4.11.2002

FINEID SPECIFICATION

FINEID - S1

Electronic ID Application

v1.12
Population Register Centre (VRK)
Certification Authority Services
P.O. Box 70 g
FIN-00581 Helsinki ’(mo
Finland

http://www. fineid.fi 1SO 9001

FINEID SPECIFICATION 4.11.2002
FINEID - S1/vl1.12 i
Authors
Name Initials Organization E-mail
Antti Partanen AP VRK antti.partanen@vrk.intermin.fi
Markku Sievéinen MaSi Setec Oy markku.sievanen@setec.com
Markku Kontio MKo Setec Oy
Document history
Version Date Editor Changes Status
1.12 4.11.2002 AP Paragraph 5.5.2: PSO: decipher command Accepted
Lc parameter corrected (from 0x80 to
0x81).
1.11 31.10.2002 AP Minor editorial corrections and updates Draft
1.1 24.10.1999 MKo Specification used in production since Accepted
1.12.1999.

FINEID SPECIFICATION 4.11.2002

FINEID - S1/v1.12 il

Contents
1. INEFOUCHION cucceeeeeiinerinneeciinnecssnnecssnnecsseesssnnesssseessssesssssesssssesssssessssessssssessssesssssassssassssnes 1
1.1, NOImMAtiVe TEIETENCESeevueiiiiiiiieiiieiie ettt ettt e 1
1.2, InfOrmative TefRIENCES. ...cciuuiiiiiiieeiieiie ettt e 1
1.3. Related FINEID docUmMentationc.ceouieeieeriieniieiieeieeiee sttt 1
2. ADDIEVIALIONS cuuceeuneeiisneiiiiniicssnnecsinticssnnecsssnecssseesssseessssessssseessssesssssesssssessssssssssssssssssssssases 2
3. File structure and CONLENLScccceeerieeciinenssneissanesssnnesssecssssecsssnecssssessssssssssesssssassssases 2
4. Command INTEITACE c....cceeveeeiieiiiitiiiisieniiteissneecssnteisssteessseesssseessssnesssseessssesssssasssssassssanes 2
4.1, SELECT FILE ..ottt ettt ettt ettt ettt 3
4.2. GET RESPONSEottt ettt 4
4.3. READ BINARY ...ttt st et 4
A4, VERIFY Lottt ettt ettt b e et e st ebe e 5
4.5. MANAGE SECURITY ENVIRONMENT: RESTORE.........cccocoiiiiiiiiiiniieeee, 5
4.6. MANAGE SECURITY ENVIRONMENT: SETccooiiiiiiieieeeeeeeeee e 6
4.7. PERFORM SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE 8
4.8. PERFORM SECURITY OPERATION: DECIPHER..........cccceiiiiiiiiiiiiieicee 8
4.9. CHANGE REFERENCE DATA ..ottt 9
4.10. RESET RETRY COUNTER......ccciiiitiiie ettt 9
4.11. UPDATE BINARY ..ttt et 10
4.12. ERASE BINARY ...ttt ettt 10
5. Implementation guidelines for software developers..........ccceeveiicrcvnreccssnnrccsccnnnecsen 12
5.1. ReSOUICE MANAZEMENL......ccceiurrireriiiieeeeiiieeeeiiieeeeeiieeeeesaeeesessreeessnseeesennnneeeesnsseeens 12
5.2. ReSEtting the CArd........ceeceiiieiiieciie ettt et e e naeeen 13
5.3. File SEIECHION ..ottt sttt 13
5.4, AuthentiCation ODJECES.......iiiiuiieiiieeiiieeiee et e et et e e eteeesreeeseaeeeeaeeeaneeenseeessseeenns 13
5.5. Private key operations (sign and deCrypt)ccccveeeviiieiiieeiieecee et 15

FINEID SPECIFICATION 4.11.2002
FINEID - S1/v1.12 1(17)

1. Introduction

This document describes the command interface and the content of the Finnish
Electronic Identification (FINEID) application.

The file structure is based on PKCS#15 v1.0. The command set supported by the card
is based on ISO/IEC 7816-4 and ISO/IEC FDIS 7816-8.

