
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring	SE	for	Android

www.it-ebooks.info

http://www.it-ebooks.info/

Table	of	Contents

Exploring	SE	for	Android

Credits

Foreword

About	the	Authors

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Linux	Access	Controls

Changing	permission	bits

Changing	owners	and	groups

The	case	for	more

Capabilities	model

Android’s	use	of	DAC

Glancing	at	Android	vulnerabilities

Skype	vulnerability

GingerBreak

www.it-ebooks.info

http://www.it-ebooks.info/

Rage	against	the	cage

MotoChopper

Summary

2.	Mandatory	Access	Controls	and	SELinux

Getting	back	to	the	basics

Labels

Users

Roles

Types

Access	vectors

Multilevel	security

Putting	it	together

Complexities	and	best	practices

Summary

3.	Android	Is	Weird

Android’s	security	model

Binder

Binder’s	architecture

Binder	and	security

Zygote	–	application	spawn

The	property	service

Summary

4.	Installation	on	the	UDOO

Retrieving	the	source

Flashing	image	on	an	SD	card

UDOO	serial	and	Android	Debug	Bridge

Flipping	the	switch

It’s	alive

Summary

5.	Booting	the	System

Policy	load

www.it-ebooks.info

http://www.it-ebooks.info/

Fixing	the	policy	version

Summary

6.	Exploring	SELinuxFS

Locating	the	filesystem

Interrogating	the	filesystem

The	enforce	node

The	disable	file	interface

The	policy	file

The	null	file

The	mls	file

The	status	file

Access	Vector	Cache

The	booleans	directory

The	class	directory

The	initial_contexts	directory

The	policy_capabilities	directory

ProcFS

Java	SELinux	API

Summary

7.	Utilizing	Audit	Logs

Upgrades	–	patches	galore

The	audit	system

The	auditd	daemon

Auditd	internals

Interpreting	SELinux	denial	logs

Contexts

Summary

8.	Applying	Contexts	to	Files

Labeling	filesystems

fs_use

fs_task_use

www.it-ebooks.info

http://www.it-ebooks.info/

fs_use_trans

genfscon

Mount	options

Labeling	with	extended	attributes

The	file_contexts	file

Dynamic	type	transitions

Examples	and	tools

Fixing	up	/data

A	side	note	on	security

Summary

9.	Adding	Services	to	Domains

Init	–	the	king	of	daemons

Dynamic	domain	transitions

Explicit	contexts	via	seclabel

Relabeling	processes

Limitations	on	app	labeling

Summary

10.	Placing	Applications	in	Domains

The	case	to	secure	the	zygote

Fortifying	the	zygote

Plumbing	the	zygote	socket

The	mac_permissions.xml	file

keys.conf

seapp_contexts

Summary

11.	Labeling	Properties

Labeling	via	property_contexts

Permissions	on	properties

Relabeling	existing	properties

Creating	and	labeling	new	properties

Special	properties

www.it-ebooks.info

http://www.it-ebooks.info/

Control	properties

Persistent	properties

SELinux	properties

Summary

12.	Mastering	the	Tool	Chain

Building	subcomponents	–	targets	and	projects

Exploring	sepolicy’s	Android.mk

Building	sepolicy

Controlling	the	policy	build

Digging	deeper	into	build_policy

Building	mac_permissions.xml

Building	seapp_contexts

Building	file_contexts

Building	property_contexts

Current	NSA	research	files

Standalone	tools

sepolicy-check

sepolicy-analyze

Summary

13.	Getting	to	Enforcing	Mode

Updating	to	SEPolicy	master

Purging	the	device

Setting	up	CTS

Running	CTS

Gathering	the	results

CTS	test	results

Audit	logs

Authoring	device	policy

adbd

bootanim

debuggerd

www.it-ebooks.info

http://www.it-ebooks.info/

drmserver

dumpstate

installd

keystore

mediaserver

netd

rild

servicemanager

surfaceflinger

system_server

toolbox

untrusted_app

vold

watchdogd

wpa

Second	policy	pass

init

shell

init_shell.te

Field	trials

Going	enforcing

Summary

A.	The	Development	Environment

VirtualBox

Ubuntu	Linux	12.04	(precise	pangolin)

VirtualBox	extension	pack	and	guest	additions

VirtualBox	extension	pack

VirtualBox	guest	additions

Save	time	with	shared	folders

The	build	environment

Oracle	Java	6

www.it-ebooks.info

http://www.it-ebooks.info/

Summary

Index

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring	SE	for	Android

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring	SE	for	Android
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	February	2015

Production	reference:	1190215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-059-4

www.packtpub.com

www.it-ebooks.info

http://www.packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Credits
Authors

William	Confer

William	Roberts

Reviewers

Joshua	Brindle

Hiromu	Yakura

Commissioning	Editor

Usha	Iyer

Acquisition	Editor

Reshma	Raman

Content	Development	Editor

Arvind	Koul

Technical	Editor

Shiny	Poojary

Copy	Editors

Shivangi	Chaturvedi

Vikrant	Phadke

Neha	Vyas

Project	Coordinator

Neha	Bhatnagar

Proofreaders

Paul	Hindle

Stephen	Silk

Indexer

Priya	Sane

Production	Coordinator

Conidon	Miranda

Cover	Work

Conidon	Miranda

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword
The	first	talk	of	SELinux	on	Android	started	almost	as	soon	as	Android	was	announced.
The	interest	at	that	time	was	mainly	shown	by	academic	circles	and	developers	of
SELinux	itself.	As	a	longtime	user	of	SELinux	in	server	deployments,	I	knew	its	benefits
from	a	security	point	of	view	and	also	knew	how	much	Android	could	benefit	from	them.

