-way links, so you can’t do this. Often you can get
around this problem by finding another route. This may cost in computation
but is reasonable, and you can have a method on the referred class that uses
this behavior. Sometimes, however, this is not easy, and you need to set up a
two-way reference, sometimes called a back pointer. If you aren’t used to back
pointers, it’s easy to become tangled up using them. Once you get used to the
idiom, however, it is not too complicated.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Change Unidirectional Association to Bidirectional 211

Change
Unidirectional
Association to
Bidirectional

The idiom is awkward enough that you should have tests, at least until you
are comfortable with the idiom. Because I usually don’t bother testing accessors
(the risk is not high enough), this is the rare case of a refactoring that adds a
test.

This refactoring uses back pointers to implement bidirectionality. Other tech-
niques, such as link objects, require other refactorings.

Mechanics

1. Add a field for the back pointer.

2. Decide which class will control the association.

3. Create a helper method on the noncontrolling side of the association.
Name this method to clearly indicate its restricted use.

4. If the existing modifier is on the controlling side, modify it to update the
back pointers.

5. If the existing modifier is on the controlled side, create a controlling
method on the controlling side and call it from the existing modifier.

Example

A simple program has an order that refers to a customer:

 class Order...
 attr_accessor :customer

 end

The Customer class has no reference to the Order.
I start the refactoring by adding a field to the Customer. As a customer can have

several orders, so this field is a collection. Because I don’t want a customer to
have the same order more than once in its collection, the correct collection is a
set:

 require 'set'

 class Customer

 def initialize

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data212

Change
Unidirectional
Association to

Bidirectional

 @orders = Set.new
 end

Now I need to decide which class will take charge of the association. I prefer
to let one class take charge because it keeps all the logic for manipulating the
association in one place. My decision process runs as follows:

• If both objects are reference objects and the association is one to many,
then the object that has the one reference is the controller. (That is, if one
customer has many orders, the order controls the association.)

• If one object is a component of the other, the composite should control the
association.

• If both objects are reference objects and the association is many to many, it
doesn’t matter whether the order or the customer controls the association.

Because the order will take charge, I need to add a helper method to the
customer that allows direct access to the orders collection. The order’s modifier
will use this to synchronize both sets of pointers. I use the name friend_orders to
signal that this method is to be used only in this special case:

 class Customer...
 def friend_orders
 #should only be used by Order when modifying the association
 @orders
 end

Now I replace the attr_accessor with an attr_reader and a custom attribute writer to
update the back pointers:

 class Order...
 attr_accessor :customer
 attr_reader :customer

 def customer=(value)
 customer.friend_orders.subtract(self) unless customer.nil?
 @customer = value
 customer.friend_orders.add(self) unless customer.nil?
 end

The exact code in the controlling modifier varies with the multiplicity of the
association. If the customer is not allowed to be nil, I can forgo the nil checks,

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Change Bidirectional Association to Unidirectional 213

Change
Bidirectional
Association to
Unidirectional

but I need to check for a nil argument. The basic pattern is always the same,
however: First tell the other object to remove its pointer to you, set your pointer
to the new object, and then tell the new object to add a pointer to you.

If you want to modify the link through the customer, let it call the controlling
method:

 class Customer...

 def add_order(order)
 order.customer = self
 end

If an order can have many customers, you have a many-to-many case, and the
methods look like this:

 class Order...
 #controlling methods
 def add_customer(customer)
 customer.friend_orders.add(self)
 @customers.add(customer)
 end

 def remove_customer(customer)
 customer.friend_orders.subtract(self)
 @customers.subtract(customer)
 end

 class Customer...
 def add_order(order)
 order.add_customer(self)
 end

 def remove_order(order)
 order.remove_customer(self)
 end

Change Bidirectional Association to Unidirectional

You have a two-way association but one class no longer needs features from the
other.

Drop the unneeded end of the association.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data214

Change
Bidirectional

Association to
Unidirectional

Order

Order

Customer

Customer
1

1*

*

Motivation

Bidirectional associations are useful, but they carry a price. The price is the
added complexity of maintaining the two-way links and ensuring that objects
are properly created and removed. Bidirectional associations are not natural for
many programmers, so they often are a source of errors.

Having many two-way links also makes it easy for mistakes to lead to zom-
bies: objects that should be dead but still hang around because of a reference
that was not cleared.

Bidirectional associations force an interdependency between the two classes.
Any change to one class may cause a change to another. Many interdependen-
cies lead to a highly coupled system, in which any little change leads to a lot of
unpredictable ramifications.

You should use bidirectional associations when you need to but avoid them
when you don’t. As soon as you see a bidirectional association is no longer pull-
ing its weight, drop the unnecessary end.

Mechanics

1. Examine all the readers of the field that holds the pointer that you want
to remove to see whether the removal is feasible.

Look at direct readers and further methods that call those
methods.

Consider whether it is possible to determine the other object with-
out using the pointer. If so you will be able to use Substitute Algorithm
on the attribute reader to allow clients to use the reader even if there is no
pointer.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Change Bidirectional Association to Unidirectional 215

Change
Bidirectional
Association to
Unidirectional

 C onsider adding the object as an argument to all methods that use
the field.

2. If clients need to use the attribute reader, use Self Encapsulate Field, carry
out Substitute Algorithm on the attribute reader, and test.

3. If clients don’t need the attribute reader, change each user of the field so
that it gets the object in the field another way. Test after each change.

4. When no reader is left in the field, remove all updates to the field, and
remove the field.

If there are many places that assign the field, use Self Encapsulate
Field so that they all use a single attribute writer. Test. Change the attri-
bute writer to have an empty body. Test. If that works, remove the field,
the attribute reader, and all calls to the attribute writer.

5. Test.

Example

This example starts from where I ended up in the example in the section
“Change Unidirectional Association to Bidirectional .” I have a customer and
order with a bidirectional link:

 class Order...
 attr_reader :customer

 def customer=(value)
 customer.friend_orders.subtract(self) unless customer.nil?
 @customer = value
 customer.friend_orders.add(self) unless customer.nil?
 end

 class Customer..

 def initialize
 @orders = Set.new
 end

 def add_order(order)

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data216

Change
Bidirectional

Association to
Unidirectional

 order.set_customer(self)
 end

 def friend_orders
 #should only be used by Order when modifying the association
 @orders
 end

I’ve found that in my application I don’t have orders unless I already have a
customer, so I want to break the link from order to customer.

The most difficult part of this refactoring is checking that I can do it. Once I
know it’s safe to do, it’s easy. The issue is whether code relies on the customer
fields being there. To remove the field, I need to provide an alternative.

My first move is to study all the readers of the field and the methods that use
those readers. Can I find another way to provide the customer object? Often
this means passing in the customer as an argument for an operation. Here’s a
simplistic example of this:

 class Order...
 def discounted_price
 gross_price * (1 - @customer.discount)
 end

changes to

 class Order...
 def discounted_price(customer)
 gross_price * (1 - customer.discount)
 end

This works particularly well when the behavior is being called by the customer,
because then it’s easy to pass itself in as an argument. So :

 class Customer...

 def price_for(order)
 assert { @orders.include?(order) } # see Introduce Assertion
 order.discounted_price
 end

becomes:

 class Customer...

 def price_for(order)

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Magic Number with Symbolic Constant 217

Replace
Magic Number
with Symbolic
Constant

 assert { @orders.include?(order) } # see Introduce Assertion
 order.discounted_price(self)
 end

Another alternative I consider is changing the attribute reader so that it gets the
customer without using the field. If it does, I can use Substitute Algorithm on
the body of Order.customer . I might do something like this:

 def customer
 Customer::Instances.each do |customer|
 return customer if customer.has_order?(self)
 end
 end

Slow, but it works. In a database context it may not even be that slow if I
use a database query. If the Order class contains methods that use the customer
field, I can change them to use the customer reader by using Self Encapsulate
Field.

If I retain the accessor, the association is still bidirectional in interface but is
unidirectional in implementation. I remove the back-pointer but retain the inter-
dependencies between the two classes.

If I substitute the attribute reader, I substitute that and leave the rest till later.
Otherwise, I change the callers one at a time to use the customer from another
source. I test after each change. In practice, this process usually is pretty rapid.
If it were complicated, I would give up on this refactoring.

Once I’ve eliminated the readers of the field, I can work on the writers of the
field. This is as simple as removing any assignments to the field and then remov-
ing the field. Because nobody is reading it any more, that shouldn’t matter.

Replace Magic Number with Symbolic Constant

You have a literal number with a particular meaning.

Create a constant, name it after the meaning, and replace the number with it.

 def potential_energy(mass, height)
 mass * 9.81 * height
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data218

Replace
Magic Number
with Symbolic

Constant

 GRAVITATIONAL_CONSTANT = 9.81

 def potential_energy(mass, height)
 mass * GRAVITATIONAL_CONSTANT * height
 end

Motivation

Magic numbers are one of oldest ills in computing. They are numbers with spe-
cial values that usually are not obvious. Magic numbers are really nasty when
you need to reference the same logical number in more than one place. If the
numbers might ever change, making the change is a nightmare. Even if you
don’t make a change, you have the difficulty of figuring out what is going on.

Many languages allow you to declare a constant. There is no cost in perfor-
mance and there is a great improvement in readability.

Before you do this refactoring, always look for an alternative. Look at how
the magic number is used. Often you can find a better way to use it. If the magic
number is a type code, consider Replace Type Code with Polymorphism. If the
magic number is the length of an Array, use an_array.size instead.

Mechanics

1. Declare a constant and set it to the value of the magic number.

2. Find all occurrences of the magic number.

3. See whether the magic number matches the usage of the constant; if it
does, change the magic number to use the constant.

4. When all magic numbers are changed, test. At this point all should work
as if nothing has been changed.

A good test is to see whether you can change the constant easily.
This may mean altering some expected results to match the new value.
This isn’t always possible, but it is a good trick when it works .

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Encapsulate Collection 219

Encapsulate
Collection

Encapsulate Collection

A method returns a collection.

Make it return a copy of the collection and provide add/remove methods.

courses()
courses=(set)

Person

courses()
add_course(course)
remove_course(course)

Person

Motivation

Often a class contains a collection of instances. This collection might be an Array

or a Hash. Such cases often have the usual attribute reader and writer for the col-
lection.

However, collections should use a protocol slightly different from that for
other kinds of data. The attribute reader should not return the collection object
itself, because that allows clients to manipulate the contents of the collection
without the owning class knowing what is going on. It also reveals too much
to clients about the object’s internal data structures. An attribute reader for a
multivalued attribute should return something that prevents manipulation of
the collection and hides unnecessary details about its structure.

In addition there should not be an attribute writer for the collection: rather,
there should be operations to add and remove elements. This gives the owning
object control over adding and removing elements from the collection.

With this protocol the collection is properly encapsulated, which reduces the
coupling of the owning class to its clients.

Mechanics

1. Add add and remove methods for the collection.

2. Initialize the field to an empty collection.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data220

Encapsulate
Collection

3. Find callers of the attribute writer. Either modify the writer to use the add
and remove operations or have the clients call those operations instead.

Attribute writers are used in two cases: when the collection is
empty and when the attribute writer is replacing a nonempty collection.

You may want to use Rename Method to rename the attribute
writer. Change it to initialize_x or replace_x, where “ x” is the name of your
collection.

4. Test.

5. Find all users of the attribute reader that modify the collection. Change
them to use the add and remove methods. Test after each change.

6. When all uses of the attribute reader that modify have been changed,
modify the reader to return a copy of the collection.

7. Test.

8. Find the users of the attribute reader. Look for code that should be on the
host object. Use Extract Method and Move Method to move the code to
the host object.

9. Test.

Example

A person is taking courses. Our Course is pretty simple:

 class Course...
 def initialize(name, advanced)
 @name = name
 @advanced = advanced
 end

I’m not going to bother with anything else on the Course. The interesting class is
the Person:

 class Person...
 attr_accessor :courses

With this interface, clients add courses with code such as :

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Encapsulate Collection 221

Encapsulate
Collection

 kent = Person.new
 courses = []
 courses << Course.new("Smalltalk Programming", false)
 courses << Course.new("Appreciating Single Malts", true)
 kent.courses = courses
 assert_equal 2, kent.courses.size
 refactoring = Course.new("Refactoring", true)
 kent.courses << refactoring
 kent.courses << Course.new("Brutal Sarcasm", false)
 assert_equal 4, kent.courses.size
 kent.courses.delete(refactoring)
 assert_equal 3, kent.courses.size

A client that wants to know about advanced courses might do it this way:

 person.courses.select { |course| course.advanced? }.size

The first thing I want to do is to create the proper modifiers for the collection
as follows:

 class Person...

 def add_course(course)
 @courses << course
 end

 def remove_course(course)
 @courses.delete(course)
 end

Life will be easier if I initialize the field as well:

 def initialize
 @courses = []
 end

I then look at the users of the attribute writer. If there are many clients and
the writer is used heavily, I need to replace the body of the writer to use the add
and remove operations. The complexity of this process depends on how the
writer is used. There are two cases. In the simplest case the client uses the writer
to initialize the values, that is, there are no courses before the writer is applied.
In this case I replace the attribute accessor with an explicit writer that uses the
add method:

 class Person...
 def courses=(courses)

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data222

Encapsulate
Collection

 raise "Courses should be empty" unless @courses.empty?
 courses.each { |course| add_course(course) }
 end

After changing the body this way, it is wise to use Rename Method to make the
intention clearer.

 class Person...
 def initialize_courses (courses)
 raise "Courses should be empty" unless @courses.empty?
 courses.each { |course| add_course(course) }
 end

In the more general case I have to use the remove method to remove every ele-
ment first and then add the elements. But I find that occurs rarely (as general
cases often do).

If I know that I don’t have any additional behavior when adding elements as
I initialize, I can remove the loop and use +=.

 def initialize_courses(courses)
 raise "Courses should be empty" unless @courses.empty?
 @courses += courses
 end

I can’t just assign the Array , even though the previous Array was empty. If the
client were to modify the Array after passing it in, that would violate encapsula-
tion. I have to make a copy.

If the clients simply create an Array and use the attribute writer, I can get them
to use the add and remove methods directly and remove the writer completely.
Code such as :

 kent = Person.new
 courses = []
 courses << Course.new("Smalltalk Programming", false)
 courses << Course.new("Appreciating Single Malts", true)
 kent.initialize_courses(courses)

becomes:

 kent = Person.new
 kent.add_course (Course.new("Smalltalk Programming", false))
 kent.add_course (Course.new("Appreciating Single Malts", true))

Now I start looking at users of the attribute reader. My first concern is cases
in which someone uses the reader to modify the underlying collection, for
example:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Encapsulate Collection 223

Encapsulate
Collection

 kent.courses << Course.new("Brutal Sarcasm", false)

I need to replace this with a call to the new modifier:

 kent.add_course(Course.new("Brutal Sarcasm", false))

Once I’ve done this for everyone, I can ensure that nobody is modifying
through the attribute reader by changing the reader body to return a copy of
the collection:

 def courses
 @courses.dup
 end

At this point I’ve encapsulated the collection. No one can change the ele-
ments of the collection except through methods on the Person.

Moving Behavior into the Class

I have the right interface. Now I like to look at the users of the attribute reader
to find code that ought to be on person. Code such as :

 number_of_advanced_courses = person.courses.select do |course|
 course.advanced?
end.size

is better moved to Person because it uses only Person's data. First I use Extract
Method on the code:

 def number_of_advanced_courses
 person.courses.select { |course| course.advanced? }.size

 end

And then I use Move Method to move it to person:

 class Person...

 def number_of_advanced_courses
 @courses.select { |course| course.advanced? }.size
 end

A common case is :

 kent.courses.size

which can be changed to the more readable :

 kent.number_of_courses

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data224

Replace
Record with

Data Class

 class Person...

 def number_of_courses
 @courses.size
 end

A few years ago I was concerned that moving this kind of behavior over to Person

would lead to a bloated Person class. In practice, I’ve found that this usually isn’t
a problem.

Replace Record with Data Class

You need to interface with a record structure in a traditional programming envi-
ronment.

Make a dumb data object for the record.

Motivation

Record structures are a common feature of programming environments. There
are various reasons for bringing them into an Object-Oriented program. You
could be copying a legacy program, or you could be communicating a struc-
tured record with a traditional programming API, or a database record. In these
cases it is useful to create an interfacing class to deal with this external element.
It is simplest to make the class look like the external record. You move other
fields and methods into the class later. A less obvious but very compelling case is
an Array in which the element in each index has a special meaning. In this case
you use Replace Array with Object.

Mechanics

1. Create a class to represent the record.

2. Give the class a field with an attribute_accessor for each data item.

3. You now have a dumb data object. It has no behavior yet but further
refactoring will explore that issue.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Type Code with Polymorphism 225

Replace
Type Code
with
Polymorphism

Replace Type Code with Polymorphism

You have a type code that affects the behavior of a class.

Replace the type code with classes: one for each type code variant.

Mountain Bike

Full Suspension
Mountain Bike

price
off_road_ability

Front Suspension
Mountain Bike

price
off_road_ability

price
off_road_ability

Rigid Mountain Bike

off_road_ability
price

Motivation

This situation is usually indicated by the presence of case-like conditional state-
ments. These may be case statements or if-then-else constructs. In both forms
they test the value of the type code and then execute different code depending
on the value of the type code.

Removing Conditional Logic

There are three different refactorings to consider when you’re trying to remove
conditional logic: Replace Type Code with Polymorphism, Replace Type Code
with Module Extension, or Replace Type Code with State/Strategy. The choice
depends on relatively subtle design differences.

If the methods that use the type code make up a large portion of the class, I use
Replace Type Code with Polymorphism. It’s the simplest, and just takes advan-
tage of Ruby’s duck-typing to remove the conditional statements. It involves
blowing away the original class and replacing it with a new class for each type
code. Since the original class was heavily reliant on the type code, it generally
makes sense for the clients of the original class to construct an instance of one

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data226

Replace
Type Code

with
Polymorphism

of the new type classes (because they were probably injecting the type into the
original class anyway).

If the class has a large chunk of behavior that doesn’t use the type code, I
choose either Replace Type Code with Module Extension or Replace Type Code
with State/Strategy. These have the advantage of enabling me to change the type
at runtime. In the former we extend a module, mixing in the module’s behavior
onto the object. Instance variables are shared automatically between the object
and the module, which can simplify things. Replace Type Code with State/Strat-
egy uses delegation: The parent object delegates to the state object for state-spe-
cific behavior. The state object can be swapped out at runtime when a change
in behavior is required. Because of the delegation, sharing of instance variables
between the parent object and the state object can be awkward. So the question
becomes, why would you choose State/Strategy over Module Extension? It turns
out that you can’t unmix a module in Ruby, so removing undesired behavior
can be difficult. When the state changes become complex enough that unwanted
behavior cannot be removed or overridden, I choose Replace Type Code with
State/Strategy.

The great thing about Ruby is that you can do Replace Type Code with Poly-
morphism without inheritance or implementing an interface, something that is
impossible in a language such as Java or C#.

Mechanics

1. Create a class to represent each type code variant.

2. Change the class that uses the type code into a module. Include the mod-
ule into each of the new type classes.

3. Change the callers of the original class to create an instance of the desired
type instead.

4. Test.

5. Choose one of the methods that use the type code. Override the method
on one of the type classes,

6. Test.

7. Do the same for the other type classes, removing the method on the mod-
ule when you’re done.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Type Code with Polymorphism 227

Replace
Type Code
with
Polymorphism

8. Test.

9. Repeat for the other methods that use the type code.

10. Test.

11. Remove the module if it no longer houses useful behavior.

Example

For this case I’m modeling mountain bikes. An instance of the MountainBike can
either be :rigid (having no suspension), :front_suspension, or :full_suspension (having
both front and rear suspension). The @type_code determines how things like off_
road_ability and price are calculated:

 class MountainBike...

 def initialize(params)
 params.each { |key, value| instance_variable_set "@#{key}", value }
 end

 def off_road_ability
 result = @tire_width * TIRE_WIDTH_FACTOR
 if @type_code == :front_suspension || @type_code == :full_suspension
 result += @front_fork_travel * FRONT_SUSPENSION_FACTOR
 end
 if @type_code == :full_suspension
 result += @rear_fork_travel * REAR_SUSPENSION_FACTOR
 end
 result
 end

 def price
 case @type_code
 when :rigid
 (1 + @commission) * @base_price
 when :front_suspension
 (1 + @commission) * @base_price + @front_suspension_price
 when :full_suspension
 (1 + @commission) * @base_price + @front_suspension_price +
 @rear_suspension_price
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data228

Replace
Type Code

with
Polymorphism

It can be used like this:

 bike = MountainBike.new(:type_code => :rigid, :tire_width => 2.5)
bike2 = MountainBike.new(:type_code => :front_suspension, :tire_width => 2,
 :front_fork_travel => 3)

We’ll start by creating a class for each type. We’ll change MountainBike to a mod-
ule, and include it in each of our new classes.

 class RigidMountainBike
 include MountainBike
 end

 class FrontSuspensionMountainBike
 include MountainBike
 end

 class FullSuspensionMountainBike
 include MountainBike
 end

 class module MountainBike...

 def wheel_circumference
 Math::PI * (@wheel_diameter + @tire_diameter)
 end

 def off_road_ability
 result = @tire_width * TIRE_WIDTH_FACTOR
 if @type_code == :front_suspension || @type_code == :full_suspension
 result += @front_fork_travel * FRONT_SUSPENSION_FACTOR
 end
 if @type_code == :full_suspension
 result += @rear_fork_travel * REAR_SUSPENSION_FACTOR
 end
 result
 end

 def price
 case @type_code
 when :rigid
 (1 + @commission) * @base_price
 when :front_suspension
 (1 + @commission) * @base_price + @front_suspension_price
 when :full_suspension

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Type Code with Polymorphism 229

Replace
Type Code
with
Polymorphism

 (1 + @commission) * @base_price + @front_suspension_price +
 @rear_suspension_price
 end
 end
 end

The callers will need to change to create our new type.

 bike = MountainBike.new(:type_code => :front_suspension, :tire_width => 2,
 :front_fork_travel => 3)

 becomes

 bike = FrontSuspensionMountainBike.new(:type_code => :front_suspension,
 :tire_width => 2,
 :front_fork_travel => 3)

Although we haven’t gotten far, we should be able to run the tests and they
should still pass.

Next we use Replace Conditional with Polymorphism on one of the methods
that we want to call polymorphically, overriding it for one of our new classes. I
choose price and start with RigidMountainBike .

 class RigidMountainBike
 include MountainBike

 def price
 (1 + @commission) * @base_price
 end
 end

This new method overrides the whole case statement for rigid mountain bikes.
Because I’m paranoid, I sometimes put a trap in the case statement:

 module MountainBike...

 def price
 case @type_code
 when :rigid
 raise "shouldn't get here"
 when :front_suspension
 (1 + @commission) * @base_price + @front_suspension_price
 when :full_suspension
 (1 + @commission) * @base_price + @front_suspension_price +
 @rear_suspension_price
 end
 end
 end

All going well, the tests should pass.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data230

Replace
Type Code

with
Polymorphism

I then do the same for the other type classes, removing the price method in the
MountainBike module when I’m done.

 class RigidMountainBike
 include MountainBike

 def price
 (1 + @commission) * @base_price
 end
 end

 class FrontSuspensionMountainBike
 include MountainBike

 def price
 (1 + @commission) * @base_price + @front_suspension_price
 end
 end

 class FullSuspensionMountainBike
 include MountainBike

 def price
 (1 + @commission) * @base_price + @front_suspension_price +
 @rear_suspension_price
 end
 end

 module MountainBike...
 def price
 case @type_code
 ...
 end
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Type Code with Polymorphism 231

Replace
Type Code
with
Polymorphism

I can then do the same for off_road_ability.

 class RigidMountainBike
 include MountainBike

 def price
 (1 + @commission) * @base_price
 end

 def off_road_ability
 @tire_width * TIRE_WIDTH_FACTOR
 end
 end

 class FrontSuspensionMountainBike
 include MountainBike

 def price
 (1 + @commission) * @base_price + @front_suspension_price
 end

 def off_road_ability
 @tire_width * TIRE_WIDTH_FACTOR + @front_fork_travel *
 FRONT_SUSPENSION_FACTOR
 end
 end

 class FullSuspensionMountainBike
 include MountainBike

 def price
 (1 + @commission) * @base_price + @front_suspension_price +
 @rear_suspension_price
 end

 def off_road_ability
 @tire_width * TIRE_WIDTH_FACTOR + @front_fork_travel *
 FRONT_SUSPENSION_FACTOR + @rear_fork_travel * REAR_SUSPENSION_FACTOR
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data232

Replace
Type Code

with Module
Extension

 module MountainBike
 def off_road_ability
 result = @tire_width * TIRE_WIDTH_FACTOR
 if @type_code == :front_suspension || @type_code == :full_suspension
 result += @front_fork_travel * FRONT_SUSPENSION_FACTOR
 end
 if @type_code == :full_suspension
 result += @rear_fork_travel * REAR_SUSPENSION_FACTOR
 end
 result
 end
 end

Since we’re no longer using the type code, I can remove it from the callers.

 bike = FrontSuspensionMountainBike.new(:type_code => :front_suspension,
 :tire_width => 2,
 :front_fork_travel => 3)

becomes

 bike = FrontSuspensionMountainBike.new(:tire_width => 2, :front_fork_travel => 3)

We’ll keep the MountainBike module in this case since it still houses some useful
code that would otherwise need to be duplicated.

Replace Type Code with Module Extension

You have a type code that affects the behavior of a class.

Replace the type code with dynamic module extension.

Mountain Bike

price

Mountain Bike

price

type_code

<<module>>
Full Suspension Mountain Bike

price

<<module>>
Front Suspension Mountain Bike

price

optional
run-time

extension

def price
 case @type_code
 when :rigid
 ...
 when :front_suspension

...
 when :full_suspension

...
 end
end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Type Code with Module Extension 233

Replace
Type Code
with Module
Extension

Motivation

Like Replace Type Code with Polymorphism, Replace Type Code with Mod-
ule Extension aims to remove conditional logic. By extending a module, we
can change the behavior of an object at runtime. Both the original class and
the module that is being extended can access the same instance variables. This
removes some of the headache that comes along with a more traditional state/
strategy pattern that uses delegation.

The one catch with module extension is that modules cannot be unmixed
easily. Once they are mixed into an object, their behavior is hard to remove.
So use Replace Type Code with Module Extension when you don’t care about
removing behavior. If you do care, use Replace Type Code with State/Strategy
instead.

Mechanics

1. Perform Self-encapsulate Field on the type code.

2. Create a module for each type code variant.

3. Make the type code writer extend the type module appropriately.

4. Choose one of the methods that use the type code. Override the method
on one of the type modules.

5. Test.

6. Do the same for the other type modules. Modify the implementation on
the class to return the default behavior.

7. Test.

8. Repeat for the other methods that use the type code.

9. Test.

10. Pass the module into the type code setter instead of the old type code.

11. Test.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data234

Replace
Type Code

with Module
Extension

Example

We’ll use a similar example to Replace Type Code with Polymorphism. Let’s say
we have a mountain bike object in the system that at some stage in its life cycle
we decide to add front suspension to.

 bike = MountainBike.new(:type_code => :rigid)
 ...
 bike.type_code = :front_suspension

MountainBike might look something like this:

 class MountainBike...

 attr_writer :type_code

 def initialize(params)
 @type_code = params[:type_code]
 @commission = params[:commission]
 ...
 end

 def off_road_ability
 result = @tire_width * TIRE_WIDTH_FACTOR
 if @type_code == :front_suspension || @type_code == :full_suspension
 result += @front_fork_travel * FRONT_SUSPENSION_FACTOR
 end
 if @type_code == :full_suspension
 result += @rear_fork_travel * REAR_SUSPENSION_FACTOR
 end
 result
 end

 def price
 case @type_code
 when :rigid
 (1 + @commission) * @base_price
 when :front_suspension
 (1 + @commission) * @base_price + @front_suspension_price
 when :full_suspension
 (1 + @commission) * @base_price + @front_suspension_price +
 @rear_suspension_price
 end
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Type Code with Module Extension 235

Replace
Type Code
with Module
Extension

The first step is to use Self Encapsulate Field on the type code. I’ll create a
custom attribute writer because it will do something more interesting soon, and
call it from the constructor.

 class MountainBike...

 attr_reader :type_code

 def initialize(params)
 self.type_code = params[:type_code]
 @commission = params[:commission]
 ...
 end

 def type_code=(value)
 @type_code = value
 end

 def off_road_ability
 result = @tire_width * TIRE_WIDTH_FACTOR
 if type_code == :front_suspension || type_code == :full_suspension
 result += @front_fork_travel * FRONT_SUSPENSION_FACTOR
 end
 if type_code == :full_suspension
 result += @rear_fork_travel * REAR_SUSPENSION_FACTOR
 end
 result
 end

 def price
 case type_code
 when :rigid
 (1 + @commission) * @base_price
 when :front_suspension
 (1 + @commission) * @base_price + @front_suspension_price
 when :full_suspension
 (1 + @commission) * @base_price + @front_suspension_price +
 @rear_suspension_price
 end
 end

The next step is to create a module for each of the types. We’ll make rigid the
default, and add modules for FrontSuspensionMountainBike and FullSuspensionMountainBike .

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data236

Replace
Type Code

with Module
Extension

I need to change the type code setter to extend the appropriate module. The
case statement I’m introducing will be removed by the time we’ve finished this
refactoring; it’s just there to make the next step a bit smaller.

 class MountainBike...

 def type_code=(value)
 @type_code = value
 case type_code
 when :front_suspension: extend(FrontSuspensionMountainBike)
 when :full_suspension: extend(FullSuspensionMountainBike)
 end
 end

I then begin Replace Conditional with Polymorphism. I’ll start with price, and
override it on FrontSuspensionMountainBike.

 module FrontSuspensionMountainBike
 def price
 (1 + @commission) * @base_price + @front_suspension_price
 end
 end

 module FullSuspensionMountainBike

 end

I can put a trap in the case statement to make sure it’s being overridden:

 class MountainBike...

 def price
 case type_code
 when :rigid
 (1 + @commission) * @base_price
 when :front_suspension
 raise "shouldn't get here"
 when :full_suspension
 (1 + @commission) * @base_price + @front_suspension_price +
 @rear_suspension_price
 end
 end
 end

At this point we haven’t gotten far, but our tests should pass.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Type Code with Module Extension 237

Replace
Type Code
with Module
Extension

I then repeat the process for FullSuspensionMountainBike . I can remove the case state-
ment in price, and just return the default implementation for rigid mountain
bikes.

 module FrontSuspensionMountainBike
 def price
 (1 + @commission) * @base_price + @front_suspension_price
 end
 end

 module FullSuspensionMountainBike
 def price
 (1 + @commission) * @base_price + @front_suspension_price +
 @rear_suspension_price
 end
 end

 class MountainBike...

 def price
 (1 + @commission) * @base_price
 end
 end

I then do the same for off_road_ability. The constants will have to be scoped to
access them on MountainBike.

 module FrontSuspensionMountainBike
 def price
 (1 + @commission) * @base_price + @front_suspension_price
 end

 def off_road_ability
 @tire_width * MountainBike::TIRE_WIDTH_FACTOR + @front_fork_travel *
 MountainBike::FRONT_SUSPENSION_FACTOR
 end
 end

 module FullSuspensionMountainBike
 def price
 (1 + @commission) * @base_price + @front_suspension_price +
 @rear_suspension_price
 end

 def off_road_ability
 @tire_width * MountainBike::TIRE_WIDTH_FACTOR +
 @front_fork_travel * MountainBike::FRONT_SUSPENSION_FACTOR +

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data238

Replace
Type Code

with Module
Extension

 @rear_fork_travel * MountainBike::REAR_SUSPENSION_FACTOR
 end
 end

 class MountainBike...

 def off_road_ability
 @tire_width * TIRE_WIDTH_FACTOR
 end

 def price
 (1 + @commission) * @base_price
 end
 end

I can remove the case statement I created by getting the callers to pass in the
appropriate module.

 bike = MountainBike.new(:type_code => :rigid)
 ...
 bike.type_code = :front_suspension

becomes

 bike = MountainBike.new
 ...
 bike.type_code = FrontSuspensionMountainBike

 class MountainBike...

 def type_code=(mod)
 extend(mod)
 end

I should now have removed all traces of @type_code .

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Type Code with State/Strategy 239

Replace Type
Code with
State/
Strategy

Replace Type Code with State/Strategy

You have a type code that affects the behavior of a class and the type code
changes at runtime.

Replace the type code with a state object.

Mountain Bike

price

Mountain Bike

price

type_code

bike_typedef price
 case @type_code
 when :rigid
 ...
 when :front_suspension
 ...
 when :full_suspension

 ...
 end
end

@bike_type.price

bike_type
* 1

Front Suspension
Mountain Bike

charge

charge

charge

Front Suspension
Mountain Bike

Rigid Mountain
 Bike

charge

<<protocol>>

Motivation

This refactoring has the same goal as Replace Type Code with Polymorphism
and Replace Type Code with Module Extension: removing conditional logic.
I use Replace Type Code with State/Strategy when the type code is changed at
runtime and the type changes are complex enough that I can’t get away with
Module Extension.

State and strategy are similar, and the refactoring is the same whichever you
use. Choose the pattern that better fits the specific circumstances. If you are try-
ing to simplify a single algorithm, strategy is the better term. If you are going to
move state-specific data and you think of the object as changing state, use the
state pattern.

Mechanics

1. Perform Self-encapsulate Field on the type code.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data240

Replace Type
Code with

State/
Strategy

2. Create empty classes for each of the polymorphic objects. Create a new
instance variable to represent the type. This will be the object that we’ll
delegate to.

3. Use the old type code to determine which of the new type classes should
be assigned to the type instance variable.

4. Choose one of the methods that you want to behave polymorphically.
Add a method with the same name on one of the new type classes, and
delegate to it from the parent object

You’ll need to pass in any state that needs to be shared with the
object being delegated to, or pass a reference to the original object.

5. Test.

6. Repeat step 4 for the other type classes.

7. Test.

8. Repeat steps 4 through 7 for each of the other methods that use the type
code.

Example

To easily demonstrate the differences between Replace Type Code with State/
Strategy and the other Replace Type Code refactorings, we’ll use a similar
example. This time we’ll add methods for upgrading the mountain bike to add
front suspension and rear suspension.

 class MountainBike...

 def initialize(params)
 set_state_from_hash(params)
 end

 def add_front_suspension(params)
 @type_code = :front_suspension
 set_state_from_hash(params)
 end

 def add_rear_suspension(params)
 unless @type_code == :front_suspension

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Type Code with State/Strategy 241

Replace Type
Code with
State/
Strategy

 raise "You can't add rear suspension unless you have front suspension"
 end
 @type_code = :full_suspension
 set_state_from_hash(params)
 end

 def off_road_ability
 result = @tire_width * TIRE_WIDTH_FACTOR
 if @type_code == :front_suspension || @type_code == :full_suspension
 result += @front_fork_travel * FRONT_SUSPENSION_FACTOR
 end
 if @type_code == :full_suspension
 result += @rear_fork_travel * REAR_SUSPENSION_FACTOR
 end
 result
 end

 def price
 case @type_code
 when :rigid
 (1 + @commission) * @base_price
 when :front_suspension
 (1 + @commission) * @base_price + @front_suspension_price
 when :full_suspension
 (1 + @commission) * @base_price + @front_suspension_price +
 @rear_suspension_price
 end
 end

 private

 def set_state_from_hash(hash)
 @base_price = hash[:base_price] if hash.has_key?(:base_price)
 if hash.has_key?(:front_suspension_price)
 @front_suspension_price = hash[:front_suspension_price]
 end
 if hash.has_key?(:rear_suspension_price)
 @rear_suspension_price = hash[:rear_suspension_price]
 end
 if hash.has_key?(:commission)
 @commission = hash[:commission]
 end
 if hash.has_key?(:tire_width)
 @tire_width = hash[:tire_width]
 end
 if hash.has_key?(:front_fork_travel)

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data242

Replace Type
Code with

State/
Strategy

 @front_fork_travel = hash[:front_fork_travel]
 end
 if hash.has_key?(:rear_fork_travel)
 @rear_fork_travel = hash[:rear_fork_travel]
 end
 @type_code = hash[:type_code] if hash.has_key?(:type_code)
 end
 end

The first step is to perform Self-encapsulate Field on the type code. By confin-
ing all access to the type code to just the getter and setter, we can more easily
perform parallel tasks when the type is being accessed. This enables us to take
smaller steps during the refactoring.