1.1. Normative references

The most important specifications are listed below:

ISO, Information Technology - Identification cards - Integrated circuit(s) cards
with contacts

Part 1: Physical Characteristics, ISO/IEC 7816-1

Part 2: Dimensions and location of the contacts, ISO/IEC 7816-2

Part 3: Electronic signals and transmission protocols, ISO/IEC 7816-3

Part 4: Interindustry commands for interchange, ISO/IEC 7816-4

Part 5: Numbering system and registration procedure for application identifiers,
ISO/IEC 7816-5

Part 6: Inter-industry data elements, ISO/IEC 7816-6

Part 8: Security related interindustry commands, ISO/IEC FDIS 7816-8 (draft)

PKCS#15 v1.0, Cryptographic Token Information Format Standard, April 23,
1999

PKCS#15 v1.0 Amendment 1 Draft #1, October 20, 1999

The PKCS Standards are available from

http://www.rsasecurity.com/rsalabs/pkes/index.html

1.2. Informative references

The following documents have also influenced this specification:
- PKCS#I1 v2.0, RSA Cryptography Standard, October 1, 1998

DIN NI-17.4 v1.0, DIN Specification of chipcard interface with digital signature
application/function acc. to SigG and SigV, 15.12.1998

WAP WIM proposed version 05-Jul-1999, Wireless Application Protocol Identity
Module Specification, Part: Security

1.3. Related FINEID documentation
Related FINEID specifications are listed below:

FINEID S2 — VRK (PRC) CA-model and certificate contents, v2.0

FINEID S4-1 - Implementation Profile 1 for Finnish Electronic ID Card v1.31
FINEID S4-2 - Implementation Profile 2 for Organizational Usage, v.1.31
FINEID S5 — Directory Specification, v2.0

FINEID SPECIFICATION
FINEID - S1/v1.12

4.11.2002
2(17)

FINEID documentation is available from

e http://www.fineid.fi

2. Abbreviations

AID
APDU
ASN.1
CRDO
DF

EF
FCI
CLA
MF
MSE
PIN
PSO
RFU
SE
SWI1-SW2

Application Identifier
Application Protocol Data Unit
Abstract Syntax Notation One
Control Reference Data Object
Dedicated File

Elementary File

File Control Information

Class byte

Master File

Manage Security Environment
Personal Identification Number
Perform Security Operation
Reserved for Future

Security Environment

Status Words

3. File structure and contents

The file structure and contents shall be according to PKCS#15 v1.0 standard.

The card should contain at least the following objects:

- private key(s),

- authentication object(s),

- card holder certificate(s) and

- trusted certificate(s).

The reader is advised to read PKCS#15 for additional information on the file

structure and contents.

4. Command interface

This chapter describes the commands (and their parameters) that shall be supported
by FINEID cards. Additional commands may be supported by the card but they are

not normally used by host applications utilizing the FINEID cards.

FINEID SPECIFICATION
FINEID - S1/v1.12

4.11.2002
3(17)

The reader is advised to refer to ISO/IEC 7816-4 and ISO/IEC FDIS 7816-8 for more
detailed information about the commands.

Table 1. EID application related commands

Command Standard Functionality

SELECT FILE ISO/IEC 7816-4 | Select a file from the card’s file system

GET RESPONSE ISO/IEC 7816-4 | Read response data from the card (in T=0
protocol)

READ BINARY ISO/IEC 7816-4 | Read binary data from a transparent (binary) file

VERIFY ISO/IEC 7816-4 | Verify reference data presented by user (e.g. PIN)
with the reference data stored inside the card.
The current verification status can be also queried
with this command.

MANAGE SECURITY ISO/IEC FDIS Restore a predefined (or empty) security

ENVIRONMENT: 7816-8 environment.

RESTORE

MANAGE SECURITY ISO/IEC FDIS Set the security environment (algorithms, keys)

ENVIRONMENT: SET 7816-8 that shall be used in the following PERFORM
SECURITY OPERATION commands.

