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Abstract have for end users and web publishers. In the study, our

. . .. web server recorded any changes made to the HTML
While web pages sent over HTTP have no Integrltycode of our web page ¥or visi?ors from over 50,000

guarantees, it is commonly assumed that such pages are .

o . . i unigue IP addresses.
not modified in transit. In this paper, we provide ev- Chanaes to our pade were seen by 1.3% of the client
idence of surprisingly widespread and diverse changegﬁ Y ur page w y .57 !

made to web pages between the server and client. Ov ecﬁi?craelf Sis;ilenn?eudr izgglei/\(ljéag\t/ggr?/:an damp:npultatlzg g:c
1% of web clients in our study received altered pages, y L . : y yp
hanges caused by agents with diverse incentives. For

and we show that these changes often have undesirab E§<am le. 1SPs seek revenue by iniecting ads. end users
consequences for web publishers or end users. Such ampie, y in) 9 '

changes include popup blocking scripts inserted by cIienFeek to filter annoyances like ads and POPUpS, and ”.‘a"
software, advertisements injected by ISPs, and even mavare authors seek to spread worms by injecting exploits.
’ ! Many of these changes are undesirable for publish-

licious code likely inserted by malware using ARP poi- = L
soning. Additionally, we find that changes introduced 'S OF USETS. Ata minimum, the injection or removal of
by client software can inadvertently cause harm, such a§ds by ISP?’ Or proxies can impact the revenue s_tream of
introducing cross-site scripting vulnerabilities into sho & WeP publisher, annoy the end user, or potentially ex-
pages a client visits. To help publishers understand©S€ the end user to privacy violations. Worse, we find
and react appropriately to such changes, we introducIahat several types of modifications introduce bugs or even

web tripwires—client-side JavaScript code that can de- v_ul_nerabilities into many or all O.f the web pages a user
tect most in-flight modifications to a web page. We dis- Visits—pages that might otherwise be safe and bug-free.

cuss several web tripwire designs intended to provide ba//€ demonstrate the threats these modifications pose by
?})undmg successful exploits of the vulnerabilities.

sic integrity checks for web servers. We show that the ; ] i
are more flexible and less expensive than switching to 1hese discoveries reveal a diverse ecosystem of

HTTPS and do not require changes to current browsers29ents that modify web pages. Because many of these
modifications have negative consequences, publishers

may have incentives to detect or even prevent them from
1 Introduction occurring. Detection can help publishers notify users that

a page might not appear as intended, take action against
Most web pages are sent from servers to clients usinghose who make unwanted changes, debug problems due
HTTP. It is well-known that ISPs or other parties be- to modified pages, and potentially deter some types of
tween the server and the cliestuld modify this content  changes. Preventing modifications may sometimes be
in flight; however, the common assumption is that, bar-important, but there may also be types of page changes
ring a few types of client proxies, no such modificationsworth allowing. For example, some enterprise proxies
take place. In this paper, we show that this assumption isnodify web pages to increase client security, such as
false. Not only do a large number and variety of in-flight Blue Coat WebFilter [9] and BrowserShield [30].
modifications occur to web pages, but they often result HTTPS offers a strong, but rigid and costly, solution
in significant problems for users or publishers or both. for these issues. HTTPS encrypts web traffic to prevent

We present the results of a measurement study to betn-flight modifications, though proxies thatactas HTTPS

ter understand what in-flight changes are made to welendpoints may still alter pages without any indication to
pages in practice, and the implications these changethe server. Encryption can prevent even beneficial page
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Figure 1: Web tripwires can detect any modifications &
to the HTML source code of a page made between the Unmodified Page Modified Page
server and the browser.
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Figure 2: If a web tripwire detects a change, it displays a
message to the user, as in the screenshot on the right.

changes, as well as web caching, compression, and other
useful services that rely on the open nature of HTTP. .
As a result, we propose that concerned web publish- To understand the scope of the problem, we designed

ers adoptveb tripwires on their pages to help understand a measurement study to test whether web pages arrive

and react to any changes made in flight. Web tripwiret the client unchanged. We developed a web page that

are client-side JavaScript code that can detect most modt©U!d detect changes to its HTML source code made by

ifications to unencrypted web pages. Web tripwires arédn agent bgtween the SEerver and the browser, and we at-
not secure and cannot detect all changes, but they ¢ acted a diverse set of clients to the page to test many

be made robust in practice. We present several desigrf@@ths through the network. Our study seeks to answer

for web tripwires and show that they can be deployedWO KeY questions:
at a lower cost than HTTPS, do not require changes to
web browsers, and support various policy decisions for
reacting to page modifications. They provide web servers
with practical integrity checks against a variety of unde- ® Do the changes have unforeseen consequences?

swﬁ\lg ?éiagfg;r;u;a?g?Iifslcs:g;ni'ze d as follows. Sec- We found that clients at over 1% of 50,000 IP ad-
tion2 describes our measurement study of in-flight pag dresses saw some change to the page, many with nega-

changes and discusses the implications of our findinggi\/e consequences. In the rest of this §ection, we discuss

In Section 3, we compare several web tripwire im_0ur measu_r_em_enttechnlque and the diverse ecosystem of
! . : Page modifications that we observed.

plementation strategies that allow publishers to detec

changes to their own pages. We evaluate the costs of

web tripwires and their robustness to adversaries in Se2.1  Measurement Infrastructure

tion[4. Section b illustrates how our web tripwire toolkit , »

is easy to deploy and can support a variety of policies. g Our measurement study identifies changes made to our

nally, we present related work in Section 6 and concludeV€P Page between the web server and the client's
in Section 7. browser, using code delivered by the server to the

browser. This technique allows us to gather results from
a large number of clients in diverse locations, although it
2 In-Flight Modifications may not detect agents that do not modify every page.