At	that	time,	I	may	have	been	coy	about	the	reasons	I	wanted	to	commit	some	of	the	initial
patches	to	the	SELinux	project.	Looking	back	at	the	code	reviews	for	those	Android	Open
Source	Project	(AOSP)	changes,	I	now	remember	how	much	resistance	there	was	in	the
beginning.	Space	on	devices	was	at	a	premium,	and	it	was	considered	a	victory	if	we
could	save	a	few	kilobytes.	And	here	were	the	SELinux	libraries	and	policies	that
increased	the	system	size	by	thirty	kilobytes!	The	performance	impact	had	not	even	been
measured	at	that	time.

The	work	continued	unabated	with	SELinux	contributors,	such	as	Stephen	Smalley,
Robert	Craig,	Joshua	Brindle,	and	an	author	of	this	book,	William	Roberts,	as	well	as	with
the	help	of	my	coworkers	Geremy	Condra	and	Nick	Kralevich	at	Google.	Slowly,	through
the	herculean	efforts	of	everyone	involved,	the	project	materialized	and	became	more	and
more	complete.	Since	Android	4.4	KitKat,	SELinux	is	shipped	in	enforcing	mode,	and	all
Android	users	can	benefit	from	the	added	protection	that	it	affords.

The	tale	doesn’t	end	there!	Now,	it’s	your	turn	to	learn.	This	book	is	the	first	reference
available	for	the	specific	flavor	of	SELinux	found	in	Android.	It’s	my	sincere	hope	that
this	book	imparts	the	knowledge	you	need	to	understand	and	contribute	to	its	continued
development.	William	Roberts	has	been	submitting	code	to	AOSP	since	the	beginning	of
SELinux	for	Android,	and	his	and	Dr.	Confer’s	knowledge	is	contained	in	these	pages.	It’s
up	to	you	to	read	it	and	help	write	the	next	chapter	of	this	saga.

Kenny	Root

Mountain	View,	CA

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About	the	Authors
William	Confer	has	been	engineering	embedded	and	mobile	systems	since	1997.	He	has
worked	for	Samsung	Mobile	as	a	managing	staff	engineer	and	currently	teaches	computer
science	at	SUNY	Polytechnic	Institute.	He	holds	a	patent	in	low-cost	character	recognition
for	extremely	resource-limited	devices	and	has	multiple	other	patents	pending	for	mobile
technologies.

My	wife,	Ása,	sacrificed	endlessly	to	help	give	me	the	space	and	time	needed	for	this
work,	and	I	owe	her	more	than	I	can	say.	My	three	daughters	also	ensured	I	couldn’t
always	be	working	on	this	book	and	distracted	me	in	the	best	possible	ways.	I	couldn’t	rest
if	I	didn’t	thank	all	my	fall	2014	students	from	SUNY	Polytechnic	Institute	who	put	up
with	me	when	I	was	sidetracked	by	this	book.	Finally,	and	most	importantly,	my	greatest
thanks	goes	to	my	coauthor	(and	friend,	student,	and	teacher),	William	Roberts,	without
whom	I	would	have	to	have	found	another.

William	Roberts	is	a	software	engineer	who	is	focused	on	OS-level	security	and	platform
enhancements.	He	is	one	of	the	engineers	who	founded	the	Samsung	KNOX	product	and
an	early	adopter	of	SE	for	Android.	He	has	made	contributions	to	several	open	source
projects,	such	as	SE	for	Android,	the	Android	Open	Source	Project,	the	Linux	Kernel,
CyanogenMod,	and	OpenSC.	His	recent	interests	have	taken	him	to	Smart	Card
technologies	and	the	virtualization	of	smart	cards.	In	his	spare	time,	he	works	with	Dr.
Confer	on	the	Miniat	project	(http://www.miniat.org),	a	virtual,	embedded	architecture
simulator.

I	would	like	to	thank	Dr.	William	Confer,	the	coauthor,	for	helping	me	write	this	book;	his
contributions	were	invaluable.	Also,	I	would	like	to	thank	my	wife	for	supporting	me	and
giving	me	the	time	to	do	this,	even	though	we	were	renovating	the	house.	Also,	I	would
like	to	thank	my	family	and	friends	for	their	encouragement	along	the	way.

www.it-ebooks.info

http://www.miniat.org
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

About	the	Reviewers
Joshua	Brindle	is	the	CTO	and	cofounder	of	Quark	Security	Inc.,	a	company	focused	on
solving	mobile	and	cross-domain	security	problems.	Joshua	has	12	years	of	professional
experience	in	the	area	of	development	for	government,	academic,	and	open	source
software	that	focuses	on	security	in	Linux.	Joshua	has	contributed	to	numerous	open
source	projects,	both	as	a	project	maintainer	and	as	a	developer.	His	work	can	be	found	on
all	SELinux	systems	and	nearly	all	Linux	systems.	Joshua’s	recent	experience	focuses	on
building	secure	mobile	devices	using	technologies	such	as	Security	Enhancements	for
Android,	mobile	device,	and	application	management.

Hiromu	Yakura	is	a	student	at	Nada	High	School,	Japan.	He	is	the	youngest	person	to
hold	the	national	information	security	qualification	from	Japan.	He	has	given	lectures
about	SE	for	Android	at	many	conferences.	He	is	also	familiar	with	the	security
competition,	Capture	the	Flag	(CTF),	and	has	participated	in	DEF	CON	CTF	2014	as	a
team	binja.