We add an attr_reader, and a custom attribute writer, which will do something
more interesting soon.

 class MountainBike...
 attr_reader :type_code

 def initialize(params)
 set_state_from_hash(params)
 end

 def type_code=(value)
 @type_code = value
 end

 def add_front_suspension(params)
 self.type_code = :front_suspension
 set_state_from_hash(params)
 end

 def add_rear_suspension(params)
 unless type_code == :front_suspension
 raise "You can't add rear suspension unless you have front suspension"
 end
 self.type_code = :full_suspension
 set_state_from_hash(params)
 end

 def off_road_ability
 result = @tire_width * TIRE_WIDTH_FACTOR
 if type_code == :front_suspension || type_code == :full_suspension
 result += @front_fork_travel * FRONT_SUSPENSION_FACTOR
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Type Code with State/Strategy 243

Replace Type
Code with
State/
Strategy

 if type_code == :full_suspension
 result += @rear_fork_travel * REAR_SUSPENSION_FACTOR
 end
 result
 end

 def price
 case type_code
 when :rigid
 (1 + @commission) * @base_price
 when :front_suspension
 (1 + @commission) * @base_price + @front_suspension_price
 when :full_suspension
 (1 + @commission) * @base_price + @front_suspension_price +
 @rear_suspension_price
 end
 end

 private

 def set_state_from_hash(hash)
 @base_price = hash[:base_price] if hash.has_key?(:base_price)
 if hash.has_key?(:front_suspension_price)
 @front_suspension_price = hash[:front_suspension_price]
 end
 if hash.has_key?(:rear_suspension_price)
 @rear_suspension_price = hash[:rear_suspension_price]
 end
 if hash.has_key?(:commission)
 @commission = hash[:commission]
 end
 if hash.has_key?(:tire_width)
 @tire_width = hash[:tire_width]
 end
 if hash.has_key?(:front_fork_travel)
 @front_fork_travel = hash[:front_fork_travel]
 end
 if hash.has_key?(:rear_fork_travel)
 @rear_fork_travel = hash[:rear_fork_travel]
 end
 self.type_code = hash[:type_code] if hash.has_key?(:type_code)
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data244

Replace Type
Code with

State/
Strategy

Next we create empty classes for each variant of type code.

 class RigidMountainBike

 end

 class FrontSuspensionMountainBike

 end

 class FullSuspensionMountainBike

 end

We need a new instance variable to represent the type. We’ll assign to it an
instance of one of our new classes. This will be the object that we’ll delegate to.

 class MountainBike...

 def type_code=(value)
 @type_code = value
 @bike_type = case type_code
 when :rigid: RigidMountainBike.new
 when :front_suspension: FrontSuspensionMountainBike.new
 when :full_suspension: FullSuspensionMountainBike.new
 end
 end

 end

It may seem strange that we’re introducing a case statement when the pur-
pose of this refactoring is, in fact, to remove conditional logic. The case state-
ment just enables a smaller step to the refactoring, by giving us the ability to
modify the internals of the class without modifying the callers. Rest assured that
it won’t last long: By the time we finish the refactoring all conditional logic will
be removed.

Now the fun begins. We want to use Replace Conditional with Polymor-
phism on the conditional logic. I’ll start with off_road_ability, and add it to
 RigidMountainBike. We have to pass in the instance variables that are needed by the
state object.

 class RigidMountainBike...

 def initialize(params)
 @tire_width = params[:tire_width]
 end

 def off_road_ability
 @tire_width * MountainBike::TIRE_WIDTH_FACTOR
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Type Code with State/Strategy 245

Replace Type
Code with
State/
Strategy

 end

 class FrontSuspensionMountainBike

 end

 class FullSuspensionMountainBike

 end

 class MountainBike...

 def type_code=(value)
 @type_code = value
 @bike_type = case type_code
 when :rigid: RigidMountainBike.new(:tire_width => @tire_width)
 when :front_suspension: FrontSuspensionMountainBike.new
 when :full_suspension: FullSuspensionMountainBike.new
 end
 end

 def off_road_ability
 return @bike_type.off_road_ability if type_code == :rigid
 result = @tire_width * TIRE_WIDTH_FACTOR
 if type_code == :front_suspension || type_code == :full_suspension
 result += @front_fork_travel * FRONT_SUSPENSION_FACTOR
 end
 if type_code == :full_suspension
 result += @rear_fork_travel * REAR_SUSPENSION_FACTOR
 end
 result
 end

 end

At this stage we shouldn’t have broken anything.
We do the same with the other new classes.

 class FrontSuspensionMountainBike

 def initialize(params)
 @tire_width = params[:tire_width]
 @front_fork_travel = params[:front_fork_travel]
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data246

Replace Type
Code with

State/
Strategy

 def off_road_ability
 @tire_width * MountainBike::TIRE_WIDTH_FACTOR + @front_fork_travel *
 MountainBike::FRONT_SUSPENSION_FACTOR
 end

 end

 class FullSuspensionMountainBike

 def initialize(params)
 @tire_width = params[:tire_width]
 @front_fork_travel = params[:front_fork_travel]
 @rear_fork_travel = params[:rear_fork_travel]
 end

 def off_road_ability
 @tire_width * MountainBike::TIRE_WIDTH_FACTOR +
 @front_fork_travel * MountainBike::FRONT_SUSPENSION_FACTOR +
 @rear_fork_travel * MountainBike::REAR_SUSPENSION_FACTOR
 end

 end

We can then make off_road_ability in mountain bike delegate to the type using
 Forwardable. (See the Hide Delegate section in Chapter 7 for an explanation of
Forwardable.)

 class MountainBike...

 extend Forwardable
 def_delegators :@bike_type, :off_road_ability

 attr_reader :type_code

 def type_code=(value)
 @type_code = value
 @bike_type = case type_code
 when :rigid: RigidMountainBike.new(:tire_width => @tire_width)
 when :front_suspension: FrontSuspensionMountainBike.new(
 :tire_width => @tire_width,
 :front_fork_travel => @front_fork_travel
)
 when :full_suspension: FullSuspensionMountainBike.new(
 :tire_width => @tire_width,
 :front_fork_travel => @front_fork_travel,
 :rear_fork_travel => @rear_fork_travel
)

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Type Code with State/Strategy 247

Replace Type
Code with
State/
Strategy

 end
 end

 end

Our add_front_suspension and add_rear_suspension methods need to change to set the
type object to an instance of one of our new classes.

 class MountainBike...

 def add_front_suspension(params)
 self.type_code = :front_suspension
 @bike_type = FrontSuspensionMountainBike.new(
 { :tire_width => @tire_width }.merge(params)
)
 set_state_from_hash(params)
 end

 def add_rear_suspension(params)
 unless type_code == :front_suspension
 raise "You can't add rear suspension unless you have front suspension"
 end
 self.type_code = :full_suspension
 @bike_type = FullSuspensionMountainBike.new({
 :tire_width => @tire_width,
 :front_fork_travel => @front_fork_travel
 }.merge(params))
 set_state_from_hash(params)
 end
end

We can then do the same with the price method.

 class RigidMountainBike...

 def price
 (1 + @commission) * @base_price
 end

 end

 class FrontSuspensionMountainBike...

 def price
 (1 + @commission) * @base_price + @front_suspension_price
 end

 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data248

Replace Type
Code with

State/
Strategy

 class FullSuspensionMountainBike...

 def price
 (1 + @commission) * @base_price + @front_suspension_price +
 @rear_suspension_price
 end

 end

Since price is the last method that we need to move, we can start to remove
 type_code .

 class MountainBike...

 def_delegators :@bike_type, :off_road_ability, :price

 def type_code=(value)
 @type_code = value
 @bike_type = case type_code
 when :rigid: RigidMountainBike.new(
 :tire_width => @tire_width,
 :base_price => @base_price,
 :commission => @commission
)
 when :front_suspension: FrontSuspensionMountainBike.new(
 :tire_width => @tire_width,
 :front_fork_travel => @front_fork_travel,
 :front_suspension_price => @front_suspension_price,
 :base_price => @base_price,
 :commission => @commission
)
 when :full_suspension: FullSuspensionMountainBike.new(
 :tire_width => @tire_width,
 :front_fork_travel => @front_fork_travel,
 :rear_fork_travel => @rear_fork_travel,
 :front_suspension_price => @front_suspension_price,
 :rear_suspension_price => @rear_suspension_price,
 :base_price => @base_price,
 :commission => @commission
)
 end

 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Type Code with State/Strategy 249

Replace Type
Code with
State/
Strategy

 def add_front_suspension(params)
 self.type_code = :front_suspension
 @bike_type = FrontSuspensionMountainBike.new({
 :tire_width => @bike_type.tire_width,
 :base_price => @bike_type.base_price,
 :commission => @bike_type.commission
 }.merge(params))
 end

 def add_rear_suspension(params)
 unless @bike_type.is_a?(FrontSuspensionMountainBike)
 raise "You can't add rear suspension unless you have front suspension"
 end
 self.type_code = :full_suspension
 @bike_type = FullSuspensionMountainBike.new({
 :tire_width => @bike_type.tire_width,
 :front_fork_travel => @bike_type.front_fork_travel,
 :front_suspension_price => @bike_type.front_suspension_price,
 :base_price => @bike_type.base_price,
 :commission => @bike_type.commission
 }.merge(params))
 end
Then we can change the callers of MountainBike and remove the case statement from
our initialize method.

 bike = MountainBike.new(
 :type => :front_suspension,
 :tire_width => @tire_width,
 :front_fork_travel => @front_fork_travel,
 :front_suspension_price => @front_suspension_price,
 :base_price => @base_price,
 :commission => @commission

becomes

 bike = MountainBike.new(FrontSuspensionMountainBike.new(
 :type => :front_suspension,
 :tire_width => @tire_width,
 :front_fork_travel => @front_fork_travel,
 :front_suspension_price => @front_suspension_price,
 :base_price => @base_price,
 :commission => @commission

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data250

Replace Type
Code with

State/
Strategy

And with most of the instance data being set directly on the type object, we
can remove all that instance variable setting in MountainBike.

 class MountainBike...
 def initialize(bike_type)
 set_state_from_hash(params)
 @bike_type = bike_type
 end

 def set_state_from_hash(hash)
 @base_price = hash[:base_price] if hash.has_key?(:base_price)
 if hash.has_key?(:front_suspension_price)
 @front_suspension_price = hash[:front_suspension_price]
 end
 if hash.has_key?(:rear_suspension_price)
 @rear_suspension_price = hash[:rear_suspension_price]
 end
 if hash.has_key?(:commission)
 @commission = hash[:commission]
 end
 @tire_width = hash[:tire_width] if hash.has_key?(:tire_width)
 if hash.has_key?(:front_fork_travel)
 @front_fork_travel = hash[:front_fork_travel]
 end
 if hash.has_key?(:rear_fork_travel)
 @rear_fork_travel = hash[:rear_fork_travel]
 end
 self.type_code = hash[:type_code] if hash.has_key?(:type_code)
 end
 end

Rather than reach into the type object when we’re upgrading, we can use
Extract Method to encapsulate the upgradable parameters.

 class RigidMountainBike...
 attr_reader :tire_width, :front_fork_travel, :front_suspension_price,
 :base_price, :commission

 def upgradable_parameters
 {
 :tire_width => @tire_width,
 :base_price => @base_price,
 :commission => @commission
 }
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Subclass with Fields 251

Replace
Subclass
with Fields

 class FrontSuspensionMountainBike...
 attr_reader :tire_width, :front_fork_travel, :front_suspension_price,
 :base_price, :commission
 def upgradable_parameters
 {
 :tire_width => @tire_width,
 :front_fork_travel => @front_fork_travel,
 :front_suspension_price => @front_suspension_price,
 :base_price => @base_price,
 :commission => @commission
 }
 end
 end

 class MountainBike...
 def add_front_suspension(params)
 @bike_type = FrontSuspensionMountainBike.new(
 @bike_type.upgradable_parameters.merge(params)
)
 end

 def add_rear_suspension(params)
 unless @bike_type.is_a?(FrontSuspensionMountainBike)
 raise "You can't add rear suspension unless you have front suspension"
 end
 @bike_type = FullSuspensionMountainBike.new(
 @bike_type.upgradable_parameters.merge(params)
)
 end
 end

We could then use Extract Module to remove any duplication in our new
classes.

Replace Subclass with Fields

You have subclasses that vary only in methods that return constant data.

Change the methods to superclass fields and eliminate the subclasses.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data252

Replace
Subclass

with Fields

return “M” return “F”

Person

code

Female code
code

Person

code

Male

Motivation

You create subclasses to add features or allow behavior to vary. One form of
variant behavior is the constant method [Beck]. A constant method is one that
returns a hard-coded value. This can be useful on subclasses that return differ-
ent values for an accessor. You define the accessor in the superclass and override
it with different values on the subclass.

Although constant methods are useful, a subclass that consists only of con-
stant methods is not doing enough to justify its existence. You can remove such
subclasses completely by putting fields in the superclass. By doing that you
remove the extra complexity of the subclasses.

Mechanics

1. Use Replace Constructor with Factory Method on the subclasses.

2. Modify the superclass constructor to initialize a field for each constant
method.

3. Add or modify subclass constructors to call the new superclass construc-
tor.

4. Test.

5. Implement each constant method in the superclass to return the field and
remove the method from the subclasses.

6. Test after each removal.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Subclass with Fields 253

Replace
Subclass
with Fields

7. When all the subclass methods have been removed, use Inline Method
 to inline the constructor into the factory method of the superclass.

8. Test.

9. Remove the subclass.

10. Test.

11. Repeat inlining the constructor and eliminating each subclass until they
 are all gone.

Example

I begin with a Person and sex-oriented subclasses:

 class Person...

 class Female < Person

 def female?
 true
 end

 def code
 'F'
 end

 end

 class Male < Person

 def female?
 false
 end

 def code
 'M'
 end

 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data254

Replace
Subclass

with Fields

Here the only difference between the subclasses is that they have implemen-
tations of methods that return a hard-coded constant method [Beck]. I remove
these lazy subclasses.

First I need to use Replace Constructor with Factory Method. In this case I
want a factory method for each subclass:

 class Person...

 def self.create_female
 Female.new
 end

 def self.create_male
 Male.new
 end

I then replace calls of the form:

 bree = Female.new
with

 bree = Person.create_female

Once I’ve replaced all of these calls I shouldn’t have any references to the sub-
classes. I can check this with a text search or by enclosing the class in a module
namespace and running the tests.

I add an initialize method on the superclass, assigning an instance variable
for each:

 class Person...

 def initialize(female, code)
 @female = female
 @code = code
 end

I add constructors that call this new constructor:

 class Female...
 def initialize
 super(true, 'F')
 end

 class Male...
 def initialize
 super(false, 'M')
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Lazily Initialized Attribute 255

Lazily
Initialized
Attribute

With that done I can run my tests. The fields are created and initialized, but
so far they aren’t being used. I can now start bringing the fields into play by put-
ting accessors on the superclass and eliminating the subclass methods:

 class Person...

 def female?
 @female
 end

 class Female
 def female?
 true
 end

I can do this one field and one subclass at a time or all in one go if I’m feeling
lucky.

After all the subclasses are empty, I use Inline Method to inline the subclass
constructor into the superclass:

 class Person...

 def self.create_female
 Person.new(true, 'M')
 end

After testing I delete the Female class and repeat the process for the Male class.

Lazily Initialized Attribute

Initialize an attribute on access instead of at construction time.

 class Employee
 def initialize
 @emails = []
 end
 end

 class Employee
 def emails

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data256

Lazily
Initialized
Attribute

 @emails ||= []
 end
 end

Motivation

The motivation for converting attributes to be lazily initialized is for code read-
ability purposes. While the preceding example is trivial, when the Employee class
has multiple attributes that need to be initialized the constructor needs to con-
tain all the initialization logic. Classes that initialize instance variables in the
constructor need to worry about both attributes and instance variables. The
procedural behavior of initializing each attribute in a constructor is sometimes
unnecessary and less maintainable than a class that deals exclusively with attri-
butes. Lazily Initialized Attributes can encapsulate all their initialization logic
within the methods themselves.

Mechanics

1. Move the initialization logic to the attribute reader.

2. Test.

Example using ||=

The following code is an Employee class with the email attribute initialized in the
constructor.

 class Employee
 attr_reader :emails, :voice_mails

 def initialize
 @emails = []
 @voice_mails = []
 end
 end

Moving to a Lazily Initialized Attribute generally means moving the initial-
ization logic to the getter method and initializing on the first access.

 class Employee
 def emails

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Eagerly Initialized Attribute 257

Eagerly
Initialized
Attribute

 @emails ||= []
 end

 def voice_mails
 @voice_mails ||= []
 end
 end

Example Using instance_variable_defined?

Using ||= for Lazily Initialized Attributes is a common idiom; however, this
idiom falls down when nil or false are valid values for the attribute.

 class Employee...
 def initialize
 @assistant = Employee.find_by_boss_id(self.id)
 end

In the preceding example it’s not practical to use an ||= operator for a Lazily
Initialized Attribute because the find_by_boss_id might return nil. In the case
where nil is returned, each time the assistant attribute is accessed another data-
base trip will occur. A superior solution is to use code similar to the following
example that utilizes the instance_variable_defined? method that was introduced in
Ruby 1.8.6.

 class Employee...
 def assistant
 unless instance_variable_defined? :@assistant
 @assistant = Employee.find_by_boss_id(self.id)
 end
 @assistant
 end

Eagerly Initialized Attribute

Initialize an attribute at construction time instead of on the first access.

 class Employee
 def emails
 @emails ||= []
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 8 Organizing Data258

Eagerly
Initialized
Attribute

 class Employee
 def initialize
 @emails = []
 end
 end

Motivation

The motivation for converting attributes to be eagerly initialized is for code
readability purposes. Lazily initialized attributes change their value upon access.
Lazily initialized attributes can be problematic to debug because their values
change upon access. Eagerly Initialized Attributes initialize their attributes in
the constructor of the class. This leads to encapsulating all initialization logic in
the constructor and consistent results when querying the value of the instance
variable.

Discussion

I prefer Lazily Initialized Attributes, but Martin prefers Eagerly Initialized Attri-
butes. I opened up the discussion to the reviewers of Refactoring: Ruby Edition
and my current ThoughtWorks team, but in the end it was split 50/50 on prefer-
ence. Based on that fact, I told Martin I didn’t think it was a good candidate for
Refactoring: Ruby Edition. Not surprisingly, he had a better solution: Provide
examples of both refactoring to Eagerly Initialized Attribute and refactoring to
Lazily Initialized Attribute.

Martin and I agree that this isn’t something worth being religious about.
Additionally, we both think it’s valuable for a team to standardize on Lazily or
Eagerly Initialized Attributes.

Mechanics

1. Move the initialization logic to the constructor.

2. Test.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Eagerly Initialized Attribute 259

Eagerly
Initialized
Attribute

Example

The following code is an Employee class with both the email and voice_mail attributes
lazily initialized.

 class Employee
 def emails
 @emails ||= []
 end

 def voice_mails
 @voice_mails ||= []
 end
 end

Moving to an Eagerly Initialized Attribute generally means moving the ini-
tialization logic from the getter methods into the constructor.

 class Employee
 attr_reader :emails, :voice_mails

 def initialize
 @emails = []
 @voice_mails = []
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

261

Chapter 9

Simplifying Conditional
Expressions

Conditional logic has a way of getting tricky, so here are a number of refac-
torings you can use to simplify it. The core refactoring here is Decompose Con-
ditional, which entails breaking a conditional into pieces. It is important because
it separates the switching logic from the details of what happens.

The other refactorings in this chapter involve other important cases. Use
Recompose Conditional to use more readable, idiomatic Ruby. Use Consoli-
date Conditional Expression when you have several tests and all have the same
effect. Use Consolidate Duplicate Conditional Fragments to remove any dupli-
cation within the conditional code.

If you are working with code developed in a one exit point mentality, you
often find control flags that allow the conditions to work with this rule. I don’t
follow the rule about one exit point from a method. Hence I use Replace Nested
Conditional with Guard Clauses to clarify special case conditionals and Remove
Control Flag to get rid of the awkward control flags.

Object-Oriented programs often have less conditional behavior than proce-
dural programs because much of the conditional behavior is handled by poly-
morphism. Polymorphism is better because the caller does not need to know
about the conditional behavior, and it is thus easier to extend the conditions. As
a result, Object-Oriented programs rarely have case statements. Any that show
up are prime candidates for Replace Conditional with Polymorphism.

One of the most useful, but less obvious, uses of polymorphism is to use
Introduce Null Object to remove checks for a null value.

Decompose Conditional

You have a complicated conditional (if-then-else) statement.

Extract methods from the condition, “then” part, and “else” parts.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 9 Simplifying Conditional Expressions 262

Decompose
Conditional

 if date < SUMMER_START || date > SUMMER_END
 charge = quantity * @winter_rate + @winter_service_charge
 else
 charge = quantity * @summer_rate
 end

 if not_summer(date)
 charge = winter_charge(quantity)
 else
 charge = summer_charge(quantity)
 end

Motivation

One of the most common areas of complexity in a program lies in complex
conditional logic. As you write code to test conditions and to do various things
depending on various conditions, you quickly end up with a pretty long method.
Length of a method is in itself a factor that makes it harder to read, but condi-
tions increase the difficulty. The problem usually lies in the fact that the code,
both in the condition checks and in the actions, tells you what happens but can
easily obscure why it happens.

As with any large block of code, you can make your intention clearer by
decomposing it and replacing chunks of code with a method call named after
the intention of that block of code. With conditions you can receive further
benefit by doing this for the conditional part and each of the alternatives. This
way you highlight the condition and make it clear the logic on which you are
branching. You also highlight the reason for the branching.

Mechanics

1. Extract the condition into its own method.

2. Extract the “then” part and the “else” part into their own methods.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Decompose Conditional 263

Decompose
Conditional

If I find a nested conditional, I usually first look to see whether I should use
Replace Nested Conditional with Guard Clauses. If that does not make sense, I
decompose each of the conditionals.

Example

Suppose I’m calculating the charge for something that has separate rates for
winter and summer:

 if date < SUMMER_START || date > SUMMER_END
 charge = quantity * @winter_rate + @winter_service_charge
 else
 charge = quantity * @summer_rate
 end

I extract the conditional and each leg as follows:

 if not_summer(date)
 charge = winter_charge(quantity)
 else
 charge = summer_charge(quantity)
 end

 def not_summer(date)
 date < SUMMER_START || date > SUMMER_END
 end

 def winter_charge(quantity)
 quantity * @winter_rate + @winter_service_charge
 end

 def summer_charge(quantity)
 quantity * @summer_rate
 end

Here I show the result of the complete refactoring for clarity. In practice,
however, I do each extraction separately and test after each one.

Many programmers don’t extract the condition parts in situations such as
this. The conditions often are short, so it hardly seems worth it. Although the
condition is often short, there often is a big gap between the intention of the
code and its body. Even in this little case, reading “ not_summer date ” conveys a
clearer message to me than does the original code. With the original I have to
look at the code and figure out what it is doing. It’s not difficult to do that here,
but even so the extracted method reads more like a comment.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 9 Simplifying Conditional Expressions 264

Recompose
Conditional

Recompose Conditional

You have conditional code that is unnecessarily verbose and does not use the
most readable Ruby construct.

Replace the conditional code with the more idiomatic Ruby construct.

 parameters = params ? params : []

 parameters = params || []

Motivation

Ruby has some expressive constructs for forming conditional logic with which
newcomers to the language aren’t necessarily familiar. Throughout this book we
have been on a constant quest to improve the expressiveness of our code, and
choosing the best construct from the Ruby language is a great place to start.

Example: Replace Ternary Assignment with “Or” Assignment

In this example, we want to default our parameters variable to an empty array,
if the params method returns nil.

 parameters = params ? params : []
We can use the “Or” operator to make the assignment more expressive:

 parameters = params || []

Example: Replace Conditional with Explicit Return

In this method we check the result of days_rented to determine how many reward
points to return:

 def reward_points
 if days_rented > 2

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Consolidate Conditional Expression 265

Consolidate
Conditional
Expression

 2
 else
 1
 end
 end

We can make our code more English-like if we use the “return if” syntax:

 def reward_points
 return 2 if days_rented > 2
 1
 end

Consolidate Conditional Expression

You have a sequence of conditional tests with the same result.

Combine them into a single conditional expression and extract it.

 def disability_amount
 return 0 if @seniority < 2
 return 0 if @months_disabled > 12
 return 0 if @is_part_time
 # compute the disability amount

 def disability_amount
 return 0 if ineligable_for_disability?
 # compute the disability amount

Motivation

Sometimes you see a series of conditional checks in which each check is differ-
ent yet the resulting action is the same. When you see this, you should use ands
and ors to consolidate them into a single conditional check with a single result.

Consolidating the conditional code is important for two reasons. First, it
makes the check clearer by showing that you are really making a single check
that’s or-ing the other checks together. The sequence has the same effect, but it

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 9 Simplifying Conditional Expressions 266

Consolidate
Conditional
Expression

communicates carrying out a sequence of separate checks that just happen to be
done together. The second reason for this refactoring is that it often sets you up
for Extract Method. Extracting a condition is one of the most useful things you
can do to clarify your code. It replaces a statement of what you are doing with
why you are doing it.

The reasons in favor of consolidating conditionals also point to reasons for
not doing it. If you think the checks are really independent and shouldn’t be
thought of as a single check, don’t do the refactoring. Your code already com-
municates your intention.

Mechanics

1. Check that none of the conditionals has side effects.

If there are side effects, you won’t be able to do this refactoring.

2. Replace the string of conditionals with a single conditional statement
using logical operators.

3. Test.

4. Consider using Extract Method on the condition.

Example: Ors

The state of the code is along the lines of the following:

 def disability_amount
 return 0 if @seniority < 2
 return 0 if @months_disabled > 12
 return 0 if @is_part_time
 # compute the disability amount

Here we see a sequence of conditional checks that all result in the same thing.
With sequential code like this, the checks are the equivalent of an or statement:

 def disability_amount
 return 0 if @seniority < 2 || @months_disabled > 12 || @is_part_time
 # compute the disability amount
 ...

Now I can look at the condition and use Extract Method to communicate what
the condition is looking for:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Consolidate Conditional Expression 267

Consolidate
Conditional
Expression

 def disability_amount
 return 0 if ineligable_for_disability?
 # compute the disability amount
 ...
 end

 def ineligible_for_disability?
 @seniority < 2 || @months_disabled > 12 || @is_part_time
 end

Example: Ands

That example showed ors, but I can do the same with ands. Here the setup is
something like the following:

 if on_vacation?
 if length_of_service > 10
 return 1
 end
 end
 0.5

This would be changed to

 if on_vacation? && length_of_service > 10
 return 1
 end
 0.5

You may well find you get a combination of these that yields an expression
with ands, ors, and nots. In these cases the conditions may be messy, so I try to
use Extract Method on parts of the expression to make it simpler.

If the routine I’m looking at tests only the condition and returns a value, I
can increase fluency by moving the conditional onto the same line as the return
statement:

 if on_vacation? && length_of_service > 10
 return 1
 end
 0.5

becomes

 return 1 if on_vacation? && length_of_service > 10
 0.5

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 9 Simplifying Conditional Expressions 268

Consolidate
Duplicate

Conditional
Fragments

Consolidate Duplicate Conditional Fragments

The same fragment of code is in all branches of a conditional expression.

Move it outside the expression.

 if special_deal?
 total = price * 0.95
 send_order
 else
 total = price * 0.98
 send_order
 end

 if special_deal?
 total = price * 0.95
 else
 total = price * 0.98
 end
 send_order

Motivation

Sometimes you find the same code executed in all legs of a conditional. In that
case you should move the code to outside the conditional. This makes clearer
what varies and what stays the same.

Mechanics

1. Identify code that is executed the same way regardless of the condition.

2. If the common code is at the beginning, move it to before the conditional.

3. If the common code is at the end, move it to after the conditional.

4. If the common code is in the middle, look to see whether the code before
or after it changes anything. If it does, you can move the common code

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Remove Control Flag 269

Remove
Control
Flag

forward or backward to the ends. You can then move it as described for
code at the end or the beginning.

5. If there is more than a single statement, you should extract that code into
a method.

Example

You find this situation with code such as the following:

 if special_deal?
 total = price * 0.95
 send_order
 else
 total = price * 0.98
 send_order
 end

Because the send_order method is executed in either case, I should move it out
of the conditional:

 if special_deal?
 total = price * 0.95
 else
 total = price * 0.98
 end
 send_order

The same situation can apply to exceptions. If code is repeated after an
exception-causing statement in the begin block and all the rescue blocks, I can
move it to the ensure block.

Remove Control Flag

You have a variable that is acting as a control flag for a series of boolean expres-
sions.

Use a break or return instead.

Motivation

When you have a series of conditional expressions, you often see a control flag
used to determine when to stop looking, as in the following code:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 9 Simplifying Conditional Expressions 270

Remove
Control

Flag

 done = false

 until done do
 if (condition)
 # do something
 done = true
 end
 value -= 1
 end

Such control flags are more trouble than they are worth. They come from
rules of structured programming that call for routines with one entry and one
exit point. I agree with (and modern languages enforce) one entry point, but the
one exit point rule leads you to convoluted conditionals with these awkward
flags in the code. This is why languages have break and next (or continue) statements
to get out of a complex conditional. It is often surprising what you can do when
you get rid of a control flag. The real purpose of the conditional becomes so
much clearer.

Mechanics

The obvious way to deal with control flags is to use the break or next state-
ments present in Ruby.

1. Find the value of the control flag that gets you out of the logic statement.

2. Replace assignments of the break-out value with a break or next statement.

3. Test after each replacement.

Another approach, also usable in languages without break and next, is as
follows:

1. Extract the logic into a method.

2. Find the value of the control flag that gets you out of the logic statement.

3. Replace assignments of the break-out value with a return.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Remove Control Flag 271

Remove
Control
Flag

4. Test after each replacement.

Even in languages with a break or next, I usually prefer to use an extraction and
return. The return clearly signals that no more code in the method is executed. If
you have that kind of code, you often need to extract that piece anyway.

Keep an eye on whether the control flag also indicates result information. If
it does, you still need the control flag if you use the break, or you can return the
value if you have extracted a method.

Example: Simple Control Flag Replaced with Break

The following function checks to see whether a list of people contains a couple
of hard-coded suspicious characters:

 def check_security(people)
 found = false
 people.each do |person|
 unless found
 if person == "Don"
 send_alert
 found = true
 end
 if person == "John"
 send_alert
 found = true
 end
 end
 end
 end

In a case like this, it is easy to see the control flag. It’s the piece that sets the
found variable to true. I can introduce the breaks one at a time:

 def check_security(people)
 found = false
 people.each do |person|
 unless found
 if person == "Don"
 send_alert
 break
 end
 if person == "John"
 send_alert

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 9 Simplifying Conditional Expressions 272

Remove
Control

Flag

 found = true
 end
 end
 end
 end

until I have them all:

 def check_security(people)
 found = false
 people.each do |person|
 unless found
 if person == "Don"
 send_alert
 break
 end
 if person == "John"
 send_alert
 break
 end
 end
 end
 end

Then I can remove all references to the control flag:

 def check_security(people)
 people.each do |person|
 if person == "Don"
 send_alert
 break
 end
 if person == "John"
 send_alert
 break
 end
 end
 end

Example: Using Return with a Control Flag Result

The other style of this refactoring uses a return. I illustrate this with a variant
that uses the control flag as a result value:

 def check_security(people)

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Remove Control Flag 273

Remove
Control
Flag

 found = ""
 people.each do |person|
 if found == ""
 if person == "Don"
 send_alert
 found = "Don"
 end
 if person == "John"
 send_alert
 found = "John"
 end
 end
 end
 some_later_code(found)
 end

Here found does two things. It indicates a result and acts as a control flag.
When I see this, I like to extract the code that is determining found into its own
method:

 def check_security(people)
 found = found_miscreant(people)
 some_later_code(found)
 end

 def found_miscreant(people)
 found = ""
 people.each do |person|
 if found == ""
 if person == "Don"
 send_alert
 found = "Don"
 end
 if person == "John"
 send_alert
 found = "John"
 end
 end
 end
 found
 end

Then I can replace the control flag with a return:

 def found_miscreant(people)

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 9 Simplifying Conditional Expressions 274

Replace Nested
Conditional
with Guard

Clauses

 found = ""
 people.each do |person|
 if found == ""
 if person == "Don"
 send_alert
 return "Don"
 end
 if person == "John"
 send_alert
 found = "John"
 end
 end
 end
 found
 end

until I have removed the control flag:

 def found_miscreant(people)
 people.each do |person|
 if person == "Don"
 send_alert
 return "Don"
 end
 if person == "John"
 send_alert
 return "John"
 end
 end
 ""
 end

You can also use the return style when you’re not returning a value. Just use
return without the argument.

Our refactoring is not yet finished—the found_miscreant method is a func-
tion with side effects. To fix it, we need to use Separate Query from Modifier.
You’ll find this example continued there.

Replace Nested Conditional with Guard Clauses

A method has conditional behavior that does not make clear the normal path
of execution.

Use guard clauses for all the special cases.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Nested Conditional with Guard Clauses 275

Replace Nested
Conditional
with Guard
Clauses

 def pay_amount
 if @dead
 result = dead_amount
 else
 if @separated
 result = separated_amount
 else
 if @retired
 result = retired_amount
 else
 result = normal_pay_amount
 end
 end
 end
 result
 end

 def pay_amount
 return dead_amount if @dead
 return separated_amount if @separated
 return retired_amount if @retired
 normal_pay_amount
 end

Motivation

I often find that conditional expressions come in two forms. The first form is a
check where either course is part of the normal behavior. The second form is a
situation in which one answer from the conditional indicates normal behavior
and the other indicates an unusual condition.

These kinds of conditionals have different intentions, and these intentions
should come through in the code. If both are part of normal behavior, use a con-
dition with an if and an else leg. If the condition is an unusual condition, check
the condition and return if the condition is true. This kind of check is often
called a guard clause [Beck].

The key point about Replace Nested Conditional with Guard Clauses is
one of emphasis. If you are using an if-then-else construct you are giving equal

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 9 Simplifying Conditional Expressions 276

Replace Nested
Conditional
with Guard

Clauses

weight to the if leg and the else leg. This communicates to the reader that the
legs are equally likely and important. Instead the guard clause says, “This is
rare, and if it happens, do something and get out.”

I often find I use Replace Nested Conditional with Guard Clauses when I’m
working with a programmer who has been taught to have only one entry point
and one exit point from a method. One entry point is enforced by modern lan-
guages, and one exit point is really not a useful rule. Clarity is the key principle:
If the method is clearer with one exit point, use one exit point; otherwise don’t.

Mechanics

1. For each check put in the guard clause.

The guard clause either returns, or throws an exception.

2. Test after each check is replaced with a guard clause.

If all guard clauses yield the same result, use Consolidate Condi-
tional Expressions.