Technology. Our measurement tool consists of a web
Despite the lack of integrity guarantees in HTTP, mostpage with JavaScript code that detects page modifica-
web publishers and end users expect web pages to arriv®ns. We refer to this code asveeb tripwire because
at the client as the publisher intended. Using measureit can be unobtrusively placed on a web page and trig-
ments of a large client population, we find that this isgered if it detects a change. As shown in Figure 1,
not the case. ISPs, enterprises, end users, and malwaoer web tripwire detects changes to HTML source code
authors all have incentives to modify pages, and we findnade anywhere between the server and browser, includ-
evidence that each of these parties does so in practicéng those caused by ISPs, enterprise firewalls, and client-
These changes often have undesirable consequences &de proxies. We did not design the web tripwire to de-
publishers or users, including injected advertisementstect changes made by browser extensions, because exten-
broken pages, and exploitable vulnerabilities. These resions are effectively part of the browser, and we believe
sults demonstrate the precariousness of today’s web, arttiey are likely installed with the knowledge and consent
that it can be dangerous to ignore the absence of integritgf the user. In practice, browser extensions do not trigger
protection for web content. the tripwire because they operate on the browser’s inter-

e What kinds of page modifications occur in practice,
and how frequently?
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nal representation of the page and not the HTML sourceSpoofer Project [8] attracted thousands of participants by

code itself. posting to the Slashdot news web site, so we also pursued
Our web tripwire is implemented as JavaScript codethis approach.

that runs when the page is loaded in the client’s browser. Although our first submission to Slashdot was not

It reports any detected changes to the server and displaysiccessful, we were able to circulate a story among other

a message to the user, as seen in Figure 2. Our implesites via Dave Farber’s “Interesting People” mailing list.

mentation can display the difference between the actualhis led another reader to successfully post the story to

and expected contents of the page, and it can collect adslashdot.

ditional feedback from the user about her environment. Similarly, we attracted traffic from Digg, a user-driven

Further implementation details can be found in Section 3news web site. We encouraged readers of our page to aid
We note two caveats for this technique. First, it mayour experiment by voting for our story on Digg, promot-

have false negatives. Modifying agents may choose tang it within the site’s collaborative filter. Within a day,

only alter certain pages, excluding those with our webour story reached the front page of Digg.

tripwires. We do not expect any false positives, though,

SO our resg!ts are a lower bound for thg actgal number O§.2 Results Overview

page modificationd. Second, our technigue is not cryp-

tographically secure. An adversarial agent could removedn July 24, 2007, our measurement tool went live at

or tamper with our scripts to evade detection. For thishtt p: // vancouver. cs. washi ngt on. edu, and

study, we find it unlikely that such tampering would be it appeared on the front pages of Slashdot and Digg

widespread, and we discuss how to address adversarigdmong other technology news sites) the following day.

agents in Section 4.2. The tool remains online, but our analysis covers data col-

Realism. We sought to create a realistic setting for our [€cted for the first 20 days, which encompasses the vast

measurement page, to increase the likelihood that agenfBaority of the traffic we received. _
might modify it. We included HTML tags from web au- We collected test results from clients at 50,171 unique

thoring software, randomly generated text, and keywordép addresses. 9,507 of these clients were referred from
with links. Slashdot, 21,333 were referred from Digg, and another

We were also guided by initial reports of ISPs that 795 were referred from bo_th _Slashdot and Digg. These
injected advertisements into their clients’ web traffic, high numbers of referrals indicate that these sites were

using services from NebuAd [5]. These reports sug-£SSential to our experiment's success. o
gested that only pages fromcom top-level domains The modifications we observed are summarized in Ta-

(TLDs) were affected. To test this, our measuremen®!€/1. At a high level, clients at 657 IP addresses re-
page hosts several frames with identical web tripwires,ported modifications to at least one of the frames on the

each served from a different TLD. These frames ard’@d€. About 70% of the modifications were caused by
served from vancouver . cs. washi ngt on. edu client-side proxies such as popup blockers, but 46 IP
UWSecuri ty. com uwprivacy. or g, uwcse. ca addresses did report changes that appeared to be inten-

uwsyst ens. net , and 128.208.6.241. tionally caused by their ISP. We also discovered that the

We introduced additional frames during the ex- proxies used at 125 addresses left our page vulnerable
periment, to determine if any agents were at-10 cross-site scripting attacks, while 3 addresses were af-

tempting to “whitelist” the domains we had se- fected by client-based malware.
lected to evade detection. After our measure-

ment page started receiving large numbers of visi-2.3 Modification Diversity

tors, we added frames atwv. happybl i mp. comand o .

www2. happybl i np. com We found a surprisingly diverse set of changes made
In the end, we found that most changes were madd&0 our measurement page. Importantly, these changes

indiscriminately, although some NebuAd injections wereWere often misaligned with the goals of the publisher

. comspecific and other NebuAd injections targeted par-OF the end user. Publishers wish to deliver their content
ticular TLDs with an unknown pattern. to users, possibly with a revenue stream from advertise-

. ) o ments. Users wish to receive the content safely, with few
Equ;urg. Togeta represe.ntlauve view of in-flight page annoyances. However, the parties in Figure 1, including
modifications, we sought visitors from as many vantagggps enterprises, users, and also malware authors, have
points as possible. Similar studies such as the ANApcentives to modify web pages in transit. We found that
1in principle, a false positive could occur if an adversangés a these parties do modify pages in practice, often adversely

web tripwire alarm. Since this was a short-term measuremedysge ~~ Impacting the user or pUb“Sher- V\_/e offer a high level
do not expect that we encountered any adversaries or fasstivps. survey of these changes and incentives below.
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.5_ 3
Category IPs || €| w| D| <| Examples
Popup Blocker 277 0 Zone Alarm (210)CA Personal Firewall (17),
Sunbelt Popup Killer (12)
Ad Blocker 188 O Ad Muncher (99), Privoxy (58),Proxomitron (25)
Problem in Transit| 118 O Blank Page (107), Incomplete Page (7)
Compression 30 O bmi.js (23), Newlines removed (6Ristillation (1)
Security or Privacy, 17 O O Blue Coat (15);The Cloak (1), AnchorFree (1)
Ad Injector 16 O MetroFi (6), FairEagle (5), LokBox (1), Front Porch (1),
PerfTech (1), Edge Technologies (1), knects.net (1)
Meta Tag Changes 12 ad O Removed meta tags (8), Reformatted meta tags (4)
Malware 3 d W32.Arpiframe (2), Adware.LinkMaker (1)
Miscellaneous 3 O New background color (1Mark of the Web (1)

Table 1: Categories of observed page modifications, the auwibclient IP addresses affected by each, the likely
parties responsible, and examples. Each example is falllyehe number of IP addresses that reported it; examples
listed in bold introduced defects or vulnerabilities intor page.