I	would	like	to	express	my	gratitude	to	my	family	for	their	understanding	and	support.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

www.it-ebooks.info

http://www.it-ebooks.info/

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.it-ebooks.info/

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

www.it-ebooks.info

http://www.it-ebooks.info/

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
This	book	introduces	the	Security	Enhancements	(SE)	for	Android	open	source	project
and	walks	you	through	the	process	of	securing	new	embedded	systems	with	SE	for
Android.	To	our	knowledge,	this	book	is	the	first	source	to	document	such	a	process	in	its
entirety	so	that	students,	DIY	hobbyists,	and	engineers	can	create	custom	systems	secured
by	SE	for	Android.	Generally,	only	original	equipment	manufacturers	(OEMs)	do	this,	and
quite	commonly,	the	target	device	is	a	phone	or	tablet.	We	truly	hope	our	book	will	change
that,	engaging	a	wide	audience	in	development	so	they	can	use	and	understand	these
modern	security	tools.

We	worked	very	hard	to	ensure	this	text	is	not	just	a	step-by-step	technology	book.
Specifically,	we’ve	chosen	a	model	that	directs	you	to	fail	your	way	to	success.	You	will
first	gain	appropriate	theoretical	understanding	of	how	security	is	gained	and	enforced.
Then	we	will	introduce	a	system	that	has	never	been	secured	that	way	(not	even	by	us,
prior	to	writing	this	book).	Next,	we’ll	guide	you	through	all	our	intelligent	guesswork,
embracing	unexpected	failures	for	the	newly	found	idiosyncrasies	they	expose,	and
eventually	enforcing	our	custom	security	policies.	It	requires	you	to	learn	to	resolve
differences	between	major	open	source	projects	such	as	SELinux,	SE	for	Android,	and
Google	Android,	each	of	which	has	independent	goals	and	deployment	schedules.	This
prepares	you	to	secure	other	devices,	the	process	for	which	is	always	different,	but
hopefully,	will	now	be	more	accessible.

www.it-ebooks.info

http://www.it-ebooks.info/

What	this	book	covers
Chapter	1,	Linux	Access	Controls,	discusses	the	basics	of	Discretionary	Access	Control
(DAC),	how	some	Android	exploits	leverage	DAC	problems,	and	demonstrate	the	need
for	more	robust	solutions.

Chapter	2,	Mandatory	Access	Controls	and	SELinux,	examines	Mandatory	Access	Control
(MAC)	and	its	manifestation	in	SELinux.	This	chapter	also	explores	tangible	policy	to
control	SELinux	object	interaction.

Chapter	3,	Android	Is	Weird,	introduces	the	Android	security	model	and	investigates
binder,	zygote,	and	the	property	service.

Chapter	4,	Installation	on	the	UDOO,	walks	through	building	and	deploying	Android
from	source	to	the	UDOO-embedded	board	and	turns	on	SELinux	support.

Chapter	5,	Booting	the	System,	follows	the	boot	process	from	the	policy	loading
perspective	and	corrects	issues	to	get	SELinux	to	a	usable	state	on	the	UDOO.

Chapter	6,	Exploring	SELinuxFS,	examines	the	SELinuxFS	filesystem	and	how	it	provides
the	kernel-to-userspace	interface	for	higher-level	idioms.

Chapter	7,	Utilizing	Audit	Logs,	investigates	the	audit	subsystem,	revealing	how	to
interpret	SELinux	audit	logs	for	the	benefit	of	policy	writing.

Chapter	8,	Applying	Contexts	to	Files,	teaches	you	how	filesystems	and	filesystem	objects
get	their	labels	and	contexts,	demonstrating	techniques	to	change	them,	including	dynamic
type	transitions.

Chapter	9,	Adding	Services	to	Domains,	emphasizes	process	labeling,	notably	the	Android
services	run	and	managed	by	init.

Chapter	10,	Placing	Applications	in	Domains,	shows	you	how	to	properly	label	the	private
data	directories	of	applications,	as	well	as	application	runtime	contexts	via	configuration
files	and	SELinux	policy.

Chapter	11,	Labeling	Properties,	demonstrates	how	to	create	and	label	new	and	existing
properties,	and	some	of	the	anomalies	that	occur	when	doing	so.

Chapter	12,	Mastering	the	Tool	Chain,	covers	how	the	various	components	that	control
policy	on	the	device	are	actually	built	and	created.	This	chapter	reviews	the	Android.mk
components,	detailing	how	the	heart	of	the	build	and	configuration	management	works.

Chapter	13,	Getting	to	Enforcing	Mode,	utilizes	all	the	skills	you	learned	in	the	earlier
chapters	to	respond	to	audit	logs	from	CTS	and	get	the	UDOO	in	enforcing	mode.

Appendix,	The	Development	Environment,	walks	you	through	the	necessary	steps	of
setting	up	a	Linux	environment	suitable	for	you	to	follow	all	the	activities	in	this	book.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

What	you	need	for	this	book
Hardware	requirements	include:

A	UDOO-embedded	development	board
An	8	GB	Mini	SD	card	(while	you	can	use	a	card	with	greater	capacity,	we	do	not
recommended	it)
A	minimum	of	16GB	of	RAM
At	least	80	GB	of	free	hard	drive	space

Software	requirements	include:

An	Ubuntu	12.04	LTS	desktop	system
Oracle	JDK	6.0	version	6u45
Some	additional	miscellaneous	Linux	software	is	required,	but	these	are	described	in
the	book	and	are	available	for	free.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Who	this	book	is	for
This	book	is	intended	for	developers	and	engineers	who	are	somewhat	familiar	with
operating	system	concepts	as	implemented	by	Linux.	They	could	be	hobbyists	wanting	to
secure	their	Android-powered	creations,	OEM	engineers	building	handsets,	or	engineers
from	emerging	areas	where	Android	is	seeing	growth.	A	basic	background	in	C
programming	will	be	helpful.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	explanations	of	their
meanings.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“Now
let’s	attempt	to	execute	the	hello.txt	file	and	see	what	happens.”