PERFORM SECURITY ISO/IEC FDIS Compute a digital signature with a private key.

OPERATION: 7816-8 The algorithm and key are specified with the MSE

COMPUTE DIGITAL command.

SIGNATURE

PERFORM SECURITY ISO/IEC FDIS Decrypt data with a private key. The algorithm

OPERATION: 7816-8 and key are specified with the MSE command.

DECIPHER

CHANGE REFERENCE ISO/IEC FDIS Change the current reference data (e.g. PIN)

DATA 7816-8

RESET RETRY ISO/IEC FDIS Unlock locked reference data (e.g. PIN)

COUNTER 7816-8

UPDATE BINARY ISO/IEC 7816-4 Update the contents of a transparent (binary) file

ERASE BINARY ISO/IEC 7816-4 Erase the contents of a transparent (binary) file

4.1. SELECT FILE

The SELECT FILE command selects a file from the card’s file system according to
file identifier, file path or application identifier (AID).

Table 2. SELECT FILE command APDU

Byte Value

CLA 0Xh
INS A4h
P1 00h - select EF, DF or MF by file identifier

04h - select DF by Application IDentifier (AID)
08h - select file by absolute path from MF
09h - select file by relative path from current DF

P2 00h - FCI returned in response

Lc Empty or length of subsequent data field

Data P1=00h
- EF, DF or MF file identifier (or empty = MF)
P1=04h

FINEID SPECIFICATION 4.11.2002
FINEID - S1/v1.12 4(17)

- AID value
P1=08h
- absolute path from MF without the identifier of MF (3F00h)
P1=0%h
- relative path from the current DF without the identifier of the current DF

Le Empty or maximum length of data expected in response

Table 3. SELECT FILE response APDU

Byte Value

Data File Control Information

SWI1-SW2 | Status bytes

4.2. GET RESPONSE
The GET RESPONSE command returns response data from the card in T=0 protocol.

This command is used in to get response data from commands
- SELECT FILE,

- PERFORM SECURITY OPERATION: COMPUTE DIGITAL SIGNATURE
and

- PERFORM SECURITY OPERATION: DECIPHER.

Table 4. GET RESPONSE command APDU

Byte Value
CLA 0Xh
INS COh
Pl 00h
P2 00h
Lc Empty
Data Empty
Le Maximum length of data expected in response

Table 5. GET RESPONSE response APDU

Byte Value

Data Value of the response

SWI1-SW2 | Status bytes

4.3. READ BINARY

The READ BINARY command is used to read consecutive bytes from the current
(transparent) elementary file.

Table 6. READ BINARY command APDU

Byte Value

CLA 0Xh

FINEID SPECIFICATION 4.11.2002
FINEID - S1/v1.12 5(17)
INS BOh
P1 XXh - MSB of the offset to the first byte to read (bit 8§ = 0), or SFID (bit § = 1)
P2 YYh - LSB of the offset to the first byte to read
Lc Empty
Data Empty
Le Number of bytes to read

Table 7. READ BINARY response APDU

Byte

Value

Data

Data read from the file

SW1-SwW2

Status bytes

4.4. VERIFY

The VERIFY command is used to authenticate the user. Verification data (e.g. PIN)
1s compared with the reference data stored internally by the card.

Table 8. VERIFY command APDU

Byte Value
CLA 0Xh
INS 20h
P1 00h
P2 XXh - PIN reference number (according to PKCS#15).
Lc Empty or length of subsequent data field
Data Empty or verification data (padded to the correct length).
Padding is done according to PKCS#15.
Le Empty

Table 9. VERIFY response APDU

Byte Value
Data Empty
SW1-SW2 | Status bytes

If Lc = 00h, status bytes indicate the number X of further allowed retries (SW1-SW2 =
63CXh) or to check whether the verification is not required (SW1-SW2 = 9000h).

4.5. MANAGE SECURITY ENVIRONMENT: RESTORE

The MANAGE SECURITY ENVIRONMENT: RESTORE command is used to
restore a predefined (or empty) SECURITY ENVIRONMENT.