ISPs. ISPs have at least two incentives to modify web cations are useful on bandwidth-constrained networks,
traffic: to generate revenue from advertising and to rethough they may also unintentionally cause page defects,
duce traffic using compression. Injected advertisementas we describe in Sectibn 2.4.1.

have negative impact for many users, who view them a%nterprises. Enterprises have incentives to modify the

annoyances. pages requested by their clients as well, such as traffic re-
In our results, we discovered several distinct ISPs thatiuction and client protection. Specifically, we observed
appeared to insert ad-related scripts into our measurgsroxy caches that remove certaiet a tags from our
ment page. Several companies offer to partner with ISPgneasurement page, allowing it to be cached against our
by providing them appliances that inject such ads. Fofwishes. Such changes can go against a publisher’s de-
example, we saw 5 IP addresses that received injectegires or present stale data to a user. Our results also in-
code from NebuAd's servers [2]. Traceroutes suggestediuded several changes made by Blue Coat WebFilter [9],
that these occurred on ISPs including Red Moon, Mesan enterprise proxy that detects malicious web traffic.

Neworks, and X0, as well as an IP address belong—End Users.Users have several incentives for modifyin
ing to NebuAd itself. Other frequently observed ad in- ) 9

C 2 : the pages they receive, although these changes may not
jections were caused by MetroFi, a company that PT%%e in the best interests of the publishers. We found ev-

vides free wireless networks in which all web pages are
. . idence that users block annoyances such as popups and
augmented with ads. We also observed single IP ad- . . . ;
S . : .ads, which may influence a publisher’s revenue stream.

dresses affected by other similar companies, includin

LokBox, Front Porch, PerfTech, Edge Technologies, angJsers also occasionally modify pages for security, pri-
Knect s. net vacy, or performance.

The vast majority of page modifications overall are

Notably, these companies often claim to inject adscaysed by user-installed software such as popup block-
based on behavioral analysis, so that they are targetegts and ad blockers. The most common modifications
to the pages a user has visited. Such ads may leak pripme from popup blocking software. Interestingly, this
vate information about a user’s browsing history to webjncjudes not only dedicated software like Sunbelt Popup
servers the user visits. For example, a server could usgjjier, but also many personal firewalls that modify web
a web tripwire to determine which specific ad has beenyaffic to block popups. In both types of software, pop-
injected for a given user. The choice of ad may reveal ps are blocked by JavaScript code injected into every
what types of pages the user has recently visited. page. This code interposes on calls to the browser’s

We also observed some ISPs that alter web pagesi ndow. open function, much like Naccio’s use of pro-
to reduce network traffic. In particular, several cellular gram rewriting for system call interposition [15].
network providers removed extra whitespace or injected Ad blocking proxies also proved to be quite popular.
scripts related to image distillation [16]. Such modifi- We did not expect to see this category in our results, be-
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cause our measurement page contained no ads. That isere combined with the scripts in our web tripwire.
ad blocking proxies that solely removed ads from pages$-or example, thexpopup. j s popup blocking script
would have gone unnoticed. However, we detected nuin CA Personal Firewall interfered with our calls to
merous ad blocking proxies due to the JavaScript codelocunent . wri t e. Similar problems occurred with a
they injected into our page. These proxies included Adcompression script calledm . j s injected by several
Muncher, Privoxy, Proxomitron, and many others. ISPs. These bugs occasionally prevented our web trip-
Beyond these annoyance blocking proxies, we foundwvire from reporting results, but users provided enough
user-initiated changes to increase security, privacy, anfeedback to uncover the issue. In general, such defects
performance. AnchorFree Hotspot Shield claims to pro4may occur when combining multiple scripts in the same
tect clients on wireless networks, and Internet Exploremamespace without the ability to sufficiently test them.
adds a “Mark of the Web” comment to saved pages to Second, we discovered that the CA Personal Firewall
prevent certain attacks [28]. Users also employed webmodifications interfered with the ability to post com-
based anonymization services such as The Cloak [3], aments and blog entries on many web sites. Specifi-
well as proxies that allowed pages to be cached by reeally, code injected by the firewall appeared in users’
moving certaimet a tags. comments, often to the chagrin of the users. We ob-

Malware Authors. Surprisingly, our measurement tool ;erved 28 instances offopupContr ol () " appear-
was also able to detect certain kinds of malware and adn9 ©n MySpace blogs and comments, and well over 20
ware. Malware authors have clear incentives for modify-Sit€S running the Web Wiz Forums software [39] that
ing web pages, either as a technique for spreading exploffad the same code in their comments. We reproduced

code or to receive revenue from injected advertisementdN® Problem on Web Wiz Forums’ demo site, leaming

These changes are clearly adversarial to users. that CA Personal Firewall injected the popup blocking
In one instance, a client that was infected by Ad- code into the frame in which the user entered his com-

ments. We observed similar interference in the case
rq_f image distillation scripts that contained the keyword
‘ngunconpr essed.”

ware.LinkMaker [34] visited our measurement page.
The software made extensive changes to the page, cor
verting several words on the page into doubly underlined
links. If the user hovered his mouse cursor over the links,
an ad frame was d|sp|ayed 2.4.2 Vulnerabilities

TV\_’O other. clients saw injgcted content that appeargyqre importantly, we discovered several types of page
consistent with the W32 Arpiframe worm [35]. In these opanges that left the modified pages vulnerable to cross-

cases, the clients themselves may not have been infected,, scripting (XSS) attacks. The impact of these vul-
as the Arpiframe worm attempts to spread through locahq o pjjities should not be understated: the modifications

networks using ARP cache poisoning [40]. When an in-p»qemost or all of the pages a user visited exploitable.

fected client poisons thg ARP cgche of another clier_1t, itSuch exploits could expose private information or other-
can then act as a man-in-the-middle on HTTP sessiongige hijack any page a user requests.