A	block	of	code	is	set	as	follows:

case	INTERFACE_TRANSACTION:

{

reply.writeString(DESCRIPTOR);

return	true;

}

Any	command-line	input	or	output	is	written	as	follows:

$	su	testuser

Password:	

testuser@ubuntu:/home/bookuser$	

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Exit	the	configuration
menus	by	selecting	Exit	until	you	are	asked	to	save	your	new	configuration.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

www.it-ebooks.info

mailto:feedback@packtpub.com
http://www.packtpub.com/authors
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

www.it-ebooks.info

http://www.it-ebooks.info/

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

www.it-ebooks.info

http://www.packtpub.com
http://www.packtpub.com/support
http://www.it-ebooks.info/

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

www.it-ebooks.info

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
http://www.it-ebooks.info/

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

www.it-ebooks.info

mailto:copyright@packtpub.com
http://www.it-ebooks.info/

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

www.it-ebooks.info

mailto:questions@packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	1.	Linux	Access	Controls
Android	is	an	operating	system	composed	of	two	distinct	components.	The	first
component	is	a	forked	mainline	Linux	kernel	and	shares	almost	everything	in	common
with	Linux.	The	second	component,	which	will	be	discussed	later,	is	the	user	space
portion,	which	is	very	custom	and	Android	specific.	Since	the	Linux	kernel	underpins	this
system	and	is	responsible	for	the	majority	of	access	control	decisions,	it	is	the	logical
place	to	begin	a	detailed	look	at	Android.

In	this	chapter	we	will:

Examine	the	basics	of	Discretionary	Access	Control
Introduce	Linux	permissions	flags	and	capabilities
Trace	syscalls	as	we	validate	access	policies
Make	the	case	for	more	robust	access	control	technology
Discuss	Android	exploits	that	leverage	problems	with	Discretionary	Access	Control

Linux’s	default	and	familiar	access	control	mechanism	is	called	Discretionary	Access
Control	(DAC).	This	is	just	a	term	that	means	permissions	regarding	access	to	an	object
are	at	the	discretion	of	its	creator/owner.

In	Linux,	when	a	process	invokes	most	system	calls,	a	permission	check	is	performed.	As
an	example,	a	process	wishing	to	open	a	file	would	invoke	the	open()	syscall.	When	this
syscall	is	invoked,	a	context	switch	is	performed,	and	the	operating	system	code	is
executed.	The	OS	has	the	ability	to	determine	whether	a	file	descriptor	should	be	returned
to	the	requesting	process	or	not.	During	this	decision-making	process,	the	OS	checks	the
access	permissions	of	both	the	requesting	process	and	the	target	file	it	wishes	to	obtain	the
file	descriptor	to.	Either	the	file	descriptor	or	EPERM	is	returned,	dependent	on	whether
the	permission	checks	pass	or	fail	respectively.

Linux	maintains	data	structures	in	the	kernel	for	managing	these	permission	fields,	which
are	accessible	from	user	space,	and	ones	that	should	be	familiar	to	Linux	and	*NIX	users
alike.	The	first	set	of	access	control	metadata	belongs	to	the	process,	and	forms	a	portion
of	its	credential	set.	The	common	credentials	are	user	and	group.	In	general,	we	use	the
term	group	to	mean	both	primary	group	and	possible	secondary	group(s).	You	can	view
these	permissions	by	running	the	ps	command:

$	ps	-eo	pid,comm,user,group,supgrp

PID	COMMAND									USER					GROUP				SUPGRP

1	init												root					root					-

...

	2993	system-service-	root					root					root	

	3276	chromium-browse	bookuser	sudo	fuse	bookuser	

...

As	you	can	see,	we	have	processes	running	as	the	users	root	and	bookuser.	You	can	also
see	that	their	primary	group	is	only	one	part	of	the	equation.	Processes	also	have	a
secondary	set	of	groups	called	supplementary	groups.	This	set	might	be	empty,	indicated
by	the	dash	in	the	SUPGRP	field.

www.it-ebooks.info

http://www.it-ebooks.info/

The	file	we	wish	to	open,	referred	to	as	the	target	object,	target,	or	object	also	maintains	a
set	of	permissions.	The	object	maintains	USER	and	GROUP,	as	well	as	a	set	of	permission
bits.	In	the	context	of	the	target	object,	USER	can	be	referred	to	as	owner	or	creator.

$	ls	-la

total	296

drwxr-xr-x	38	bookuser	bookuser		4096	Aug	23	11:08	.

drwxr-xr-x		3	root					root						4096	Jun		8	18:50	..

-rw-rw-r--		1	bookuser	bookuser			116	Jul	22	13:13	a.c

drwxrwxr-x		4	bookuser	bookuser		4096	Aug		4	16:20	.android

-rw-rw-r--		1	bookuser	bookuser			130	Jun	19	17:51	.apport-ignore.xml

-rw-rw-r--		1	bookuser	bookuser			365	Jun	23	19:44	hello.txt

-rw-------		1	bookuser	bookuser	19276	Aug		4	16:36	.bash_history

...