Table 10. MANAGE SECURITY ENVIRONMENT: RESTORE command

APDU
Byte Value
CLA 0Xh
INS 22h - MSE
P1 11110011b = F3h - RESTORE
P2 Number of the SE to be restored (00h is an empty SE)

FINEID SPECIFICATION 4.11.2002
FINEID - S1/v1.12 6(17)
Lc Empty
Data Empty
Le Empty
Table 11. MANAGE SECURITY ENVIRONMENT: RESTORE response
APDU
Byte Value
Data Empty
SW1-SW2 | Status bytes

4.6. MANAGE SECURITY ENVIRONMENT: SET

The MANAGE SECURITY ENVIRONMENT: SET command is used to set
attributes in the current SECURITY ENVIRONMENT.

Table 12. MANAGE SECURITY ENVIRONMENT: SET command APDU

Byte Value
CLA 0Xh
INS 22h
P1 XY000001b
The bits XY specify the operation that relates to the CRDOs in the data field.
- Xis set = computation
- Y is set = decryption
P2 P1=SET
- P2 =B6h, value of DST in data field
- P2 =DB8h, value of CT in data field
Lc Empty or length of subsequent data field
Data Concatenation of CRDOs
Le Empty

Table 13. MANAGE SECURITY ENVIRONMENT:SET response APDU

Byte Value
Data Empty
SWI1-SW2 | Status bytes

The table below describes the Control Reference Data Objects (CRDO) that are
supported in Digital Signature Templates (DST) and Confidentiality Templates (CT).

Table 14. Control Reference Data Objects (CRDO)

Tag Value DST CT
80h Algorithm reference + +
81h File reference (file identifier or a path) +

- only file identifiers shall be used in FINEID context

- used to identify the key file to be used in cryptographic
operations

- value specified in PKCS#15 private key object’s
PKCS15Path.path

FINEID SPECIFICATION 4.11.2002
FINEID - S1/v1.12 7(17)

84h

Key reference (for referencing a private key in asymmetric cases) + +

- used to identify the key to be used in cryptographic operations
(e.g. if a key file contains multiple keys)

- value (single byte) specified in PKCS#15 private key object’s
PKCS15CommonKeyAttributes.keyReference (optional)

The supported values for the CRDO algorithm reference (tag 80h) are specified in the
table below. The coding is taken from DIN NI-17.4 version 1.0 specification (annex
F table F.2) with some modifications. The high nibble of the algorithm reference
specifies the hash algorithm used (if hashing is relevant for the algorithm). The low
nibble specifies the rest of the details about the algorithm.

Table 15. Values for the algorithm reference

Algorithm
reference

Details

0Xh

No hash algorithm

1Xh

SHA-1 hash algorithm (id-shal)

2Xh

RFU

X0h

’Raw’ RSA algorithm (card does not do any input or output formatting i.e. padding or
hash encapsulation)

Signature generation operation (PSO: COMPUTE DIGITAL SIGNATURE):

1. Input data size must equal modulus length i.e. hash is NOT encapsulated or
padded by the card. Modulus length shall be a multiple of eight for this algorithm.

2. RSASP1 signature primitive is applied (RSA private key operation)

Decryption operation (PSO: DECIPHER):
1. RSADP decryption primitive is applied (RSA private key operation)
2. Padding is NOT removed by the card.

X1h

RFU

X2h

RSASSA-PKCS1-vl_5 signature scheme (according to PKCS#1 v2.0 with RSA
algorithm, compatible with PKCS#1 v1.5)

Signature generation operation (PSO: COMPUTE DIGITAL SIGNATURE):

1. The hash code is encapsulated into DigestInfo ASN.1 structure according to
selected hash algorithm. If no hash algorithm is selected (02h), the hash
encapsulation is not done by the card.

2. Digestlnfo is padded to modulus length according to PKCS#1 v1.5 (block type
01h). The size of the DigestInfo shall not be more than 40% of modulus length.