Recent reports suggest that webvers may also be tar-

geted by this or similar worms, as in the recent case of Ad Blocking Vulnerabilities. We observed exploitable
Chinese security web site [12]. vulnerabilities in three ad-blocking products: two free

downloadable filter sets for Proxomitron (released under
. the names Sidki [33] and Grypen [19]), plus the commer-

2.4 Unanticipated Problems cial Ad Muncher product [4]. At the time of our study,
Ieéalch of these products injected the URL of each web

In the cases discussed above, page modifications a ) h f th itself f
made based on the incentives of some party. HoweveP39€ into the body of the page itself, as part of a com-

we discovered that many of these modifications actuall)ment' Fpr example, Ad Munche|r1|njhected the ff)llowmg
had severe unintentional consequences for the user, e\?_avaScrlpt comment onto Google’s home page:

ther as broken page functionality or exploitable vulnera-/;/ oiginal URL:  http://ww. googl e. com
bilities. The threats posed by careless page modifications

thus extend far beyond annoyances such as ad injections. These products did'not escape any o'f t.he characters in
the URL, so adversaries were able to inject script code

into the page by convincing users to visit a URL similar
to the following:

We _ObserV?d two cla_sses of bugs that were uning, ¢ p:// googl e. com ?</script><script>alert(1);
tentionally introduced into web pages as a result of

modifications. First, some injected scripts caused a Servers often ignore unknown URL parameters (fol-
JavaScript stack overflow in Internet Explorer when theylowing the ?’), so the page was delivered as usual.

2.4.1 Page Defects
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However, when Ad Muncher or Proxomitron copied this  In both Proxomitron filter sets (prior to September 8,
URL into the page, the</ scri pt >” tag terminated 2007), all HTTP traffic is affected in the default config-
the original comment, and the script code in the remain-uration. Users are thus vulnerable to all of the above
der of the URL was executed as part of the page. Tattack scenarios, as well as attacks on many web mail
exploit these vulnerabilities, an adversary must convincesites that revert to HTTP after logging in (e.g., Gmail,
a user to follow a link of his own construction, possibly Yahoo Mail). Additionally, Proxomitron can be config-
via email or by redirecting the user from another page. ured to also modify HTTPS traffic, intentionally acting
It is worth noting that our measurement tool helped usas a “man in the middle.” If the user enables this feature,
discover these vulnerabilities. Specifically, we were ableall SSL encrypted pages are vulnerable to script injection
to search for page changes that placed the page’s URL iand thus leaks of critically private information.
the body of the page. We flagged such cases for further We reported these vulnerabilities to the developers of
security analysis. Ad Muncher and the Proxomitron filter sets, who have

We developed two exploit pages to demonstrate thdeleased fixes for the vulnerabilities.
threat posed by this attack. Our exploit pages first detecinternet Explorer Vulnerability. We identified a simi-
whether a vulnerable proxy is in use, by looking for char-lar but less severe vulnerability in Internet Explorer. |E
acteristic modifications in their own source code (e.qg., arinjects a “Mark of the Web” into pages that it saves to
“Ad Muncher” comment). disk, consisting of an HTML comment with the page’s

In one exploit, our page redirects to a major bank'sURL [28]. This comment is vulnerable to similar at-
home pag. The bank’s page has a login form but is tacks as Ad Muncher and Proxomitron, but the injected
served over HTTP, not HTTPS. (The account name andcripts only run if the page is loaded from disk. In this
password are intended to be sent over HTTPS when theontext, the injected scripts have no access to cookies or
user submits the form.) Our exploit injects script codethe originating server, only the content on the page itself.
into the bank’s page, causing the login form to insteadThis vulnerability was originally reported to Microsoft
send the user’s account name and password to an adveay David Vaartjes in 2006, but no fix is yet available [37].

sary’s server. The Cloak Vulnerabilities. Finally, we found that

In a second exploit, we demonstrate that these vulnefithe “The Cloak” anonymization web site [3] contains
abilities are disconcerting even on pages for which usergyo types of XSS vulnerabilities. The Cloak provides
do not normally expect an HTTPS connection. Here, ouranonymity to its users by retrieving all pages on their be-
exploit page redirects to Google’s home page and injectfalf, concealing their identities from web servers. The
code into the search form. If the user submits a queryCioak processes and rewrites many HTML tags on each
further exploit code manipulates the search results, inpage to ensure no identifying information is leaked. It
jecting exploit code into all outgoing links. This allows a|so provides users with options to rewrite or delete all
the eXpIOit to retain control of all Subsequent pages in thQ]avaSCript code on a page, to prevent the code from ex-
browser window, until the user either enters a new URLposing their IP address.
by hand or visits an unexploited bookmark. We discovered that The Cloak replaced some tags

In the case of Ad Muncher (prior to v4.71), any HTTP with a comment explaining why the tag was removed.
web site that was not mentioned on the program’s exfor example, our page containedvat a tag with the
clusion list is affected. This list prevents Ad Muncher name “generatorversion.” The Cloak replaced this tag
from injecting code into a collection of JavaScript-heavy with the following HTML comment:
web pages, including most web mail sites. However, Ad
Muncher did inject vulnerable code into the login pages™
for many banks, such as Washington Mutual, Chase, US
Bank, and Wachovia, as well as the login pages for many we found that a malicious page could inject script

social networking sites. For most social networking sites code into the page by including a carefully craftest a
it is common to only use HTTPS for sending the login tag, such as the following:

credentials, and then revert to HTTP for pages within the

site. Thus, if a user is already logged into such a site, arfmet a name="f oo- - ><script>al ert (1); </scri pt>">
adversary can manipulate the user’s account by injecting ] . )
code into a page on the site, without any interaction from _ This script code runs and bypasses The Cloak's poli-
the user. This type of attack can even be conducted in §i€S for rewriting or deleting JavaScript code. We re-

-- the-cloak note - deleting possibly dangerous
META tag - unknown NAME ’generatorversion -->

hidden frame. to conceal it from the user. ported this vulnerability to The Cloak, and it has been
resolved as of October 8, 2007.
2\We actually ran the exploit against an accurate local reifthe Additionally, The Cloak faces a more fundamental

bank’s home page, to avoid sending exploit code to the baekies problem because it bypasses the browser’s “same origin
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policy,” which prevents documents from different origins low bandwidth networks, and security checks by enter-
from accessing each other [31]. To a client’s browser, allprise proxies. HTTPS also imposes a high cost on the
pages appear to come frotrhe- cl oak. com rather  server, in terms of financial expense for signed certifi-
than their actual origins. Thus, the browser allows allcates, CPU overhead on the server, and additional latency
pages to access each other’s contents. We verified th&br key exchange.

a malicious page could load sensitive web pages (even In cases where HTTPS is overly costly, we propose
HTTPS encrypted pages) from other origins into a framethat publishers deploy web tripwires like those used in
and then access their contents. This problem is alreadgur measurement study. Web tripwires can effectively
known to security professionals [20], though The Cloakdetect most HTML modifications, at low cost and in to-
has no plans to address it. Rather, users are encouragddy’'s web browsers. Additionally, they offer more flexi-
to configure The Cloak to delete JavaScript code to beility than HTTPS for reacting to detected changes.

safe from attack.