If	we	look	at	the	preceding	command’s	output,	we	can	see	that	hello.txt	has	a	USER	of
bookuser	and	GROUP	as	bookuser.	We	can	also	see	the	permission	bits	or	flags	on	the	left-
hand	side	of	the	output.	There	are	seven	fields	to	consider	as	well.	Each	empty	field	is
denoted	with	a	dash.	When	printed	with	ls,	the	first	fields	can	get	convoluted	by
semantics.	For	this	reason,	let’s	use	stat	to	investigate	the	file	permissions:

$	stat	hello.txt

		File:	`hello.txt'

		Size:	365									Blocks:	8										IO	Block:	4096			regular	file

Device:	801h/2049d		Inode:	1587858					Links:	1

Access:	(0664/-rw-rw-r--)		Uid:	(1000/bookuser)			Gid:	(1000/bookuser)

Access:	2014-08-04	15:53:01.951024557	-0700

Modify:	2014-06-23	19:44:14.308741592	-0700

Change:	2014-06-23	19:44:14.308741592	-0700

	Birth:	-

The	first	access	line	is	the	most	compelling.	It	contains	all	the	important	information	for
the	access	controls.	The	second	line	is	just	a	timestamp	letting	us	know	when	the	file	was
last	accessed.	As	we	can	see,	USER	or	UID	of	the	object	is	bookuser,	and	GROUP	is
bookuser	as	well.	The	permission	flags,	(0664/-rw-rw-r--),	identify	the	two	ways	that
permission	flags	are	represented.	The	first,	the	octal	form	0664,	condenses	each	three-flag
field	into	one	of	the	three	base-8	(octal)	digits.	The	second	is	the	friendly	form,	-rw-rw-r-
-,	equivalent	to	the	octal	form	but	easier	to	interpret	visually.	In	either	case,	we	can	see	the
leftmost	field	is	0,	and	the	rest	of	our	discussions	will	ignore	it.	That	field	is	for	setuid
and	setgid	capabilities,	which	is	not	important	for	this	discussion.	If	we	convert	the
remaining	octal	digits,	664,	to	binary,	we	get	110	110	100.	This	binary	representation
directly	relates	to	the	friendly	form.	Each	triple	maps	to	read,	write,	and	execute
permissions.	Often	you	will	see	this	permission	triple	represented	as	RWX.	The	first	triple
are	the	permissions	given	to	USER,	the	second	are	the	permissions	given	to	GROUP,	and	the
third	is	what	is	given	to	OTHERS.	Translating	to	conventional	English	would	yield,	“The
user,	bookuser,	has	permission	to	read	from	and	write	to	hello.txt.	The	group,
bookuser,	has	permission	to	read	from	and	write	to	hello.txt,	and	everyone	else	has
permission	only	to	read	from	hello.txt.”	Let’s	test	this	with	some	real-world	examples.

www.it-ebooks.info

http://www.it-ebooks.info/

Changing	permission	bits
Let’s	test	the	access	controls	in	the	example	running	processes	as	user	bookuser.	Most
processes	run	in	the	context	of	the	user	that	invoked	them	(excluding	setuid	and	getuid
programs),	so	any	command	we	invoke	should	inherit	our	user’s	permissions.	We	can
view	it	by	issuing:

$	groups	bookuser

bookuser	:	bookuser	sudo	fuse

My	user,	bookuser,	is	USER	bookuser,	GROUP	bookuser	and	SUPGRP	sudo	and	fuse.

To	test	for	read	access,	we	can	use	the	cat	command,	which	opens	the	file	and	prints	its
content	to	stdout:

$	cat	hello.txt	

Hello,	"Exploring	SE	for	Android"

Here	is	a	simple	text	file	for

your	enjoyment.

...

We	can	introspect	the	syscalls	executed	by	running	the	strace	command	and	viewing	the
output:

$	strace	cat	hello.txt	

...

open("hello.txt",	O_RDONLY)																			=	3

...

read(3,	"Hello,	\"Exploring	SE	for	Android\"\n"...,	32768)	=	365

...

The	output	can	be	quite	verbose,	so	I	am	only	showing	the	relevant	parts.	We	can	see	that
cat	invoked	the	open	syscall	and	obtained	the	file	descriptor	3.	We	can	use	that	descriptor
to	find	other	accesses	via	other	syscalls.	Later	we	will	see	a	read	occurring	on	file
descriptor	3,	which	returns	365,	the	number	of	bytes	read.	If	we	didn’t	have	permission	to
read	from	hello.txt,	the	open	would	fail,	and	we	would	never	have	a	valid	file	descriptor
for	the	file.	We	would	additionally	see	the	failure	in	the	strace	output.

Now	that	read	permission	is	verified,	let’s	try	write.	One	simple	way	to	do	this	is	to	write	a
simple	program	that	writes	something	to	the	existing	file.	In	this	case,	we	will	write	the
line	my	new	text\n	(refer	to	write.c.)

Compile	the	program	using	the	following	command:

$	gcc	-o	mywrite	write.c

Now	run	using	the	newly	compiled	program:

$	strace	./mywrite	hello.txt

On	verification,	you	will	see:

...

open("hello.txt",	O_WRONLY)																			=	3

www.it-ebooks.info

http://www.it-ebooks.info/

write(3,	"my	new	text\n",	12)											=	12

...