Example

Imagine a run of a payroll system in which you have special rules for dead,
separated, and retired employees. Such cases are unusual, but they do happen
from time to time.

If I see the code like this :

 def pay_amount
 if @dead
 result = dead_amount
 else
 if @separated
 result = separated_amount
 else
 if @retired
 result = retired_amount
 else
 result = normal_pay_amount
 end
 end
 end
 result

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Nested Conditional with Guard Clauses 277

Replace Nested
Conditional
with Guard
Clauses

 end

Then the checking is masking the normal course of action behind the check-
ing. So instead it is clearer to use guard clauses. I can introduce these one at a
time. I like to start at the top:

 def pay_amount
 return dead_amount if @dead
 if @separated
 result = separated_amount
 else
 if @retired
 result = retired_amount
 else
 result = normal_pay_amount
 end
 end
 result
 end

I continue one at a time:

 def pay_amount
 return dead_amount if @dead
 return separated_amount if @separated
 if @retired
 result = retired_amount
 else
 result = normal_pay_amount
 end
 result
 end

and then :

 def pay_amount
 return dead_amount if @dead
 return separated_amount if @separated
 return retired_amount if @retired
 result = normal_pay_amount
 result
 end

By this point the result temp isn’t pulling its weight so I nuke it:

 def pay_amount
 return dead_amount if @dead

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 9 Simplifying Conditional Expressions 278

Replace Nested
Conditional
with Guard

Clauses

 return separated_amount if @separated
 return retired_amount if @retired
 normal_pay_amount
 end

Nested conditional code often is written by programmers who are taught to
have one exit point from a method. I’ve found that is a too simplistic rule. When
I have no further interest in a method, I signal my lack of interest by getting
out. Directing the reader to look at an empty else block only gets in the way of
comprehension.

Example: Reversing the Conditions

In reviewing the manuscript of this book, Joshua Kerievsky pointed out that
you often do Replace Nested Conditional with Guard Clauses by reversing the
conditional expressions. He kindly came up with an example to save further
taxing of my imagination:

 def adjusted_capital
 result = 0.0
 if @capital > 0.0
 if @interest_rate > 0.0 && @duration > 0.0
 result = (@income / @duration) * ADJ_FACTOR
 end
 end
 result
 end

Again I make the replacements one at a time, but this time I reverse the con-
ditional as I put in the guard clause:

 def adjusted_capital
 result = 0.0
 return result if @capital <= 0.0
 if @interest_rate > 0.0 && @duration > 0.0
 result = (@income / @duration) * ADJ_FACTOR
 end
 result
 end

Because the next conditional is a bit more complicated, I can reverse it in two
steps. First I add a not:

 def adjusted_capital
 result = 0.0

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Conditional with Polymorphism 279

Replace
Conditional
with
Polymorphism

 return result if @capital <= 0.0
 return result if !(@interest_rate > 0.0 && @duration > 0.0)
 result = (@income / @duration) * ADJ_FACTOR
 result
 end

Leaving nots in a conditional like that twists my mind around at a painful
angle, so I simplify it as follows:

 def adjusted_capital
 result = 0.0
 return result if @capital <= 0.0
 return result if @interest_rate <= 0.0 || @duration <= 0.0
 result = (@income / @duration) * ADJ_FACTOR
 result
 end

In these situations I prefer to put an explicit value on the returns from the
guards. That way you can easily see the result of the guard’s failing. (I would
also consider Replace Magic Number with Symbolic Constant here.)

 def adjusted_capital
 result = 0.0
 return 0.0 if @capital <= 0.0
 return 0.0 if @interest_rate <= 0.0 || @duration <= 0.0
 result = (@income / @duration) * ADJ_FACTOR
 result
 end

With that done I can also remove the temp:

 def adjusted_capital
 return 0.0 if @capital <= 0.0
 return 0.0 if @interest_rate <= 0.0 || @duration <= 0.0
 (@income / @duration) * ADJ_FACTOR
 end

Replace Conditional with Polymorphism

You have a conditional that chooses different behavior depending on the type
of an object.

Move each leg of the conditional to a method in an object that can be called
polymorphically.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 9 Simplifying Conditional Expressions 280

Replace
Conditional

with
Polymorphism

 class MountainBike...
 def price
 case @type_code
 when :rigid
 (1 + @commission) * @base_price
 when :front_suspension
 (1 + @commission) * @base_price + @front_suspension_price
 when :full_suspension
 (1 + @commission) * @base_price + @front_suspension_price +
 @rear_suspension_price
 end
 end
 end

Front Suspension
Mountain Bike

price()

Full Suspension
Mountain Bike

price()
price()

Rigid Mountain Bike

Motivation

One of the grandest sounding words in object jargon is polymorphism. The
essence of polymorphsim is that it allows you to avoid writing an explicit con-
ditional when you have objects whose behavior varies depending on their types.

As a result you find that case statements or if-then-else statements that switch
on type codes are much less common in an Object-Oriented program.

Polymorphism gives you many advantages. The biggest gain occurs when
this same set of conditions appears in many places in the program. If you want
to add a new type, you have to find and update all the conditionals. But with
polymorphism you just create a new class and provide the appropriate methods.
Clients of the class don’t need to know about the polymorphism, which reduces
the dependencies in your system and makes it easier to update.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Conditional with Polymorphism 281

Replace
Conditional
with
Polymorphism

Ruby’s duck typing makes it easy to introduce polymorphism. In a statically
typed language like Java, you need inheritance or implementation of an inter-
face to be able to call a method polymorphically. But in Ruby, an object’s cur-
rent set of methods—not its inheritance from a particular class—determines its
valid semantics. So long as objects A and B have the same method, you can call
them in the same way.

Mechanics

Polymorphism in Ruby can be achieved in a couple of ways. In its simplest
form, you can implement the same method signature on multiple objects and
call these methods polymorphically. You can introduce a module hierarchy and
have the method that is to be called polymorphically on the module. Or you
can introduce an inheritance hierarchy and have the method that is to be called
polymorphically on the subclasses. In each case, the mechanics are the same.

The code you target may be a case statement or an if statement.

1. If the conditional statement is one part of a larger method, take apart the
conditional statement and use Extract Method.

2. If necessary use Move Method to place the conditional at the appropriate
place in the object structure.

3. Pick one of the polymorphic objects. Create a method on the polymor-
phic object that will override the conditional statement method. Copy
the body of that leg of the conditional statement into the polymorphic
method and adjust it to fit.

4. Test.

5. Remove the copied leg of the conditional statement.

6. Test.

7. Repeat with each leg of the conditional statement until all legs are turned
into polymorphic methods.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 9 Simplifying Conditional Expressions 282

Replace
Conditional

with
Polymorphism

Example

This is the same example we used in Replace Type Code with Polymorphism.
The important thing to note is that to do this refactoring you need to have the
polymorphic objects in place—either objects that you are calling polymorphi-
cally (as in this case), or a module or inheritance hierarchy. For an example
using a module hierarchy see Replace Type Code with Module Extension. For
an example using inheritance, see Extract Subclass.

We already have our clients creating specific mountain bike objects, and call-
ing them polymorphically:

 rigid_bike = RigidMountainBike.new(
 :type_code => :rigid
 :base_price => 300,
 :commission => 0.1
)
 total += rigid_bike.price
 ...

 front_suspension_bike = FrontSuspensionMountainBike.new(
 :type_code => :front_suspension,
 :base_price => 500,
 :commission => 0.15
)
 total += front_suspension_bike.price

Each mountain bike class includes a common module that has the condi-
tional logic :

 module MountainBike...
 def price
 case @type_code
 when :rigid
 (1 + @commission) * @base_price
 when :front_suspension
 (1 + @commission) * @base_price + @front_suspension_price
 when :full_suspension
 (1 + @commission) * @base_price + @front_suspension_price +
 @rear_suspension_price
 end
 end
 end

 class RigidMountainBike
 include MountainBike
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Conditional with Polymorphism 283

Replace
Conditional
with
Polymorphism

 class FrontSuspensionMountainBike
 include MountainBike
 end

 class FullSuspensionMountainBike
 include MountainBike
 end

The case statement is already nicely extracted and placed on our polymorphic
objects via the module, so there is nothing to do there. For an example that isn’t
so nicely factored, see “Replacing the Conditional Logic on Price Code with
Polymorphism” in Chapter 1, “Refactoring, a First Example.”

I can go to work immediately on the case statement. It’s rather like the way
small boys kill insects: I remove one leg at a time. First I copy the RigidMountainBike

leg of the case statement onto the RigidMountainBike class.

 class RigidMountainBike
 include MountainBike

 def price
 (1 + @commission) * @base_price
 end
 end

This new method overrides the whole case statement for rigid mountain bikes.
Because I’m paranoid, I sometimes put a trap in the case statement:

 module MountainBike...
 def price
 case @type_code
 when :rigid
 raise "should never get here"
 when :front_suspension
 (1 + @commission) * @base_price + @front_suspension_price
 when :full_suspension
 (1 + @commission) * @base_price + @front_suspension_price +
 @rear_suspension_price
 end
 end
 end

I carry on until all the legs are removed. I can delete the price method on the
MountainBike module when I’m done. If this is the only method left, I can remove
the module too.

 class RigidMountainBike
 include MountainBike

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 9 Simplifying Conditional Expressions 284

Introduce Null
Object

 def price
 (1 + @commission) * @base_price
 end
 end

 class FrontSuspensionMountainBike
 include MountainBike

 def price
 (1 + @commission) * @base_price + @front_suspension_price
 end
 end

 class FullSuspensionMountainBike
 include MountainBike
 def price
 (1 + @commission) * @base_price + @front_suspension_price +
 @rear_suspension_price
 end
 end

 module MountainBike...
 def price
 case @type_code
 ...
 end
 end
 end

Introduce Null Object

You have repeated checks for a nil value.

Replace the nil value with a null object.

 plan = customer ? customer.plan : BillingPlan.basic

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Null Object 285

Introduce
Null
Object

plan()

Null
Customer

plan()
Customer

Motivation

The essence of polymorphism is that instead of asking an object what type it
is and then invoking some behavior based on the answer, you just invoke the
behavior. The object, depending on its type, does the right thing. One of the
less intuitive places to do this is where you have a null value in a field. I’ll let
Ron Jeffries, one of the original implementers of eXtreme Programming, tell the
story:

Ron Jeffries

We first started using the null object pattern when Rich Garzaniti found
that a lot of code in the system would check objects for presence before
sending a message to the object. We might ask an object for its person,
then ask the result whether it was null. If the object was present, we
would ask it for its rate. We were doing this in several places, and the
resulting duplicate code was getting annoying.

So we implemented a missing-person object that answered a zero rate
(we call our null objects missing objects). Soon missing person knew
a lot of methods, such as rate. Now we have more than 80 null-object
classes.

Our most common use of null objects is in the display of information.
When we display, for example, a person, the object may or may not
have any of perhaps 20 instance variables. If these were allowed to be
null, the printing of a person would be complex. Instead we plug in
various null objects, all of which know how to display themselves in an
orderly way. This got rid of huge amounts of procedural code.

Our most clever use of null objects is the missing Gemstone session. We
use the Gemstone database for production, but we prefer to develop
without it and push the new code to Gemstone every week or so. There
are various points in the code where we have to log in to a Gemstone
session. When we are running without Gemstone, we simply plug in a

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 9 Simplifying Conditional Expressions 286

Introduce
Null

Object

missing Gemstone session. It looks the same as the real thing but allows
us to develop and test without realizing the database isn’t there.

Another helpful use of null objects is the missing bin. A bin is a col-
lection of payroll values that often have to be summed or looped over.
If a particular bin doesn’t exist, we answer a missing bin, which acts
just like an empty bin. The missing bin knows it has zero balance and
no values. By using this approach, we eliminate the creation of tens of
empty bins for each of our thousands of employees.

An interesting characteristic of using null objects is that things almost
never blow up. Because the null object responds to all the same mes-
sages as a real one, the system generally behaves normally. This can
sometimes make it difficult to detect or find a problem, because noth-
ing ever breaks. Of course, as soon as you begin inspecting the objects,
you’ll find the null object somewhere where it shouldn’t be.

Remember, null objects are always constant; nothing about them ever
changes. Accordingly, we implement them using the Singleton pattern
[Gang of Four]. Whenever you ask, for example, for a missing person,
you always get the single instance of that class.

You can find more details about the null object pattern in Woolf [Woolf]. It is an
example of a Special Case, outlined in Fowler [Fowler].

Ruby allows us two main options for implementing the null object. The tra-
ditional route (and the only one available in statically typed languages without
extracting an interface on the original class) is to create a subclass of the source
class. This way the null object will respond to all the messages that the source
class responds to. This is convenient but may lead to bugs if the null object
lands in a spot where the default behavior of the source class is undesirable. The
other option is to create a new class that does not inherit from the source class,
only defining the methods that you want to be able to handle from the null
object. This may be more work but is less likely to introduce subtle misbehavior.

When not subclassing the source class, there’s another option to consider:
whether to implement a message-eating null object. A message-eating null will
accept any message sent to it and return another message-eating null object.
Ruby’s nil, the single instance of NilClass, is not a message-eating null, but in some
languages, including Objective-C, nil will accept any message. This provides an
interesting halfway point between the levels of effort and risk undertaken with
either of the options discussed previously. By making your null object eat all
messages, you avoid any strange default behavior in the source class, but you
also avoid having to implement every method that might be called on the null
object.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Null Object 287

Introduce
Null
Object

There’s a third option for Introduce Null Object in Ruby: You could add
methods to NilClass itself. While this option might be valid in certain specific
cases, muddying the interface of NilClass or changing the behavior of such a
low-level object should not be undertaken lightly.

When deciding on a name for your Null Object, it is better to use a more
meaningful and specific name (a la “ UnknownCustomer” or even “ MissingPerson”) and
avoid the confusion or overloading of “null” or “nil,” respectively.

Mechanics

1. Create your null object class, optionally as a subclass of the source class.
Create a missing? method on the source class and the null class to test for
nullity. For the source class it should return false, for the null class it
should return true.

You may find it useful to create a mixin module for the test
method so that “nullability” is declared clearly.

As an alternative you can use a testing interface to test for nullness.

2. Find all places that can give out nil when asked for a source object.
Replace them to give out the null object instead.

3. Find all places that compare a variable of the source type with null and
replace them with a call to missing?.

You may be able to do this by replacing one source and its clients
at a time and testing between working on sources.

A few assertions that check for null in places where you should no
longer see it can be useful.

4. Test.

5. Look for cases in which clients invoke an operation if not null and do
some alternative behavior if null.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 9 Simplifying Conditional Expressions 288

Introduce
Null

Object

6. For each of these cases define the method in the null class with the alter-
native behavior.

7. Remove the condition check for those that use the overridden behavior
and test.

Example

A utility company knows about sites: the houses and apartments that use the
utility’s services. At any time a site has a customer.

 class Site...

 attr_reader :customer

There are various features of a customer. I look at three of them.

 class Customer...
 attr_reader :name, :plan, :history

The payment history has its own features:

 class PaymentHistory...
 def weeks_delinquent_in_last_year
 ...
 end

The attribute readers I show allow clients to get at this data. However, some-
times I don’t have a customer for a site. Someone may have moved out and I
don’t yet know who has moved in. Because this can happen we have to ensure
that any code that uses the customer can handle nil s. Here are a few example
fragments:

 customer = site.customer
 plan = customer ? customer.plan : BillingPlan.basic
 ...
 customer_name = customer ? customer.name : 'occupant'
 ...
 weeks_delinquent = customer.nil? ? 0 :
 customer.history.weeks_delinquent_in_last_year

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Null Object 289

Introduce
Null
Object

In these situations I may have many clients of Site and Customer, all of which
have to check for nil s and all of which do the same thing when they find one.
Sounds like it’s time for a null object.

The first step is to create the null customer class and modify the Customer class
to support a query for a null test:

 class MissingCustomer
 def missing?; true; end
 end

 class Customer...
 def missing?; false; end

If you like, you can signal the use of a null object by means of a module:

 module Nullable
 def missing?; false; end
 end

 class Customer
 include Nullable

I like to add a factory method to create null customers. That way clients don’t
have to know about the null class:

 class Customer...
 def self.new_missing
 MissingCustomer.new
 end

Now comes the difficult bit. Now I have to return this new null object whenever
I expect a nil and replace the tests for nil with tests of the form foo.missing?. I find
it useful to look for all the places where I ask for a customer and modify them
so that they return a null customer rather than nil.

 class Site...
 def customer
 @customer || Customer.new_missing
 end

I also have to alter all uses of this value so that they test with missing? rather than
nil? or evaluation as a boolean.

 customer = site.customer
 plan = customer.missing? ? BillingPlan.basic : customer.plan
 ...

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 9 Simplifying Conditional Expressions 290

Introduce
Null

Object

 customer_name = customer.missing? ? 'occupant' : customer.name
 ...
 weeks_delinquent = customer.missing? ? 0 :
 customer.history.weeks_delinquent_in_last_year

There’s no doubt that this is the trickiest part of this refactoring. For each
source of a null I replace, I have to find all the times it is tested for nullness and
replace them. If the object is widely passed around, these can be hard to track.
I have to find every variable of type Customer and find everywhere it is used. It is
hard to break this process into small steps. Sometimes I find one source that is
used in only a few places, and I can replace that source only. But most of the
time, however, I have to make many widespread changes. The changes aren’t
too difficult to back out of, because I can find calls of missing? without too much
difficulty, but this is still a messy step.

Once this step is done and tested, I can smile. Now the fun begins. As it
stands I gain nothing from using missing? rather than nil?. The gain comes as I
move behavior to the null customer and remove conditionals. I can make these
moves one at a time. I begin with the name. Currently I have client code that
says:

 customer_name = customer.missing? ? 'occupant' : customer.name

I add a suitable name method to the null customer:

 class NullCustomer...

 def name
 'occupant'
 end

Now I can make the conditional code go away:

 customer_name = customer.name

I can do the same for any other method in which there is a sensible general
response to a query. I can also do appropriate actions for modifiers. So client
code such as :

 if !customer.missing?

 customer.plan = BillingPlan.special

can be replaced with

 customer.plan = BillingPlan.special

 class NullCustomer...
 def plan=; end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Null Object 291

Introduce
Null
Object

Remember that this movement of behavior makes sense only when most cli-
ents want the same response. Notice that I said most, not all. Any clients who
want a different response to the standard one can still test using missing?. You
benefit when many clients want to do the same thing; they can simply rely on
the default null object behavior.

The example contains a slightly different case—client code that uses the
result of a call to customer:

 weeks_delinquent = customer.missing? ? 0 :
 customer.history.weeks_delinquent_in_last_year

I can handle this by creating a null payment history:

 class NullPaymentHistory...
 def weeks_delinquent_in_last_year; 0; end

I modify the null customer to return it when asked:

 class NullCustomer...
 def history
 PaymentHistory.new_null
 end

Again I can remove the conditional code:

 weeks_delinquent = customer.history.weeks_delinquent_in_last_year

You often find that null objects return other null objects.

Example: Testing Interface

The testing interface is an alternative to defining a method to test whether you
have a null object. In this approach I create a null mixin module with no meth-
ods defined:

 module Null; end

I then include this module in my null objects:

 class NullCustomer ...
 include Null

I then test for nullness with the is_a? method:

 aCustomer.is_a? Null

I normally run away screaming from queries on the type of an object, but in
this case it is okay to use it. It has the particular advantage that I don’t need to
change the customer class to introduce the null object.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 9 Simplifying Conditional Expressions 292

Introduce
Assertion

Other Special Cases

When carrying out this refactoring, you can have several kinds of null. Often
there is a difference between having no customer (new building and not yet
moved in) and having an unknown customer (we think there is someone there,
but we don’t know who it is). If that is the case, you can build separate classes
for the different null cases. Sometimes null objects actually can carry data, such
as usage records for the unknown customer, so that we can bill the customers
when we find out who they are.

In essence there is a bigger pattern here, called special case. A special case
class is a particular instance of a class with special behavior. So UnknownCustomer and
NoCustomer would both be special cases of Customer. You often see special cases with
numbers. Floating points in Java have special cases for positive and negative
infinity and for not a number (NaN). The value of special cases is that they help
reduce dealing with errors. Floating point operations don’t throw exceptions.
Doing any operation with NaN yields another NaN in the same way that accessors
on null objects usually result in other null objects.

Introduce Assertion

A section of code assumes something about the state of the program.

Make the assumption explicit with an assertion.

 def expense_limit

 # should have either expense limit or a primary project
 (@expense_limit != NULL_EXPENSE) ? \
 @expense_limit : \
 @primary_project.member_expense_limit
 end

 def expense_limit
 assert { (@expense_limit != NULL_EXPENSE) || (!@primary_project.nil?) }

 (@expense_limit != NULL_EXPENSE) ? \
 @expense_limit : \
 @primary_project.member_expense_limit
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Assertion 293

Introduce
Assertion

Motivation

Often sections of code work only if certain conditions are true. This may be as
simple as a square root calculation’s working only on a positive input value.
With an object it may be assumed that at least one of a group of fields has a
value in it.

Such assumptions often are not stated but can only be decoded by looking
through an algorithm. Sometimes the assumptions are stated with a comment.
A better technique is to make the assumption explicit by writing an assertion.

An assertion is a conditional statement that is assumed to be always true.
Failure of an assertion indicates programmer error. As such, assertion failures
should always result in an exception. Assertions should never be used by other
parts of the system. Indeed assertions usually are removed for production code.
It is therefore important to signal something is an assertion.

Assertions act as communication and debugging aids. In communication they
help the reader understand the assumptions the code is making. In debugging,
assertions can help catch bugs closer to their origin. I’ve noticed the debugging
help is less important when I write self-testing code, but I still appreciate the
value of assertions in communication.

Mechanics

Because assertions should not affect the running of a system, adding one is
always behavior preserving.

1. When you see that a condition is assumed to be true, add an assertion to
state it.

Have an Assertions module that you can include for assertion
behavior.

Beware of overusing assertions. Don’t use assertions to check everything that
you think is true for a section of code. Use assertions only to check things that
need to be true. Overusing assertions can lead to duplicate logic that is awk-
ward to maintain. Logic that covers an assumption is good because it forces you
to rethink the section of the code. If the code works without the assertion, the
assertion is confusing rather than helpful and may hinder modification in the
future.

Always ask whether the code still works if an assertion fails. If the code does
work, remove the assertion.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 9 Simplifying Conditional Expressions 294

Introduce
Assertion

Beware of duplicate code in assertions. Duplicate code smells just as bad in
assertion checks as it does anywhere else. Use Extract Method liberally to get
rid of the duplication.

Example

Here’s a simple tale of expense limits. Employees can be given an individual
expense limit. If they are assigned a primary project, they can use the expense
limit of that primary project. They don’t have to have an expense limit or a pri-
mary project, but they must have one or the other. This assumption is taken for
granted in the code that uses expense limits:

 class Employee...
 NULL_EXPENSE = -1.0

 def initialize
 @expense_limit = NULL_EXPENSE
 end

 def expense_limit
 (@expense_limit != NULL_EXPENSE) ? \
 @expense_limit : \
 @primary_project.member_expense_limit
 end

 def within_limit(expense_amount)
 expense_amount <= expense_limit
 end

This code contains an implicit assumption that the employee has either a project
or a personal expense limit. Such an assertion should be clearly stated in the
code:

 class Employee..
 include Assertions

 def expense_limit
 assert { (@expense_limit != NULL_EXPENSE) || (!@primary_project.nil?) }

 (@expense_limit != NULL_EXPENSE) ? \
 @expense_limit : \
 @primary_project.member_expense_limit
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Assertion 295

Introduce
Assertion

This assertion does not change any aspect of the behavior of the program.
Either way, if the condition is not true, I get an exception: either an ArgumentError
in within_limit or a custom error inside Assertions#assert. In some circumstances the
assertion helps find the bug, because it is closer to where things went wrong.
Mostly, however, the assertion helps to communicate how the code works and
what it assumes.

I often find I use Extract Method on the conditional inside the assertion. I
either use it in several places and eliminate duplicate code or use it simply to
clarify the intention of the condition.

One of the complications of assertions is that there is often no simple
mechanism to putting them in. Assertions should be easily removable, so they
don’t affect performance in production code. Having a utility module, such as
Assertions, certainly helps. But with the flexibility of dynamic languages such as
Ruby, we can go even further. By using a block as a parameter to our assert
method, we can easily prevent the expression inside the block from being evalu-
ated in production. If our Assertions module is implemented like this:

 module Assertions
 class AssertionFailedError < StandardError; end

 def assert(&condition)
 raise AssertionFailedError.new("Assertion Failed") unless condition.call
 end

 end

then we can easily overwrite the method with a no-op method during deploy-
ment to production:

 Assertions.class_eval do
 def assert; end;
 end

The Assertion module should have various methods that are named helpfully.
In addition to assert, you can have equals, and should_never_reach_here.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

297

Chapter 10

Making Method Calls Simpler

Objects are all about interfaces. Coming up with interfaces that are easy to
understand and use is a key skill in developing good Object-Oriented software.
This chapter explores refactorings that make interfaces more straightforward.

Often the simplest and most important thing you can do is to change the
name of a method. Naming is a key tool in communication. If you understand
what a program is doing, you should not be afraid to use Rename Method
to pass on that knowledge. You can (and should) also rename variables and
classes. On the whole these renamings are fairly simple text replacements, so I
haven’t added extra refactorings for them.

Parameters themselves have quite a role to play with interfaces. Add Param-
eter and Remove Parameter are common refactorings. Programmers new to
objects often use long parameter lists, which are typical of other development
environments. Objects allow you to keep parameter lists short, and several
more involved refactorings give you ways to shorten them. If you are passing
several values from an object, use Preserve Whole Object to reduce all the values
to a single object. If this object does not exist, you can create it with Introduce
Parameter Object. If you can get the data from an object to which the method
already has access, you can eliminate parameters with Replace Parameter with
Method. If you have parameters that are used to determine conditional behav-
ior, you can use Replace Parameter with Explicit Methods. You can combine
several similar methods by adding a parameter with Parameterize Method.

Doug Lea, author of Concurrent Programming in Java, gave me a warning
about refactorings that reduce parameter lists. Concurrent programming often
uses long parameter lists. Typically this occurs so that you can pass in param-
eters that are immutable, as built-ins and value objects often are. Usually you
can replace long parameter lists with immutable objects, but otherwise you need
to be cautious about this group of refactorings.

One of the most valuable conventions I’ve used over the years is to clearly
separate methods that change state (modifiers) from those that query state (que-
ries). I don’t know how many times I’ve got myself into trouble, or seen others

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler298

Rename
Method

get into trouble, by mixing these up. So whenever I see them combined, I use
Separate Query from Modifier to get rid of them.

Good interfaces show only what they have to and no more. You can improve
an interface by hiding things. Of course all data should be hidden (I hope I don’t
need to tell you to do that), but also any methods that can should be hidden.
When refactoring you often need to make things visible for a while and then
cover them up with Hide Method and Remove Setting Method.

Constructors are a particularly awkward feature of Ruby and Java, because
they force you to know the class of an object you need to create. Often you
don’t need to know this. The need to know can be removed with Replace Con-
structor with Factory Method.

Ruby, like many modern languages, has an exception-handling mechanism
to make error handling easier. Programmers who are not used to this often use
error codes to signal trouble. You can use Replace Error Code with Exception
to use the new exceptional features. But sometimes exceptions aren’t the right
answer; you should test first with Replace Exception with Test.

Rename Method

The name of a method does not reveal its purpose.

Change the name of the method.

invcdt_Imt

Customer

invoiceable_credit_limit

Customer

Motivation

An important part of the code style I am advocating is small methods to factor
complex processes. Done badly, this can lead you on a merry dance to find out
what all the little methods do. The key to avoiding this merry dance is nam-
ing the methods. Methods should be named in a way that communicates their
intention. A good way to do this is to think about the comment you would use
to describe the method, and turn that comment into the name of the method.

Life being what it is, you won’t get your names right the first time. In this
situation you may well be tempted to leave it—after all it’s only a name. That

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Rename Method 299

Rename
Method

is the work of the evil demon Obfuscatis; don’t listen to him. If you see a badly
named method, it is imperative that you change it. Remember your code is for
a human first and a computer second. Humans need good names. Take note of
when you have spent ages trying to do something that would have been easier if
a couple of methods had been better named. Good naming is a skill that requires
practice; improving this skill is the key to being a truly skillful programmer. The
same applies to other aspects of the signature. If reordering parameters clarifies
matters, do it (see Add Parameter and Remove Parameter).

Mechanics

1. Check to see whether the method signature is implemented by a super-
class or subclass. If it is, perform these steps for each implementation.

2. Declare a new method with the new name. Copy the old body of code
over to the new name and make any alterations to fit.

3. Change the body of the old method so that it calls the new one.

If you only have a few references, you can reasonably skip this
step.

4. Test.

5. Find all references to the old method name and change them to refer to
the new one. Test after each change.

6. Remove the old method.

If the old method is part of the published interface and you cannot
get to all of its callers, leave it in place and mark it as deprecated.

7. Test.

Example

I have a method to get a person’s telephone number:

 def telephone_number
 "(#{@officeAreaCode}) #{@officeNumber}"
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler300

Add
Parameter

I want to rename the method to office_telephone_number. I begin by creating the
new method and copying the body over to the new method. The old method
now changes to call the new one:

 class Person...
 def telephone_number
 office_telephone_number
 end

 def office_telephone_number
 "(#{@officeAreaCode}) #{@officeNumber}"
 end

Now I find the callers of the old method, and switch them to call the new one.
When I have switched them all, I can remove the old method.

The procedure is the same if I need to add or remove a parameter.
If there aren’t many callers, I change the callers to call the new method with-

out using the old method as a delegating method. If my tests throw a wobbly, I
back out and make the changes the slow way.

Add Parameter

A method needs more information from its caller.

Add a parameter for an object that can pass on this information.

contact()

Customer

contact(date)

Customer

Motivation

Add Parameter is a common refactoring, one that you almost certainly have
already done. The motivation is simple. You have to change a method, and
the change requires information that wasn’t passed in before, so you add a
parameter.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Add Parameter 301

Add
Parameter

Actually most of what I have to say is motivation against doing this refactor-
ing. Often you have other alternatives to adding a parameter. If available, these
alternatives are better because they don’t lead to increasing the length of param-
eter lists. Long parameter lists smell bad because they are hard to remember and
often involve data clumps.

Look at the existing parameters. Can you ask one of those objects for the
information you need? If not, would it make sense to give them a method to
provide that information? What are you using the information for? Should that
behavior be on another object, the one that has the information? Look at the
existing parameters and think about them with the new parameter. Perhaps you
should consider Introduce Parameter Object.

I’m not saying that you should never add parameters; I do it frequently, but
you need to be aware of the alternatives.

Mechanics

The mechanics of Add Parameter are similar to those of Rename Method.

1. Check to see whether this method signature is implemented by a super-
class or subclass. If it is, check to see whether the parameter needs to be
added for all implementations. If you decide not too add the parameter
for any of the implementations, any calls to the implementation via super
will have to be made explicitly with the receiving method’s parameter list.

2. Declare a new method with the added parameter. Copy the old body of
code over to the new method.

If you need to add more than one parameter, it is easier to add
them at the same time.

3. Change the body of the old method so that it calls the new one.

If you only have a few references, you can reasonably skip this
step.

Add a default value for the new parameter. You can use any value
for the default, but usually you use nil or an empty Array or Hash.

4. Test.

5. Find all references to the old method and change them to refer to the new
one. Test after each change.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler302

Remove
Parameter

6. Remove the old method.

If the old method is part of the published interface and you cannot
get to all of its callers, leave it in place and mark it as deprecated.

7. Test.

Remove Parameter

A parameter is no longer used by the method body.

Remove it.

contact()

Customer

contact(date)

Customer

Motivation

Programmers often add parameters but are reluctant to remove them. After all,
a spurious parameter doesn’t cause any problems, and you might need it again
later.

This is the demon Obfuscatis speaking; purge him from your soul! A param-
eter indicates information that is needed; different values make a difference.
Your caller has to worry about what values to pass. By not removing the param-
eter you are making further work for everyone who uses the method. That’s not
a good trade-off, especially because removing parameters is an easy refactoring.

Mechanics

The mechanics of Remove Parameter are similar to those of Rename Method
and Add Parameter.

1. Check to see whether this method signature is implemented by a super-
class or subclass. Check to see whether the subclass or superclass uses the
parameter. If it does, don’t do this refactoring.

2. Declare a new method without the parameter. Ruby doesn’t allow method
overloading, so you’ll have to give the new method a different name from

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Separate Query from Modifier 303

Separate
Query from
Modifier

the old one. This will only be temporary. Copy the old body of code to
the new method.

If you need to remove more than one parameter, it is easier to
remove them together.

3. Change the body of the old method so that it calls the new one.

If you only have a few references, you can reasonably skip this
step.

4. Test.

5. Find all references to the old method and change them to refer to the new
one. Test after each change.

6. Remove the old method.

If the old method is part of the published interface and you cannot
get to all of its callers, leave it in place and mark it as deprecated.

7. Test.

8. Use Rename Method to change the name of the new method to the old
method’s name.

9. Because I’m pretty comfortable with adding and removing parameters, I
often do a batch in one go.

Separate Query from Modifier

You have a method that returns a value and also changes the state of an object.

Create two methods, one for the query and one for the modification.

total_outstanding
ready_for_summaries=

Customer

total_outstanding_and_set_ready_for_summaries

Customer

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler304

Separate
Query from

Modifier

Motivation

When you have a function that gives you a value and has no observable side
effects, you have a valuable thing. You can call this function as often as you like.
You can move the call to other places in the method. In short, you have a lot less
to worry about.

It is a good idea to clearly signal the difference between methods with side
effects and those without. A good rule to follow is to say that any method that
returns a value should not have observable side effects. Some programmers treat
this as an absolute rule, including Bertrand Meyer, author of Object Oriented
Software Constructionm [Meyer]. I’m not 100 percent sure on this (as on any-
thing), but I try to follow it most of the time, and it has served me well.

It’s worth clarifying that in Ruby, every method returns some value (the
return value of the last statement or nil). Here we’re talking about return values
that are actually used by the caller.

If you come across a method that returns a value that is used by the caller
and also has side effects, you should try to separate the query from the modifier.

Note I use the phrase observable side effects. A common optimization is to
cache the value of a query in a field so that repeated calls go perform better.
Although this changes the state of the object with the cache, the change is not
observable. Any sequence of queries will always return the same results for each
query [Meyer].

Mechanics

1. Create a query that returns the same value as the original method.

Look in the original method to see what is returned. If the
returned value is a temporary, look at the location of the temp assign-
ment.

2. Modify the original method so that it returns the result of a call to the
query.

Every return in the original method should say, “return new_query”
(where new_query is the name of the new_query method), instead of returning
anything else.

If the method used a temp with a single assignment to capture the
return value, you should be able to remove it.

3. Test.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Separate Query from Modifier 305

Separate
Query from
Modifier

4. For each call, replace the single call to the original method with a call to
the query. Add a call to the original method before the line that calls the
query. Test after each change to a calling method.