OS Analogy. These vulnerabilities demonstrate the 3.1 Goals

power wielded by web page rewriting software, and the i ,
dangers of any flaws in its use. An analogy betweer1€re, we establish a set of goals a publisher may have for

web browsers and operating systems helps to illustratdSing @ web tripwire as a page integrity mechanism. Note
the severity of the problem. Most XSS vulnerabilities 2t SOme types of tripwires may be worthwhile even if

affect a single web site, just as a security vulnerabilityt€Y do notachieve all of the goals.

in a program might only affect that program’s operation. First, a web tripwire shquld detect any changes to the
However, vulnerabilities in page rewriting software can 1 TML Of @web page after it leaves the server and before

pose a threat fomost or all pages visited, just as a root it arrives at the client's browser. We exclude changes

exploit may affect all programs in an operating system.from browser exten§|on§, as we consider these part of
the user agent functionality of the browser. We also cur-

Page rewriting software must therefore be carefully scru- ? .
tinized for security flaws before it can be trusted. rently exclude changes to images ar_1d embedded objects,
although these could be addressed in future work.
Second, publishers may wish for a web tripwire to
3  Web Tripwires prevent certain changes to the page. This goal is difficult
to accomplish without cryptographic support, however,
Our measurement study reveals that in-flight page modiand it may not be a prerequisite for all publishers.
fications can have many negative consequences for both Third, a web tripwire should be able to pinpoint the
publishers and users. As a result, publishers have an innodification for both the user and publisher, to help them
centive to seek integrity mechanisms for their contentunderstand its cause.
There are numerous scenarios where detecting modifica- Fourth, a web tripwire should not interfere with the
tions to one’s own web page may be useful: functionality or performance of the page that includes
it. For example, it should preserve the page’s semantics,
e Search engines could warn users of injected scriptgupport incremental rendering of the page, and avoid in-

that might alter search results. terfering with the browser’s back button.
e Banks could disable login forms if their front pages
were modified. 3.2 Designs & Implementations

* Web mail sites could debug errors caused by in-geyeral implementation strategies are possible for build-
jected scripts. ing web tripwires. Unfortunately, limitations in popular

¢ Social networking sites could inform users if they browsers make tripwires more difficult to build than one
detect vulnerable proxies, which might put users’ might expect. Here, we describe and contrast five strate-
accounts at risk. gies for building JavaScript-based web tripws\Ne

also compare against the integrity properties of HTTPS

as an alternative mechanism. The tradeoffs between

these strategies are summarized in Table 2.

Publishers may also wish fwevent some types of page Each of our implementations tgkes the same ba-
changes, to prevent harm to their visitors or themselvesSIiC approach. The web server delivers three elements

HTTPS provides one rigid solution: preventing page!© the browser: theequested page, a tripwire script,
modifications using encryption. However, the use of2nd aknown-good representation of the requested page.
HTTPS excludes many beneficial services, such as 3We focus on JavaScript rather than Flash or other contesttigp
caching by web proxies, image distillation by ISPs with ensure broad compatibility.

e Sites with advertising could object to companies
that add or replace ads.
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Goal Count | Check | XHR then | XHR then | XHR on || HTTPS
Scripts | DOM | Overwrite | Redirect Self

Detects all HTML changes
Prevents changes*
Displays difference
Preserves semantics
Renders incrementally
Supports back button

Ogo0oo o g
Oogoooogog
Oogoggo
OooOoogdg
Oogoooaog
OoOooooag g

Table 2: Comparison of how well each tripwire implementatachieves the stated goals. (*Neither “XHR then
Overwrite” nor HTTPS can prevent all changes. The formawadifull page substitutions; the latter allows changes
by proxies that act as the encryption endpoint, at the udestsetion.)

The known-good representation may take one of several If a change is detected, however, it is nontrivial to
forms; we use either a checksum of the page or a fuldetermine which of the scripts do not belong or prevent
copy of the page’s HTML, stored in an encoded string tothem from running. This approach does miss many types
deter others from altering it. A checksum may requireof modifications, but it is simple and does not interfere
less space, but it cannot easily pinpoint the location ofwith the page.
any detected change. When all three of the above el-
ements arrive in the user’s browser, the tripwire script3 5 5 check DOM
compares the requested page with the known-good rep-
resentation, detecting any in-flight changes. For a more comprehensive integrity check, we built a
We note that for all tripwire implementations, the web web tripwire that compares the full page contents to a
server must know the intended contents of the page tknown-good representation. Unfortunately, JavaScript
check. This requirement may sound trivial, but manycode cannot directly access the actual HTML string that
web pages are simply the output of server-based prothe browser received. Scripts only have access to the
grams, and their contents may not be known in advanceirowser’s internal DOM tree, through variables such
For thesedynamic web pages, the server may need toas docunent . docunent El ement . i nner HTM..
cache the contents of the page (or enough informatiofhis internal representation varies between browsers
to reconstruct the content) in order to produce a trip-and often even between versions of the same browser.
wire with the known-good representation. Alternatively, Thus, the server must pre-render the page in all possible
servers with dynamic pages could use a web tripwire tdorowsers and versions in order to provide a known-good
test a separate static page in the background. This tectiepresentation of the page for any client. This technique
nigue may miss carefully targeted page changes, but is thus generally impractical.
would likely detect most of the agents we observed. Additionally, the server cannot always accurately
We have implemented each of the strategies describeidentify a client’s user agent, so it cannot know which
below and tested them in several modern browsers, inkepresentation to send. Instead, it must send all known
cluding Firefox, Internet Explorer, Safari, Opera, andpage representations to each client. We send a list of
Konqueror. In many cases, browser compatibility lim- checksums to minimize space overhead. The tripwire

ited the design choices we could pursue. script verifies that the actual page’s checksum appears
in the array. Because checksums are used, however, this
3.2.1 Count Scripts strategy cannot pinpoint the location of a change.