As	you	can	see,	the	write	succeeded	and	returned	12,	the	number	of	bytes	written	to
hello.txt.	No	errors	were	reported,	so	the	permissions	seem	in	check	so	far.

Now	let’s	attempt	to	execute	hello.txt	and	see	what	happens.	We	are	expecting	to	see	an
error.	Let’s	execute	it	like	a	normal	command:

$./hello.txt

bash:	./hello.txt:	Permission	denied

This	is	exactly	what	we	expected,	but	let’s	invoke	it	with	strace	to	gain	a	deeper
understanding	of	what	failed:

$	strace	./hello.txt

...

execve("./hello.txt",	["./hello.txt"],	[/*	39	vars	*/])	=	-1	EACCES	

(Permission	denied)

...

The	execve	system	call,	which	launches	processes,	failed	with	EACCESS.	This	is	just	the
sort	of	thing	one	would	hope	for	when	no	execute	permission	is	given.	The	Linux	access
controls	worked	as	expected!

Let’s	test	the	access	controls	in	the	context	of	another	user.	First,	we’ll	create	a	new	user
called	testuser	using	the	adduser	command:

$	sudo	adduser	testuser

[sudo]	password	for	bookuser:	

Adding	user	`testuser'	...

Adding	new	group	`testuser'	(1001)	...

Adding	new	user	`testuser'	(1001)	with	group	`testuser'	...

Creating	home	directory	`/home/testuser'	...

...

Verify	the	USER,	GROUP,	and	SUPGRP	of	testuser:

$	groups	testuser

testuser	:	testuser

Since	the	USER	and	GROUP	do	not	match	any	of	the	permissions	on	a.S,	all	accesses	will	be
subject	to	the	OTHERS	permissions	checks,	which	if	you	recall,	is	read	only	(0664).

Start	by	temporarily	working	as	testuser:

$	su	testuser

Password:	

testuser@ubuntu:/home/bookuser$	

As	you	can	see,	we	are	still	in	bookuser’s	home	directory,	but	the	current	user	has	been
changed	to	testuser.

We	will	start	by	testing	read	with	the	cat	command:

$	strace	cat	hello.txt

...

www.it-ebooks.info

http://www.it-ebooks.info/

open("hello.txt",	O_RDONLY)																			=	3

...

read(3,	"my	new	text\n",	32768)									=	12

...

Similar	to	the	earlier	example,	testuser	can	read	the	data	just	fine,	as	expected.

Now	let’s	move	on	to	write.	The	expectation	is	that	this	will	fail	without	appropriate
access:

$	strace	./mywrite	hello.txt

...

open("hello.txt",	O_WRONLY)																			=	-1	EACCES	(Permission	

denied)

...

As	expected,	the	syscall	operation	failed.	When	we	attempt	to	execute	hello.txt	as
testuser,	this	should	fail	as	well:

$	strace	./hello.txt

...

execve("./hello.txt",	["./hello.txt"],	[/*	40	vars	*/])	=	-1	EACCES	

(Permission	denied)

...

Now	we	need	to	test	the	group	access	permissions.	We	can	do	this	by	adding	a
supplementary	group	to	testuser.	To	do	this,	we	need	to	exit	to	bookuser,	who	has
permissions	to	execute	the	sudo	command:

$	exit

exit

$	sudo	usermod	-G	bookuser	testuser

Now	let’s	check	the	groups	of	testuser:

$	groups	testuser

testuser	:	testuser	bookuser

As	a	result	of	the	previous	usermod	command	testuser	now	belongs	to	two	groups:
testuser	and	bookuser.	That	means	when	testuser	accesses	a	file	or	other	object	(such
as	a	socket)	with	the	group	bookuser,	the	GROUP	permissions,	rather	than	OTHERS,	will
apply	to	it.	In	the	context	of	hello.txt,	testuser	can	now	read	from	and	write	to	the	file,
but	not	execute	it.

Switch	to	testuser	by	executing	the	following	command:

$	su	testuser

Test	read	by	executing	the	following	command:

$	strace	cat	./hello.txt

...

open("./hello.txt",	O_RDONLY)																	=	3

...

read(3,	"my	new	text\n",	32768)									=	12

...

www.it-ebooks.info

http://www.it-ebooks.info/

As	before,	testuser	is	able	to	read	the	file.	The	only	difference	is	that	it	can	now	read	the
file	through	the	access	permissions	of	OTHERS	and	GROUP.

Test	write	by	executing	the	following	command:

$	strace	./mywrite	hello.txt

...

open("hello.txt",	O_WRONLY)																			=	3

write(3,	"my	new	text\n",	12)											=	12

...

This	time,	testuser	was	able	to	write	the	file	as	well,	instead	of	failing	with	the	EACCESS
permission	error	shown	before.

Attempting	to	execute	the	file	should	still	fail:

$	strace	./hello.txt

execve("./hello.txt",	["./hello.txt"],	[/*	40	vars	*/])	=	-1	EACCES	

(Permission	denied)

...

These	concepts	are	the	foundation	of	Linux	access	control	permission	bits,	users	and
groups.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Changing	owners	and	groups
Using	hello.txt	for	exploratory	work	in	the	previous	sections,	we	have	shown	how	the
owner	of	an	object	can	allow	various	forms	of	access	by	managing	the	permission	bits	of
the	object.	Changing	the	permissions	is	accomplished	using	the	chmod	syscall.	Changing
the	user	and/or	group	is	done	with	the	chown	syscall.	In	this	section,	we	will	investigate
the	details	of	these	operations	in	action.

Let’s	start	by	granting	read	and	write	permissions	only	to	the	owner	of	hello.txt	file,
bookuser.