3. RSASPI signature primitive is applied (RSA private key operation)

RSAES-PKCS1-vl_5 encryption scheme (according to PKCS#1 v2.0 with RSA
algorithm, compatible with PKCS#1 v1.5)

Decryption operation (PSO: DECIPHER):
1. RSADP decryption primitive is applied (RSA private key operation)
2. PKCS#1 vl.5 padding is removed

X3h

RFU

X4h

RFU

FINEID SPECIFICATION 4.11.2002
FINEID - S1/v1.12 8(17)

4.7. PERFORM SECURITY OPERATION: COMPUTE DIGITAL
SIGNATURE

The PSO: COMPUTE DIGITAL SIGNATURE command calculates a digital
signature. The private key and algorithm to be used must be specified using the
MANAGE SECURITY ENVIRONMENT command.

The input to the command may be either

- ahash code (e.g. SHA-1 hash value 20 bytes),

- aDigestlnfo ASN.1 structure encapsulating the hash code, or

- a full modulus size input buffer (padding done by host application)

according to the selected algorithm reference value.

Table 16. PSO: COMPUTE DIGITAL SIGNATURE command APDU

Byte Value

CLA 0Xh

INS 2Ah
P1 9Eh - digital signature data object is returned in response
P2 9Ah - data field contains data to be signed
Lc Length of subsequent data field

Data If algorithm reference in SE = 00h

- Data to be signed (e.g. encapsulated hash code). Padding is done to the full
modulus length by the host application.

If algorithm reference in SE = 02h:

- Hash code encapsulated by the host application into DigestInfo structure. Padding
is done internally by the card.

If algorithm reference in SE = 12h or 22h

- Hash code. Card encapsulates the hash into DigestInfo structure and pads it
internally according to PKCS#1 v1.5 into full modulus length.

Le Empty or maximum length of data expected in response

Table 17. PSO: COMPUTE DIGITAL SIGNATURE response APDU

Byte Value

Data Digital signature

SW1-SW2 | Status bytes

4.8. PERFORM SECURITY OPERATION: DECIPHER

The PSO: DECIPHER command decrypts an encrypted message (cryptogram). The
private key and algorithm to be used must be specified using the MANAGE
SECURITY ENVIRONMENT command.

Table 18. PSO: DECIPHER command APDU

Byte Value

CLA 0Xh

FINEID SPECIFICATION 4.11.2002

FINEID - S1/v1.12 9(17)
INS 2Ah
P1 80h - decrypted value is returned in response
P2 86h - data field contains padding indicator byte (00h according to ISO/IEC 7816-4)
followed by the cryptogram
Lc Length of subsequent data field

Data 00h (padding indicator byte) || cryptogram

Le Empty or maximum length of data expected in response

Table 19. PSO: DECIPHER response APDU

Byte Value

Data If algorithm reference in SE = 00h
- Decrypted cryptogram. Padding is not removed by the card.
If algorithm reference in SE = 02h:

- Decrypted cryptogram. PKCS#1 v1.5 padding is removed by the card and only
the actual data is returned.

SW1-SW2 | Status bytes

4.9. CHANGE REFERENCE DATA

The CHANGE REFERENCE DATA command is used to change the current
internally stored reference data into a new value. Current reference data is first
compared with verification data presented by the user.

Table 20. CHANGE REFERENCE DATA command APDU

Byte Value

CLA 0Xh
INS 24h
P1 00h - exchange reference data
P2 XXh - PIN reference number (according to PKCS#15).
Lc Length of subsequent data field
Data Existing reference data (padded to the correct length) followed by new reference data

(padded to the correct length).
Padding is done according to PKCS#15.

Le Empty

Table 21. CHANGE REFERENCE DATA response APDU

Byte Value

Data Empty

SWI1-SW2 | Status bytes

4.10. RESET RETRY COUNTER

The RESET RETRY COUNTER command is used when a PIN code has been locked
due to too many consecutive unsuccessful verifications. Unlocking a PIN requires a
resetting code (a.k.a. PIN Unlocking Key, PUK) to be presented to the card by the
user.