Ou_r simplest web tripwire merely counts the num.ber_ of 23 XHR then Overwrite

script tags on a page. Our measurement results indicate

that such a tripwire would have detected 90% of the mod-Rather than checking the browser’s internal representa-
ifications, though it would miss any changes that do notion of the page, our third strategy fetches the user’s re-
affect script tags€g., those made by the W32.Arpiframe quested page from the server as data. We achieve this us-
worm). Here, the known-good representation of the pagéng anXm Ht t pRequest (XHR), which allows scripts

is simply the expected number of script tags on the pageo fetch the contents of XML or other text-based docu-
The tripwire script compares against the number of scriptnents, as long as the documents are hosted by the same
tags reported by the Document Object Model (DOM) toserver as the current page. This is an attractive tech-
determine if new tags were inserted. nique for web tripwires for several reasons. First, the
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tripwire script receives a full copy of the requested pageoverwriting the page, the script redirects the browser
as a string, allowing it to perform comparisons. Sec-to the requested page. Because we mark the page as
ond, the request itself is indistinguishable from a typi- cacheable, the browser simply renders the copy that was
cal web page request, so modifying agents will modify it cached by the XHR, rather than requesting a new copy
as usual. Third, the response is unlikely to be modifiedfrom the server. However, this approach still prevents
by browser extensions, because extensions expect the r@cremental rendering, and it loses the ability to prevent
sponse to contain XML data that should not be alteredany changes to the page, because it cannot redirect to the
As a result, the tripwire script can get an accurate viewknown-good representation. It also consistently breaks
of any in-flight modifications to the page. the back button in all browsers.

In our first XHR-based web tripwire, the server first
s_end_s the _browser a smdibot page that conta_ins the 355 YHR on Self
tripwire script and a known-good representation of the
requested page (as an encoded string). The tripwir®ur final implementation achieves all of our stated goals
script then fetches the requested page with an XHRexcept change prevention. In this XHR-based approach,
It compares the response with the known-good repthe server first delivers the requested page, rather than a
resentation to detect any changes, and it then oversmall boot page. This allows the page to render incre-
writes the contents of the boot page, using the browser'snentally. The requested page instructs the browser to
docunment . wri t e function. fetch an external tripwire script, which contains an en-

This strategy has the advantage that it cquiebent ~ coded string with the known-good representation of the
many types of changes by always overwriting the bootpage. The tripwire script then fetches another copy of
page with the known-good representation, merely usinghe requested page with an XHR, to perform the integrity
the XHR as a test. However, adversaries could easilgheck. Because the page is marked as cacheable (at least
replace the boot page’s contents, so this should not bteor a short time), the browser returns it from its cache
viewed as a secure mechanism. instead of contacting the server adéin.

Unfortunately, the overwriting strategy has several This strategy cannot easily prevent changes, espe-
drawbacks. First, it prevents the page from renderinggially injected scripts that might run before the tripwire
incrementally, because the full page must be receivedcript. However, it can detect most changes to the re-
and checked before it is rendered. Second, the use @fuested page's HTML and display the difference to the
docunent . wri t e interferes with the back button in user. It also preserves the page’s semantics, the ability
Firefox, though not in all browsers. Third, we discov- to incrementally render the page, and the use of the back
ered other significant bugs in tldocunent . write button. In this sense, we view this as the best of the im-
function in major browsers, including Internet Explorer plementations we present. We evaluate its performance
and Safari. This function has two modes of operation:and robustness to adversarial changes in Section 4.
it can append content to a page if it is called as the
page is being rendered, or it can replace the entire conz » 5 HTTPS
tents of the page if called after the pageis oad event
fires. Many web sites successfully use the former modefinally, we compare the integrity properties of HTTPS
but our tripwire must use the latter mode because thavith those of the above web tripwire implementations.
call is made asynchronously. We discovered bugs irNotably, the goals of these mechanisms differ slightly.
docunent . wri t e’s latter mode that can cause subse-HTTPS is intended to provide confidentiality and in-
guent XHRs and cookie accesses to fail in Safari, and thaiegrity checks for thelient, but it offers no indication
can cause Internet Explorer to hang if the resulting pagd¢o the server if these goals are not met (e.g., if a proxy
requests an empty script file. As a result, this overwritingacts as the encryption end point). Web tripwires are in-
approach may only be useful in very limited scenarios. tended to provide integrity checks for therver, option-

However, our measurement tool in Section 2 wasally notifying the client as well. Thus, HTTPS and web
small and simple enough that these limitations were notripwires can be seen to complementary in some ways.

a concern. In fact, we used this strategy in our study. As an integrity mechanism, HTTPS provides stronger
security guarantees than web tripwires. It uses encryp-
tion to detect all changes to web content, including im-
ages and binary data. It prevents changes by simply re-

We made a small variation to the above implementatiod€cting any page that has been altered in transit. It also

to avoid the drawbacks of usw@ocurrent -write. 4If the page were not cached, the browser would request itensec

As above, the tri_pwire script retrieves the_ originally re- time from the server. In some cases, the second request may see a
guested page with an XHR and checks it. Rather thaniifferent modification than the first request.

3.2.4 XHR then Redirect
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preserves the page’s semantics and ability to incremen-
tally render.

However, HTTPS supports fewer policy decisions
than web tripwires, such as allowing certain beneficial
modifications. It also incurs higher costs for the pub-
lisher, as we discuss in Section 4.
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To evaluate the strengths and weaknesses of web trip- O@‘Q /\‘k\Q“\&(\QﬁQQQ’ 'S
wires for publishers who might deploy them, we ask $®0 \&p S

three questions:

1. Are web tripwires affordable, relative to HTTP Figure 3: Impact of web tripwires and HTTPS on client
pages without tripwires? perceived latency.

2. How do the costs of web tripwires compare to the
costs of HTTPS?
3. How robust are web tripwires against adversaries? Pandwidth and 50 ms one-way link latency. Each re-
ported value is the average of 5 trials, and the maximum
We answer these questions by quantifying the perforrelative error was 3.25%.
mance of pages with and without web tripwires and Figurd 3 shows that the pages with web tripwires did
HTTPS, and by discussing how publishers can react tmot increase the start latency over the original page (i.e.,

adversarial page modifications. all were around 240 ms). In comparison, the extra round
trip times for establishing an SSL connection contributed
4.1 Web Tripwire Overhead to a much later start for the HTTPS page, at 840 ms.