5. Remove the return expressions from the original method.

Example

Here is a function that tells me the name of a miscreant for a security system
and sends an alert. The rule is that only one alert is sent even if there is more
than one miscreant:

 def found_miscreant(people)
 people.each do |person|
 if person == "Don"
 send_alert
 return "Don"
 end
 if person == "John"
 send_alert
 return "John"
 end
 end
 ""
 end

It is called by :

 def check_security(people)
 found = found_miscreant(people)
 some_later_code(found)
 end

To separate the query from the modifier, I first need to create a suitable query
that returns the same value as the modifier does but without the side effects.

 def found_person(people)
 people.each do |person|
 return "Don" if person == "Don"
 return "John" if person == "John"
 end
 ""
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler306

Separate
Query from

Modifier

Then I replace every return in the original function, one at a time, with calls
to the new query. I test after each replacement. When I’m done the original
method looks like the following:

 def found_miscreant(people)
 people.each do |person|
 if person == "Don"
 send_alert
 return found_person(people)
 end
 if person == "John"
 send_alert
 return found_person(people)
 end
 end
 found_person(people)
 end

Now I alter all the calling methods to do two calls: first to the modifier and
then to the query:

 def check_security(people)
 found_miscreant(people)
 found = found_person(people)
 some_later_code(found)
 end

Once I have done this for all calls, I can alter the modifier to make it return
nil:

 def found_miscreant(people)
 people.each do |person|
 if person == "Don"
 send_alert
 return
 end
 if person == "John"
 send_alert
 return
 end
 end
 nil
 end

Now it seems better to change the name of the original:

 def send_alert_if_miscreant_in(people)

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Parameterize Method 307

Parameterize
Method

 people.each do |person|
 if person == "Don"
 send_alert
 return
 end
 if person == "John"
 send_alert
 return
 end
 end
 nil
 end

Of course in this case I have a lot of code duplication because the modifier
uses the body of the query to do its work. I can now use Substitute Algorithm
on the modifier to take advantage of this:

 def send_alert_if_miscreant_in(people)
 send_alert unless found_person(people).empty?
 end

Concurrency Issues

If you are working in a multithreaded system, you know that doing test and
set operations as a single action is an important idiom. Does this conflict with
Separate Query from Modifier? I discussed this issue with Doug Lea, author of
Concurrent Programming in Java, and concluded that it doesn’t. You do, how-
ever, need to do some additional things. It is still valuable to have separate query
and modifier operations. However, you need to retain a third method that does
both. The query-and-modify operation will call the separate query and modify
methods and be synchronized. If the query and modify operations are not syn-
chronized, you also might restrict their visibility to private level. That way you
have a safe, synchronized operation decomposed into two easier-to-understand
methods. These lower-level methods are then available for other uses.

Parameterize Method

Several methods do similar things but with different values contained in the
method body.

Create one method that uses a parameter for the different values.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler308

Parameterize
Method raise(percentage)

Employee

five_percent_raise
ten_percent_raise

Employee

Motivation

You may see a couple of methods that do similar things but vary depending
on a few values. In this case you can simplify matters by replacing the separate
methods with a single method that handles the variations by parameters. Such
a change removes duplicate code and increases flexibility, because you can deal
with other variations by adding parameters.

Mechanics

1. Create a parameterized method that can be substituted for each repetitive
method.

2. Replace one old method with a call to the new method.

3. Test.

4. Repeat for all the methods, testing after each one.

You may find that you cannot do this for the whole method, but you can for
a fragment of a method. In this case, first extract the fragment into a method;
then parameterize that method.

Example

The simplest case is methods along the following lines:

 class Employee
 def ten_percent_raise
 @salary *= 1.1
 end

 def five_percent_raise
 @salary *= 1.05

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Parameterize Method 309

Parameterize
Method

 end
 end

which can be replaced with

 def raise(factor)
 @salary *= (1 + factor)
 end

Of course that is so simple that anyone would spot it.
A less obvious case is as follows:

 def base_charge
 result = [last_usage, 100].min * 0.03

 if last_usage > 100
 result += ([last_usage, 200].min - 100) * 0.05
 end

 if last_usage > 200
 result += (last_usage - 200) * 0.07
 end

 Dollar.new(result)
 end

 def last_usage
 ...
 end

this can be replaced with :

 def base_charge
 result = (usage_in_range 0..100) * 0.03
 result += (usage_in_range 100..200) * 0.05
 result += (usage_in_range 200..last_usage) * 0.07
 Dollar.new(result)
 end

 def usage_in_range(range)
 if last_usage > range.begin
 [last_usage, range.end].min - range.begin
 else
 0
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler310

Replace
Parameter

with Explicit
Methods

The trick is to spot code that is repetitive on the basis of a few values that can
be passed in as parameters.

Replace Parameter with Explicit Methods

You have a method that runs different code depending on the values of an enu-
merated parameter.

Create a separate method for each value of the parameter.

 def set_value(name, value)
 if name == "height"
 @height = value
 elsif name == "width"
 @width = value
 else
 raise "Should never reach here"
 end
 end

 def height=(value)
 @height = value
 end

 def width=(value)
 @width = value
 end

Motivation

Replace Parameter with Explicit Methods is the reverse of Parameterize Method.
The usual case for the former is that you have discrete values of a parameter,
test for those values in a conditional, and do different things. The caller has to
decide what it wants to do by setting the parameter, so you might as well pro-
vide different methods and avoid the conditional. Furthermore your interface is

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Parameter with Explicit Methods 311

Replace
Parameter
with Explicit
Methods

also clearer. Switch.turn_on is a lot clearer than Switch.set_state(true), even when all
you are doing is setting an internal boolean field.

With the parameter, any programmer using the method needs not only to
look at the methods on the class but also to determine a valid parameter value.
The latter is often poorly documented.

You shouldn’t use Replace Parameter with Explicit Methods when the param-
eter values are likely to change a lot. If this happens and you are just setting a
field to the passed-in parameter, use a simple setter. If you need conditional
behavior, you need Replace Conditional with Polymorphism.

Mechanics

1. Create an explicit method for each value of the parameter.

2. For each leg of the conditional, call the appropriate new method.

3. Test after changing each leg.

4. Replace each caller of the conditional method with a call to the appropri-
ate new method.

5. Test.

6. When all callers are changed, remove the conditional method.

Example

I want to create a subclass of Employee on the basis of a passed-in parameter, often
the result of Replace Constructor with Factory Method:

 ENGINEER = 0
 SALESPERSON = 1
 MANAGER = 2

 def self.create(type)
 case type
 when ENGINEER
 Engineer.new
 when SALESPERSON
 Salesperson.new
 when MANAGER

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler312

Replace
Parameter

with Explicit
Methods

 Manager.new
 else
 raise ArgumentError, "Incorrect type code value"
 end
 end

Because this is a factory method, I can’t use Replace Conditional with Poly-
morphism, because I haven’t created the object yet. I don’t expect too many new
subclasses, so an explicit interface makes sense. First I create the new methods:

 def self.create_engineer
 Engineer.new
 end

 def self.create_salesperson
 Salesperson.new
 end

 def self.create_manager
 Manager.new
 end

One by one I replace the cases in the case statement with calls to the explicit
methods:

 def self.create(type)
 case type
 when ENGINEER
 Employee.create_engineer
 when SALESPERSON
 Salesperson.new
 when MANAGER
 Manager.new
 else
 raise ArgumentError, "Incorrect type code value"
 end
 end

I test after changing each leg, until I’ve replaced them all:

 def self.create(type)
 case type
 when ENGINEER
 Employee.create_engineer
 when SALESPERSON
 Employee.create_salesperson

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Preserve Whole Object 313

Preserve
Whole
Object

 when MANAGER
 Employee.create_manager
 else
 raise ArgumentError, "Incorrect type code value"
 end
 end

Now I move on to the callers of the old create method. I change code such as:

 kent = Employee.create(Employee::ENGINEER)
to

 kent = Employee.create_engineer

Once I’ve done that for all the callers of create, I can remove the create method.
I may also be able to get rid of the constants.

Preserve Whole Object

You are getting several values from an object and passing these values as param-
eters in a method call.

Send the whole object instead.

 low = days_temperature_range.low
 high = days_temperature_range.high
 plan.within_range?(low, high)

 plan.within_range?(days_temperature_range)

Motivation

This type of situation arises when an object passes several data values from a
single object as parameters in a method call. The problem with this is that if
the called object needs new data values later, you have to find and change all
the calls to this method. You can avoid this by passing in the whole object from
which the data came. The called object can then ask for whatever it wants from
the whole object.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler314

Preserve
Whole
Object

In addition to making the parameter list more robust to changes, Preserve
Whole Object often makes the code more readable. Long parameter lists can
be hard to work with because both caller and callee have to remember which
values were there. They also encourage duplicate code because the called object
can’t take advantage of any other methods on the whole object to calculate
intermediate values.

There is a down-side. When you pass in values, the called object has a depen-
dency on the values, but there isn’t any dependency to the object from which
the values were extracted. Passing in the required object causes a dependency
between the required object and the called object. If this is going to mess up
your dependency structure, don’t use Preserve Whole Object.

Another reason I have heard for not using Preserve Whole Object is that
when a calling object needs only one value from the required object, it is better
to pass in the value than to pass in the whole object. I don’t subscribe to that
view. One value and one object amount to the same thing when you pass them
in, at least for clarity’s sake (there may be a performance cost with pass by value
parameters). The driving force is the dependency issue.

That a called method uses a lot of values from another object is a signal
that the called method should really be defined on the object from which the
values come. When you are considering Preserve Whole Object, consider Move
Method as an alternative.

You may not already have the whole object defined. In this case you need
Introduce Parameter Object.

A common case is that a calling object passes several of its own data values
as parameters. In this case you can make the call and pass in self instead of these
values, if you have the appropriate accessor methods and you don’t mind the
dependency.

Mechanics

1. Create a new parameter for the whole object from which the data comes.

2. Test.

3. Determine which parameters should be obtained from the whole object.

4. Take one parameter and replace references to it within the method body
by invoking an appropriate method on the whole object parameter.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Preserve Whole Object 315

Preserve
Whole
Object

5. Delete the parameter.

6. Test.

7. Repeat for each parameter that can be got from the whole object.

8. Remove the code in the calling method that obtains the deleted param-
eters.

Unless, of course, the code is using these parameters somewhere
else.

9. Test.

Motivation

Consider a Room object that records high and low temperatures during the day. It
needs to compare this range with a range in a predefined heating plan:

 class Room...

 def within_plan?(plan)
 low = days_temperature_range.low
 high = days_temperature_range.high
 plan.within_range?(low, high)
 end

 class HeatingPlan...

 def within_range?(low, high)
 (low >= @range.low) && (high <= @range.high)
 end

Rather than unpack the range information when I pass it, I can pass the whole
range object. In this simple case I can do this in one step. When more param-
eters are involved, I can do it in smaller steps. First I add the whole object to the
parameter list:

 class HeatingPlan...

 def within_range?(room_range , low, high)
 (low >= @range.low) && (high <= @range.high)
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler316

Preserve
Whole
Object

 class Room...

 def within_plan?(plan)
 low = days_temperature_range.low
 high = days_temperature_range.high
 plan.within_range?(days_temperature_range , low, high)
 end

Then I use a method on the whole object instead of one of the parameters:

 class HeatingPlan...

 def within_range?(room_range, high)
 (room_range.low >= @range.low) && (high <= @range.high)
 end

 class Room...

 def within_plan?(plan)
 low = days_temperature_range.low
 high = days_temperature_range.high
 plan.within_range?(days_temperature_range, high)
 end

I continue until I’ve changed all I need:

 class HeatingPlan...

 def within_range?(room_range)
 (room_range.low >= @range.low) && (room_range.high <= @range.high)
 end

 class Room...

 def within_plan?(plan)
 low = days_temperature_range.low
 high = days_temperature_range.high
 plan.within_range?(days_temperature_range)
 end

Now I don’t need the temps anymore:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Parameter with Method 317

Replace
Parameter
with Method

 class Room...
 def within_plan?(plan)
 low = days_temperature_range.low
 high = days_temperature_range.high
 plan.within_range?(days_temperature_range)
 end

Using whole objects this way soon leads you to realize that you can usefully
move behavior into the whole object to make it easier to work with.

 class HeatingPlan...

 def within_temperature_range?(room_temperature_range)
 @range.includes?(room_temperature_range)
 end

 class TempRange...

 def includes?(temperature_range)
 temperature_range.low >= low && temperature_range.high <= high
 end

Replace Parameter with Method

An object invokes a method, then passes the result as a parameter for a method.
The receiver can also invoke this method.

Remove the parameter and let the receiver invoke the method.

 base_price = @quantity * @item_price
 level_of_discount = discount_level
 final_price = discounted_price(base_price, level_of_discount)

 base_price = @quantity * @item_price
 final_price = discounted_price(base_price)

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler318

Replace
Parameter

with Method

Motivation

If a method can get a value that is passed in as parameter by another means, it
should. Long parameter lists are difficult to understand, and we should reduce
them as much as possible.

One way of reducing parameter lists is to look to see whether the receiving
method can make the same calculation. If an object is calling a method on itself,
and the calculation for the parameter does not reference any of the parameters
of the calling method, you should be able to remove the parameter by turning
the calculation into its own method. This is also true if you are calling a method
on a different object that has a reference to the calling object.

You can’t remove the parameter if the calculation relies on a parameter of the
calling method, because that parameter may change with each call (unless, of
course, that parameter can be replaced with a method). You also can’t remove
the parameter if the receiver does not have a reference to the sender, and you
don’t want to give it one.

In some cases the parameter may be there for a future parameterization of
the method. In this case I would still get rid of it. Deal with the parameteriza-
tion when you need it; you may find out that you don’t have the right parameter
anyway. I would make an exception to this rule only when the resulting change
in the interface would have painful consequences around the whole program,
such as changing of a lot of embedded code. If this worries you, look into how
painful such a change would really be. You should also look to see whether you
can reduce the dependencies that cause the change to be so painful. Stable inter-
faces are good, but freezing a poor interface is a problem.

Mechanics

1. If necessary, extract the calculation of the parameter into a method.

2. Replace references to the parameter in method bodies with references to
the method.

3. Test after each replacement.

4. Use Remove Parameter on the parameter.

Example

Another unlikely variation on discounting orders is as follows:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Parameter with Method 319

Replace
Parameter
with Method

 def price
 base_price = @quantity * @item_price
 level_of_discount = 1
 level_of_discount = 2 if @quantity > 100
 discounted_price(base_price, level_of_discount)
 end

 def discounted_price(base_price, level_of_discount)
 return base_price * 0.1 if level_of_discount == 2
 base_price * 0.05
 end

I can begin by extracting the calculation of the discount level:

 def price
 base_price = @quantity * @item_price
 level_of_discount = discount_level
 discounted_price(base_price, level_of_discount)
 end

 def discount_level
 return 2 if @quantity > 100
 return 1
 end

I then replace references to the parameter in discounted_price :

 def discounted_price(base_price, level_of_discount)
 return base_price * 0.1 if discount_level == 2
 base_price * 0.05
 end

Then I can use Remove Parameter:

 def price
 base_price = @quantity * @item_price
 level_of_discount = discount_level
 discounted_price(base_price)
 end

 def discounted_price(base_price)
 return base_price * 0.1 if discount_level == 2
 base_price * 0.05
 end

I can now get rid of the temp:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler320

Introduce
Parameter

Object

 def price
 base_price = @quantity * @item_price
 discounted_price(base_price)
 end

Then it’s time to get rid of the other parameter and its temp. I am left with :

 def price
 discounted_price
 end

 def discounted_price
 return base_price * 0.1 if discount_level == 2
 base_price * 0.05
 end

 def base_price
 @quantity * @item_price
 end

so I might as well use Inline Method on discounted_price:

 def price
 return base_price * 0.1 if discount_level == 2
 base_price * 0.05
 end

Introduce Parameter Object

You have a group of parameters that naturally go together.

Replace them with an object.

add_charge(charge)

Account
charges

add_charge(base_price,tax_rate,imported)

Account
charges

Charge
base_price
tax-rate
imported

Motivation

Often you see a particular group of parameters that tend to be passed together.
Several methods may use this group, either on one class or in several classes.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Parameter Object 321

Introduce
Parameter
Object

Such a group of classes is a data clump and can be replaced with an object that
carries all of this data. It is worthwhile to turn these parameters into objects
just to group the data together. This refactoring is useful because it reduces the
size of the parameter lists, and long parameter lists are hard to understand. The
defined accessors on the new object also make the code more consistent, which
again makes it easier to understand and modify.

You get a deeper benefit, however, because once you have clumped together
the parameters, you soon see behavior that you can also move into the new
class. Often the bodies of the methods have common manipulations of the
parameter values. By moving this behavior into the new object, you can remove
a lot of duplicated code.

Mechanics

1. Create a new class to represent the group of parameters you are replacing.
Make the class immutable.

2. Use Add Parameter for the new data clump. Use a default value for the
new parameter.

3. For each parameter in the data clump, remove the parameter from the sig-
nature. Modify the callers and method body to use the parameter object
for that value.

4. Test after you remove each parameter.

5. When you have removed the parameters, look for behavior that you can
move into the parameter object with Move Method.

This may be a whole method or part of a method. If it is part of a
method, use Extract Method first and then move the new method over.

6. Be sure to remove the default value for the new parameter. The method is
not intended to be used without the parameter. Leaving it in would only
cause confusion.

Example

I begin with an account that holds a collection of charges for items. Each charge
is determined by a calculation based on base price, tax rate, and whether the
item is imported:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler322

Introduce
Parameter

Object

 class Account...

 def add_charge(base_price, tax_rate, imported)
 total = base_price + base_price * tax_rate
 total += base_price * 0.1 if imported
 @charges << total
 end

 def total_charge
 @charges.inject(0) { |total, charge| total + charge }
 end

 client code...
 account.add_charge(5, 0.1, true)
 account.add_charge(12, 0.125, false)
 ...
 total = account.total_charge

The base_price , tax_rate , and imported status naturally go together, so I group
them in a Charge object:

 class Charge
 attr_accessor :base_price, :tax_rate, :imported

 def initialize(base_price, tax_rate, imported)
 @base_price = base_price
 @tax_rate = tax_rate
 @imported = imported
 end
 end

I’ve made the Charge class immutable; that is, all the values for the charge are
set in the constructor, hence there are no methods for modifying the values. This
is a wise move to avoid aliasing bugs.

Next I add the charge into the parameter list for the add_charge method:

 class Account...

 def add_charge(base_price, tax_rate, imported, charge=nil)
 total = base_price + base_price * tax_rate
 total += base_price * 0.1 if imported
 @charges << total
 end

 def total_charge

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Parameter Object 323

Introduce
Parameter
Object

 @charges.inject(0) { |total, charge| total + charge }
 end

At this point I haven’t altered any behavior.
The next step is to remove one of the parameters and use the new object

instead. To do this I delete the base_price parameter and modify the method and
its callers to use the new object instead:

 class Account...

 def add_charge(tax_rate, imported, charge)
 total = charge.base_price + charge.base_price * tax_rate
 total += charge.base_price * 0.1 if imported
 @charges << total
 end

 def total_charge
 @charges.inject(0) { |total, charge| total + charge }
 end

 client code...
 account.add_charge(0.1, true, Charge.new(9.0, nil, nil))
 account.add_charge(0.125, true, Charge.new(12.0, nil, nil))
 ...
 total = account.total_charge

I then remove the other two parameters:

 class Account...

 def add_charge(charge)
 total = charge.base_price + charge.base_price * charge.tax_rate
 total += charge.base_price * 0.1 if charge.imported
 @charges << total
 end

 def total_charge
 @charges.inject(0) { |total, charge| total + charge }
 end

 client code...
 account.add_charge(Charge.new(9.0, 0.1, true))
 account.add_charge(Charge.new(12.0, 0.125, true))
 ...
 total = account.total_charge

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler324

Remove
Setting
Method

I have introduced the parameter object; however, I can get more value from
this refactoring by moving behavior from other methods to the new object. In
this case I can take the code to perform the charge calculation and use Extract
Method and Move Method to add the method to the Charge object. I can also
remove the readers on the Charge object, improving encapsulation.

 class Account...

 def add_charge(charge)
 @charges << charge
 end

 def total_charge
 @charges.inject(0) do |total_for_account, charge|
 total_for_account + charge.total
 end
 end

 class Charge
 def initialize(base_price, tax_rate, imported)
 @base_price = base_price
 @tax_rate = tax_rate
 @imported = imported
 end

 def total
 result = @base_price + @base_price * @tax_rate
 result += @base_price * 0.1 if @imported
 result
 end
 end

I usually do simple extracts and moves such as this in one step. If I run into a
bug, I can back out and take the two smaller steps.

Remove Setting Method

A field should be set at creation time and never altered.

Remove any setting method for that field.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Remove Setting Method 325

Remove
Setting
Method

immutable_value=

Employee Employee

Motivation

Providing a setting method indicates that a field may be changed. If you don’t
want that field to change once the object is created, don’t provide a setting
method. That way your intention is clear and you often remove the possibility
that the field will change.

This situation often occurs when programmers blindly use indirect variable
access [Beck]. Such programmers then use setters even in a constructor. I guess
there is an argument for consistency but not compared with the confusion that
the setting method will cause later on.

Mechanics

1. Check that the setting method is called only in the constructor, or in a
method called by the constructor.

2. Modify the constructor to access the variables directly.

3. Test.

4. Remove the setting method.

5. Test.

Example

A simple example is as follows:

 class Account

 def initialize(id)
 self.id = id
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler326

Remove
Setting
Method

 # you may have an attr_writer instead of this method - it
should be removed also
 def id=(value)
 @id = value
 end

which can be replaced with

 class Account

 def initialize(id)
 @id = id
 end

The problems come in some variations. First is the case in which you are doing
computation on the argument:

 class Account

 def initialize(id)
 self.id = id
 end

 def id=(value)
 @id = "ZZ#{value}"
 end

If the change is simple (as here), I can make the change in the constructor. If the
change is complex or I need to call it from separate methods, I need to provide
a method. In that case I need to name the method to make its intention clear:

 class Account

 def initialize(id)
 initialize_id(id)
 end

 def initialize_id(value)
 @id = "ZZ#{value}"
 end

Another case to consider is setting the value of a collection:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Hide Method 327

Hide
Method

 class Person
 attr_accessor :courses

 def initialize
 @courses = []
 end

 end

Here I want to replace the setter with add and remove operations. I talk
about this in Encapsulate Collection.

Hide Method

A method is not used by any other class.

Make the method private.

+ a_method

Employee Employee

- a_method

Motivation

Refactoring often causes you to change decisions about the visibility of meth-
ods. It is easy to spot cases in which you need to make a method more visible:
Another class needs it and you thus relax the visibility. It is somewhat more
difficult to tell when a method is too visible. Ideally a tool should check all
methods to see whether they can be hidden. If it doesn’t, you should make this
check at regular intervals.

A particularly common case is hiding, getting, and setting methods as you
work up a richer interface that provides more behavior. This case is most com-
mon when you are starting with a class that is little more than an encapsulated
data holder. As more behavior is built into the class, you may find that many
of the getting and setting methods are no longer needed publicly, in which case
they can be hidden. If you make a getting or setting method private and you are
using direct variable access, you can remove the method.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler328

Replace
Constructor
with Factory

Method

Mechanics

1. Check regularly for opportunities to make a method more private.

Use a lint-style tool, do manual checks every so often, and check
when you remove a call to a method in another class.

Particularly look for cases such as this with setting methods.

2. Make each method as private as you can.

3. Test after doing a group of hidings.

Replace Constructor with Factory Method

You want to do more than simple construction when you create an object.

Replace the constructor with a factory method.

 class ProductController...

 def create
 ...
 @product = if imported
 ImportedProduct.new(base_price)
 else
 if base_price > 1000
 LuxuryProduct.new(base_price)
 else
 Product.new(base_price)
 end
 end
 ...
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Constructor with Factory Method 329

Replace
Constructor
with Factory
Method

 class ProductController...

 def create
 ...
 @product = Product.create(base_price, imported)
 ...
 end

 class Product

 def self.create(base_price, imported=false)
 if imported
 ImportedProduct.new(base_price)
 else
 if base_price > 1000
 LuxuryProduct.new(base_price)
 else
 Product.new(base_price)
 end
 end
 end

Motivation

The most obvious motivation for Replace Constructor with Factory Method is
when you have conditional logic to determine the kind of object to create. If you
need to do this conditional logic in more than one place, it’s time for a Factory
Method.

You can use factory methods for other situations in which constructors are
too limited. Factory methods are essential for Change Value to Reference. They
also can be used to signal different creation behavior that goes beyond the num-
ber and types of parameters.

Mechanics

1. Perform Extract Method to isolate the construction logic.

Make the newly extracted method a class method. Pass in any
required data as parameters.

2. Test.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler330

Replace
Constructor
with Factory

Method

3. If the factory method is not on the desired object, use Move Method.

4. Test.

5. Remove the original constructor if no one else is using it.

6. Test.

Example

In this example we are creating products. The type of product we want to create
depends on the product’s base price, and whether it is imported from another
country.

 class ProductController...

 def create
 ...
 @product = if imported
 ImportedProduct.new(base_price)
 else
 if base_price > 1000
 LuxuryProduct.new(base_price)
 else
 Product.new(base_price)
 end
 end
 ...
 end

We might have an inheritance hierarchy to represent the products.

 class Product...

 def initialize(base_price)
 @base_price = base_price
 end

 def total_price
 @base_price
 end

 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Constructor with Factory Method 331

Replace
Constructor
with Factory
Method

 class LuxuryProduct < Product...
 def total_price
 super + 0.1 * super
 end
 end

 class ImportedProduct < Product...

 def total_price
 super + 0.25 * super
 end

 end

There are two motivations here for using Replace Constructor with Factory
Method. The first comes about if we need to perform this construction logic in
more than one place. We don’t want to introduce duplication, so extracting this
construction logic to a factory method makes sense. The second motivation is
encapsulation. If we can push this logic that uses the product’s attributes onto
the product object itself, we’ll be able to accommodate changes to this logic
more easily in the future.

The first step is to perform Extract Method on the construction logic. We’ll
make the extracted method a class method (so that it’s easy to turn into a fac-
tory method).

 def create
 ...
 @product = self.class.create_product(base_price, imported)
 ...
 end

 def self.create_product(base_price, imported)
 if imported
 ImportedProduct.new(base_price)
 else
 if base_price > 1000
 LuxuryProduct.new(base_price)
 else
 Product.new(base_price)
 end
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler332

Replace
Error Code

with
Exception

We can then use Move Method to move the method to a more appropriate
place—the Product class.

 class ProductController...

 def create
 ...
 @product = Product.create(base_price, imported)
 ...
 end

 class Product

 def self.create(base_price, imported=false)
 if imported
 ImportedProduct.new(base_price)
 else
 if base_price > 1000
 LuxuryProduct.new(base_price)
 else
 Product.new(base_price)
 end
 end
 end

Since no one else is using Product ’s initialize method, we can remove it.

Replace Error Code with Exception

A method returns a special code to indicate an error.

Raise an exception instead.

 def withdraw(amount)
 return -1 if amount > @balance
 @balance -= amount
 0
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Error Code with Exception 333

Replace
Error Code
with
Exception

 def withdraw(amount)
 raise BalanceError.new if amount > @balance
 @balance -= amount
 end

Motivation

In computers, as in life, things go wrong occasionally. When things go wrong,
you need to do something about it. In the simplest case, you can stop the pro-
gram with an error code. This is the software equivalent of committing suicide
because you miss a flight. (If I did that I wouldn’t be alive even if I were a cat.)
Despite my glib attempt at humor, there is merit to the software suicide option.
If the cost of a program crash is small and the user is tolerant, stopping the
program is fine. However, more important programs need more important mea-
sures.

The problem is that the part of a program that spots an error isn’t always the
part that can figure out what to do about it. When such a routine finds an error,
it needs to let its caller know, and the caller may pass the error up the chain.
In many languages a special output is used to indicate error. Unix and C-based
systems traditionally use a return code to signal success or failure of a routine.

Ruby has a better way: exceptions. Exceptions are better because they clearly
separate normal processing from error processing. This makes programs easier
to understand, and as I hope you now believe, understandability is next to god-
liness.

Mechanics

1. Find all the callers and adjust them to use the exception.

Decide whether the caller should check for the condition before
making the call or rescue the exception.

2. Test after each such change.

3. Use Rename Method if there is a more appropriate name for the method
given the changes.

If you have many callers, this can be too big a change. You can make it more
gradual with the following steps:

1. Create a new method that uses the exception.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler334

Replace
Error Code

with
Exception

2. Modify the body of the old method to call the new method.

3. Test.

4. Adjust each caller of the old method to call the new method. Test after
each change.

5. Delete the old method.

Example

Isn’t it strange that computer textbooks often assume you can’t withdraw more
than your balance from an account, although in real life you often can?

 class Account...

 def withdraw(amount)
 return -1 if amount > @balance
 @balance -= amount
 return 0
 end

In Ruby, there are no “checked” exceptions, as there are in Java. So all that is
left to decide is how to handle the error. Should the caller check for the error
condition before calling the method, or should it rescue the exception? I look
to the likelihood of the error condition occurring to help me decide. If the error
is likely to occur in normal processing, then I would make the caller check the
condition before calling. If the error is not likely to occur, then I would rescue
the exception.

Example: Caller Checks Condition Before Calling

First I look at the callers. In this case nobody should be using the return code
because it is a programmer error to do so. If I see code such as :

 if account.withdraw(amount) == -1
 handle_overdrawn
 else
 do_the_usual_thing
 end

I need to replace it with code such as :

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Error Code with Exception 335

Replace
Error Code
with
Exception

 if !account.can_withdraw?(amount)
 handle_overdrawn
 else
 account.withdraw(amount)
 end

I can test after each change.
Now I need to remove the error code and raise an exception for the error

case. Because the behavior is (by definition) exceptional, I should use a guard
clause for the condition check:

 def withdraw(amount)
 raise ArgumentError.new if amount > @balance
 @balance -= amount
 end

Because it is a programmer error, I should signal even more clearly by using
an assertion:

 class Account
 include Assertions
 ...

 def withdraw(amount)
 assert("amount too large") { amount <= @balance }
 @balance -= amount
 end

 module Assertions
 class AssertionFailedError < StandardError; end

 def assert(message, &condition)
 unless condition.call
 raise AssertionFailedError.new("Assertion Failed: #{message}")
 end
 end

Example: Caller Catches Exception

I handle the “caller catches exception” case slightly differently. First I create (or
use) an appropriate new exception:

 class BalanceError < StandardError ; end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler336

Replace
Error Code

with
Exception

Then I adjust the callers to look like :

 begin

 account.withdraw(amount)
 do_the_usual_thing
 rescue BalanceError
 handle_overdrawn
 end

Now I change the withdraw method to use the exception:

 def withdraw(amount)
 raise BalanceError.new if amount > @balance
 @balance -= amount
 end

If there are a lot of callers, this can be too large a change without being able
to test as you go.

For these cases I can use a temporary intermediate method. I begin with the
same case as before:

 if account.withdraw(amount) == -1
 handle_overdrawn
 else
 do_the_usual_thing
 end

 class Account...

 def withdraw(amount)
 return -1 if amount > @balance
 @balance -= amount
 return 0
 end

The first step is to create a new withdraw method that uses the exception:

 def new_withdraw(amount)
 raise BalanceError.new if amount > @balance
 @balance -= amount
 end

Next I adjust the current withdraw method to use the new one:

 def withdraw(amount)
 begin

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Exception with Test 337

Replace
Exception
with Test

 new_withdraw(amount)
 return 0
 rescue BalanceException
 return -1
 end
 end

With that done, I can test. Now I can replace each of the calls to the old
method with a call to the new one:

 begin
 account.new_withdraw(amount)
 do_the_usual_thing
 rescue BalanceError
 handle_overdrawn
 end

With both old and new methods in place, I can test after each change. When
I’m finished, I can delete the old method and use Rename Method to give the
new method the old name.

Replace Exception with Test

You are raising an exception on a condition the caller could have checked first.

Change the caller to make the test first.

 def execute(command)
 command.prepare rescue nil
 command.execute
 end

 def execute(command)
 command.prepare if command.respond_to? :prepare
 command.execute
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler338

Replace
Exception

with Test

Motivation

Exceptions are an important advance in programming languages. They allow us
to avoid complex codes by use of Replace Error Code with Exception. Like so
many pleasures, exceptions can be used to excess, and they cease to be pleasur-
able. Exceptions should be used for exceptional behavior: behavior that is an
unexpected error. They should not act as a substitute for conditional tests. If
you can reasonably expect the caller to check the condition before calling the
operation, you should provide a test, and the caller should use it.

Mechanics

1. Put a test up front and copy the code from the rescue clause into the
appropriate leg of the if statement.

2. Add an assertion to the rescue clause to notify you whether the rescue
clause is executed.

3. Test.

4. Remove the rescue clause and the begin block if there are no other rescue
clauses.

5. Test.

Example

For this example I use an object that manages resources that are expensive to
create but can be reused. Database connections are a good example of this.
Such a manager has two pools of resources, one that is available for use and
one that is allocated. When a client wants a resource, the pool hands it out and
transfers it from the available pool to the allocated pool. When a client releases
a resource, the manager passes it back. If a client requests a resource and none
is available, the manager creates a new one.

The method for giving out resources might look like this:

 class ResourceStack...

 def pop
 ... #raises EmptyStackError if the stack is empty
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Exception with Test 339

Replace
Exception
with Test

 class ResourcePool
 def initialize
 @available = ResourceStack.new
 @allocated = ResourceStack.new
 end

 def resource
 begin
 result = @available.pop
 @allocated.push(result)
 return result
 rescue EmptyStackError
 result = Resource.new
 @allocated.push(result)
 return result
 end
 end

 end

In this case running out of resources is not an unexpected occurrence, so I
should not use an exception.

To remove the exception I first add an appropriate up-front test and do the
empty behavior there:

 def resource
 if @available.empty?
 result = Resource.new
 @allocated.push(result)
 return result
 else
 begin
 result = @available.pop
 @allocated.push(result)
 return result
 rescue EmptyStackError
 result = Resource.new
 @allocated.push(result)
 return result
 end
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler340

Replace
Exception

with Test

With this the exception should never occur. I can add an assertion to check
this:

 def resource
 if @available.empty?
 result = Resource.new
 @allocated.push(result)
 return result
 else
 begin
 result = @available.pop
 @allocated.push(result)
 return result
 rescue EmptyStackError
 Assert.should_never_reach_here("available was empty on pop")
 result = Resource.new
 @allocated.push(result)
 return result
 end
 end
 end

 class Assert...
 def self.should_never_reach_here(message)
 raise message
 end

Now I can test. If all goes well, I can remove the begin-rescue block completely:

 def resource
 if @available.empty?
 result = Resource.new
 @allocated.push(result)
 return result
 else
 result = @available.pop
 @allocated.push(result)
 return result
 end
 end

After this I usually find I can clean up the conditional code. Here I can use
Consolidate Duplicate Conditional Fragments:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Gateway 341

Introduce
Gateway

 def resource
 if @available.empty?
 result = Resource.new
 else
 result = @available.pop
 end
 @allocated.push(result)
 result
 end

Introduce Gateway

You want to interact with a complex API of an external system or resource in a
simplified way.

Introduce a Gateway that encapsulates access to an external system or resource.

Person

save

Gateway

execute

Post Gateway

save

save

Person

Motivation

Interesting software rarely lives in isolation. Even the purest Object-Oriented
system often has to deal with things that aren’t objects. The majority of Rails
applications use ActiveRecord as a Gateway to a relational database. Additionally,
Ruby applications often make use of YAML files and connection to one or more
Web services.

When accessing external systems or resources, you’ll usually get APIs for
them. However, these APIs are naturally going to be somewhat complicated
because they are designed to be flexible and reusable for various consumers.
Anyone who needs to understand a resource needs to understand its API. Not
only does this make the software harder to understand, it also makes it much

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler342

Introduce
Gateway

harder to change should you shift some data from a relational database to an
XML message at some point in the future.