$	chmod	0600	hello.txt

$	stat	hello.txt

		File:	`hello.txt'

		Size:	12										Blocks:	8										IO	Block:	4096			regular	file

Device:	801h/2049d		Inode:	1587858					Links:	1

Access:	(0600/-rw-------)		Uid:	(1000/bookuser)			Gid:	(1000/bookuser)

Access:	2014-08-23	12:34:30.147146826	-0700

Modify:	2014-08-23	12:47:19.123113845	-0700

Change:	2014-08-23	12:59:04.275083602	-0700

	Birth:	-

As	we	can	see,	the	file	permissions	are	now	set	to	only	allow	read	and	write	access	for
bookuser.	A	thorough	reader	could	execute	the	commands	from	earlier	sections	in	this
chapter	to	verify	that	permissions	work	as	expected.

Changing	the	group	can	be	done	in	a	similar	fashion	with	chown.	Let’s	change	the	group	to
testuser:

$	chown	bookuser:testuser	hello.txt

chown:	changing	ownership	of	`hello.txt':	Operation	not	permitted

This	did	not	work	as	we	intended,	but	what	is	the	issue?	In	Linux,	only	privileged
processes	can	change	the	USER	and	GROUP	fields	of	objects.	The	initial	USER	and	GROUP
fields	are	set	during	object	creation	from	the	effective	USER	and	GROUP,	which	are	checked
when	attempting	to	execute	that	process.	Only	processes	create	objects.	Privileged
processes	come	in	two	forms:	those	running	as	the	almighty	root	and	those	that	have	their
capabilities	set.	We	will	dive	into	the	details	of	capabilities	later.	For	now,	let’s	focus	on
the	root.

Let’s	change	the	user	to	root	to	ensure	executing	the	chown	command	will	change	the
group	of	that	object:

$	sudo	su

#	chown	bookuser:testuser	hello.txt	

Now,	we	can	verify	the	change	occurred	successfully:

#	stat	hello.txt

		File:	`hello.txt'

		Size:	12										Blocks:	8										IO	Block:	4096			regular	file

Device:	801h/2049d		Inode:	1587858					Links:	1

Access:	(0600/-rw-------)		Uid:	(1000/bookuser)			Gid:	(1001/testuser)

Access:	2014-08-23	12:34:30.147146826	-0700

www.it-ebooks.info

http://www.it-ebooks.info/

Modify:	2014-08-23	12:47:19.123113845	-0700

Change:	2014-08-23	13:08:46.059058649	-0700

	Birth:	-

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The	case	for	more
You	can	see	the	GROUP	(GID)	is	now	testuser,	and	things	seem	reasonably	secure	because
in	order	to	change	the	user	and	group	of	an	object,	you	need	to	be	privileged.	You	can	only
change	the	permission	bits	on	an	object	if	you	own	it,	with	the	exception	of	the	root	user.
This	means	that	if	you’re	running	as	root,	you	can	do	whatever	you	like	to	the	system,
even	without	permission.	This	absolute	authority	is	why	a	successful	attack	or	an	error	on
a	root	running	process	can	cause	grave	damage	to	the	system.	Also,	a	successful	attack	on
a	non-root	process	could	also	cause	damage	by	inadvertently	changing	the	permissions
bits.	For	example,	suppose	there	is	an	unintended	chmod	0666	command	on	your	SSH
private	key.	This	would	expose	your	secret	key	to	all	users	on	the	system,	which	is	almost
certainly	something	you	would	never	want	to	happen.	The	root	limitation	is	partially
addressed	by	the	capabilities	model.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Capabilities	model
For	many	operations	on	Linux,	the	object	permission	model	doesn’t	quite	fit.	For	instance,
changing	UID	and	GID	requires	some	magical	USER	known	as	root.	Suppose	you	have	a
long	running	service	that	needs	to	utilize	some	of	these	capabilities.	Perhaps	this	service
listens	to	kernel	events	and	creates	the	device	nodes	for	you?	Such	a	service	exists,	and	it’s
called	ueventd	or	user	event	daemon.	This	daemon	traditionally	runs	as	root,	which
means	if	it	is	compromised,	it	could	potentially	read	your	private	keys	from	your	home
directory	and	send	them	back	to	the	attacker.	This	might	be	an	extraordinary	example,	but
it’s	meant	to	showcase	that	running	processes	as	root	can	be	dangerous.	Suppose	you
could	start	a	service	as	the	root	user	and	have	the	process	change	its	UID	and	GID	to
something	not	privileged,	but	retain	some	smaller	set	of	privileged	capabilities	to	do	its
job?	This	is	exactly	what	the	capabilities	model	in	Linux	is.

The	capabilities	model	in	Linux	is	an	attempt	to	break	down	the	set	of	permissions	that
root	has	into	smaller	subsets.	This	way,	processes	can	be	confined	to	the	set	of	minimum
privileges	they	need	to	perform	their	intended	function.	This	is	known	as	least	privilege,	a
key	ideology	when	securing	systems	that	minimizes	the	amount	of	damage	a	successful
attack	can	do.	In	some	instances,	it	can	even	prevent	a	successful	attack	from	occurring	by
blocking	an	otherwise	open	attack	vector.

There	are	many	capabilities.	The	man	page	for	capabilities	is	the	de	facto	documentation.
Let’s	take	a	look	at	the	CAP_SYS_BOOT	capability:

$	man	capabilities

...

CAP_SYS_BOOT

							Use	reboot(2)	and	kexec_load(2).