The time spent rendering for the web tripwires was

To compare the costs for using web tripwires or HTTPSlonger than for the HTTP and HTTPS pages, because
as page integrity mechanisms, we measured the clienthe tripwires required additional script computation in
perceived latency and server throughput for four types othe browser. The web tripwire that reported a modifica-
pages. As a baseline, we used a local replica of a maion took the longest, because it computed the difference
jor bank’s home page, served over HTTP. This is a re-between the actual and expected page contents. Despite
alistic example of a page that might deploy a tripwire, this, end-to-end latencies of the tripwire pages were still
complete with numerous embedded images, scripts, ankwwer than for the HTTPS page.
stylesheets. We created two copies of this page with web Table[ 3 shows that transmitting the web tripwire in-
tripwires, one of which was rigged to report a modifica- creased the size of the transferred page by 17.3%, rel-
tion. In both cases, we used the “XHR on Self” tripwire ative to the original page. This increase includes a full
design, which offers the best strategy for detecting andencoded copy of the page’'s HTML, but it is a small per-
not preventing changes. We served a fourth copy of theentage of the other objects embedded in the page.
page over HTTPS, without a web tripwire. Future web tripwire implementations could be ex-

All of our experiments were performed on Emu- tended to check all data transferred, rather than just the
lab [41], using PCs with 3 GHz Xeon processors. Wepage’'s HTML. The increase in bytes transferred is then
used an Apache 2 server on Fedora Core 6, without anproportional to the number of bytes being checked, plus
hardware acceleration for SSL connections. the size of the tripwire code. If necessary, this overhead

Latency. For each page, we measured client-perceivech“Id be reduced by transmitting checksums or digests

latency using small scripts embedded in the page. wéstead of full copies.

measured the start latency (i.e., the time until the firstThroughput. We measured server throughput using two
script runs) to show the responsiveness of the page, anéedora Core 6 clients running httperf, on a 1 Gbps net-
we measured the end latency (i.e., the time until thewvork with negligible latency. For each page, we in-
page’s onload event fires) to show how long the pagereased the offered load on the server until the number
takes to render fully. We also measured the number 0bf sustained sessions peaked. We found that the server
bytes transferred to the client, using Wireshark [14]. Ourwas CPU bound in all cases. Each session simulated one
tests were conducted with a Windows XP client runningyvisit to the bank’s home page, including 32 separate re-
Firefox, using a simulated broadband link with 2 Mbps quests.
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Technique Data Transferred versaries can observe, delay, and modify packets arbi-
Original 226.6 KB trarily. However, it reflects the fact that end users often
Web Tripwire 265.8 KB have some expectation of a page’s intended contents.
Web Tripwire (tripped) 266.0 KB Under such a threat model, we hypothesize that pub-
HTTPS 230.6 KB lishers can make web tripwires effective against adver-

saries. Adversaries must both identdgd disable any
Table 3: Number of kilobytes transferred from server toweb tripwire on a page. Publishers can make both
client for each type of page. tasks difficult in practice using code obfuscation, using
approaches popular in JavaScript malware for evading
signature-based detection (e.g., code mutators [36], dy-
300 namic JavaScript obfuscation [43], and frequent code
repacking [18]). Several additional techniques can chal-
lenge an adversary’s ability to identify or disable trip-
wires on-the-fly: creating many variants of web tripwire
code, employing web tripwires that report an encoded
100 value to the server even if no change is observed, and
randomly varying the encoding of the known-good repre-
sentation. Also, integrating web tripwire code with other

200

Throughput (sessions/sec)

0 N JavaScript functionality on a page can disguise tripwires
¢ & &S L even if adversaries monitor the behavior of a page or at-
O L LI K pag
o & &R tempt to interpret its cod
S pt to interpret its code. _
N Ultimately, it is an open question whether an arms

race will occur between publishers and agents that mod-
Figure 4: Impact of web tripwires and HTTPS on serverify pages, and who would win such a race. We feel that
throughput. the techniques above can help make web tripwires an

effective integrity mechanism in practice, by making it

more difficult for adversaries to disable them. However,

Figure 4 shows our results. The web tripwire caused‘ISing HTTPS (alternatively or in addition to web trip-

only a 4% degradation of throughput compared to thewires) may be appropriate in cases where page integrity

original page. In comparison, the throughput dropped b))s critical.
over an order of magnitude when using HTTPS, due to
the heavy CPU load for the SSL handshake. 4.3 Summary
For well-provisioned servers, HTTPS throughput may L .
be improved by using a hardware accelerator. Howeverovera”’ web tripwires offer an affordable solution for

: . thecking page integrity, in terms of latency and through-
hh f lishers. ' .
such hardware introduces new costs for publishers put, and they can be much less costly than HTTPS. Fi-

) . nally, though they cannot detect all changes, web trip-
4.2 Handling Adversaries wires can be robust against many types of agents that