Mechanics

1. Introduce a Gateway that uses the underlying API.

2. Change one use of the API to use the Gateway instead.

3. Test.

4. Change all other uses of the API to use the Gateway instead.

5. Test.

Example

Imagine we are working with an application that uses Web Services to persist all
its data. The save methods of the domain objects could be implemented using
the net/http library included in the Ruby Standard Library.

 class Person
 attr_accessor :first_name, :last_name, :ssn

 def save
 url = URI.parse('http://www.example.com/person’)
 request = Net::HTTP::Post.new(url.path)
 request.set_form_data(
 "first_name" => first_name,
 "last_name" => last_name,
 "ssn" => ssn
)
 Net::HTTP.new(url.host, url.port).start {|http| http.request(request) }
 end
 end

Unfortunately, we are working with a few different services provided by
different teams. Because the teams are different they’ve chosen to create their
Web services in different ways. Some teams allow you to post form data; oth-
ers require that you send over get requests. Additionally, there’s the matter of
authentication. Some use IPs to trust internal calls, but others require you to
use basic HTTP authentication. In the end, each save method is similar, but not
similar enough that Form Template Method can be easily applied.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Gateway 343

Introduce
Gateway

The following are a few more example domain objects that demonstrate the
differences between the save methods.

 class Company
 attr_accessor :name, :tax_id

 def save
 url = URI.parse('http://www.example.com/companies’)
 request = Net::HTTP::Get.new(url.path + "?name=#{name}&tax_id=#{tax_id}")
 Net::HTTP.new(url.host, url.port).start {|http| http.request(request) }
 end
 end

 class Laptop
 attr_accessor :assigned_to, :serial_number

 def save
 url = URI.parse('http://www.example.com/issued_laptop’)
 request = Net::HTTP::Post.new(url.path)
 request.basic_auth 'username’, 'password’
 request.set_form_data(
 "assigned_to" => assigned_to,
 "serial_number" => serial_number
)
 Net::HTTP.new(url.host, url.port).start {|http| http.request(request) }
 end
 end

The solution is to create a Gateway that simplifies the API for consumption,
but simply delegates behind the scenes to net/http.

We’ll begin by creating the Gateway and only giving it the methods required
by the Person class.

 class Gateway
 attr_accessor :subject, :attributes, :to

 def self.save
 gateway = self.new
 yield gateway
 gateway.execute
 end

 def execute
 request = Net::HTTP::Post.new(url.path)
 attribute_hash = attributes.inject({}) do |result, attribute|
 result[attribute.to_s] = subject.send attribute

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler344

Introduce
Gateway

 result
 end
 request.set_form_data(attribute_hash)
 Net::HTTP.new(url.host, url.port).start {|http| http.request(request) }
 end

 def url
 URI.parse(to)
 end
 end

Now the Person class can be updated to use the new Gateway class.

 class Person
 attr_accessor :first_name, :last_name, :ssn

 def save
 Gateway.save do |persist|
 persist.subject = self
 persist.attributes = [:first_name, :last_name, :ssn]
 persist.to = 'http://www.example.com/person’
 end
 end
 end

Next we update the Gateway to support the Company class. The Company class
introduces the need for supporting both get and post. To support both we’re
going to introduce the PostGateway and the GetGateway.

 class Gateway
 # ...

 def self.save
 gateway = self.new
 yield gateway
 gateway.execute
 end

 def execute
 Net::HTTP.new(url.host, url.port).start do |http|
 http.request(build_request)
 end
 end

 class PostGateway < Gateway

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Gateway 345

Introduce
Gateway

 def build_request
 request = Net::HTTP::Post.new(url.path)
 attribute_hash = attributes.inject({}) do |result, attribute|
 result[attribute.to_s] = subject.send attribute
 result
 end
 request.set_form_data(attribute_hash)
 end
 end

 class GetGateway < Gateway
 def build_request
 parameters = attributes.collect do |attribute|
 "#{attribute}=#{subject.send(attribute)}"
 end
 Net::HTTP::Get.new("#{url.path}?#{parameters.join("&")}")
 end
 end

The Company class can now use the GetGateway, and the Person class can use the
PostGateway.

 class Company
 attr_accessor :name, :tax_id

 def save
 GetGateway.save do |persist|
 persist.subject = self
 persist.attributes = [:name, :tax_id]
 persist.to = 'http://www.example.com/companies’
 end
 end
 end

 class Person
 attr_accessor :first_name, :last_name, :ssn

 def save
 PostGateway.save do |persist|
 persist.subject = self
 persist.attributes = [:first_name, :last_name, :ssn]
 persist.to = 'http://www.example.com/person’
 end
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler346

Introduce
Expression

Builder

Next, authentication support must be added to the Gateway for the Laptop class.

 class Gateway
 attr_accessor :subject, :attributes, :to, :authenticate

 def execute
 request = build_request(url)
 request.basic_auth 'username’, 'password’ if authenticate
 Net::HTTP.new(url.host, url.port).start {|http| http.request(request) }
 end

 # ...
 end

With support in place for authentication the last thing to do is change the
Laptop to take advantage of the Gateway.

 class Laptop
 attr_accessor :assigned_to, :serial_number

 def save
 PostGateway.save do |persist|
 persist.subject = self
 persist.attributes = [:assigned_to, :serial_number]
 persist.authenticate = true
 persist.to = 'http://www.example.com/issued_laptop’
 end
 end
 end

We can then use Introduce Expression Builder to interact with the Gateway
in a more fluent manner. This example is continued there.

Introduce Expression Builder

You want to interact with a public interface in a more fluent manner and not
muddy the interface of an existing object.

Introduce an Expression Builder and create an interface specific to your
application.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Expression Builder 347

Introduce
Expression
Builder

Person

save

http
save

Post Gateway

save
subject=
attributes=
to=
authenticate=

Gateway
Expression Builder

post
with_authentication
to

Post Gateway

save
subject=
attributes=
to=

def save
 PostGateway.save do |persist|
 persist.subject = self
 persist.attributes = [:first_name, :last_name, :ssn]
 persist.authenticate = true
 persist.to = ‘http://www.example.com/person’
 end
end

def save
 http.post(:assigned_to, :serial_number).with_authentication.to(‘http://www.example.com/issued_laptop’)
end

return GatewayExpressionBuilder.new(self)

Person

Motivation

APIs are usually designed to provide a set of self-standing methods on objects;
ideally these methods can be understood individually. This is in contrast to a
fluent interface that is designed around the readability of a whole expression.
Fluent interfaces often lead to methods that make little sense individually.

An Expression Builder provides a fluent interface as a separate layer on top
of the regular API. It has one job—to supply the fluent interface—leaving the
original object to provide the interface that can be understood on a method-by-
method basis.

Mechanics

1. Change the calling code to use the fluent interface.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler348

Introduce
Expression

Builder

The fluent interface is much easier to design by writing the client
code first.

2. Create an Expression Builder that uses the original object.

3. Change one use of the original object to use the Expression Builder
instead.

4. Test.

5. Change all other uses of the original object to use the Expression Builder
instead.

6. Test.

Example

Imagine we are working with an application that uses Web services to persist all
its data. We’re going to build on the example used in Introduce Gateway.

Currently, the Person, Company, and Laptop classes are defined as follows.

 class Person
 attr_accessor :first_name, :last_name, :ssn

 def save
 PostGateway.save do |persist|
 persist.subject = self
 persist.attributes = [:first_name, :last_name, :ssn]
 persist.to = 'http://www.example.com/person’
 end
 end
 end

 class Company
 attr_accessor :name, :tax_id

 def save
 GetGateway.save do |persist|
 persist.subject = self
 persist.attributes = [:name, :tax_id]
 persist.to = 'http://www.example.com/companies’

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Expression Builder 349

Introduce
Expression
Builder

 end
 end
 end

 class Laptop
 attr_accessor :assigned_to, :serial_number

 def save
 PostGateway.save do |persist|
 persist.subject = self
 persist.attributes = [:assigned_to, :serial_number]
 persist.authenticate = true
 persist.to = 'http://www.example.com/issued_laptop’
 end
 end
 end

The Person, Company, and Laptop classes use the Gateway to hide the complexity of
the underlying API, but the Gateway interface can be made more fluent.

The solution is to create an Expression Builder that exposes a fluent interface
for consumption, but simply delegates behind the scenes to the Gateway.

We’ll begin by writing the Ruby that we’d like to use in our Person class.

 class Person
 attr_accessor :first_name, :last_name, :ssn
 def save
 http.post(:first_name, :last_name, :ssn).to(
 'http://www.example.com/person’
)
 end
 end

There’s a couple of ways that we could implement this interface. We could
make the http method return the relevant Gateway class, and add a post method
and to method to the Gateway. The problem with this is that a method called “ to”
makes no sense outside the context of the fluent expression. Defining to on the
Gateway class would muddy its interface.

A better option is to create a class whose sole responsibility is to provide our
desired fluent interface. It can delegate to the relevant Gateway object to do the
real work. That way, the Gateway objects’ interfaces can all be easily understood in
isolation, yet we can still have our fluent calling code.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler350

Introduce
Expression

Builder

In this example we’ll create a GatewayExpressionBuilder class to provide the fluency.
Our http method will return an instance of this class.

 class Person
 def save
 http.post(:first_name, :last_name, :ssn).to(
 'http://www.example.com/person’
)
 end

 private

 def http
 GatewayExpressionBuilder.new(self)
 end

 end

 class GatewayExpressionBuilder
 def initialize(subject)
 @subject = subject
 end

 def post(attributes)
 @attributes = attributes
 end

 def to(address)
 PostGateway.save do |persist|
 persist.subject = @subject
 persist.attributes = @attributes
 persist.to = address
 end
 end
 end

Next we’ll change the Company class to use a fluent interface. Again we will cre-
ate the fluent interface before worrying about the implementation.

 class Company < DomainObject
 attr_accessor :name, :tax_id

 def save
 http.get(:name, :tax_id).to('http://www.example.com/companies’)
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Expression Builder 351

Introduce
Expression
Builder

 end

As the preceding example shows, while creating our fluent interface we
noticed that the http method was common and went ahead with extracting that
to a base class.

 class DomainObject
 def http
 GatewayExpressionBuilder.new(self)
 end
 end

Now that we know what interface the Company class would like to use we can
update the GatewayExpressionBuilder class. The Company class introduces the need for
supporting both the GetGateway and the PostGateway. This is fairly easily handled by
storing the desired Gateway subclass class as an instance variable. In the to method
we’ll use the @gateway instead of hard-coding which Gateway to use.

 class GatewayExpressionBuilder
 # ...

 def post(attributes)
 @attributes = attributes
 @gateway = PostGateway
 end

 def get(attributes)
 @attributes = attributes
 @gateway = GetGateway
 end

 def to(address)
 @gateway.save do |persist|
 persist.subject = @subject
 persist.attributes = @attributes
 persist.to = address
 end
 end
 end

Again, we’ll create our fluent interface for Laptop first and worry about imple-
menting the required methods when we know what we want.

 class Laptop

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 10 Making Method Calls Simpler352

Introduce
Expression

Builder

 attr_accessor :assigned_to, :serial_number

 def save
 http.post(:assigned_to, :serial_number).with_authentication.to(
 'http://www.example.com/issued_laptop’
)
 end
 end

The final change to GatewayExpressionBuilder is to add support for authentication.

 class GatewayExpressionBuilder
 # ...

 def with_authentication
 @with_authentication = true
 end

 def to(address)
 @gateway.save do |persist|
 persist.subject = @subject
 persist.attributes = @attributes
 persist.authenticate = @with_authentication
 persist.to = address
 end
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

353

Chapter 11

Dealing with Generalization

Generalization produces its own batch of refactorings, mostly dealing with
moving methods around a hierarchy of inheritance, or a module hierarchy. Pull
Up Method and Push Down Method promote function up and down a hierar-
chy, respectively. Rather than pushing down a constructor, it is often useful to
use Replace Constructor with Factory Method.

If you have methods that have a similar outline body but vary in details, you
can use Form Template Method to separate the differences from the similarities.

In addition to moving functionality around a hierarchy, you can change the
hierarchy by creating new classes or modules. Extract Module, Extract Sub-
class, and Introduce Inheritance all do this by forming new elements out of
various points. If you find yourself with unnecessary classes or modules in your
hierarchy, you can use Collapse Hierarchy or Inline Module to remove them.

Sometimes you find that inheritance is not the best way of handling a situa-
tion and that you need delegation instead. Replace Inheritance with Delegation
helps make this change. Sometimes life is the other way around and you have to
use Replace Delegation with Hierarchy.

It is a good idea to use Replace Abstract Superclass with Module if you
never intend to directly instantiate your superclass, to better communicate this
intention.

Pull Up Method

You have methods with identical results on subclasses.

Move them to the superclass.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization354

Pull Up
Method

Salesman

name

Engineer

name

Employee

name
Employee

EngineerSalesman

Motivation

Eliminating duplicate behavior is important. Although two duplicate methods
work fine as they are, they are nothing more than a breeding ground for bugs
in the future. Whenever there is duplication, you face the risk that an alteration
to one will not be made to the other. Usually it is difficult to find the duplicates.

The easiest case of using Pull Up Method occurs when the methods have the
same body, implying there’s been a copy and paste. Of course it’s not always as
obvious as that. You could just do the refactoring and see if the tests croak, but
that puts a lot of reliance on your tests. I usually find it valuable to look for the
differences; often they show up behavior that I forgot to test for.

Often Pull Up Method comes after other steps. You see two methods in dif-
ferent classes that can be parameterized in such a way that they end up as essen-
tially the same method. In that case the smallest step is to parameterize each
method separately and then generalize them. Do it in one go if you feel confi-
dent enough.

A special case of the need for Pull Up Method occurs when you have a sub-
class method that overrides a superclass method yet does the same thing.

The most awkward element of Pull Up Method is that the body of the meth-
ods may refer to features that are on the subclass but not on the superclass. If
the feature is a method, you may be able to generalize the other method. You
may need to change a method’s signature or create a delegating method to get
this to work.

If you have two methods that are similar but not the same, you may be able
to use Form Template Method.

This refactoring also applies to a module hierarchy, where a method is dupli-
cated on two or more classes that include a module. Move the methods onto the
module itself.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Pull Up Method 355

Pull Up
Method

Mechanics

1. Inspect the methods to ensure they are identical.

If the methods look like they do the same thing but are not identi-
cal, use Substitute Algorithm on one of them to make them identical.

2. If the methods have different signatures, change the signatures to the one
you want to use in the superclass.

3. Create a new method in the superclass, copy the body of one of the meth-
ods to it, and adjust.

4. Delete one subclass method.

5. Test.

6. Keep deleting subclass methods and testing until only the superclass
method remains.

Example

Consider a customer with two subclasses: regular customer and preferred cus-
tomer (see Figure 11.1).

add_bill(date, amount)
last_bill_date

Customer

create_bill(date)
charge_for(start_date, end_date)

Regular Customer

create_bill(date)
charge_for(start_date, end_date)

Perferred Customer

Figure 11.1 Regular customer and preferred customer .

The create_bill method is identical for each class:

 def create_bill(date)
 charge_amount = charge_for(last_bill_date, date)

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization356

Push
Down

Method

 add_bill(date, charge_amount)
 end

I copy create_bill from one of the subclasses. I then remove the create_bill
method from one of the subclasses and test. I then remove it from the other and
test (see Figure 11.2).

charge_for(start_date, end_date)

Perferred Customer

charge_for(start_date, end_date)

Regular Customer

last_bill_date
Customer

add_bill()date, amount)
create_bill(date)
charge_for(start_date, end_date)

Figure 11.2 Inheritance hierarchy after pulling the create_bill method up to the
superclass.

Push Down Method

Behavior on a superclass is relevant only for some of its subclasses.

Move it to those subclasses.

Salesman

quota

Employee

quota
Employee

Engineer EngineerSalesman

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Extract Module 357

Extract
Module

Motivation

Pull Down Method is the opposite of Pull Up Method. I use it when I need to
move behavior from a superclass to a specific subclass, usually because it makes
sense only there. You often do this when you use Extract Subclass. Pull Down
Method is also used to move methods from a module onto a class that includes
that module.

Mechanics

1. Declare a method in all subclasses and copy the body into each subclass.

Use an accessor on the superclass to access any fields on the super-
class. Make the accessor protected if public access isn’t required.

2. Remove method from superclass.

3. Test.

4. Remove the method from each subclass that does not need it.

5. Test.

Extract Module

You have duplicated behavior in two or more classes.

Create a new module and move the relevant behavior from the old class into the
module, and include the module in the class.

 class Bid...

 before_save :capture_account_number

 def capture_account_number
 self.account_number = buyer.preferred_account_number
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization358

Extract
Module

 class Bid...
 include AccountNumberCapture
 end

 module AccountNumberCapture

 def self.included(klass)
 klass.class_eval do
 before_save :capture_account_number
 end
 end

 def capture_account_number
 self.account_number = buyer.preferred_account_number
 end
 end

Motivation

There are a number of reasons to use Extract Module, the primary one being the
removal of duplication. It’s relatively straightforward to create a new module,
move methods to the module, and include the module in the appropriate classes.
But Extract Module should be used with care. A module should have a single
responsibility, just like a class. The methods within a module should be cohe-
sive: They should make sense as a group. Too often I’ve seen modules become
“junk-drawers” for behavior. They are created with the noble goal of removing
duplication, but over time they become bloated. The methods don’t make sense
together, and it becomes difficult to find a particular piece of behavior. And
when existing behavior is hard to find, identifying and removing duplication
is an onerous task. A module that is difficult to name without using words like
“Helper” or “Assistant” is probably doing too much.

So the question becomes, when do you choose Extract Module over Extract
Class? When we’re talking about the removal of duplication, use Extract Class
whenever possible. Let’s say you have class A and class B. Behavior X is dupli-
cated in A and B. If you can remove behavior X entirely from class A and B by
extracting the behavior to class C and having instances of A and A delegate to
an instance of C, then that’s great. A and B both have one less responsibility,

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Extract Module 359

Extract
Module

the duplication has been removed, and C is now able to be reused and tested in
isolation.

If, however, behavior X only makes sense on class A and B, then Extract
Module is a better choice. Perhaps a framework you are using looks for the
behavior on class A and B, and the introduction of delegation would be messy.

Mechanics

1. Create a blank module; include the module into the original classes.

2. Start with the instance methods. One by one, use Pull Up Method to
move the common elements to the module.

If you have methods in the including classes that have different
signatures but the same purpose, use Rename Method to get them to the
same name and then use Pull Up Method.

If you have methods with different bodies that do the same thing,
you may try using Substitute Algorithm to copy one body into the other.
If this works, you can then use Pull Up Method.

3. Test after each pull.

4. For class methods that you want to call directly on the module, use Move
Method just as you did for the instance methods. Change the callers to
call the method using the module reference.

5. If you have class methods that you want to call on either of the including
classes, create an included hook on the module. Move the class method
definitions to the included hook.

6. Test after each change.

7. Examine the methods left on the including classes. See if there are com-
mon parts, if there are you can use Extract Method followed by Pull Up
Method on the common parts. If the overall flow is similar, you may be
able to use Form Template Method.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization360

Extract
Module

Example

In this example, we are using a framework that makes use of a before_save hook to
perform work before the object is saved to a database. In our case, we want to
update an account number on both the Bid and Sale objects before they are saved
to the database.

 class Bid...

 before_save :capture_account_number

 def capture_account_number
 self.account_number = buyer.preferred_account_number
 end
 end

 class Sale...

 before_save :capture_account_number

 def capture_account_number
 self.account_number = buyer.preferred_account_number
 end

 end

At this point I ask myself whether I should use Extract Class or Extract Mod-
ule. Since we want our bid and sale objects to respond to before_save (so that the
framework can call it), we’re stuck with writing some sort of code to make Bid

and Sale respond to before_save. We could conceivably implement capture_account_
number on Bid and Sale, and use it to delegate to another object, but this object
would have to be aware of the caller so that it could set the account_number. We
would be delegating to an object only to have it call back to our bid and sale,
which is undesirable. Extract Module is the way to go.

Let’s start by creating an AccountNumberCapture module.

 module AccountNumberCapture

 end

Next we’ll include this module into Bid and Sale.

 class Bid...
 include AccountNumberCapture

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Extract Module 361

Extract
Module

 end

 class Sale...
 include AccountNumberCapture

 end

We’re now ready to perform Move Method on the first (and only) instance
method. We remove it from Bid, and add it to AccountNumberCapture.

 module AccountNumberCapture

 def capture_account_number
 self.account_number = buyer.preferred_account_number
 end
 end

All going well, our tests should pass.
We don’t have any class methods to move—if we did, we’d have to

decide whether we wanted to call them directly on the module (for example,
AccountNumberCapture.my_class_method), or on one of the including classes (for example,
Bid.my_class_method). If we choose the former, we can move the class method in the
same way as we did the instance methods. But if the class method calls some-
thing specific on the including class, the method has to go on the including
class itself. For that, we would need an included hook. The same applies to our
before_save class annotation, which needs to be executed on the including class,
not on the AccountNumberCapture module. We’ll need to open up the class that’s
including our module using class_eval and make the call to before_save.

 module AccountNumberCapture...

 def self.included(klass)
 klass.class_eval do
 before_save :capture_account_number
 end
 end

This can be an awkward step at first if you’re not used to opening up classes in
this fashion, but if all goes well, the tests should pass.

We can then remove the duplicated methods from the Sale class.
The full definition of AccountNumberCapture looks like this:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization362

Inline
Module

 module AccountNumberCapture

 def self.included(klass)
 klass.class_eval do
 before_save :capture_account_number
 end
 end

 def capture_account_number
 self.account_number = buyer.preferred_account_number
 end
 end

Inline Module

The resultant indirection of the included module is no longer worth the duplica-
tion it is preventing.

Merge the module into the including class.

Motivation

Modules introduce a level of indirection—to find the behavior you first have to
go to the class definition, find the name of the included module, and then go to
the module definition. This indirection is worthwhile if you can remove duplica-
tion. But if a module is no longer pulling its weight—if the level of indirection
is not worth the savings in duplication—merge the module into the class that is
including it.

Mechanics

1. Use Push Down Method to move all the behavior out of the module onto
the class that is including the module.

2. Test with each move.

3. Remove the empty module.

4. Test.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Extract Subclass 363

Extract
Subclass

Extract Subclass

A class has features that are used only in some instances.

Create a subclass for that subset of features.

Job Item

total_price
unit_price
employee

Job Item

total_price
unit_price

Labor Item

unit_price
employee

Motivation

The main trigger for use of Extract Subclass is the realization that a class has
behavior used for some instances of the class and not for others. Sometimes this
is signaled by a type code, in which case you can use Replace Type Code with
Polymorphism, Replace Type Code with Module Extension, or Replace Type
Code with State/Strategy. Another alternative to Extract Subclass is Extract
Class. This is a choice between delegation and inheritance. Extract Subclass is
usually simpler to do, but it has limitations. You can’t change the class-based
behavior of an object once the object is created. You can change the class-
based behavior with Extract Class simply by plugging in different components.
Another limitation of subclasses is that you’re also only able to represent one
variation, as a given class in Ruby can only inherit from one superclass directly.
If you want the class to vary in several different ways, you have to use delega-
tion or module extension for all but one of them.

Mechanics

1. Define a new subclass of the source class.

2. Look for places where the subclass should be created instead of the super-
class.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization364

Extract
Subclass

If you need conditional logic to determine which type to create,
consider using Replace Constructor with Factory Method.

3. One by one use Push Down Method to move features onto the subclass.

4. Look for any field that designates information now indicated by the hier-
archy (usually a boolean or type code). Eliminate it by using Self Encap-
sulate Field and replacing the getter with polymorphic constant methods.
All users of this field should be refactored with Replace Conditional with
Polymorphism.

For any methods outside the class that use an accessor, consider
using Move Method to move the method into this class; then use Replace
Conditional with Polymorphism.

5. Test after each push down.

Example

I’ll start with a JobItem class that determines prices for items of work at a local
garage:

 class JobItem
 def initialize(unit_price, quantity, is_labor, employee)
 @unit_price = unit_price
 @quantity = quantity
 @is_labor = is_labor
 @employee = employee
 end

 def total_price
 unit_price * @quantity
 end

 def unit_price
 labor? ? @employee.rate : @unit_price
 end

 def labor?; @is_labor end

 attr_reader :quantity, :employee

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Extract Subclass 365

Extract
Subclass

 class Employee...
 attr_reader :rate

 def initialize(rate)
 @rate = rate
 end

I extract a LaborItem subclass from this class because some of the behavior and
data are needed only in that case. I begin by creating the new class:

 class LaborItem < JobItem
 end

The first thing I need is a constructor for the labor item because job item
does not have a no-arg constructor. For this I copy the signature of the parent
constructor:

 def initialize(unit_price, quantity, is_labor, employee)
 super
 end

Although this may be enough to get the tests to pass, the constructor is messy;
some arguments are needed by the labor item, and some are not. I deal with that
later.

The next step is to look for calls to the constructor of the job item, and to
look for cases where the constructor of the labor item should be called instead.
So statements like :

 j1 = JobItem.new(0, 5, true, kent)
become

 j1 = LaborItem.new(0, 5, true, kent)

Now is a good time to clean up the constructor parameter lists. I work with
the superclass first. I use a default value of false for is_labor so that I can change
the callers one-by-one:

 class JobItem...

 def initialize(unit_price, quantity, is_labor=false, employee=nil)
 @unit_price = unit_price
 @quantity = quantity
 @is_labor = is_labor
 @employee = employee
 end

Callers can now take advantage of the default values:

 j2 = JobItem.new(10, 15)

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization366

Extract
Subclass

Once I’ve run the tests, I use Remove Parameter on the subclass constructor:

 class LaborItem

 def initialize(quantity, employee)
 super(0, quantity, true, employee)
 end

Now I can start pushing down the features of the job item. I begin with the
methods. I start with using Push Down Method on the employee attribute reader:

 class LaborItem...
 attr_reader :employee

 class JobItem...
 attr_reader :employee

I can clean up the constructors so that employee is set only in the subclass into
which it is being pushed down:

 class JobItem...
 def initialize(unit_price, quantity, is_labor=false)
 @unit_price, @quantity, @is_labor = unit_price, quantity, is_labor
 end

 class LaborItem...
 def initialize(quantity, employee)
 super(0, quantity, true)
 @employee = employee
 end

The field @is_labor is used to indicate information that is now inherent in the
hierarchy. So I can remove the field. The best way to do this is to first use Self
Encapsulate Field and then change the accessor to use a polymorphic constant
method. A polymorphic constant method is one whereby each implementation
returns a (different) fixed value:

 class JobItem...
 protected

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Extract Subclass 367

Extract
Subclass

 def labor?
 false
 end

 class LaborItem...
 protected

 def labor?
 true
 end

Then I can get rid of the @labor field.
Now I can look at users of the labor? methods. These should be refactored

with Replace Conditional with Polymorphism. I take the method :

 class JobItem...
 def unit_price
 labor? ? @employee.rate : @unit_price
 end

and replace it with

 class JobItem...
 attr_reader :unit_price

 class LaborItem
 def unit_price
 @employee.rate
 end

Because unit_price is used only by items that are nonlabor (parts job items), I can
use Extract Subclass on job item again to create a parts item class. When I’ve
done that, the job item class will not be instantiated explicitly. It will only be
used as the superclass of LaborItem and PartsItem. In this case, I could use Replace
Abstract Superclass with Module.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization368

Introduce
Inheritance

Introduce Inheritance

You have two classes with similar features.

Make one of the classes a superclass and move the common features to the
superclass.

Front Suspension
Mountain Bike

off-road_abilitywheel_circumference
off_road_ability

Front Suspension
Mountain Bike

@tire_diameter
TIRE_WIDTH_FACTOR
@tire_diameter
TIRE_WIDTH_FACTOR

wheel_circumference
off_road_ability

Mountain Bike
@tire_diameter
TIRE_WIDTH_FACTORwheel_circumference

off_road_ability

Mountain Bike
@tire_diameter
TIRE_WIDTH_FACTOR

Motivation

Duplicate code is one of the principal bad things in systems. If you say things
in multiple places, then when it comes time to change what you say, you have
more things to change than you should.

One form of duplicate code is two classes that do similar things in the same
way or similar things in different ways. Objects provide a built-in mechanism
to simplify this situation with inheritance. However, you often don’t notice the
commonalities until you have created some classes, in which case you need to
create the inheritance structure later.

An alternative to Introduce Inheritance is Extract Class. The choice is essen-
tially between inheritance and delegation. Inheritance is the simpler choice if the
two classes share interface as well as behavior. If you make the wrong choice,
you can always use Replace Inheritance with Delegation later.

If you can’t use Extract Class, consider Extract Module. If you never intend
to directly instantiate the superclass, the use of a module instead will better
communicate this intention. If you make the wrong choice, it’s no big deal—you
can always use Replace Abstract Superclass with Module later.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Introduce Inheritance 369

Introduce
Inheritance

Mechanics

1. Choose one of the classes to be a superclass. Make the other classes
inherit it.

2. One by one, use Pull Up Method to move common elements to the super-
class.

If you have subclass methods that have different signatures but the
same purpose, use Rename Method to get them to the same name and
then use Pull Up Method.

If you have methods with different bodies that do the same thing,
you may try using Substitute Algorithm to copy one body into the other.
If this works, you can then use Pull Up Method.

3. Test after each pull.

4. Examine the methods left on the subclass. See if there are common parts,
if there are you can use Extract Method followed by Pull Up Method on
the common parts. If the overall flow is similar, you may be able to use
Form Template Method.

Example

Again we’ll use the mountain bike example. An instance of the MountainBike class
has no suspension, whereas FrontSuspensionMountainBike has front suspension:

 class MountainBike
 TIRE_WIDTH_FACTOR = 6
 attr_accessor :tire_diameter

 def wheel_circumference
 Math::PI * (@wheel_diameter + @tire_diameter)
 end

 def off_road_ability
 @tire_diameter * TIRE_WIDTH_FACTOR
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization370

Introduce
Inheritance

 class FrontSuspensionMountainBike

 TIRE_WIDTH_FACTOR = 6
 FRONT_SUSPENSION_FACTOR = 8

 attr_accessor :tire_diameter, :front_fork_travel

 def wheel_circumference
 Math::PI * (@wheel_diameter + @tire_diameter)
 end

 def off_road_ability
 @tire_diameter * TIRE_WIDTH_FACTOR + @front_fork_travel *
 FRONT_SUSPENSION_FACTOR
 end
 end

There are a couple of areas of commonality here. First, both kinds of bicycles
have the wheel_circumference and off_road_ability calculation, as well as the tire_diameter
attribute and TIRE_WIDTH_FACTOR. wheel_circumference is identical for both, whereas off_
road_ability is slightly different. FrontSuspensionMountainBike looks like a specialization
of MountainBike so I’ll make MountainBike the superclass:

 class FrontSuspensionMountainBike < MountainBike

 TIRE_WIDTH_FACTOR = 6
 FRONT_SUSPENSION_FACTOR = 8

 attr_accessor :tire_diameter, :front_fork_travel

 def wheel_circumference
 Math::PI * (@wheel_diameter + @tire_diameter)
 end

 def off_road_ability
 @tire_diameter * TIRE_WIDTH_FACTOR + @front_fork_travel *
 FRONT_SUSPENSION_FACTOR
 end
 end

Now I begin to pull up features to the superclass. I can start by deleting the
wheel_ circumference method, tire_diameter, and TIRE_WIDTH_FACTOR, which are exactly the

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Collapse Hierarchy 371

Collapse
Hierarchy

same on both classes. Then I can make off_road_ability in FrontSuspensionMountainBike
use MountainBike:

 class FrontSuspensionMountainBike < MountainBike

 FRONT_SUSPENSION_FACTOR = 8

 attr_accessor :front_fork_travel

 def off_road_ability
 super + @front_fork_travel * FRONT_SUSPENSION_FACTOR
 end

 end

Collapse Hierarchy

A superclass and subclass (or module and the class that includes the module) are
not very different.

Merge them together.

Employee

Employee

Salesman

Motivation

If you have been working for a while with a class or module hierarchy, it can
easily become too tangled for its own good. Refactoring the hierarchy often
involves pushing methods and fields up and down the hierarchy. After you’ve
done this you can well find you have a subclass or module that isn’t adding any
value, so you need to merge the hierarchy together.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization372

Form
Template

Method

Mechanics

We describe here the mechanics for merging an inheritance hierarchy, but the
refactoring is the same for modules.

1. Choose which class is going to be removed: the superclass or the sub-
classes.

2. Use Pull Up Method or Push Down Method to move all the behavior of
the removed class to the class with which it is being merged.

3. Test with each move.

4. Adjust references to the class that will be removed to use the merged
class.

5. Remove the empty class.

6. Test.

Form Template Method

You have two methods in subclasses that perform similar steps in the same
order, yet the steps are different.

Get the steps into methods with the same signature, so that the original methods
become the same. Then you can pull them up.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Form Template Method 373

Form
Template
Method

Site

base_amount() + tax_amount()

billable_amount

Residential Site

base_amount
tax_amount

Residential Site

base_amount
tax_amount

Lifeline Site

billable_amount
base_amount
tax_amount

Site

billable_amount

Lifeline Site

base = @units * @rate * 0.5
tax = base * Site:: TAX_RATE * 0.2
base + tax

base = @units * @rate
tax = base * Site:: TAX_RATE
base + tax

Motivation

Inheritance is a powerful tool for eliminating duplicate behavior. Whenever we see
two similar methods in a subclass, we want to bring them together in a superclass.
But what if they are not exactly the same? What do we do then? We still need to
eliminate all the duplication we can but keep the essential differences.

A common case is two methods that seem to carry out broadly similar steps
in the same sequence, but the steps are not the same. In this case we can move
the sequence to the superclass and allow polymorphism to play its role in ensur-
ing the different steps do their things differently. This kind of method is called a
template method [Gang of Four].

In Ruby, it is also possible to Form Template Method using the extension of
modules. The class that extends the modules plays the role of the superclass,
housing the sequence, while the modules implement the specific behavior.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization374

Form
Template

Method

Mechanics

1. Decompose the methods so that all the extracted methods are either iden-
tical or completely different.

2. Use Pull Up Method to pull the identical methods into the superclass
(when using inheritance) or the class that extends the modules (when
using module extension).

3. For the different methods use Rename Method so the signatures for all
the methods at each step are the same.

This makes the original methods the same in that they all issue the
same set of method calls, but the subclasses/modules handle the calls dif-
ferently.

4. Test after each signature change.

5. Use Pull Up Method on one of the original methods.

6. Test.

7. Remove the other methods. Test after each removal.

Example 1: Template Method Using Inheritance

I finish where I left off in Chapter 1, “Refactoring, a First Example.” I had a
customer class with two methods for printing statements. The statement method
prints statements in ASCII:

 def statement
 result = "Rental Record for #{name}\n"
 @rentals.each do |rental|
 # show figures for this rental
 result << "\t#{rental.movie.title}\t#{rental.charge}\n"
 end
 # add footer lines
 result << "Amount owed is #{total_charge}\n"
 result << "You earned #{total_frequent_renter_points} frequent renter\
 points"
 result
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Form Template Method 375

Form
Template
Method

while the html_statement does them in HTML:

 def html_statement
 result = "<H1>Rentals for #{name}</H1><P>\n"
 @rentals.each do |rental|
 # show figures for this rental
 result << "#{rental.movie.title}: \t#{rental.charge}
\n"
 end
 # add footer lines
 result << "<P>You owe #{total_charge}</P>\n"
 result << "On this rental you earned #{total_frequent_renter_points}</\
EM> frequent renter points</P>"
 end

Before I can use Form Template Method I need to arrange things so that the two
methods are subclasses of some common superclass. I do this by using a method
object [Beck] to create a separate strategy hierarchy for printing the statements
(refer to Figure 11.3).

 class Statement; end
 class TextStatement < Statement; end
 class HtmlStatement < Statement; end

Now I use Move Method to move the two statement methods over to the
subclasses:

 class Customer
 def statement
 TextStatement.value(self)
 end

 def html_statement
 HtmlStatement.value(self)
 end

Customer

Html
Statement

Text
Statement

Statement

Figure 11.3 Using a strategy for statements .