FINEID SPECIFICATION 4.11.2002
FINEID - S1/v1.12 10(17)

Table 22. RESET RETRY COUNTER command APDU

Byte Value

CLA 0Xh
INS 2Ch
P1 00h - reset retry counter and set new verification data
P2 XXh - PIN reference number (according to PKCS#15).
Lc Empty or length of subsequent data field
Data Empty or resetting code (padded to the correct length) followed by new reference data

(padded to the correct length).
Padding is done according to PKCS#15.

Le Empty

Table 23. RESET RETRY COUNTER response APDU

Byte Value

Data Empty

SWI1-SW2 | Status bytes

If Lc = 00h, status bytes indicate the number X of further allowed retries (SW1-SW2 =
63CXh).

4.11. UPDATE BINARY

The UPDATE BINARY command is used update the contents of a transparent
(binary) file.

Table 24. UPDATE BINARY command APDU

Byte Value
CLA 0Xh
INS D6h
P1 XXh - MSB of the offset to the first byte to update (bit 8 = 0), or SFID (bit 8 = 1)
P2 YYh - LSB of the offset to the first byte to update
Lc Length of subsequent data field
Data Data to be updated
Le Empty

Table 25. UPDATE BINARY response APDU

Byte Value

Data Empty

SW1-SW2 | Status bytes

4.12. ERASE BINARY

The ERASE BINARY command is used erase the contents of a transparent (binary)

file. Erasing is done starting from the address specified in bytes P1 and P2 until the
end of file.

FINEID SPECIFICATION 4.11.2002
FINEID - S1/v1.12 11(17)

Table 26. ERASE BINARY command APDU

Byte Value

CLA 0Xh

INS 0Eh
P1 XXh - MSB of the offset to the first byte to erase (bit 8 = 0), or SFID (bit 8 = 1)
P2 YYh - LSB of the offset to the first byte to erase
Lc Empty

Data Empty

Le Empty

Table 27. ERASE BINARY response APDU

Byte Value

Data Empty

SW1-SW2 | Status bytes

FINEID SPECIFICATION 4.11.2002
FINEID - S1/v1.12 12(17)

5. Implementation guidelines for software developers

5.1. Resource management

The FINEID card will be used by multiple host applications running simultaneously
in the same PC. Because the FINEID card is internally a simple state machine, these
host applications share the state of the FINEID card also (current file, security status
etc.). This sets some fundamental requirements for the host applications accessing the
shared resource (i.e. the FINEID card and reader device):

1. Host applications must protect the command sequences they send to the FINEID
card by locking the card exclusively to themselves (and blocking access from
others) while doing these transactions.

2. The length of each transaction should be minimized.

3. Host applications should not assume that the state of the card (e.g. current file or
security status) stays unmodified between transactions. The only exception to that
rule is that the verification status of a successfully verified global PIN should be
unaffected between transactions. Check PKCS#15 for additional information on
global PINs.

WWW browser I S/MIME eMail I Application X I

Microsoft
CryptoAPI

PKCS#15 support

PKCS #11 Proprietary API

PKCS#15 support

PC/SC Resource Manager I

PKCS#15 support

—>
ISO/IEC
7816-4
7816-8

PKCS #15

(e (] [er] B
- = file structure

(er] [oF] [er]

Figure 1. Example scenario of multiple host applications - single card

FINEID SPECIFICATION 4.11.2002
FINEID - S1/v1.12 13(17)

5.2. Resetting the card

Unnecessary resetting of the card should be avoided. When using PC/SC interface the
card is resetted automatically by the Resource Manager so there is no need for the
host application to explicitly reset the card before starting to use it.

5.3. File selection

5.3.1. PKCS#15 application

PKCS#15 application is selected using either

- PKCS#15 Application Identifier (AID) specified in PKCS#15 v1.0 or
- path.