In some cases, agents that modify web pages may wisH{!Sh 1o avoid detection.
for their behavior to remain undetected. For example,
adversarial agents in the network may wish to inject adsb Configurable Toolkit
scripts, or even malicious code without being detected by
the user or the publisher. Similarly, end users may wisiBased on our findings, we developed an open source
to conceal the use of some proxies, such as ad-blockeriolkit to help publishers easily integrate web tripwires
from the publisher. into their own pages. When using tripwires, publishers
In general, web tripwires cannot detect all changes tdace several policy decisions for how to react to detected
a page. For example, web tripwires cannot defaldt modifications. These include: (1) whether to notify the
page subgtitutions, in which an adversary replaces the end user, (2) whether to notify the server, (3) whether
requested content with content of his choice. Thus, wehe cause can be accurately identified, and (4) whether
cannot address adversaries who are determined to delivan action should be taken. Our toolkit is configurable to
malicious content at all costs. support these decisions.
Instead, we consider a threat model in which adver- The web tripwire in our toolkit uses the same “XHR
saries wish to preserve the functionality of a page whileon Self” technique that we evaluated in Section 4. We of-
introducing changes to it. This model assumes that adfer two implementations with different deployment sce-
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narios: one to be hosted entirely on the publisher'slisher toward an appropriate course of action. In our own
server, and a second to be hosted by a centralized servstudy, for example, we received feedback from disgrun-
for the use of many publishers. tled users who incorrectly assumed that a modification
The first implementation consists of two Perl CGI from their Zone Alarm firewall was caused by their ISP.
scripts to be hosted by the publisher. The first script pro- Unfortunately, the modifications made by any partic-
duces a JavaScript tripwire with the known-good repre-ular agent may be highly variable, which makes signa-
sentation of a given web page, either offline (for infre- ture generation difficult. The signatures may either have
guently updated pages) or on demand. The second scripigh false negative rates, allowing undesirable modifica-
is invoked to log any detected changes and provide adtions to disguise themselves as desirable modifications,
ditional information about them to the user. Publishersor high false positive rates, pestering users with notifica-
can add a single line of JavaScript to a page to embed thiéons even when they are simply using a popup blocker.
web tripwire in it. Our toolkit allows publishers to define patterns to
Our second implementation acts as a web tripwirematch known modifications, so that the web tripwire can
service that we can host from our own web serverprovide suggestions to the user about possible causes or
To use the service, web publishers include one line oflecide when and when not to display messages. We rec-
JavaScript on their page that tells the client to fetch theommend to err on the side of caution, showing multiple
tripwire script from our server. This request is made inpossible causes if necessary. As a starting point, we have
the background, without affecting the page’s renderingbuilt a small set of patterns based on some of the modifi-
Our server generates a known-good representation of theations we observed.
page by fetching a separate copy directly from the pub-

lisher’s server, and it then sends the tripwire script to theTaklng Action. Even if the web tripwire can properly

: ify th f ificati h [ -
client. Any detected changes are reported to our serve'dentI y the cause of a modification, the appropriate ac

to be later passed on to the publisher. Such a web tri {_Ion to take may depend highly on th_e situation. FOT ex
. : : o ..-ample, users may choose to complain to ISPs that inject
wire service could easily be added to existing web site

management tools, such as Google Analytics [17] ads, while publishers may disable logins or other func-
9 ' 9 yues ' tionality if dangerous scripts are detected. To support

In both cases, the web tripwire scripts can be configyiq o toolkit allows publishers to specify a callback
ured for various policies as described below. function to invoke if a modification is detected.

Notifying the User. If the web tripwire detects a change,

the user can be notified by a message on the page. O@r Related Work

toolkit can display a yellow bar at the top of the page

indicating that the page has changed, along with a Iinl% 1 Client Measurements

to view more information about the change. Such a™’

message could be beneficial to the user, helping her t@nlike web measurement studies that use a “crawler” to
complain to her ISP about injected ads, remove adwargisit many servers, our work measures the paths from
from her machine, or upgrade vulnerable proxy softwareone server to many clients. Like the ANA Spoofer

However, such a message could also become annoyingroject [8], we drew many visitors by posting notices

to users of proxy software, who may encounter frequento sites like Slashdot and Digg. Opportunistic measure-
messages on many different web sites. ments of client traffic have been useful in other network

Notifving the S Th b triowi it studies as well, such as leveraging BitTorrent peers in
ofifying the Server. The web tripwire can report its iPlane [27], Coral cache users in llluminati [10], and spu-

test results to the Server f(.)r further analysis. . These "fious traffic sources by Casado et al [11]. In particular,
sults may be stored in log files for later analysis. For ex-

DL . ... Illuminati also uses active code on web pages to measure
ample, they may aid in debugging problems that visitors pag

N din AiaxS o4l S r]groperties of clients’ network connections, and AjaxS-
encounter, as proposed in Ajax>cope [ . ] ome use ope uses JavaScript to monitor web application code in
could construe such logging as an invasion of their pri-

vacy (e.g., if publishers objected to the use of ad block—Cllents browsers [24].

ing proxies). We view such logging as analogous to col-
lecting other information about the client’s environment, 6.2  Script Injection

such as IP address and user agent, and use of such data is . o o
typically described under a publisher’s privacy policy. e found that 90.1% of page modifications injected
script code, showing that scripts play a prominent (but

Identifying the Cause. Accurately identifying the cause not exclusive) role in page rewriting. Interestingly, many
of a change can be quite difficult in practice. It is clearly publishers actively try to prevent script injection, as XSS
a desirable goal, to help guide both the user and pubattacks have had notable impact [1, 7].
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Many such efforts aim to prevent attacks on the serverbrowsers. These changes often have negative conse-
ranging from security gateways [32] to static analy- quences for publishers and users: agents may inject or
sis [42] or runtime protection [21]. These efforts do not remove ads, spread exploits, or introduce bugs into work-
prevent any injections that occur after a page leaves thang pages. Worse, page rewriting software may intro-
server, so they do not address either the modifications aduce vulnerabilities into otherwise safe web sites, show-
the vulnerabilities we discovered. ing that such software must be carefully scrutinized to

Some researchers defend against script injection oensure the benefits outweigh the risks. Overall, page
the client by limiting the damage that injected scripts canmodifications can present a significant threat to publish-
cause. These approaches include taint analysis [38] argt's and users when pages are transferred over HTTP.
proxies or firewalls that detect suspicious requests [22, To counter this threat, we have presented “web trip-
26]. Each of these approaches faces difficulties withwires” that can detect most modifications to web pages.
false positives and false negatives, as they must infer unA/eb tripwires work in current browsers and are more
wanted behavior using heuristics. flexible and less costly than switching to HTTPS for

BEEP proposes a whitelisting mechanism in whichall traffic. While they do not protect against all threats
publishers can inform enhanced web browsers whicio page integrity, they can be effective for discovering
scripts are authorized to run on a given web page [23]€ven adversarial page changes. Our publisher-hosted and
The whitelist contains digests for each script fragmentservice-hosted implementations are easy to add to web
on the page, and the browser ignores any script fragmeriages, and they are available at the URL below:
whose digest is not in the V\_/hitelisp Sgc_h white_lists CaNp ¢ p: / / waw. cs. washi ngt on. edu/ r esear ch/
prevent browsers from running scripts injected in transit, security/webtri pwires. ht i
as well as XSS attacks against vulnerable proxies like Ad
Muncher and Proxqmltron. .However., w.h|.teI|§ts would Acknowledgments
also prevent potentially desirable script injections,hsuc
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