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization376

Form
Template

Method

 class TextStatement < Statement
 def value(customer)
 result = "Rental Record for #{customer.name}\n"
 customer.rentals.each do |rental|
 # show figures for this rental
 result << "\t#{rental.movie.title}\t#{rental.charge}\n"
 end
 # add footer lines
 result << "Amount owed is #{customer.total_charge}\n"
 result << "You earned #{customer.total_frequent_renter_points} frequent\
 renter points"
 end
 end

 class HtmlStatement < Statement
 def value(customer)
 result = "<H1>Rentals for #{customer.name}</H1><P>\n"
 customer.rentals.each do |rental|
 # show figures for this rental
 result << "#{rental.movie.title}: \t#{rental.charge}
\n"
 end
 # add footer lines
 result << "<P>You owe #{customer.total_charge}</P>\n"
 result << "On this rental you earned \
 #{customer.total_frequent_renter_points} frequent renter points</P>"
 end
 end

As I moved them I renamed the statement methods to better fit the strategy. I gave them
the same name because the difference between the two now lies in the class rather than
the method. (For those trying this from the example, I also had to add a rentals method
to customer and relax the visibility of total_charge and total_frequent_renter_points.

With two similar methods on subclasses, I can start to use Form Template
Method. The key to this refactoring is to separate the varying code from the
similar code by using Extract Method to extract the pieces that are different
between the two methods. Each time I extract I create methods with different
bodies but the same signature.

The first example is the printing of the header. Both methods use the customer to
obtain information, but the resulting string is formatted differently. I can extract the
formatting of this string into separate methods with the same signature:

 class TextStatement < Statement
 def value(customer)

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Form Template Method 377

Form
Template
Method

 result = header_string(customer)
 customer.rentals.each do |rental|
 # show figures for this rental
 result << "\t#{rental.movie.title}\t#{rental.charge}\n"
 end
 # add footer lines
 result << "Amount owed is #{customer.total_charge}\n"
 result << "You earned #{customer.total_frequent_renter_points} frequent\
 renter points"
 end

 def header_string(customer)
 "Rental Record for #{customer.name}\n"
 end
 end

 class HtmlStatement < Statement

 def value(customer)
 result = header_string(customer)
 customer.rentals.each do |rental|
 # show figures for this rental
 result << "#{rental.movie.title}: \t#{rental.charge}
\n"
 end
 # add footer lines
 result << "<P>You owe #{customer.total_charge}</P>\n"
 result << "On this rental you earned \
 #{customer.total_frequent_renter_points} frequent renter points</P>"
 end

 def header_string(customer)
 "<H1>Rentals for #{customer.name}</H1><P>\n"
 end
 end

I test and then continue with the other elements. I did the steps one at a time.
Here is the result:

 class TextStatement < Statement
 def value(customer)
 result = header_string(customer)
 customer.rentals.each do |rental|
 result << each_rental_string(rental)
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization378

Form
Template

Method

 result << footer_string(customer)
 end

 def header_string(customer)
 "Rental Record for #{customer.name}\n"
 end

 def each_rental_string(rental)
 "\t#{rental.movie.title}\t#{rental.charge}\n"
 end

 def footer_string(customer)
 <<-EOS
 Amount owed is #{customer.total_charge}
 You earned #{customer.total_frequent_renter_points} frequent renter
 points
 EOS
 end
 end

 class HtmlStatement < Statement
 def value(customer)
 result = header_string(customer)
 customer.rentals.each do |rental|
 result << each_rental_string(rental)
 end
 result << footer_string(customer)
 end

 def header_string(customer)
 "<h1>Rentals for #{customer.name}</h1><p>\n"
 end

 def each_rental_string(rental)
 "#{rental.movie.title}: \t#{rental.charge}
\n"
 end

 def footer_string(customer)
 <<-EOS
 <P>You owe #{customer.total_charge}</P>
 On this rental you earned #{customer.
 total_frequent_ renter_points} frequent renter points</P>
 EOS
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Form Template Method 379

Form
Template
Method

 end

Once these changes have been made, the two value methods look remarkably
similar. So I use Pull Up Method on one of them, picking the text version at
random:

 class Statement...
 def value(customer)
 result = header_string(customer)
 customer.rentals.each do |rental|
 result << each_rental_string(rental)
 end
 result << footer_string(customer)
 end

I remove the value method from text statement and test. When that works I
remove the value method from the HTML statement and test again. The result
is shown in Figure 11.4.

After this refactoring, it is easy to add new kinds of statements. All you have
to do is create a subclass of statement that implements the three methods.

Customer

statement()
html_statement()

Statement

1
value(customer)

Html Statement

header_string(customer)
each_rental_string(rental)
footer_string(customer)

Text Statement

header_string(customer)
each_rental_string(rental)
footer_string(customer)

Figure 11.4 Classes after forming the template method .

Technically, if the Statement class was never to be instantiated directly, I would
make it a module. (See Replace Abstract Superclass with Module later in this
chapter for an explanation.) I’d then include the Statement module in each of the
HtmlStatement and TextStatement classes. But the traditional Template Method pattern
is done with inheritance, so I thought an example would be useful.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization380

Form
Template

Method

Example 2: Template Method Using Extension of Modules

For this example, we’ll go back to the code as it stood at the end of Chapter 1:

 def statement
 result = "Rental Record for #{name}\n"
 @rentals.each do |rental|
 # show figures for this rental
 result << "\t#{rental.movie.title}\t#{rental.charge}\n"
 end
 # add footer lines
 result << "Amount owed is #{total_charge}\n"
 result << "You earned #{total_frequent_renter_points} frequent renter\
 points"
 result
 end

 def html_statement
 result = "<H1>Rentals for #{name}</H1><P>\n"
 @rentals.each do |rental|
 # show figures for this rental
 result << "#{rental.movie.title}: \t#{rental.charge}
\n"
 end
 # add footer lines
 result << "<P>You owe #{total_charge}</P>\n"
 result << "On this rental you earned \
 #{total_frequent_renter_points} frequent renter points</P>"
 end

Similarly to the inheritance example, I first create a Statement class. Instead of
creating two subclasses of Statement, I create two modules to house the unique
behavior:

 class Statement
 end

 module TextStatement
 end

 module HtmlStatement
 end

I use Move Method to move the two statement methods over to the modules:

 class Customer
 def statement

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Form Template Method 381

Form
Template
Method

 Statement.new.extend(TextStatement).value(self)
 end

 def html_statement
 Statement.new.extend(HtmlStatement).value(self)
 end
 end

 module TextStatement
 def value(customer)
 result = "Rental Record for #{customer.name}\n"
 customer.rentals.each do |rental|
 # show figures for this rental
 result << "\t#{rental.movie.title}\t#{rental.charge}\n"
 end
 # add footer lines
 result << "Amount owed is #{customer.total_charge}\n"
 result << "You earned #{customer.total_frequent_renter_points} frequent\
 renter points"
 end
 end

 module HtmlStatement
 def value(customer)
 result = "<H1>Rentals for #{customer.name}</H1><P>\n"
 customer.rentals.each do |rental|
 # show figures for this rental
 result << "#{rental.movie.title}: \t#{rental.charge}
\n"
 end
 # add footer lines
 result << "<P>You owe #{customer.total_charge}</P>\n"
 result << "On this rental you earned \
 #{customer.total_frequent_renter_points} frequent renter points</P>"
 end
 end

As with the inheritance example, I use Extract Method on any unique behav-
ior:

 module TextStatement...
 def value(customer)
 result = header_string(customer)
 customer.rentals.each do |rental|
 result << each_rental_string(rental)

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization382

Form
Template

Method

 end
 result << footer_string(customer)
 end

 def header_string(customer)
 "Rental Record for #{customer.name}\n"
 end

 def each_rental_string(rental)
 "\t#{rental.movie.title}\t#{rental.charge}\n"
 end

 def footer_string(customer)
 <<-EOS
 Amount owed is #{customer.total_charge}
 You earned #{customer.total_frequent_renter_points} frequent renter
 points
 EOS
 end
 end

 module HtmlStatement...
 def value(customer)
 result = header_string(customer)
 cusotmer.rentals.each do |rental|
 result << each_rental_string(rental)
 end
 result << footer_string(customer)
 end

 def header_string(customer)
 "<H1>Rentals for #{customer.name}</H1><P>\n"
 end

 def each_rental_string(rental)
 "#{rental.movie.title}: \t#{rental.charge}
\n"
 end

 def footer_string(customer)
 <<-EOS
 <P>You owe #{customer.total_charge}</P>
 On this rental you earned #{customer.
 total_frequent_ renter_points} frequent renter points</P>
 EOS
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Form Template Method 383

Form
Template
Method

 end

The final step is to pull up the value method.

 class Statement...
 def value(customer)
 result = header_string(customer)
 customer.rentals.each do |rental|
 result << each_rental_string(rental)
 end
 result << footer_string(customer)
 end

 module TextStatement...
 def header_string(customer)
 "Rental Record for #{customer.name}\n"
 end

 def each_rental_string(rental)
 "\t#{rental.movie.title}\t#{rental.charge}\n"
 end

 def footer_string(customer)
 <<-EOS
 Amount owed is #{customer.total_charge}
 You earned #{customer.total_frequent_renter_points} frequent renter
 points
 EOS
 end
 end

 module HtmlStatement...
 def header_string(customer)
 "<h1>Rentals for #{customer.name}</h1><p>\n"
 end

 def each_rental_string(rental)
 "#{rental.movie.title}: \t#{rental.charge}
\n"
 end

 def footer_string(customer)
 <<-EOS

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization384

Form
Template

Method

 <P>You owe #{customer.total_charge}</P>
 On this rental you earned #{customer.
 total_frequent_ renter_points} frequent renter points</P>
 EOS
 end
 end

And finally we’re left with the structure shown in Figure 11.5.

def value(customer)
 result + header_string(customer)
 customer.rentals.each do |rental|

result << each_rental_string(rental)
 end
 result << footer_string(customer)
end

return GatewayExpressionBuilder.new(self)

def html_statement
 Statement.new.extend(HtmlStatement).value(self)
end

def html_statement
 Statement.new.extend(HtmlStatement).value(self)
end

Customer

statement()
html_statement()
total_charge()
total_frequent_renter_points()

name

<<module>>
Text Statement

header_string
footer_string
each_rental_string

<<module>>
Html Statement

header_string
footer_string
each_rental_string

Customer

statement()
html_statement()

name
Statement

value

run-time
extension

Figure 11.5 Using dynamic extension of modules to implement Form Template
Method.

Notice that the implementation using extension of modules is similar to the
inheritance example. So why use extend instead of inheritance? The answer is
that you would use extend if the modules you were creating could be used to
extend various classes.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Form Template Method 385

Form
Template
Method

For example, let’s imagine that the next requirement of our application is
to display the preceding information for only the previous month. The current
statement class gives a list of each rental associated with a customer for all
months. To satisfy our new requirement we could create a MonthlyStatement class
similar to the following code.

 MonthlyStatement
 def value(customer)
 result = header_string(customer)
 rentals = customer.rentals.select do |rental|
 rental.date > DateTime.now -30
 end
 rentals.each do |rental|
 result << each_rental_string(rental)
 end
 result << footer_string(customer)
 end
 end

The advantage of module extension is now clear: Because a given class in
Ruby can inherit directly from only one other class, the inheritance approach
would have forced us to implement both a TextMonthlyStatement class and an
HtmlMonthlyStatement class, instead of our MonthlyStatement class. Each new subclass
would have had to decide whether to output the rental based on the rental date,
which is not ideal. The module extension approach allows us to avoid the com-
plexity of another level of inheritance and consolidates the date-checking code
into one method.

 class Customer
 def statement
 Statement.new.extend(TextStatement).value(self)
 end

 def html_statement
 Statement.new.extend(HtmlStatement).value(self)
 end

 def monthly_statement
 MonthlyStatement.new.extend(TextStatement).value(self)
 end

 def monthly_html_statement
 MonthlyStatement.new.extend(HtmlStatement).value(self)
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization386

Replace
Inheritance

with
Delegation

Replace Inheritance with Delegation

A subclass uses only part of a superclass interface or does not want to inherit
data.

Create a field for the superclass, adjust methods to delegate to the superclass,
and remove the subclassing.

return @rules.empty?

Hash

empty?

Hash

empty?

Policy

empty?
rules : Hash

1

Policy

Motivation

Inheritance is a wonderful thing, but sometimes it isn’t what you want. Often
you start inheriting from a class but then find that many of the superclass opera-
tions aren’t really true of the subclass. In this case you have an interface that’s
not a true reflection of what the class does. Or you may find that you are inher-
iting a whole load of data that is not appropriate for the subclass. Or you may
find that there are protected superclass methods that don’t make much sense
with the subclass.

You can live with the situation and use convention to say that although it is a
subclass, it’s using only part of the superclass function. But that results in code
that says one thing when your intention is something else—a confusion you
should remove.

By using delegation instead, you make it clear that you are making only par-
tial use of the delegated class. You control which aspects of the interface to take
and which to ignore. The cost is extra delegating methods that are boring to
write but are too simple to go wrong.

Mechanics

1. Create a field in the subclass that refers to an instance of the superclass.
Initialize it to self.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Inheritance with Delegation 387

Replace
Inheritance
with
Delegation

2. Change each method defined in the subclass to use the delegate field. Test
after changing each method.

You won’t be able to replace any methods that invoke a method
on super that is defined on the subclass, or they may get into an infinite
recurse. These methods can be replaced only after you have broken the
inheritance.

3. Remove the subclass declaration and replace the delegate assignment with
an assignment to a new object.

4. For each superclass method used by a client, add a simple delegating
method.

5. Test.

Example

One of the classic examples of inappropriate inheritance is inheriting from a
collection. Here I have a Policy class that inherits from Hash. Each Hash element is
an Array of Rules, and Policy gives the Hash an Arraylike interface by implementing the
<< operator:

 class Policy < Hash
 attr_reader :name

 def initialize(name)
 @name = name
 end

 def <<(rule)
 key = rule.attribute
 self[key] ||= []
 self[key] << rule
 end

 def apply(account)
 self.each do |attribute, rules|
 rules.each { |rule| rule.apply(account) }
 end
 end

 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization388

Replace
Inheritance

with
Delegation

The Rule class has an attribute and default value:

 class Rule...
 attr_reader :attribute, :default_value

 def initialize(attribute, default_value)
 @attribute, @default_value = attribute, default_value
 end

 def apply(account)
 ...
 end

Looking at the users of Policy, I realize that clients do only five things: <<, apply , [] ,

 size, and empty?. The latter three are inherited from Hash.
I begin the delegation by creating a field for the delegated Hash. I link this field

to self so that I can mix delegation and inheritance while I carry out the refac-
toring:

 class Policy < Hash...

 def initialize(name)
 @name = name
 @rules = self
 end

Now I start replacing methods to get them to use the delegation. I begin with
<<:

 def <<(rule)
 key = rule.attribute.to_sym
 @rules [key] ||= []
 @rules [key] << rule
 end

I can test here, and everything will still work. Now the apply method:

 def apply(account)
 @rules .each do |attribute, rules|
 rules.each { |rule| rule.apply(account) }
 end
 end

Once I’ve completed these subclass methods, I need to break the link to the
superclass:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Delegation with Hierarchy 389

Replace
Delegation
with
Hierarchy

 class Policy < Hash

 def initialize(name)
 @name = name
 @rules = {}
 end

I then extend Forwardable to add simple delegating methods for superclass methods
used by clients:

 require 'forwardable’

 class Policy...
 extend Forwardable

 def_delegators :@rules, :size, :empty?, :[]

 def initialize(name)
 @name = name
 @rules = {}
 end

Now I can test. If I forgot to add a delegating method, the tests will tell me.

Replace Delegation with Hierarchy

You’re using delegation and are often writing many simple delegations for the
entire interface.

Make the delegate a module and include it into the delegating class.

return person.name

Employee

name

Person

name

<<module>>
Person

name

Employee

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization390

Replace
Delegation

with
Hierarchy

Motivation

This is the flip side of Replace Delegation with Inheritance, though generally
we’ll end up with a module hierarchy rather than inheritance.

If you find yourself using all the methods of the delegate and are sick of
writing all those simple delegating methods, you can switch back to a hierarchy
pretty easily.

One situation to beware of is that in which the delegate is shared by more
than one object and is mutable. In this case you can’t replace the delegate with
a hierarchy because you’ll no longer share the data. Data sharing is a responsi-
bility that cannot be transferred back to a module hierarchy. When the object
is immutable, data sharing is not a problem, because you can just copy and
nobody can tell.

Mechanics

1. Make the delegate a module. Include the module in the delegating object.

2. Remove the simple delegation methods.

3. Set the delegate instance variable to self.

4. Test.

5. Replace all other delegations with calls to the object itself.

6. Remove the delegate field.

Example

A simple Employee delegates to a simple Person:

 class Employee
 extend Forwardable
 def_delegators :@person, :name, :name=

 def initialize
 @person = Person.new
 end

 def to_s

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Delegation with Hierarchy 391

Replace
Delegation
with
Hierarchy

 "Emp: #{@person.last_name}"
 end
 end

 class Person
 attr_accessor :name

 def last_name
 @name.split(' ').last
 end
 end

The first step is to make Person a module and include it into Employee :

 module Person
 attr_accessor :name

 def last_name
 @name.split(' ').last
 end
 end

 class Employee...
 include Person

 end

The next step is to make the delegate field refer to self. I must remove all
simple delegation methods such as name and name=. If I leave any in, I will get a
stack overflow error caused by infinite recursion. In this case I need to remove
name and name= from Employee. Now that Employee includes the Person module, these
methods have already been mixed into the Employee, so it is just a matter of
removing the def_delegators declaration.

 class Employee
 include Person
 extend Forwardable
 def_delegators :@person, :name, :name=

 def initialize
 @person = self
 end

 def to_s
 "Emp: #{@person.last_name}"

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization392

Replace
Abstract

Superclass
with Module

 end
 end

Next I can change the methods that use the delegate. I switch them to use
calls to implicit self:

 def to_s
 "Emp: #{ last_name }"
 end

Once I’ve gotten rid of all methods that use delegate methods, I can get rid
of the @person field.

Replace Abstract Superclass with Module

You have an inheritance hierarchy, but never intend to explicitly instantiate an
instance of the superclass.

Replace the superclass with a module to better communicate your intention.

Inner Join

join_type

Outer Join

join_type

Inner Join

join_type

Outer Join

join_type

Join

joins_for_table
to_sql

<<module>>
Join

joins_for_table
to_sql

Motivation

In Java, it is possible to designate a class as abstract to prevent objects of that
class from being instantiated explicitly. There is no such feature in Ruby. Writ-
ing intentional code is important, and it would be nice if we could communi-
cate that instances of our abstract superclass are not meant to be instantiated
directly. We could write some code to raise an error when the constructor is
invoked, but if instead we replace the abstract superclass with a module, we can
communicate our intention in a more idiomatic fashion.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Abstract Superclass with Module 393

Replace
Abstract
Superclass
with Module

Mechanics

1. If the superclass has any class methods that you want to call using the
subclass class, define an inherited hook and use the hook to move the class
methods onto the subclasses themselves.

2. Test.

3. Make the class a module, and replace the inheritance declaration with an
 include in each of the base classes.

4. Make the inherited hook an included hook.

5. Test.

Example

Let’s start with some subclass objects that we are using to construct SQL joins:

 class LeftOuterJoin < Join

 def join_type
 "LEFT OUTER"
 end
 end

 class InnerJoin < Join

 def join_type
 "INNER"
 end
 end

They can be used like so:

 InnerJoin.new(
 :equipment_listings,
 :on => "equipment_listings.listing_id =listings.id"
).to_sql

And we have a class method for returning all joins for a given table:

 InnerJoin.joins_for_table(:books)

The superclass looks like this:

 class Join...

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 11 Dealing with Generalization394

Replace
Abstract

Superclass
with Module

 def initialize(table, options)
 @table = table
 @on = options[:on]
 end

 def self.joins_for_table(table_name)
 # ...some code for querying the database for the given table’s joins of
 # the base class’s join type
 end

 def to_sql
 "#{join_type} JOIN #{@table} ON #{@on}"
 end

 end

When we change Join to a module, the joins_for_table method will not be avail-
able using the InnerJoin.joins_for_table syntax. To enable this, we have to add the
joins_for_table method to both of thesubclasses. To do so without duplicating the
method, we can use the inherited hook. We define the inherited hook on the Join
class, and within the definition we open up the class that is doing the inheriting,
and add the joins_for_table method:

 class Join...

 def self.inherited(klass)
 klass.class_eval do
 def self.joins_for_table(table_name)
 table_name.to_s
 end
 end
 end

 end

If we’re successful, our tests should pass.
Then we can make Join a module:

 class module Join...

 end

And include the Join module into our subclasses, removing the inheritance as
we go:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Replace Abstract Superclass with Module 395

Replace
Abstract
Superclass
with Module

 class LeftOuterJoin < Join
 include Join

 def join_type
 "LEFT OUTER"
 end
 end

 class InnerJoin < Join
 include Join

 def join_type
 "INNER"
 end
 end

Finally, our inherited hook will no longer be executed, because we’re not inher-
iting—we’re including. Luckily for us, Ruby has an included hook, with similar
syntax:

 def self. included (mod)
 mod.class_eval do
 def self.joins_for_table(table_name)
 table_name.to_s
 end
 end
 end

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

This page intentionally left blank

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

397

Chapter 12

Big Refactorings

The preceding chapters present the individual “moves” of refactoring. What
is missing is a sense of the whole “game.” You are refactoring to some purpose,
not just to avoid making progress (at least usually you are refactoring to some
purpose). What does the whole game look like?

The Nature of the Game

One thing you’ll surely notice in what follows is that the steps aren’t nearly as
carefully spelled out as in the previous refactorings. That’s because the situa-
tions change so much in the big refactorings. We can’t tell you exactly what to
do, because we don’t know exactly what you’ll be seeing when you do it. When
you are adding a parameter to a method, the mechanics are clear because the
scope is clear. When you are untangling an inheritance mess, every mess is dif-
ferent.

Another thing to realize about these refactorings is that they take time. All
the refactorings in Chapters 6 through 11 can be accomplished in a few minutes
or an hour at most. We have worked at some of the big refactorings for months
or years on running systems. When you have a system and it’s in production and
you need to add functionality, you’ll have a hard time persuading managers that
they should stop progress for a couple of months while you tidy up. Instead,
you have to make like Hansel and Gretel and nibble around the edges, a little
today, a little more tomorrow.

As you do this, you should be guided by your need to do something else. Do
the refactorings as you need to add function and fix bugs. You don’t have to
complete the refactoring when you begin. Do as much as you need to achieve
your real task. You can always come back tomorrow.

This philosophy is reflected in the examples. To show you each of the refac-
torings in this book it would easily take a hundred pages each. We know this,
because Martin tried it. So we’ve compressed the examples into a few sketchy
diagrams.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 12 Big Refactorings398

Four Big
Refactorings

Because they can take such a long time, the big refactorings also don’t have
the instant gratification of the refactorings in the other chapters. You will have
to have faith that you are making the world a little safer for your program each
day.

The big refactorings require a degree of agreement among the entire pro-
gramming team that isn’t needed with the smaller refactorings. The big refactor-
ings set the direction for many, many changes. The whole team has to recognize
that one of the big refactorings is “in play” and make their moves accordingly.
You don’t want to get in the situation of the two guys whose car stops near the
top of a hill. They get out to push, one on each end of the car. After a fruitless
half-hour the guy in front says, “I never thought pushing a car downhill would
be so hard.” To which the other guy replies, “What do you mean ‘downhill’?”

Why Big Refactorings Are Important

If the big refactorings lack so many of the qualities that make the little refactor-
ings valuable (predictability, visible progress, instant satisfaction), why are they
important enough that we wanted to put them in this book? Because without
them you run the risk of investing time and effort into learning to refactor and
then actually refactoring and not getting the benefit. That would reflect badly
on us. We can’t stand that.

Seriously, you refactor not because it is fun but because there are things you
expect to be able to do with your programs if you refactor that you just can’t do
if you don’t refactor.

Accumulation of half-understood design decisions eventually chokes a pro-
gram as a water weed chokes a canal. By refactoring you can ensure that your
full understanding of how the program should be designed is always reflected in
the program. As a water weed quickly spreads its tendrils, partially understood
design decisions quickly spread their effects throughout your program. No one
or two or even ten individual actions will be enough to eradicate the problem.

Four Big Refactorings

In this chapter we describe four examples of big refactorings. These are exam-
ples of the kind of things that you might face, rather than an attempt to cover
the whole ground.

Tease Apart Inheritance deals with a tangled inheritance hierarchy that seems
to combine several variations in a confusing way. Convert Procedural Design

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Tease Apart Inheritance 399

Tease Apart
Inheritance

to Objects helps solve the classic problem of what to do with procedural code.
A lot of programmers use Object-Oriented languages without really knowing
about objects, so this is a refactoring you often have to do. If you see code writ-
ten with the classic two-tier approach to user interfaces and databases, you’ll
find you need Separate Domain from Presentation when you want to isolate
business logic from user interface code. Experienced Object-Oriented develop-
ers have learned that this separation is vital to a long-lived and prosperous sys-
tem. Extract Hierarchy simplifies an overly complex class by turning it into a
group of subclasses.

Tease Apart Inheritance

You have an inheritance hierarchy that is doing two jobs at once.

Create two hierarchies and use delegation to invoke one from the other.

Deal

Active Deal Passive Deal

Passive DealActive Deal

 Deal

Tabular Passive
Deal

Tabular Active
Deal

Tabular
Presentation

Style <<module>>
Presentation

StyleSingle
Presentation

Style

<<protocol>>
1

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 12 Big Refactorings400

Tease Apart
Inheritance

Motivation

Inheritance is great. It helps you write dramatically “compressed” code in sub-
classes. A single method can take on importance out of proportion with its size
because of where it sits in the hierarchy.

Not surprisingly for such a powerful mechanism, it is easy to misuse inheri-
tance. And the misuse can easily creep up on you. One day you are adding one
little subclass to do a little job. The next day you are adding other subclasses to
do the same job in other parts of the hierarchy. A week (or month or year) later
you are swimming in spaghetti. Without a paddle.

Tangled inheritance is a problem because it leads to code duplication, the
bane of the programmer’s existence. It makes changes more difficult, because
the strategies for solving a certain kind of problem are spread around. Finally,
the resulting code is hard to understand. You can’t just say, “This hierarchy
here, it computes results.” You have to say, “Well, it computes results, and there
are subclasses for the tabular versions, and each of those has subclasses for each
of the countries.”

You can easily spot a single inheritance hierarchy that is doing two jobs. If
every class at a certain level in the hierarchy has subclasses that begin with the
same adjective, you probably are doing two jobs with one hierarchy.

Mechanics

1. Identify the different jobs being done by the hierarchy. Create a two-
dimensional grid (or three- or four-dimensional, if your hierarchy is a real
mess and you have some really cool graph paper) and label the axes with
the different jobs. We assume two or more dimensions require repeated
applications of this refactoring (one at a time, of course).

2. Decide which job is more important and which is to be retained in the
current hierarchy and which is to be moved to another hierarchy.

3. Use Extract Class (see Chapter 6, “Composing Methods”) at the common
superclass to create an object for each of the subclasses in the original
hierarchy.

4. Add an instance variable on the superclass to hold the new object. Initial-
ize the instance variable to the appropriate new class.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Tease Apart Inheritance 401

Tease Apart
Inheritance

5. Extract a module to house the common code that will be shared between
the new classes. Include this module in the new classes.

6. Use Move Method (see Chapter 7, “Moving Features Between Objects”)
on each of the subclasses to move the behavior in the subclass to the rel-
evant extracted object.

7. When the subclass has no more code, eliminate it.

8. Continue until all the subsidiary subclasses are gone. Look at the new
hierarchy for possible further refactorings such as Pull Up Method (see
Chapter 11, “Dealing with Generalization”).

Examples

Let’s take the example of a tangled hierarchy (see Figure 12.1).
This hierarchy got the way it did because Deal was originally being used only

to display a single deal. Then someone got the bright idea of displaying a table
of deals. A little experiment with the quick subclass Active Deal shows you can
indeed display a table with little work. Oh, you want tables of passive deals,
too? No problem, another little subclass and away we go.

Two months later the table code has become complicated but there is no
simple place to put it, time is pressing, the usual story. Now adding a new kind
of deal is hard, because the deal logic is tangled with the presentation logic.

Following the recipe, the first step is to identify the jobs being done by the
hierarchy. One job is capturing variation according to type of deal. Another job
is capturing variation according to presentation style. So here’s our grid:

Deal Active Deal Passive Deal

Tabular Deal

The next step tells us to decide which job is more important. The dealness
of the object is far more important than the presentation style, so we leave Deal
alone and extract the presentation style to its own hierarchy. Practically speak-
ing, we should probably leave alone the job that has the most code associated
with it, so there is less code to move.

The next step tells us to use Extract Class to create a presentation style for
each of the subclasses (see Figure 12.2).

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 12 Big Refactorings402

Tease Apart
Inheritance

Figure 12.1 A tangled hierarchy.

Passive DealActive Deal

 Deal

Tabular Passive
Deal

Tabular Active
Deal

Tabular Active
Presentation

Style

Tabular Possive
Presentation

Style

Single Active
Presentation

Style

Single Passive
Presentation

Style

<<protocol>>
1

Figure 12.2 Adding a presentation style.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Tease Apart Inheritance 403

Tease Apart
Inheritance

We’ll then use Extract Module to house the common behavior shared
between our new objects (see Figure 12.3) and initialize the instance variable to
the appropriate new class:

 class ActiveDeal

 def initialize
 ...
 @presentation = SingleActivePresentationStyle.new...

Passive DealActive Deal

 Deal

Tabular Passive
Deal

Tabular Active
Deal

Tabular Active
Presentation

Style

Tabular Passive
Presentation

Style

Single Active
Presentation

Style

Single Passive
Presentation

Style

<<protocol>>
1

<<module>>
Presentation

Style

Figure 12.3 Adding subclasses of presentation style .

You may well be saying, “Don’t we have more classes now than we did
before? How is this supposed to make my life better?” It is true that sometimes
you have to take a step backward before you can take two steps forward. In
cases such as this tangled hierarchy, the hierarchy of the extracted object can
almost always be dramatically simplified once the object has been extracted.
However, it is safer to take the refactoring one step at a time than to jump ten
steps ahead to the already simplified design.

Now we use Move Method and Move Field to move the presentation-related
methods and variables of the deal subclasses to the presentation style classes.
We don’t have a good way of simulating this with the example as drawn, so we
ask you to imagine it happening. When we’re done, though, there should be no
code left in the classes Tabular Active Deal and Tabular Passive Deal, so we remove them
(see Figure 12.4).

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 12 Big Refactorings404

Tease Apart
Inheritance

Passive DealActive Deal

 Deal

Tabular Active
Presentation

Style

Tabular Passive
Presentation

Style

Single Active
Presentation

Style

Single Passive
Presentation

Style

<<protocol>>

<<module>>
Presentation

Style

Figure 12.4 The tabular subclasses of Deal have been removed.

Now that we’ve separated the two jobs, we can work to simplify each sepa-
rately. When we’ve done this refactoring, we’ve always been able to dramati-
cally simplify the extracted classes and often further simplify the original object.
The next move will get rid of the active-passive distinction in the presentation
style in Figure 12.5.

Passive DealActive Deal

 Deal

Tabular
Presentation

Style

Single
Presentation

Style
<<protocol>>

<<module>>
Presentation

Style

1

Figure 12.5 The hierarchies are now separated.

Even the distinction between single and tabular can be captured by the values
of a few variables. You don’t need the module hierarchy at all (see Figure 12.6).

Passive DealActive Deal

 Deal
1 Presentation

Style

Figure 12.6 Presentation differences can be handled with a couple of variables.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Convert Procedural Design to Objects 405

Convert
Procedural
Design to
Objects

Convert Procedural Design to Objects

You have code written in a procedural style.

Turn the data records into objects, break up the behavior, and move the behav-
ior to the objects.

Order

Order Line

Order Calculator

determine_price(order)
determine_taxes(order)

Order

price()
taxes()

Order Line

price()
taxes()

Motivation

A client of ours once started a project with two absolute principles the develop-
ers had to follow: (1) You must use Java; (2) you must not use objects.

We may laugh, but although Java, like Ruby, is an Object-Oriented language,
there is more to using objects than calling an initializer. Using objects well takes
time to learn. Often you’re faced with the problem of procedurelike code that
has to be more Object-Oriented. The typical situation is long procedural meth-
ods on a class with little data and dumb data objects with nothing more than
accessors. If you are converting from a purely procedural program, you may not
even have this, but it’s a good place to start.

We are not saying that you should never have objects with behavior and little
or no data. We often use small strategy objects when we need to vary behavior.
However, such procedural objects usually are small and are used when we have
a particular need for flexibility.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 12 Big Refactorings406

Separate
Domain from
Presentation

Mechanics

1. Take each record type and turn it into a dumb data object with accessors.

If you have a relational database, take each table and turn it into a
dumb data object .

2. Take all the procedural code and put it into a single class.

You can make the methods class methods.

3. Take each long procedure and apply Extract Method and the related
refactorings to break it down. As you break down the procedures, use
Move Method to move each one to the appropriate dumb data class.

4. Continue until you’ve removed all the behavior away from the original
class. If the original class was a purely procedural class, it’s very gratifying
to delete it.

Example

Chapter 1, “Refactoring, a First Example,” illustrates the need for Convert
Procedural Design to Objects, particularly the first stage, in which the statement

method is broken up and distributed. When you’re finished, you can work on
now-intelligent data objects with other refactorings.

Separate Domain from Presentation

You have views and controller classes that contain domain logic.

Move the domain logic into the model.

Motivation

Whenever you hear people talking about objects, you hear about model-view-
controller (MVC). This idea underpinned the relationship between the graphical
user interface (GUI) and domain objects in Smalltalk-80.

The gold at the heart of MVC is the separation of the user interface code (the
view) and the domain logic (the model). The views contain only the logic needed

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Separate Domain from Presentation 407

Separate
Domain from
Presentation

to deal with the user interface. Domain objects contain no visual code but all
the business logic. This separates two complicated parts of the program into
pieces that are easier to modify. It also allows multiple presentations of the same
business logic. Those experienced in working with objects use this separation
instinctively, and it has proven its worth.

Unfortunately, many programming environments with client-server GUIs use
a logical two-tier design: The data sits in the database and the logic sits in the
view. The environment often forces you toward this style of design, making it
hard for you to put the logic anywhere else.

The designers of the Ruby on Rails framework, in contrast, believed funda-
mentally in an MVC-style architecture; they even defined a file structure that
has places to house models, views, and controllers, and an object-relational
mapper. As such, Rails naturally leads programmers to separate code into the
model-view-controller hierarchy. But that doesn’t mean that this separation is
always performed correctly. I often find that domain logic begins to creep into
the controller, and even the view. When the same logic is needed in other parts
of the system, it is often duplicated in another controller or view, leading to
inconsistencies and bugs. Controllers should only be responsible for accepting
user requests, organizing for the model to do its work, and triggering the appro-
priate view to be displayed.

Mechanics

1. Identify functionality in the controllers that does not have anything to do
with accepting user requests, organizing for the model to do its work, or
triggering the appropriate views to be displayed.

2. Examine this code to determine a domain object on which it could be put.

Add a new domain object if necessary.

Use of Extract Method may be required prior to moving the
offending code. The shortcuts that lead to domain logic landing in views
and controllers also often mix up presentation and domain logic within
the methods.