Selection by Application identifier:

Command CLA|INS | P1 P2 Lc |Data Le

SELECT 00 | A4 | 04 00 | 0C |A000000063504B43532D3135

Selection by path specified in EF(DIR) (example path OCTET STRING =3F 00 11
22 AA BB):

Command CLA|INS | P1 P2 Lc |[Data Le

SELECT 00 | A4 | 08 00 04 |1122 AABB
(MF file identifier 3F 00 removed)

5.3.2. PKCS15Path

PKCS#15 uses PKCS15Path ASN.1 structure to reference various files. The
PKCS15Path.path octet string contains:

- afile identifier if the length of the octet string is two bytes

- an absolute path if the octet string is longer that two bytes and starts with the file
identifier of MF = 3F 00

- arelative path if the octet string is longer than two bytes and starts with the file
identifier of the current DF (which is not 3F 00)

Selection of a file using a relative path or a file identifier must be done after having
selected the PKCS#15 application first to make sure that the scope for selection is
correct. This should be ensured for each transaction. Absolute paths can be selected
without first selecting the PKCS#15 application.

5.4. Authentication objects

In PKCS#15 all objects (private keys, certificates etc.) can be protected with
authentication objects (i.e. PINs). Each object may contain a pointer to an
authentication object e.g. a private key object may contain a pointer to a PIN object.
This means that the private key operation (decrypt or sign) can be done only after
successful verification of the PIN code.

An object can not be protected with multiple authentication objects in PKCS#15.
Furthermore, the specific access type (operation on the object) can not be specified.
The following table lists the operations that can be protected with authentication
objects in the PKCS#15 sense.

4.11.2002
14(17)

FINEID SPECIFICATION
FINEID - S1/v1.12

Table 28. Objects and protected operations

Object type

Operations protected with the authentication object

Private key

Private key operations
- sign (PSO: COMPUTE DIGITAL SIGNATURE)
- decrypt (PSO: DECIPHER)

Public key

Public key operations (not used in FINEID context)
- verify (PSO: VERIFY DIGITAL SIGNATURE)
- encrypt (PSO: ENCIPHER)

Secret key

Secret key operations (not used in FINEID context)
- encrypt
- decrypt

Certificate

Reading the contents of the certificate

Data object

Reading the contents of data the object

Authentication
object

The authentication object can be used to unblock this authentication object
(e.g. unblocking PIN is used).

5.4.1. Accessing objects

The flowchart below describes one possible solution for accessing objects and
fulfilling the authentication requirements (PIN verifications) of these objects.

1.BEGIN

2. Is object protected
with PIN?

User consent NOT required no

v

9. Lock card
yes—p{ (prevent other applications
accessing card)

3. Check if user

consent is required? yes

User consent required

5. Ask PIN
from user
(dialog)

been already
verified?

h 4 : A _
6. Lock card 10. Object specific
(prevent other applications operations
accessing card)
A
\ 4 11. Unlock card
7. SELECT
PIN directory
A 4 12. END
8. VERIFY PIN

Figure 2. Example of PIN logic

The command sequence in PIN verification consists of two commands described
below.

Select PIN directory specified in PKCS15PinAttributes.path (example path OCTET
STRING = 3F 00 11 22):

FINEID SPECIFICATION 4.11.2002
FINEID - S1/v1.12 15(17)

Command CLA|INS | P1 P2 Lc |Data Le

SELECT 00 | A4 | 08 00 02 |1122
(MF file identifier 3F 00 removed)

Verify PIN. Padding is done according to PKCS15PinAttributes (storedLength,
padChar). The P2 value is taken from PKCS15PinAttributes.pinReference (example
value 01)

Command CLA|INS | P1 P2 Lc |Data Le

VERIFY 00 | 20 | 00 | 01 | 08 [3132333400000000
(PIN = 1234 in ASCII with 00 padding)

The verification status of a PIN may be dropped automatically to state ‘not verified’
by the card operating system after performing e.g. a private key operation. This is
indicated by the userConsent element of the private key object (this feature was
introduced in PKCS#15 v1.0 Amendment 1 Draft #1). E.g. userConsent value set to
one for a private key object indicates that the card holder must manually enter the
PIN for each private key operation. Requiring user interaction for all operations done
with a specific private key is a trade-off between usability and security. It is
anticipated that this feature will be used for performing legally binding non-
repudiable digital signatures only.