3. Use Move Method to move it to the domain object.

4. Test.

5. Identify code in the views that is not concerned with display logic.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 12 Big Refactorings408

Separate
Domain from
Presentation

6. Examine this code to determine a domain object on which it could be put.

Add a new domain object if necessary.

Again, use of Extract Method may be required prior to moving the
offending code.

7. Use Move Method to move it to the domain object.

8. Test.

9. When you are finished, you will have views that handle the GUI, control-
lers that handle request marshaling, and domain objects that contain all
the business logic. The domain objects may be well factored, but further
refactorings will deal with that.

Example

In this example, we have a program that allows users to enter and view orders.
The GUI for entering orders looks like Figure 12.7. The views and controllers
interact with models that are backed by a relational database laid out like Fig-
ure 12.8.

Order details

Create an Order

Product Quantity

Number: 123456

Place order

2

3hat

towel

Joe Bloggs

Figure 12.7 The user interface for creating an order .

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Separate Domain from Presentation 409

Separate
Domain from
Presentation

Products
id
name
price

Customers
id
name
codes

Order Lines
order_id
product_id
quantity
amount

Orders
id
customer_id

1

1 1*

*

*

Figure 12.8 The database for the order program .

There is a minimum order of $100, so the create action in the controller
calculates the total for the order and determines whether the order meets the
minimum limit:

 class OrdersController < ApplicationController...

 MINIMUM_ORDER_AMOUNT = 100

 def create
 @order_lines = []
 params[:order_line].each_value do |order_line_params|
 unless all_values_blank?(order_line_params)
 amount = Product.find(order_line_params[:product_id]).price
 @order_lines << OrderLine.new(
 order_line_params.merge(:amount => amount)
)
 end
 end

 @order = Order.new(params[:order])

 if total_amount_for_order_lines(@order_lines) >= MINIMUM_ORDER_AMOUNT
 begin
 Order.transaction do
 @order.order_lines = @order_lines
 @order.save!
 end
 rescue ActiveRecord::ActiveRecordError

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 12 Big Refactorings410

Separate
Domain from
Presentation

 render_new
 return
 end
 else
 flash[:error] = "An order must be at least $#{MINIMUM_ORDER_AMOUNT}"
 render_new
 return
 end
 redirect_to :action => 'index'
 end

 private

 def render_new
 @order_lines = [OrderLine.new] * 5 if @order_lines.empty?
 render :action => 'new'
 end

 def total_amount_for_order_lines(order_lines)
 order_lines.inject(0) do |total, order_line|
 total + (order_line.amount * order_line.quantity)
 end
 end

The index view displays a list of orders. It also calculates the total for each order
in the table:

 <h3>Orders</h3>
 <p><%= link_to 'Add a new Order', new_order_url %></p>
 <table>
 <tr>
 <th>Number</th>
 <th>Customer</th>
 <th>Amount</th>
 <th> </th>
 </tr>
 <% @orders.each do |order| %>
 <%
 total = order.order_lines.inject(0) do |total, order_line|
 total + (order_line.amount * order_line.quantity)
 end
 %>
 <tr>
 <td><%=order.number%></td>

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Separate Domain from Presentation 411

Separate
Domain from
Presentation

 <td><%=order.customer%></td>
 <td><%=total%></td>
 <td><%= link_to 'Show', order_url(order) %></td>
 </tr>
 <% end %>
 </table>

The duplication of the calculation logic for the total charge of an order is
one problem. It could be solved by using Move Method to place the total_amount_

for_order_lines method in a place accessible to both the view and the controller
(perhaps in a helper that is included by the controller). But the choice of where
to place that method is also important. An order is never valid if it is less than
$100, so the logic to perform this validation should go in the model:

 class Order < ActiveRecord::Base...

 MINIMUM_ORDER_AMOUNT = 100

 def validate
 if total < MINIMUM_ORDER_AMOUNT
 errors.add_to_base("An order must be at least $#{MINIMUM_ORDER_AMOUNT}")
 end
 end

 def total
 order_lines.inject(0) do |total, order_line|
 total + (order_line.amount * order_line.quantity)
 end
 end

We can then make use of this method in the controller. By making the validation
an ActiveRecord validation, the logic in the controller becomes simpler:

 def create
 @order_lines = []
 params[:order_line].each_value do |order_line_params|
 unless all_values_blank?(order_line_params)
 amount = Product.find(order_line_params[:product_id]).price
 @order_lines << OrderLine.new(
 order_line_params.merge(:amount => amount)
)
 end
 end

 @order = Order.new(params[:order])
 begin
 Order.transaction do

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 12 Big Refactorings412

Extract
Hierarchy

 @order.order_lines = @order_lines
 @order.save!
 end
 rescue ActiveRecord::ActiveRecordError
 @order_lines = [OrderLine.new] * 5 if @order_lines.empty?
 render :action => 'new'
 return
 end
 redirect_to :action => 'index'
 end

And the duplicated code is removed from the view:

 <h3>Orders</h3>
 <p><%= link_to 'Add a new Order', new_order_url %></p>
 <table>
 <tr>
 <th>Number</th>
 <th>Customer</th>
 <th>Amount</th>
 <th> </th>
 </tr>
 <% @orders.each do |order| %>
 <tr>
 <td><%=order.number%></td>
 <td><%=order.customer%></td>
 <td><%=order.total%></td>
 <td><%= link_to 'Show', order_url(order) %></td>
 </tr>
 <% end %>
 </table>

As you do this refactoring you have to pay attention to where your risk is. If
the intermingling of presentation and domain logic is the biggest risk, get them
completely separated before you do much else. If other things are more impor-
tant, such as pricing strategies for the products, get the logic for the important
part out of the view and controller and refactor around that logic to create a
suitable structure for the area of high risk.

Extract Hierarchy

You have a class that is doing too much work, at least in part through many
conditional statements.

Create a hierarchy of classes in which each subclass represents a special case.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Extract Hierarchy 413

Extract
Hierarchy

Billing
Scheme

Business Billing
Scheme

Disability Billing
Scheme

Residential Billing
Scheme

Billing
Scheme

Motivation

In evolutionary design, it is common to think of a class as implementing one
idea and come to realize later that it is really implementing two or three or ten.
You create the class simply at first. A few days or weeks later you see that if only
you add a flag and a couple of tests, you can use it in a new case. A month later
you have another such opportunity. A year later you have a real mess: flags and
conditional expressions all over the place.

When you encounter a Swiss-Army-knife class that has grown to open cans,
cut down small trees, shine a laser point at reluctant presentation bullet items,
and, oh yes, I suppose cut things, you need a strategy for teasing apart the
various strands. The strategy here works only if your conditional logic remains
static during the life of the object. If not, you may have to use Extract Class
before you can begin separating the cases from each other.

Don’t be discouraged if Extract Hierarchy is a refactoring that you can’t fin-
ish in a day. It can take weeks or months to untangle a design that has become
snarled. Do the steps that are easy and obvious and then take a break. Do some
visibly productive work for a few days. When you’ve learned something, come
back and do a few more easy and obvious steps.

Mechanics

We’ve put in two sets of mechanics. In the first case you aren’t sure what the
variations should be. In this case you want to take one step at a time, as follows:

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 12 Big Refactorings414

Extract
Hierarchy

1. Identify a variation.

If the variations can change during the life of the object, use
Extract Class to pull that aspect into a separate class.

2. Create a subclass for that special case and use Replace Constructor with
Factory Method on the original. Alter the factory method to return an
instance of the subclass where appropriate.

3. One at a time, copy methods that contain conditional logic to the sub-
class, and then simplify the methods given what you can say for certain
about instances of the subclass that you can’t say about instances of the
superclass.

Use Extract Method in the superclass if necessary to isolate the
conditional parts of methods from the unconditional parts.

4. Continue isolating special cases until all superclass methods have subclass
implementations.

5. Delete the methods in the superclass that are overridden in all subclasses.

6. If the superclass is no longer instantiated directly, use Replace Abstract
Superclass with Module.

When the variations are clear from the outset, you can use a different strat-
egy, as follows: If the superclass is no longer instantiated directly, use Replace
Abstract Superclass with Module.

Example

The example is a nonobvious case. You can follow the refactorings for Replace
Type Code with Polymorphism, Replace Type Code with Module Extension,
and Replace Type Code with State/Strategy to see how the obvious case works.

We start with a program that calculates an electricity bill. The initial objects
look like Figure 12.9.

The billing scheme contains a lot of conditional logic for billing in different
circumstances. Different charges are used for summer and winter, and different
billing plans are used for residential, small business, customers receiving Social
Security (lifeline), and those with a disability. The resulting complex logic makes
the Billing Scheme class complex.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Extract Hierarchy 415

Extract
Hierarchy

Our first step is to pick a variant aspect that keeps cropping up in the con-
ditional logic. This might be various conditions that depend on whether the
customer is on a disability plan. This can be a flag in Customer, Billing Scheme, or
somewhere else.

We create a subclass for the variation. To use the subclass we need to make
sure it is created and used. So we look at the constructor for Billing Scheme . First
we use Replace Constructor with Factory Method. Then we look at the factory
method and see how the logic depends on disability. We then create a clause that
returns a disability billing scheme when appropriate.

We look at the various methods on Billing Scheme and look for those that con-
tain conditional logic that varies on the basis of disability. create_bill is one of
those methods, so we copy it to the subclass (see Figure 12.10).

1
Customer

create_bill(customer)

Billing Scheme

Figure 12.9 Customer and billing scheme .

1
Customer

create_bill(customer)

Disability
Billing Scheme

create_bill(customer)

Billing Scheme

Figure 12.10 Adding a subclass for disability .

Now we examine the subclass copy of create_bill and simplify it on
the basis that we know it is now within the context of a disability scheme.
So code that says :

 do_something if disability_scheme

can be replaced with

 do_something

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 12 Big Refactorings416

Extract
Hierarchy

If disabilities are exclusive of the business scheme we can eliminate any code
that is conditional on the business scheme.

As we do this, we like to ensure that varying code is separated from code
that stays the same. We use Extract Method and Decompose Conditional to
do that. We continue doing this for various methods of Billing Scheme until we
feel we’ve dealt with most of the disability conditionals. Then we pick another
variation, say lifeline, and do the same for that.

As we do the second variation, however, we look at how the variations for
lifeline compare with those for disability. We want to identify cases in which we
can have methods that have the same intention but carry it out differently in the
two separate cases. We might have variation in the calculation of taxes for the
two cases. We want to ensure that we have two methods on the subclasses that
have the same signature. This may mean altering disability so we can line up the
subclasses. Usually we find that as we do more variations, the pattern of similar
and varying methods tends to stabilize, making additional variations easier.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

417

Chapter 13

Putting It All Together

Now you have all the pieces of the puzzle. You’ve learned the refactorings.
You’ve studied the catalog. You’ve practiced all of the checklists. You’ve gotten
good at testing, so you aren’t afraid. Now you may think you know how to
refactor. Not yet.

The list of techniques is only the beginning. It is the gate you must pass
through. Without the techniques, you can’t manipulate the design of running
programs. With them, you still can’t, but at least you can start.

Why are all these wonderful techniques really only the beginning? Because
you don’t yet know when to use them and when not to, when to start and when
to stop, when to go and when to wait. It is the rhythm that makes for refactor-
ing, not the individual notes.

How will you know when you are really getting it? You’ll know when you
start to calm down. When you feel absolute confidence that no matter how
screwed up someone left it, you can make the code better, enough better to keep
making progress.

Mostly, though, you’ll know you’re getting it when you can stop with confi-
dence. Stopping is the strongest move in the refactorer’s repertoire. You see a big
goal—a host of subclasses can be eliminated. You begin to move toward that
goal, each step small and sure, each step backed up by keeping all the tests run-
ning. You’re getting close. You only have two methods to unify in each of the
subclasses, and then they can go away.

That’s when it happens. You run out of gas. Maybe it’s getting late and you
are becoming fatigued. Maybe you were wrong in the first place and you can’t
really get rid of all of those subclasses. Maybe you don’t have the tests to back
you up. Whatever the cause, your confidence is gone. You can’t make the next
step with certainty. You don’t think you will screw anything up, but you’re not
sure.

That’s when you stop. If the code is already better, integrate and release what
you’ve done. If it isn’t better, walk away. Flush it. Glad to have learned a lesson,
pity it didn’t work out. What’s on for tomorrow?

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 13 Putting It All Together418

Tomorrow or the next day or the next month or maybe even next year (my
personal record is nine years waiting for the second half of a refactoring), the
insight comes. Either you understand why you were wrong, or you understand
why you were right. In any case, the next step is clear. You take the step with
the confidence you had when you started. Maybe you’re even a little abashed at
how stupid you could have been not to have seen it all along. Don’t be. It hap-
pens to everyone.

It’s a little like walking along a narrow trail above a 1,000-foot drop. As long
as the light holds, you can step forward cautiously but with confidence. As soon
as the sun sets, though, you’d better stop. You bed down for the night, sure the
sun will rise again in the morning.

This may sound mystical and vague. In a sense it is, because it is a new kind
of relationship with your program. When you really understand refactoring, the
design of the system is as fluid and plastic and moldable to you as the individual
characters in a source code file. You can feel the whole design at once. You can
see how it might flex and change—a little this way and this is possible; a little
that way and that is possible.

In another sense, though, it is not at all mystical or vague. Refactoring is a
learnable skill, the components of which you have read about in this book and
begun to learn about. You get those little skills together and polished. Then you
begin to see development in a new light.

I said this was a learnable skill. How do you learn it?
Get used to picking a goal. Somewhere your code smells bad. Resolve to get

rid of the problem. Then march toward that goal. You aren’t refactoring to
pursue truth and beauty (at least that’s not all there is to it). You are trying to
make your world easier to understand, to regain control of a program that is
flapping loose.

Stop when you are unsure. As you move toward your goal, a time may come
when you can’t exactly prove to yourself and others that what you are doing
will preserve the semantics of your program. Stop. If the code is already better,
go ahead and release your progress. If it isn’t, throw away your changes.

Backtrack. The discipline of refactoring is hard to learn and easy to lose sight
of, even if only for a moment. I still lose sight more often than I care to admit.
I’ll do two or three or four refactorings in a row without rerunning the test
cases. Of course I can get away with it. I’m confident. I’ve practiced. Boom! A
test fails, and I can’t see which of my changes caused the problem.

At this moment you will be mightily tempted to just debug your way out of
trouble. After all, you got those tests to run in the first place. How hard could
it be to get them running again? Stop. You are out of control, and you have no
idea what it will take to get back in control by going forward. Go back to your

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Putting It All Together 419

last known good configuration. Replay your changes one by one. Run the tests
after each one.

This may sound obvious here in the comfort of your recliner. When you are
hacking and you can smell a big simplification centimeters away, it is the hard-
est thing to do to stop and back up. But think about it now, while your head
is clear. If you have refactored for an hour, it will take only about ten minutes
to replay what you did. So you can be guaranteed to be back on track in ten
minutes. If, however, you try to move forward, you might be debugging for five
seconds or for two hours.

It is easy for me to tell you what to do now. It is brutally hard to actually
do it. I think my personal record for failing to follow my own advice is four
hours and three separate tries. I got out of control, backtracked, moved forward
slowly at first, got out of control again, and again, for four painful hours. It is
no fun. That’s why you need help.

Duets. For goodness’ sake, refactor with someone. There are many advan-
tages to working in pairs for all kinds of development. The advantages work in
spades for refactoring. In refactoring there is a premium on working carefully
and methodically. Your partner is there to keep you moving step by step, and
you are there for him or her. In refactoring there is a premium on seeing possibly
far-ranging consequences. Your partner is there to see things you don’t see and
know things you don’t know. In refactoring, there is a premium on knowing
when to quit. When your partner doesn’t understand what you are doing, it is a
sure sign that you don’t either. Above all, in refactoring there is an absolute pre-
mium on quiet confidence. Your partner is there to gently encourage you when
you might otherwise stop.

Another aspect of working with a partner is talking. You want to talk about
what you think is about to happen, so the two of you are pointed in the same
direction. You want to talk about what you think is happening, so you can
spot trouble as soon as possible. You want to talk about what just happened,
so you’ll know better next time. All that talking cements in your mind exactly
where the individual refactorings fit into the rhythm of refactoring.

You are likely to see new possibilities in your code, even if you have worked
with it for years, once you know about the smells and the refactorings that can
sterilize them. You may even want to jump in and clean up every problem in
sight. Don’t. No manager wants to hear the team say it has to stop for three
months to clean up the mess it has created. And, well, they shouldn’t. A big
refactoring is a recipe for disaster.

As ugly as the mess looks now, discipline yourself to nibble away at the prob-
lem. When you are going to add some new functionality to an area, take a few
minutes to clean it up first. If you have to add some tests before you can clean

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Chapter 13 Putting It All Together420

up with confidence, add them. You’ll be glad you did. Refactoring first is less
dangerous than adding new code. Touching the code will remind you how it
works. You’ll get done faster, and you’ll have the satisfaction of knowing that
the next time you pass this way, the code will look better than it did this time.

When you decide to undertake a large refactoring, try to pick off pieces that
can be integrated back into the main development branch as quickly as pos-
sible. There’s nothing worse than completing some great work on an alternative
branch and finding that the main development branch has shifted so far from
you that you can no longer integrate it. When contemplating a large refactor-
ing it’s tempting to say, “I can’t improve that code without adopting a big-bang
approach that will take 3 days.” Rarely do I find this to actually be the case. My
first idea for the refactoring might prescribe a large design change as the first
step, but usually I can attack the problem at a different angle. I find a piece to
slice off to get me started. Then I slice off another piece. And then another, inte-
grating each piece back to the main development branch as I go. I might need
to write some extra code to help the new design integrate with the old design;
code that will eventually be thrown away. But the extra time spent writing this
throw-away adaptive code is worth the benefit of continual integration with the
development branch.

The final thought I’ll leave you with is this: Never forget the two hats: The
refactoring hat, and the new functionality hat. Only wear one hat at a time.
When you refactor, you will inevitably discover code that doesn’t work correctly.
You’ll find bugs, test cases to add or change, and other unrelated refactorings.
Some of these might even be more important than the refactoring you’re cur-
rently working on. Resist temptation to mix an unfinished refactoring with one
of these newfound tasks. If the newfound task truly is an immediate priority,
abandon your refactoring. Revert the code and start a fresh. But if you decide
to wear the refactoring hat, your goal is to leave the code computing exactly the
same answers that it was when you found it; nothing more, nothing less. Once
you develop the discipline and rhythm to juggle the two hats, you’ll find refac-
toring to be a rewarding and productive experience. Happy coding!

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

421

References

[Auer] Ken. Auer “Reusability through Self-Encapsulation.” In Pattern Lan-
guages of Program Design 1, Coplien J.O. Schmidt.D.C. Reading, Mass.: Addi-
son-Wesley, 1995. Patterns paper on the concept of self-encapsulation.

[Bäumer and Riehle] Bäumer, Riehle and Riehle. Dirk “Product Trader.” In
Pattern Languages of Program Design 3, R. MartinF. BuschmannD. Riehle.
Reading, Mass.: Addison-Wesley, 1998. A pattern for flexibly creating objects
without knowing in what class they should be.

[Beck] Kent. Beck Smalltalk Best Practice Patterns. Upper Saddle River, N.J.:
Prentice Hall, 1997a. An essential book for any Smalltalker, and a damn useful
book for any object-oriented developer.

[Beck, XP] Kent. Beck eXtreme Programming eXplained: Embrace Change.
Reading, Mass.: Addison-Wesley, 2000.

[Fowler, UML] Fowler M. Scott. K. UML Distilled, Second Edition: A Brief
Guide to the Standard Object Modeling Language. Reading, Mass.: Addison-
Wesley, 2000. A concise guide to the Unified Modeling Language used for vari-
ous diagrams in this book.

[Gang of Four] E. Gamma, R. Helm, R. Johnsonand J. Vlissides. Design Pat-
terns: Elements of Reusable Object Oriented Software. Reading, Mass.: Addi-
son-Wesley, 1995. Probably the single most valuable book on object-oriented
design. It’s now impossible to look as if you know anything about objects if you
can’t talk intelligently about strategy, singleton, and chain of responsibility.

[Goetz] Goetz, Brian, Java Concurrency in Practice, Addison-Wesley Profes-
sional, 2006. The compiler should stop anyone implementing Runnable who
hasn’t read this book.

[Lea] Doug. Lea, Concurrent Programming in Java: Design Principles and Pat-
terns, Reading, Mass.: Addison-Wesley, 1997.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

References422

[McConnell] Steve. McConnell, Code Complete: A Practical Handbook of Soft-
ware Construction. Redmond, Wash.: Microsoft Press, 1993. An excellent guide
to programming style and software construction.

[Meyer] Bertrand. Meyer, Object Oriented Software Construction. 2 ed. Upper
Saddle River, N.J.: Prentice Hall, 1997. A very good, if very large, book on
object-oriented design. Includes a thorough discussion of design by contract.

[Sadalage] Pramodkumar. J. Sadalage, Refactoring Databases: Evolutionary
Database Design (Addison-Wesley Signature Series) (Hardcover)

[Woolf] Bobby. Woolf, “Null Object.” In Pattern Languages of Program Design
3, Martin, R. Riehle. D. Buschmann F. Reading, Mass.: Addison-Wesley, 1998.
A discussion on the null object pattern.

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Symbols

||= operator, 257

A

Account class, 129
Introduce Parameter Object

refactoring, 322-324
Move Field refactoring,

174-175
Move Method refactoring,

170-172
Remove Setting Method

refactoring, 325-326
Replace Error Code with

Exception refactoring,
334-335

AccountNumberCapture module,
360-362

ActiveDeal class, 403
add_charge method, 322-323
add_course method, 223
add_customer method, 213
add_front_suspension method, 247
add_option method, 117
add_order method, 213

Add Parameter
overview, 300
step-by-step description,

301-302
when to use, 300-301

add_rear_suspension method, 247
adjusted_capital method, 278-279
advantages of refactoring

easier-to-understand software,
55-56

faster programming, 56-57
improved software design,

54-55
why refactoring works, 60-61

algorithms, substituting
goals, 132
overview, 131-132
step-by-step description, 132

alternative classes with difference
interfaces, 83

Ambler, Scott, 65
a_method method, 125
amount calculation (video store

program), moving, 12-18
amount_for method, moving, 12-18
APIs, disjointed, 86
apply method, 388

423

Index

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

assert_equal method, 89
assertions, adding

example, 294-295
goals, 293
overview, 292
step-by-step description,

293-294
AssertValidKeys module, 146-147
attributes, 255-259

B

base_charge method, 309
base_price method, 111
Beck, Kent, 51, 54, 56, 69, 73
behavior, moving into classes,

223-224
benefits of refactoring

easier-to-understand software,
55-56

faster programming, 56-57
improved software design,

54-55
why refactoring works, 60-61

Bid class, Extract Module
refactoring, 360-361

bidirectional association, changing
to unidirectional

example, 215-217
goals, 214
overview, 213
step-by-step description,

214-215
bidirectional association, changing

unidirectional association to
example, 211-213
goals, 210-211
overview, 210
step-by-step description, 211

Billing Scheme class, 414-416
Books class, 145-146
bugs

finding by refactoring, 56
refactoring when fixing bugs, 58

C

calculate_outstanding method, 107
case statement, 80

replacing with polymorphism
(video store program exam-
ple), 32-49

chains, replacing temps with
example, 115-117
goals, 115
overview, 114
step-by-step description, 115

Change Bidirectional Association to
Unidirectional refactoring, 83

example, 215-217
overview, 213
step-by-step description,

214-215
when to use, 214

Change Reference to
Value refactoring

example, 199-201
overview, 198
step-by-step description, 199
when to use, 198-199

Change Unidirectional Association
to Bidirectional refactoring

example, 211-213
overview, 210
step-by-step description, 211
when to use, 210-211

Index424

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Change Value to
Reference refactoring

example, 196-198
overview, 194
step-by-step description, 195
when to use, 195

changing
bidirectional association to uni-

directional
example, 215-217
goals, 214
overview, 213
step-by-step description,

214-215
divergent change, 77
interfaces, 63-64
reference objects to value

objects
example, 199-201
goals, 198-199
overview, 198
step-by-step

description, 199
unidirectional association to

bidirectional
example, 211-213
goals, 210-211
overview, 210
step-by-step

description, 211
value objects to reference

objects
example, 196-198
goals, 195
overview, 194
step-by-step

description, 195
Charge class, 322
charge method, 33-34, 45, 135

check_security method,
271-273, 305

Chrysler Comprehensive
Compensation case study, 69-72

class annotations, adding
examples, 141-142
goals, 140
overview, 139-140
step-by-step description,

140-141
classes. See also specific classes

alternative classes with
difference interfaces, 83

data classes, 84
delegate classes

calling directly with Remove
Middle Man, 185-186

hiding with Hide Delegate,
181-184

extracting. See extracting
inappropriate intimacy, 83
incomplete library classes, 84
large classes, eliminating, 76
lazy classes, 81
merging hierarchy, 371-372
merging modules into, 362
moving behavior into, 223-224
moving into another class with

Inline Class
example, 180-181
overview, 179
step-by-step

description, 180
when to use, 179

order, 128
replacing records with, 224
replacing with modules

example, 393-395
overview, 392

Index 425

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index426

Collapse Hierarchy, 81
overview, 371
step-by-step description, 372
when to use, 371

collection closure methods,
replacing loops with

example, 133-135
goals, 133
step-by-step description, 133

collections, encapsulating
example, 220-223
goals, 219
overview, 219
step-by-step description,

219-220
CommandCenter class, 163
comments, 85
communication, telling managers

about refactoring, 61
Company class

Expression Builder, adding,
348-352

Introduce Gateway refactoring,
343-346

compute method, 130-131
Concurrent Programming in Java

(Lea), 297
conditional expressions

assertions
example, 294-295
goals, 293
overview, 292
step-by-step description,

293-294
consolidating

examples, 266-267
goals, 265-266
overview, 265
step-by-step

description, 266

step-by-step
description, 393

when to use, 392
special case classes, 292

Code Complete: A Practical
Handbook of Software
Construction (McConnel), 71

code reviews, refactoring with,
58-59

code smells
alternative classes with

difference interfaces, 83
case statements, 80
comments, 85
data classes, 84
data clumps, 79
disjointed APIs, 86
divergent change, 77
duplicated code, 74
feature envy, 78-79
inappropriate intimacy, 83
incomplete library classes, 84
large classes, 76
lazy classes, 81
long methods, 74-76
long parameter lists, 76-77
message chains, 82
metaprogrammming, 86
middle man, 83
overview, 73-74
parallel inheritance

hierarchies, 81
primitives, 79-80
refused bequests, 84-85
repetitive boilerplate, 86
shotgun surgery, 78
speculative generality, 81
temporary fields, 82

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index 427

consolidating duplicate
conditional fragments

example, 269
goals, 268
overview, 268
step-by-step description,

268-269
control flags, removing

examples, 271-274
goals, 269-270
overview, 269
step-by-step description,

270-271
decomposing

example, 263
goals, 262
overview, 261
step-by-step

description, 262
nested conditionals, replacing

with guard clauses
examples, 276-279
goals, 275-276
overview, 274-275
step-by-step

description, 276
null objects, adding

examples, 288-291
goals, 285-287
overview, 284
special cases, 292
step-by-step description,

287-288
recomposing

examples, 264-265
goals, 264
overview, 264

replacing with polymorphism
example, 282-284
goals, 280-281

overview, 279
step-by-step

description, 281
conditional logic, removing,

225-226
Consolidate Conditional

Expression refactoring
examples, 266-267
overview, 265
step-by-step description, 266
when to use, 265-266

Consolidate Duplicate Conditional
Fragments refactoring

example, 269
overview, 268
step-by-step description,

268-269
when to use, 268

consolidating
conditional expressions

examples, 266-267
goals, 265-266
overview, 265
step-by-step

description, 266
duplicate conditional fragments

example, 269
goals, 268
overview, 268
step-by-step description,

268-269
constants, replacing magic

numbers with
goals, 218
overview, 217
step-by-step description, 218

constructors, replacing with factory
methods

example, 330-332
goals, 329

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index428

D

databases, problems with
refactoring, 64-65

data classes, 84
data clumps, eliminating, 79
data organization

changing bidirectional
association to unidirectional

example, 215-217
goals, 214
overview, 213
step-by-step description,

214-215
changing reference objects into

value objects
example, 199-201
goals, 198-199
overview, 198
step-by-step

description, 199
changing unidirectional

association to bidirectional
example, 211-213
goals, 210-211
overview, 210
step-by-step

description, 211
changing value objects into ref-

erence objects
example, 196-198
goals, 195
overview, 194
step-by-step

description, 195
eagerly initialized attributes,

257-259
encapsulating collections

example, 220-223
goals, 219

overview, 328-329
step-by-step description, 329

control flags, removing
examples, 271-274
goals, 269-270
overview, 269
step-by-step description,

270-271
controller classes, separating domain

logic from
example, 408-412
goal of, 406-407
overview, 406
step-by-step description,

407-408
converting procedural design to

objects
example, 406
goal of, 405
overview, 405
step-by-step description, 406

Convert Procedural Design to
Objects

example, 406
overview, 405
step-by-step description, 406
when to use, 405

count_descendants_matching
method, 138-139

Course class, 220
create_bill method, 355, 415
Cunningham, Ward, 51
Currency class, 199
Customer class, 3, 196-198, 212,

215-216, 375
CustomInitializers module, 141, 144

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index 429

step-by-step description,
252-253

replacing type code with
module extensions

example, 234-238
goals, 233
overview, 232
step-by-step

description, 233
replacing type code

with polymorphism
example, 227-232
goals, 225
overview, 225
removing conditional logic,

225-226
step-by-step description,

226-227
replacing type code with

state/strategy
example, 240-251
goals, 239
overview, 239
step-by-step description,

239-240
self-encapsulating fields

example, 189-191
goals, 188-189
overview, 188
step-by-step

description, 189
data values, replacing with objects

example, 192-194
goals, 191
overview, 191
step-by-step description, 192

@days_overdrawn instance
variable, 170

overview, 219
step-by-step description,

219-220
lazily initialized attributes,

255-257
moving behavior into classes,

223-224
overview, 187-188
replacing arrays with objects

example, 202-206
goals, 201
overview, 201
step-by-step

description, 202
replacing data values

with objects
example, 192-194
goals, 191
overview, 191
step-by-step

description, 192
replacing hashes with objects

example, 207-209
goals, 206
overview, 206
step-by-step

description, 207
replacing magic numbers with

symbolic constants
goals, 218
overview, 217
step-by-step

description, 218
replacing records with data

classes, 224
replacing subclasses with fields

example, 253-255
goals, 252
overview, 251

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index430

overview, 389
step-by-step

description, 390
deprecation, refactoring

with, 205-206
design

design changes that are difficult
to refactor, 65-66

improving with refactoring,
54-55

relationship with refactoring,
67-68

developer tests, 91-92
development of refactoring, 51-52
disability_amount method, 265-266
discount_factor method, 114
discount method, 124-125
disjointed APIs, 86
distance_traveled method, 123
divergent change, 77
domain logic, separating from view

example, 408-412
goal of, 406-407
overview, 406
step-by-step description,

407-408
duplicated code, 74
duplicate methods, eliminating with

Extract Surrounding Method
example, 137-139
overview, 135-136
step-by-step description,

136-137
when to use, 136

Dynamic Method
Definition refactoring

examples, 153-157
overview, 152
step-by-step description, 153
when to use, 153

Deal class, Tease Apart Inheritance
refactoring, 401-404

Decompose Conditional refactoring
example, 263
overview, 261
step-by-step description, 262
when to use, 262

decomposing conditional
expressions

example, 263
goals, 262
overview, 261
step-by-step description, 262

Decorator class, 159
def_each method, 154-155
definition of refactoring, 52-54
delegate classes

calling directly with Remove
Middle Man

example, 186
overview, 185
step-by-step

description, 185
when to use, 185

hiding with Hide Delegate
example, 183-184
overview, 181
step-by-step

description, 183
when to use, 182-183

delegation
replacing inheritance with

example, 387-389
goals of, 386
overview, 386
step-by-step description,

386-387
replacing with hierarchy

example, 390-392
goals, 390

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index 431

overview, 219
step-by-step description,

219-220
eql? method, 200
error codes, replacing

with exceptions
examples, 334-33
goals, 333
overview, 332
step-by-step description,
333-334

eval, moving from runtime to parse
time, 165-166

exceptions
replacing error codes with

examples, 334-337
goals, 333
overview, 332
step-by-step description,

333-334
replacing with tests

example, 338-341
goals, 338
overview, 337
step-by-step

description, 338
expense_limit method, 292
explaining variables, adding

examples, 119-121
goals, 118
overview, 117-118
step-by-step description, 119

Expression Builders, adding
example, 348-352
goals, 347
overview, 346
step-by-step description, 347

expressions. See
conditional expressions

dynamic method definitions
examples, 153-157
goals, 153
overview, 152
replacing dynamic

receptors with
examples, 158-160
goals, 158
overview, 158
step-by-step

description, 158
step-by-step description, 153

dynamic receptors
isolating, 160

example, 162-165
goals, 161
step-by-step

description, 162
replacing with dynamic method

definitions, 158-160

E

Eagerly Initialized Attribute
refactoring, 257-259

Employee class
assertions, 294-295
Replace Delegation with

Hierarchy refactoring,
390-391

Encapsulate Collection
refactoring, 84

example, 220-223
overview, 219
step-by-step description,

219-220
when to use, 219

encapsulating collections
example, 220-223
goals, 219

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index432

methods with no local
variables, 104-105

overview, 102
reassigning local variables,

106-108
step-by-step

description, 103
modules

example, 360-362
goals, 358-359
overview, 357-358
step-by-step

description, 359
subclasses

example, 364-367
goals, 363
overview, 363
step-by-step description,

363-364
surrounding methods

example, 137-139
overview, 135-136
step-by-step description,

136-137
when to use, 136

Extract Method refactoring
eliminating duplicated code, 74
methods with local variables,

105-106
methods with no local variables,

104-105
overview, 102
reassigning local variables,

106-108
removing duplication, 86
shortening long methods, 75
step-by-step description, 103
video store program

example, 10
when to use, 102

Extract Class refactoring
changing data clumps into

objects, 79
eliminating large classes, 76
example, 177-179
organizing orphan variables, 82
overview, 175
step-by-step description,

176-177
when to use, 175-176

Extract Hierarchy refactoring
example, 414-416
overview, 412
step-by-step description,

413-414
when to use, 413

extracting
classes

changing data clumps into
objects, 79

eliminating large classes, 76
example, 177-179
organizing orphan

variables, 82
overview, 175
step-by-step description,

176-177
when to use, 175-176

frequent renter points (video
store program), 18-21

hierarchy of classes
example, 414-416
goals, 413
overview, 412
step-by-step description,

413-414
methods

goals, 102
methods with local

variables, 105-106

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index 433

replacing subclasses with
goals, 252
overview, 251
step-by-step description,

252-255
temporary fields, 82

File class, writing tests for, 89-91
FileTest class, 89
finding references, 99
Foo class, 205
format of refactorings, 97-98
Form Template Method refactoring

elmininating duplicated code, 74
overview, 372
step-by-step description, 374
template method with

extension of modules
(example), 380-385

template method with
inheritance (example),
374-379

when to use, 373
found_friends method, 131-132
found_miscreant method, 273-274,

305-306
found_person method, 305
Fowler, Martin, 69
frequent_renter_points method, 47
frequent_renter_points temporary

variable, 19, 22
frequent renter points (video store

program), extracting, 18-21
FrontSuspensionMountainBike

class, 228-231, 236-237,
245, 369-371

FullSuspensionMountainBike class,
228-231, 237, 284

Extract Module refactoring
example, 360-362
overview, 357-358
step-by-step description, 359
when to use, 358-359

Extract Subclass refactoring
example, 364-367
overview, 363
step-by-step description,

363-364
when to use, 363

Extract Surrounding
Method refactoring

eliminating duplicated code, 74
example, 137-139
overview, 135-136
step-by-step description,

136-137
when to use, 136

eXtreme Programming eXplained
(Beck), 51

F

failure method, 152-153
feature envy, 78-79
fields

encapsulating fields
example, 189-191
goals, 188-189
overview, 188
step-by-step

description, 189
moving with Move Field

example, 174-175
overview, 172
step-by-step

description, 173
when to use, 173

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index434

Introduce Inheritance
example, 369-371
overview, 368
step-by-step

description, 369
when to use, 368

Pull Down Method
overview, 356
step-by-step

description, 357
when to use, 357

Pull Up Method
example, 355-356
overview, 353
step-by-step

description, 355
when to use, 354

Replace Abstract Superclass
with Module

example, 393-395
overview, 392
step-by-step

description, 393
when to use, 392

Replace Delegation
with Hierarchy

example, 390-392
overview, 389
step-by-step

description, 390
when to use, 390

Replace Inheritance
with Delegation

example, 387-389
overview, 386
step-by-step description,

386-387
when to use, 386

goals, setting, 418

G

Gamma class, 130
Gateways, adding

example, 342-346
goals, 341-342
overview, 341
step-by-step description, 342

GemStone, 71
generalization refactorings

Collapse Hierarchy
overview, 371
step-by-step

description, 372
when to use, 371

Extract Module
example, 360-362
overview, 357-358
step-by-step

description, 359
when to use, 358-359

Extract Subclass
example, 364-367
overview, 363
step-by-step description,

363-364
when to use, 363

Form Template Method
overview, 372
step-by-step

description, 374
template method with

extension of modules
(example), 380-385

template method with
inheritance (example),
374-379

when to use, 373
Inline Module, 362

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index 435

HtmlStatement class, 376-378,
381-382

html_statement method, 30, 375

I

immutable objects, 199
importance of big refactorings, 398
ImportedItem class, 190
inappropriate intimacy, 83
incomplete library classes, 84
indirection and refactoring, 61-63
inheritance, 374-379

adding to code
example, 369-371
goals, 368
overview, 368
step-by-step

description, 369
refactoring

examples, 401-404
goal of, 400
overview, 399
step-by-step description,

400-401
parallel inheritance

hierarchies, 81
replacing with delegation

example, 387-389
goals of, 386
overview, 386
step-by-step description,

386-387
video store program

example, 36-49
initialize_courses method, 222
initialize method, 130, 190, 254
initializing attributes, 255-259

H

Hash class, 157
Haungs, Jim, 71
HeatingPlan class, 315-317
Hide Delegate refactoring, 82

example, 183-184
overview, 181
step-by-step description, 183
when to use, 182-183

Hide Method refactoring
overview, 327
step-by-step description, 328
when to use, 327

hiding
delegates

example, 183-184
overview, 181
step-by-step

description, 183
when to use, 182-183

methods
goals, 327
overview, 327
step-by-step

description, 328
hierarchy

hierarchy of classes, creating
example, 414-416
goals, 413
overview, 412
step-by-step description,

413-414
replacing delegation with

example, 390-392
goals, 390
overview, 389
step-by-step

description, 390
history of refactoring, 51-52

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index436

Introduce Explaining
Variable refactoring

examples, 119-121
overview, 117-118
step-by-step description, 119
when to use, 118

Introduce Expression Builder
refactoring, 86

example, 348-352
overview, 346
step-by-step description, 347
when to use, 347

Introduce Gateway refactoring, 86
example, 342-346
overview, 341
step-by-step description, 342
when to use, 341-342

Introduce Inheritance refactoring
example, 369-371
overview, 368
step-by-step description, 369
when to use, 368

Introduce Named
Parameter refactoring

examples, 143-147
overview, 142
shortening long parameter

lists, 77
step-by-step description, 143
when to use, 142-143

Introduce Null Object
refactoring, 82

examples, 288-291
overview, 284
special cases, 292
step-by-step description,

287-288
when to use, 285-287

Inline Class refactoring, 81
example, 180-181
organizing changes

into single class, 78
overview, 179
removing unnecessary

delegation, 81
step-by-step description, 180
when to use, 179

Inline Method refactoring
overview, 108-109
step-by-step description,

109-110
when to use, 109

inline methods
goals, 109
overview, 108-109
step-by-step description,

109-110
Inline Module refactoring, 81, 362
Inline Temp refactoring, 110
inline temps, 110
instance_variable_defined?

method, 257
@interest_rate field, moving, 174
interfaces, changing, 63-64
Introduce Assertion refactoring, 85

example, 294-295
overview, 292
step-by-step description,

293-294
when to use, 293

Introduce Class Annotation
refactoring, 86

examples, 141-142
overview, 139-140
step-by-step description,

140-141
when to use, 140

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index 437

libraries, incomplete library
classes, 84

local variables
example, 105-106
reassigning, 106-108

long methods, shortening, 74-76
long parameter lists, shortening,

76-77
loops, replacing with collection

closure methods, 133-135

M

magic numbers, replacing with
symbolic constants

goals, 218
overview, 217
step-by-step description, 218

managers, telling about
refactoring, 61

measuring performance, Chrysler
Comprehensive Compensation case
study, 69-72

merging
class hierarchy, 371-372
modules into including

class, 362
message chains, 82
MessageCollector class, 164
metaprogramming, 86
method_missing method, 156, 160
methods

add_charge, 322-323
add_course, 223
add_customer, 213
add_front_suspension, 247
add_option, 117
add_order, 213
add_rear_suspension, 247

Introduce Parameter
Object refactoring

example, 321-324
reducing parameter lists, 79
shortening long parameter

lists, 77
step-by-step description, 321
when to use, 320

Isolate Dynamic
Receptor refactoring

example, 162-165
overview, 160
step-by-step description, 162
when to use, 161

Item class, 189-190

J-K

Jeffries, Ron, 69, 285
JobItem class, extracting LaborItem

subclass from, 364-367
Johnson, Ralph, 51
Join class, 394
joins_for_table method, 394
Knuth, Donald, 166

L

LaborItem class, extracting from
JobItem class, 364-367

Laptop class, 346-352
large classes, eliminating, 76
large refactorings, tips for, 420
Lazily Initialized Attributes,

255-257
lazy classes, 81
Lea, Doug, 297
learning refactoring, 418-419
Ledger class, 126

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index438

def_each, 154-155
defining dynamically

examples, 153-157
goals, 153
overview, 152
replacing dynamic

receptors with dynamic
method definition,
158-160

step-by-step
description, 153

disability_amount, 265-266
discount, 124-125
discount_factor, 114
distance_traveled, 123
duplicate methods, eliminating,

135-139
eql?, 200
expense_limit, 292
Expression Builders, adding

example, 348-352
goals, 347
overview, 346
step-by-step

description, 347
extracting

goals, 102
methods with local

variables, 105-106
methods with no local

variables, 104-105
overview, 102
reassigning local variables,

106-108
step-by-step

description, 103
failure, 152-153
found_friends, 131-132

adjusted_capital, 278-279
a_method, 125
amount_for, 12-18
apply, 388
assert_equal, 89
base_charge, 309
base_price, 111
calculate_outstanding, 107
charge, 33-34, 45, 135
check_security, 271-273, 305
class annotations, adding

examples, 141-142
goals, 140
overview, 139-140
step-by-step description,

140-141
collection closure methods,

replacing loops with
example, 133-135
goals, 133
step-by-step

description, 133
compute, 130-131
constructors, replacing with

factory methods, 328-332
count_descendants_matching,

138-139
create_bill, 355, 415
creating

goals, 373
overview, 372
step-by-step

description, 374
template method with

extension of modules
(example), 380-385

template method with
inheritance (example),
374-379

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index 439

goals, 354
overview, 353
step-by-step

description, 355
moving with Move Method

example, 170-172
overview, 167
step-by-step description,

168-170
when to use, 168

not_summer, 263
number_of_descendants_named,

138-139
number_of_living_descendants,

138-139
office_telephone_number, 300
off_road_ability, 228, 244
overdraft_charge, 170-171
parameters

adding, 300-302
named parameters, 142-147
named parameters, remov-

ing, 147-150
parameterized methods,

creating, 307-310
parameter objects, creating,

320-324
removing, 302-303
removing assignments to,

124-127
replacing with explicit

methods, 310-313
replacing with methods,

317-320
unused default parameters,

removing, 150-152
pay_amount, 275-277
price, 112-121, 228, 247,

319-320

found_miscreant, 273-274,
305-306

found_person, 305
frequent_renter_points, 47
Gateways, adding

example, 342-346
goals, 341-342
overview, 341
step-by-step

description, 342
hiding

goals, 327
overview, 327
step-by-step

description, 328
html_statement, 30, 375
initialize, 130, 190, 254
initialize_courses, 222
inline methods

goals, 109
overview, 108-109
step-by-step description,

109-110
instance_variable_defined?, 257
isolating dynamic receptors, 160

example, 162-165
goals, 161
step-by-step

description, 162
joins_for_table, 394
long methods, shortening, 74-76
method_missing, 156, 160
MountainBike, 250
moving to subclasses

goals of, 357
overview, 356
step-by-step

description, 357
moving up to superclass

example, 355-356

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index440

initial code listing, 3-4
moving amount

calculation, 12-18
removing temporary

variables, 22-31
renaming variables, 10-11

substituting algorithms
goals, 132
overview, 131-132
step-by-step

description, 132
summer_charge, 263
telephone_number,

renaming, 299
temporary variables

explaining variables,
117-121

inline temps, 110
replacing with chains,

114-117
replacing with queries,

111-114
splitting, 121-124

total_amount_for_order_lines,
411

total_charge, 23-25
triple, 126
usage_in_range, 309
value, 379, 383
winter_charge, 263
withdraw, 336

middle man classes, removing,
83, 185-186

MissingCustomer class, 289
Module class, 205
module extensions, replacing type

code with
example, 234-238
goals, 233

price_code, 48
print_owing, 104-108
product_count_items, 150-151
remove_customer, 213
remove_order, 213
removing

example, 325-327
goals, 325
overview, 324
step-by-step

description, 325
renaming, 298

example, 299-300
goals, 298-299
step-by-step

description, 299
replacing with method objects

example, 129-131
goals, 128
overview, 127
step-by-step

description, 129
resource, 339-341
reward_points, 264
RigidMountainBike, 250
send_alert_if_miscreant_in, 306
separating query from modifier

concurrency issues, 307
example, 305-307
goals, 304
overview, 303
step-by-step description,

304-305
statement, 374, 380

code listing after
refactoring, 9

code listing before
refactoring, 7-8

extracting frequent renter
points, 18-21

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index 441

moving behaviors into data
classes, 84

organizing changes into single
class, 78

overview, 167
reducing inappropriate

intimacy, 83
step-by-step description,

168-170
when to use, 168

Movie class, 2
moving

amount calculation (video store
program), 12-18

behavior into classes, 223-224
fields. See Move

Field refactoring
methods. See Move

Method refactoring
methods to subclasses

goals of, 357
overview, 356
step-by-step

description, 357
methods up to superclass

example, 355-356
goals, 354
overview, 353
step-by-step

description, 355

N

named parameters
adding

examples, 143-147
goals, 142-143
overview, 142
step-by-step

description, 143

overview, 232
step-by-step description, 233

modules
AccountNumberCapture,

360-362
AssertValidKeys, 146-147
CustomInitializers, 141-144
extracting

example, 360-362
goals, 358-359
overview, 357-358
step-by-step

description, 359
merging into including

class, 362
Person, 391
replacing superclasses with

example, 393-395
overview, 392
step-by-step

description, 393
when to use, 392

MonthlyStatement class, 385
MountainBike class, 227-229,

234-236, 240-248, 280-283, 369
MountainBike method, 250
Move Eval from Runtime to Parse

Time refactoring, 165-166
Move Field refactoring

example, 174-175
organizing changes into single

class, 78
overview, 172
reducing inappropriate

intimacy, 83
step-by-step description, 173
when to use, 173

Move Method refactoring, 13
example, 170-172

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index442

special cases, 292
step-by-step description,

287-288
parameter objects, creating,

320-324
preserving whole objects

example, 315-317
goals, 313-314
overview, 313
step-by-step description,

314-315
reference objects

changing into value objects,
198-201

changing value objects into,
194-198

replacing arrays with
example, 202-205
goals, 201
overview, 201
step-by-step

description, 202
replacing data values with

example, 192-194
goals, 191
overview, 191
step-by-step

description, 192
replacing hashes with

example, 207-209
goals, 206
overview, 206
step-by-step

description, 207
replacing with arrays, 206
value objects

changing reference objects
into, 198-201

changing to reference
objects, 194-198

removing
example, 148-150
goals, 148
overview, 147
step-by-step

description, 148
nature of refactoring, 397-398
nested conditionals, replacing with

guard clauses
examples, 276-279
goals, 275-276
overview, 274-275
step-by-step description, 276

NetworkResult class, 208-210
not_summer method, 263
NullCustomer class, 290-291
null objects, adding

examples, 288-291
goals, 285-288
overview, 284
special cases, 292

number_of_descendants_named
method, 138-139

number_of_living_descendants
method, 138-139

O

objects
converting procedural design to

example, 406
goal of, 405
overview, 405
step-by-step

description, 406
method objects, replacing

methods with, 127-131
null objects, adding

examples, 288-291
goals, 285-287
overview, 284

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index 443

step-by-step
description, 125

removing from methods
goals, 302
overview, 302
step-by-step description,

302-303
replacing with explicit methods

example, 311-313
goals, 310-311
overview, 310
step-by-step

description, 311
replacing with methods

example, 318-320
goals, 318
overview, 317
step-by-step

description, 318
unused default parameters,

removing
example, 151-152
goals, 151
overview, 150
step-by-step

description, 151
partners, value of, 419
pay_amount method, 275-277
performance

effect of refactoring on, 70-71
measuring, Chrysler

Comprehensive Compensation
case study, 69-72

Performance class, 203-204
Person class, 165, 220-222, 253-254

Expression Builder, adding,
348-352

Extract Class refactoring,
177-179

office_telephone_number
method, 300

off_road_ability method, 228, 244
Opdyke, Bill, 52
Order class, 128, 192-193, 196,

212-216, 411
OrdersController class, 409-410
organizing data. See

data organization
orphan variables, organizing, 82
overdraft_charge method, 170-171

P

parallel inheritance hierarchies, 81
parameterized methods, creating

example, 308-310
goals, 308
overview, 307
step-by-step description, 308

Parameterize Method refactoring
example, 308-310
overview, 307
step-by-step description, 308
when to use, 308

parameter lists, shortening, 76-77
parameters

adding to methods
goals, 300-301
overview, 300
step-by-step description,

301-302
named parameters

adding, 142-147
removing, 147-150

parameter objects, creating,
320-324

removing assignments to
example, 125-127
goals, 124-125

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index444

print_owing method, 104-108
problems with refactoring

databases, 64-65
design changes, 65-66
interface changes, 63-64
when not to refactor, 66-67

procedural design, converting to
objects

example, 406
goal of, 405
overview, 405
step-by-step description, 406

Product class, 127
ProductController class, 330-332
product_count_items method,

150-151
programs. See video store program
Pull Down Method refactoring

overview, 356
step-by-step description, 357
when to use, 357

Pull Up Method refactoring
example, 355-356
overview, 353
step-by-step description, 355
when to use, 354

Push Down Method refactoring, 85

Q

QA (quality assurance) tests, 91-92
queries

replacing temps with
example, 112-114
goals, 111-112
step-by-step

description, 112
separating from modifiers

concurrency issues, 307
example, 305-307

Hide Delegate refactoring,
183-184

Remove Middle Man
refactoring, 186

Person module, 391
Policy class, 387-389
polymorphism

replacing conditional logic with
example, 282-284
goals, 280-281
overview, 279
step-by-step

description, 281
video store program

example, 32-49
replacing type code with

example, 227-232
goals, 225
overview, 225
removing conditional logic,

225-226
step-by-step description,

226-227
PostData class, 156
The Pragmatic Programmer

(Thomas), 87
Preserve Whole Object refactoring

example, 315-317
overview, 313
reducing parameter lists, 79
shortening long parameter

lists, 77
step-by-step description,

314-315
when to use, 313-314

price_code method, 48
price method, 112-121, 228, 247,

319-320
primitives, 79-80

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index 445

overview, 194
step-by-step

description, 195
references, finding, 99
refused bequests, 84-85
Remove Assignments to Parameters

refactoring
example, 125-127
overview, 124
step-by-step description, 125
when to use, 124-125

Remove Control Flag refactoring
examples, 271-274
overview, 269
step-by-step description,

270-271
when to use, 269-270

remove_customer method, 213
Remove Middle Man refactoring, 83

example, 186
overview, 185
step-by-step description, 185
when to use, 185

Remove Named
Parameter refactoring

example, 148-150
overview, 147
step-by-step description, 148
when to use, 148

remove_order method, 213
Remove Parameter refactoring

overview, 302
step-by-step description,

302-303
when to use, 302

Remove Setting Method
refactoring, 84

example, 325-327
overview, 324

goals, 304
overview, 303
step-by-step description,

304-305

R

reassigning local variables, 106-108
Recompose Conditional refactoring

examples, 264-265
overview, 264
when to use, 264

recomposing conditional expressions
examples, 264-265
goals, 264
overview, 264

Recorder class, 162-164
records, replacing with data

classes, 224
Red/Green/Refactor movement,

87-88
Refactoring Databases (Sadalage

and Ambler), 65
refactorings. See

specific refactorings
refactoring tips

learning refactoring, 418-419
overview, 417-418
tips for large refactorings, 420
working with a partner, 419

reference objects
changing into value objects

example, 199-201
goals, 198-199
overview, 198
step-by-step

description, 199
changing value objects into

example, 196-198
goals, 195

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index446

overview, 150
step-by-step

description, 151
Rename Method refactoring

example, 299-300
step-by-step description, 299
when to use, 298-299

renaming
methods

example, 299-300
goals, 298-299
step-by-step

description, 299
variables, 10-11

Rental class, 2-3
repetitive boilerplate, removing, 86
Replace Abstract Superclass with

Module refactoring
example, 393-395
overview, 392
step-by-step description, 393
when to use, 392

Replace Array with
Object refactoring, 80

example, 202-206
overview, 201
step-by-step description, 202
when to use, 201

Replace Conditional with
Polymorphism refactoring

example, 282-284
overview, 279
step-by-step description, 281
when to use, 280-281

Replace Constructor with Factory
Method refactoring

example, 330-332
overview, 328-329

step-by-step description, 325
when to use, 325

Remove Unused Default Parameter
refactoring

example, 151-152
overview, 150
step-by-step description, 151
when to use, 151

removing
assignments to parameters

example, 125-127
goals, 124-125
step-by-step

description, 125
code smells. See code smells
control flags

examples, 271-274
goals, 269-270
overview, 269
step-by-step description,

270-271
middle man, 83
named parameters

example, 148-150
goals, 148
overview, 147
step-by-step

description, 148
repetitive boilerplate, 86
setting methods

example, 325-327
goals, 325
overview, 324
step-by-step

description, 325
temporary variables, 22-31
unused default parameters

example, 151-152
goals, 151

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index 447

step-by-step description, 207
when to use, 206

Replace Inheritance with Delegation
refactoring, 85

example, 387-389
overview, 386
step-by-step description,

386-387
when to use, 386

Replace Loop with Collection
Closure Method refactoring

example, 133-135
overview, 133
step-by-step description, 133
when to use, 133

Replace Magic Number with
Symbolic Constant refactoring

overview, 217
step-by-step description, 218
when to use, 218

Replace Method with Method
Object refactoring

example, 129-131
overview, 127
shortening long methods, 75
step-by-step description, 129
when to use, 128

Replace Nested Conditional with
Guard Clauses refactoring

examples, 276-279
overview, 274-275
step-by-step description, 276
when to use, 275-276

Replace Parameter with Explicit
Methods refactoring, 80

example, 311-313
overview, 310
step-by-step description, 311
when to use, 310-311

step-by-step description, 329
when to use, 329

Replace Data Value with Object
refactoring, 80

example, 192-194
overview, 191
step-by-step description, 192
when to use, 191

Replace Delegation with Hierarchy
refactoring, 83

example, 390-392
overview, 389
step-by-step description, 390
when to use, 390

Replace Dynamic Receptor with
Dynamic Method Definition
refactoring, 86

examples, 158-160
overview, 158
step-by-step description, 158
when to use, 158

Replace Error Code with
Exception refactoring

examples, 334-337
overview, 332
step-by-step description,

333-334
when to use, 333

Replace Exception with
Test refactoring

example, 338-341
overview, 337
step-by-step description, 338
when to use, 338

Replace Hash with
Object refactoring

example, 207-209
overview, 206

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index448

removing conditional logic,
225-226

step-by-step description,
226-227

when to use, 225
Replace Type Code with State/

Strategy refactoring, 80
example, 240-251
overview, 239
step-by-step description,

239-240
video game program example,

38-45
when to use, 239

replacing
algorithms

goals, 132
overview, 131-132
step-by-step

description, 132
arrays with objects

example, 202-206
goals, 201
overview, 201
step-by-step

description, 202
conditional logic

with polymorphism
example, 282-284
goals, 280-281
overview, 279
step-by-step

description, 281
video store program

example, 32-49
constructors with

factory methods
example, 330-332

Replace Parameter with Method
refactoring

example, 318-320
overview, 317
shortening long parameter

lists, 77
step-by-step description, 318
when to use, 318

Replace Record with Data Class
refactoring, 224

Replace Subclass with
Fields refactoring

example, 253-255
overview, 251
step-by-step description,

252-253
when to use, 252

Replace Temp with
Chain refactoring

example, 115-117
overview, 114
when to use, 115

Replace Temp with
Query refactoring

example, 112-114
overview, 111
step-by-step description, 112
when to use, 111-112

Replace Type Code with Module
Extension refactoring, 80

example, 234-238
overview, 232
step-by-step description, 233
when to use, 233

Replace Type Code with
Polymorphism refactoring, 80

example, 227-232
overview, 225

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index 449

description, 133
magic numbers with symbolic

constants
goals, 218
overview, 217
step-by-step

description, 218
methods with method objects

example, 129-131
goals, 128
overview, 127
step-by-step

description, 129
nested conditionals with

guard clauses
examples, 276-279
goals, 275-276
overview, 274-275
step-by-step

description, 276
parameters with methods

example, 318-320
goals, 318
overview, 317
step-by-step

description, 318
records with data classes, 224
subclasses with fields

example, 253-255
goals, 252
overview, 251
step-by-step description,

252-253
temps with chains

example, 115-117
goals, 115
overview, 114
step-by-step

description, 115

goals, 329
overview, 328-329
step-by-step

description, 329
data values with objects

example, 192-194
goals, 191
overview, 191
step-by-step

description, 192
delegation with hierarchy

example, 390-392
goals, 390
overview, 389
step-by-step description,

390
dynamic receptors with dynamic

method definitions
examples, 158-160
goals, 158
overview, 158
step-by-step

description, 158
hashes with objects

example, 207-209
goals, 206
overview, 206
step-by-step

description, 207
inheritance with delegation

example, 387-389
goals of, 386
overview, 386
step-by-step description,

386-387
loops with collection

closure methods
example, 133-135
goals, 133
step-by-step

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index450

Select class, 115-117
Self-Delegation pattern, 78
Self Encapsulate Field

refactoring, 174
example, 189-191
overview, 188
step-by-step description, 189
when to use, 188-189

self-testing code, 87-88
send_alert_if_miscreant_in

method, 306
Separate Domain from Presentation

refactoring
example, 408-412
overview, 406
step-by-step description,

407-408
when to use, 406-407

Separate Query from
Modifier refactoring

concurrency issues, 307
example, 305-307
overview, 303
step-by-step description,

304-305
when to use, 304

separating domain logic from view
example, 408-412
goal of, 406-407
overview, 406
step-by-step description,

407-408
shortening

methods, 74-76
parameter lists, 76-77

shotgun surgery, 78
Smalltalk, 51
smells. See code smells
software design, improving with

refactoring, 54-55

temps with queries
example, 112-114
goals, 111-112
step-by-step

description, 112
type code with

module extensions
example, 234-238
goals, 233
overview, 232
step-by-step

description, 233
type code with polymorphism

example, 227-232
goals, 225
overview, 225
removing conditional logic,

225-226
step-by-step description,

226-227
type code with state/strategy

example, 240-251
goals, 239
overview, 239
step-by-step description,

239-240
resource method, 339-341
ResourceStack class, 338-339
reward_points method, 264
RigidMountainBike class, 228-231,

243-244, 247, 282-283
RigidMountainBike method, 250
Roberts, Don, 51, 57
Room class, 315
Rule of Three, 57

S

Sadalage, Pramod, 65
SearchCriteria class, 141-144

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index 451

moving methods into
goals of, 357
overview, 356
step-by-step

description, 357
replacing with fields

example, 253-255
goals, 252
overview, 251
step-by-step description,

252-253
Substitute Algorithm refactoring

overview, 131-132
step-by-step description, 132
when to use, 132

substituting algorithms
goals, 132
overview, 131-132
step-by-step description, 132

summer_charge method, 263
superclasses, replacing with modules

example, 393-395
overview, 392
step-by-step description, 393
when to use, 392

symbolic constants, replacing magic
numbers with

goals, 218
overview, 217
step-by-step description, 218

T

tangled inheritance, refactoring
examples, 401-404
goal of, 400
overview, 399
step-by-step description,

400-401

special case class, 292
speculative generality, 81
Split Temporary

Variable refactoring
example, 122-124
overview, 121-122
step-by-step description, 122
when to use, 122

splitting temporary variables
example, 122-124
goals, 122
overview, 121-122
step-by-step description, 122

Statement class, 379
statement method, 374, 380

code listing after refactoring, 9
code listing before

refactoring, 7-8
extracting frequent renter

points, 18-21
initial code listing, 3-4
moving amount calculation,

12-18
removing temporary variables,

22-31
renaming variables, 10-11

state/strategy, replacing type
code with

example, 240-251
goals, 239
overview, 239
step-by-step description,

239-240
subclasses

extracting
example, 364-367
goals, 363
overview, 363
step-by-step description,

363-364

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index452

replacing with queries
example, 112-114
goals, 111-112
overview, 111
step-by-step

description, 112
splitting

example, 122-124
goals, 122
overview, 121-122
step-by-step

description, 122
total_amount, 22-23

TestCase class, 89
Test::Unit testing framework, 88-91
testing

developer tests, 91-92
importance of, 9-10
QA (quality assurance) tests,

91-92
self-testing code, 87-88
Test::Unit testing framework,

88-91
video store program, 6-7
writing tests, 92-95

tests, replacing exceptions with
example, 338-341
goals, 338
overview, 337
step-by-step description, 338

TextStatement class, 376-377, 381
Thomas, Dave, 87
tips for refactoring

learning refactoring, 418-419
overview, 417-418
tips for large refactorings, 420
working with a partner, 419

total_amount_for_order_lines
method, 411

Tease Apart Inheritance refactoring
examples, 401-404
overview, 399
step-by-step description,

400-401
when to use, 400

TelephoneNumber class
defining, 177-178
Inline Class refactoring

example, 180-181
telephone_number method,

renaming, 299
telling managers about

refactoring, 61
template methods, creating

goals, 373
overview, 372
step-by-step description, 374
template method with

extension of modules
(example), 380-385

template method with inheri-
tance (example), 374-379

temporary fields, 82
temporary variables

explaining variables, adding
examples, 119-121
goals, 118
overview, 117-118
step-by-step

description, 119
frequent_renter_points, 19, 22
inline temps, 110
removing, 22-23, 26-31
replacing with chains

example, 115-117
goals, 115
overview, 114
step-by-step

description, 115

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index 453

goals, 214
overview, 213
step-by-step description,

214-215
changing to bidirectional

example, 211-213
goals, 210-211
overview, 210
step-by-step

description, 211
Unified Modeling Language (UML)

diagrams, 20-21
unused default

parameters, removing
example, 151-152
goals, 151
overview, 150
step-by-step description, 151

usage_in_range method, 309

V

value method, 379, 383
value objects

changing reference objects into,
198-201

changing to reference objects,
194-198

variables
@days_overdrawn, 170
local variables

example, 105-106
reassigning, 106-108

orphan variables, organizing, 82
renaming, 10-11
temporary variables

explaining variables, add-
ing, 117-121

frequent_renter_points,
19, 22

total_amount temporary variable,
22-23

total_charge method, 23-25
triple method, 126
troubleshooting refactoring

databases, 64-65
design changes, 65-66
interface changes, 63-64
when not to refactor, 66-67

two hat metaphor, 54
type code

replacing with
module extensions

example, 234-238
goals, 233
overview, 232
step-by-step

description, 233
replacing with polymorphism

example, 227-232
goals, 225
overview, 225
removing conditional logic,

225-226
step-by-step description,

226-227
replacing with state/strategy

example, 240-251
goals, 239
overview, 239
step-by-step description,

239-240

U

UML (Unified Modeling Language)
diagrams, 20-21

unidirectional association
changing bidirectional to

example, 215-217

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Index454

views, separating domain logic from
example, 408-412
goal of, 406-407
overview, 406
step-by-step description,

407-408

W-X-Y-Z

when not to refactor, 66-67
when to refactor

for greater understanding, 59-60
overview, 57
Rule of Three, 57
when adding function, 57-58
when fixing bugs, 58
with code reviews, 58-59

why refactoring works, 60-61
winter_charge method, 263
withdraw method, 336
writing tests, 92-95

inline temps, 110
removing, 22-31
replacing with chains,

114-117
replacing with queries,

111-114
splitting, 121-124
total_amount, 22-23

video store program
charge method, 33-34, 45
Customer class, 3
design issues, 5-6
frequent_renter_points

method, 47
html_statement method, 30
inheritance, 36-49
Movie class, 2
overview, 1-2
price_code method, 48
Rental class, 3
replacing conditional logic with

polymorphism, 32-49
statement method

code listing after
refactoring, 9

code listing before
refactoring, 7-8

extracting frequent renter
points, 18-21

initial code listing, 3-4
moving amount calculation,

12-18
removing temporary

variables, 22-31
renaming variables, 10-11

testing, 6-7
total_charge method, 23-25
Unified Modeling Language

(UML) diagrams, 20-21

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefits.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram
IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you’re
looking for a book on a new technology, a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefits:

• Access to supplemental content,
including bonus chapters,
source code, or project files.

• A coupon to be used on your
next purchase.

Registration benefits vary by product.
Benefits will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

From the Library of Lee Bogdanoff

Download at WoweBook.Com

ptg

From the Library of Lee Bogdanoff

Download at WoweBook.Com

www.InformIT.com/learn

ptg

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!
www.informit.com/safaritrial

From the Library of Lee Bogdanoff

Download at WoweBook.Com

www.informit.com/safaritrial

ptg

Your purchase of Refactoring: Ruby Edition includes access to a free online edition
for 45 days through the Safari Books Online subscription service. Nearly every
Addison-Wesley Professional book is available online through Safari Books Online,
along with more than 5,000 other technical books and videos from publishers such as
Cisco Press, Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specifi c answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at
www.informit.com/safarifree

STEP 1: Enter the coupon code: TCJTPVH.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

From the Library of Lee Bogdanoff

Download at WoweBook.Com

www.informit.com/safarifree

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Chapter 1: Refactoring, a First Example
	The Starting Point
	The First Step in Refactoring
	Decomposing and Redistributing the Statement Method
	Replacing the Conditional Logic on Price Code with Polymorphism
	Final Thoughts

	Chapter 2: Principles in Refactoring
	Where Did Refactoring Come From?
	Defining Refactoring
	Why Should You Refactor?
	When Should You Refactor?
	Why Refactoring Works
	What Do I Tell My Manager?
	Indirection and Refactoring
	Problems with Refactoring
	Refactoring and Design
	It Takes A While to Create Nothing
	Refactoring and Performance
	Optimizing a Payroll System

	Chapter 3: Bad Smells in Code
	Duplicated Code
	Long Method
	Large Class
	Long Parameter List
	Divergent Change
	Shotgun Surgery
	Feature Envy
	Data Clumps
	Primitive Obsession
	Case Statements
	Parallel Inheritance Hierarchies
	Lazy Class
	Speculative Generality
	Temporary Field
	Message Chains
	Middle Man
	Inappropriate Intimacy
	Alternative Classes with Different Interfaces
	Incomplete Library Class
	Data Class
	Refused Bequest
	Comments
	Metaprogramming Madness
	Disjointed API
	Repetitive Boilerplate

	Chapter 4: Building Tests
	The Value of Self-Testing Code
	The Test::Unit Testing Framework
	Developer and Quality Assurance Tests
	Adding More Tests

	Chapter 5: Toward a Catalog of Refactorings
	Format of the Refactorings
	Finding References

	Chapter 6: Composing Methods
	Extract Method
	Inline Method
	Inline Temp
	Replace Temp with Query
	Replace Temp with Chain
	Introduce Explaining Variable
	Split Temporary Variable
	Remove Assignments to Parameters
	Replace Method with Method Object
	Substitute Algorithm
	Replace Loop with Collection Closure Method
	Extract Surrounding Method
	Introduce Class Annotation
	Introduce Named Parameter
	Remove Named Parameter
	Remove Unused Default Parameter
	Dynamic Method Definition
	Replace Dynamic Receptor with Dynamic Method Definition
	Isolate Dynamic Receptor
	Move Eval from Runtime to Parse Time

	Chapter 7: Moving Features Between Objects
	Move Method
	Move Field
	Extract Class
	Inline Class
	Hide Delegate
	Remove Middle Man

	Chapter 8: Organizing Data
	Self Encapsulate Field
	Replace Data Value with Object
	Change Value to Reference
	Change Reference to Value
	Replace Array with Object
	Replace Hash with Object
	Change Unidirectional Association to Bidirectional
	Change Bidirectional Association to Unidirectional
	Replace Magic Number with Symbolic Constant
	Encapsulate Collection
	Replace Record with Data Class
	Replace Type Code with Polymorphism
	Replace Type Code with Module Extension
	Replace Type Code with State/Strategy
	Replace Subclass with Fields
	Lazily Initialized Attribute
	Eagerly Initialized Attribute

	Chapter 9: Simplifying Conditional Expressions
	Decompose Conditional
	Recompose Conditional
	Consolidate Conditional Expression
	Consolidate Duplicate Conditional Fragments
	Remove Control Flag
	Replace Nested Conditional with Guard Clauses
	Replace Conditional with Polymorphism
	Introduce Null Object
	Introduce Assertion

	Chapter 10: Making Method Calls Simpler
	Rename Method
	Add Parameter
	Remove Parameter
	Separate Query from Modifier
	Parameterize Method
	Replace Parameter with Explicit Methods
	Preserve Whole Object
	Replace Parameter with Method
	Introduce Parameter Object
	Remove Setting Method
	Hide Method
	Replace Constructor with Factory Method
	Replace Error Code with Exception
	Replace Exception with Test
	Introduce Gateway
	Introduce Expression Builder

	Chapter 11: Dealing with Generalization
	Pull Up Method
	Push Down Method
	Extract Module
	Inline Module
	Extract Subclass
	Introduce Inheritance
	Collapse Heirarchy
	Form Template Method
	Replace Inheritance with Delegation
	Replace Delegation with Hierarchy
	Replace Abstract Superclass with Module

	Chapter 12: Big Refactorings
	The Nature of the Game
	Why Big Refactorings Are Important
	Four Big Refactorings
	Tease Apart Inheritance
	Convert Procedural Design to Objects
	Separate Domain from Presentation
	Extract Hierarchy

	Chapter 13: Putting It All Together
	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W-X-Y-Z