The object specific operations in step 10 include the ones in the Table 28. Objects
and protected operations.

5.4.2. Login required flag

In addition to the ‘on demand’ access control of objects in PKCS#15 it is also
possible to protect some of the object directory files. The EF(TokenInfo) contains a
PKCS15TokenFlags.loginRequired flag indicating that the first authentication object
in the AODF is used to protect other object directory files than ODF and AODF
(PKCS#15 chapter 7.9 and annex B).

5.5. Private key operations (sign and decrypt)

There may be multiple private keys in the same PKCS#15 card. The host application
must first determine which one of these private keys to use. This can be done e.g.
based on the information inside card holder certificates according to application
specific criteria (e.g. key usage bits and CA policy OIDs). Each certificate contains a
pointer to the corresponding private key object.

Private keys are accessed like any other objects according to Figure 2. The command
sequence of step 10 of that flowchart is described below.

5.5.1. Signature operation

It is assumed that PIN verification is already done and current DF is the PKCS#15
DF.

Restore the empty SE:
Command |CLA|INS | P1 P2 Lc [Data Le
MSE: 00 22 F3 00 - -
RESTORE

Set the following properties into the SE Digital Signature Template:

FINEID SPECIFICATION 4.11.2002
FINEID - S1/v1.12 16(17)

- algorithm reference (= 12 i.e. RSASSA-PKCS1-v1 5 signature with SHA-1, card
does padding and DigestInfo encapsulating of the hash)

- key file path (= 1122 from PKCS15PrivateRSAKeyAttributes.value path)
- key reference (= 00 from PKCS15CommonKeyAttributes.keyReference)

Command CLA | INS P1 P2 Lc |Data Le
MSE: SET 00 22 81 B6 0A (8001 12 -
computation | DST in data (algorithm reference = 12)
field 81021122
(private key file identifier)
8401 00
(key reference)

Sign the hash calculated by the host application:

Command CLA|INS | P1 P2 Lc |Data Le
PSO: 00 2A 9E 9A 14 |4B 5216 5B 4A B6 54 C3 E5 4F XX
COMPUTE 64 B5 F1 EE A6 45 D4 6B 65 C8
DIGITAL
SIGNATURE

XX is the maximum length of the digital signature returned in response.

Get the response in T=0 protocol:

Command CLA|INS | P1 P2 Lc |Data Le
GET 00 Cco 00 00 - |53B7FF 19 A4 ... A390 8E 4A XX
RESPONSE (e.g. 128 bytes of digital signature if 1024
bit modulus)

5.5.2. Decrypt operation

It is assumed that PIN verification is already done and current DF is the PKCS#15
DF.

Restore the empty SE:
Command CLA|INS | P1 P2 Lc |[Data Le
MSE: 00 22 F3 00 - |- -
RESTORE

Set the following properties into the SE Confidentiality Template:

- algorithm reference (= 02 i.e. RSAES-PKCS1-v1 5 decryption, card removes
padding)

- key file path (= 33 44 from PKCS15PrivateRSAKeyAttributes.value path)
- key reference (= 00 from PKCS15CommonKeyAttributes.keyReference)

Command | CLA | INS P1 P2 Lc |Data Le
MSE: SET 00 22 41 B8 0A (8001 02 -
decryption | CT in data (algorithm reference = 02)
field 8102 33 44
(private key file identifier)
8401 00
(key reference)

Decrypt the modulus size (example 1024 bits) cryptogram:

FINEID SPECIFICATION 4.11.2002

FINEID - S1/v1.12 17(17)

Command CLA|INS | P1 P2 Lc |Data Le

PSO: 00 2A 80 86 81 |00 (padding indicator byte) XX
DECIPHER

4B 5216 ... 54 C3 E5
(cryptogram)

XX is the maximum length of the decrypted cryptogram. PKCS#1 v1.5 padding is
removed by the card when using the algorithm 02.

Get the response in T=0 protocol:

Command CLA|INS | P1 P2 Lc¢ |Data Le
GET 00 Co 00 00 - 11223344556677889900 1122 XX
RESPONSE (decrypted payload)