This	means	a	process	running	with	this	capability	can	reboot	the	system.	However,	that
process	can’t	arbitrarily	change	USERS	and	GROUP	as	it	could	if	it	was	running	as	root	or
with	CAP_DAC_READ_SEARCH.	This	limits	what	an	attacker	can	do:

<FROM	MAN	PAGE>

CAP_DAC_READ_SEARCH

						Bypass	file	read	permission	checks	and	directory	read	and	execute	

permission	checks.

Now	suppose	the	case	where	our	restart	process	runs	with	CAP_CHOWN.	Let’s	say	it	uses	this
capability	to	ensure	that	when	a	restart	request	is	received,	it	backs	up	a	file	from	each
user’s	home	directory	to	a	server	before	restarting.	Let’s	say	this	file	is	~/backup,	the
permissions	are	0600,	and	USER	and	GROUP	are	the	respective	user	of	that	home	directory.
In	this	case,	we	have	minimized	the	permissions	as	best	we	can,	but	the	process	could	still
access	the	users	SSH	keys	and	upload	those	either	by	error	or	attack.	Another	approach	to
this	would	be	to	set	the	group	to	backup	and	run	the	process	with	GROUP	backup.
However,	this	has	limitations.	Suppose	you	want	to	share	this	file	with	another	user.	That
user	would	require	a	supplementary	group	of	backup,	but	now	the	user	can	read	all	of	the
backup	files,	not	just	the	ones	intended.	An	astute	reader	might	think	about	the	bind

www.it-ebooks.info

http://www.it-ebooks.info/

mounts,	however	the	process	doing	the	bind	mounts	and	file	permissions	also	runs	with
some	capability,	and	thus	suffers	from	this	granularity	problem	as	well.

The	major	issue,	and	the	case	for	another	access	control	system	can	be	summarized	by	one
word,	granularity.	The	DAC	model	doesn’t	have	the	granularity	required	to	safely	handle
complex	access	control	models	or	to	minimize	the	amount	of	damage	a	process	can	do.
This	is	particularly	important	on	Android,	where	the	entire	isolation	system	is	dependent
on	this	control,	and	a	rogue	root	process	can	compromise	the	whole	system.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Android’s	use	of	DAC
In	the	Android	sandbox	model,	every	application	runs	as	its	own	UID.	This	means	that
each	app	can	separate	its	stored	data	from	one	another.	The	user	and	group	are	set	to	the
UID	and	GID	of	that	application,	so	no	app	can	access	the	private	files	of	an	application
without	the	application	explicitly	performing	chmod	on	its	objects.	Also,	applications	in
Android	cannot	have	capabilities,	so	we	don’t	have	to	worry	about	capabilities	such	as
CAP_SYS_PTRACE,	which	is	the	ability	to	debug	another	application.	In	Android,	in	a
perfect	world,	only	system	components	run	with	privileges,	and	applications	don’t
accidentally	chmod	private	files	for	all	to	read.	This	issue	was	not	corrected	by	the	current
AOSP	SELinux	policy	due	to	app	compatibility,	but	could	be	closed	with	SELinux.	The
proper	way	to	share	data	between	applications	on	Android	is	via	binder,	and	sharing	file
descriptors.	For	smaller	amounts	of	data,	the	provider	model	suffices.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Glancing	at	Android	vulnerabilities
With	our	newly	found	understanding	of	the	DAC	permission	model	and	some	of	its
limitations,	let’s	look	at	some	Android	exploits	against	it.	We	will	cover	only	a	few
exploits	to	understand	how	the	DAC	model	failed.

www.it-ebooks.info

http://www.it-ebooks.info/

Skype	vulnerability
CVE-2011-1717	was	released	in	2011.	In	this	exploit,	the	Skype	application	left	a	SQLite3
database	world	readable	(something	analogous	to	0666	permissions).	This	database
contained	usernames	and	chat	logs,	and	personal	data	such	as	name	and	e-mail.	An
application	called	Skypwned	was	able	to	demonstrate	this	capability.	This	is	an	example
of	how	being	able	to	change	the	permissions	on	your	objects	could	be	bad,	especially
when	the	case	opens	READ	to	OTHERS.

www.it-ebooks.info

http://www.it-ebooks.info/

GingerBreak
CVE-2011-1823	showcases	a	root	attack	on	Android.	The	volume	management	daemon
(vold)	on	Android	is	responsible	for	the	mounting	and	unmounting	of	the	external	SD
card.	The	daemon	listens	for	messages	over	a	NETLINK	socket.	The	daemon	never
checked	where	the	messages	were	sourced	from,	and	any	application	could	open	and
create	a	NETLINK	socket	to	send	messages	to	vold.	Once	the	attacker	opened	the
NETLINK	socket,	they	sent	a	very	carefully	crafted	message	to	bypass	a	sanity	check.
The	check	tested	a	signed	integer	for	a	maximum	bound,	but	never	checked	it	for
negativity.	It	was	then	used	to	index	an	array.	This	negative	access	would	lead	to	memory
corruption	and,	with	a	proper	message,	could	result	in	the	execution	of	arbitrary	code.	The
GingerBreak	implementation	resulted	in	an	arbitrary	user	gaining	root	privileges,	a
textbook	privilege	execution	attack.	Once	rooted,	the	device’s	sandboxes	were	no	longer
valid.

www.it-ebooks.info

http://www.it-ebooks.info/

Rage	against	the	cage
CVE-2010-EASY	is	a	setuid	exhaustion	via	fork	bomb	attack.	It	successfully	attacks	the
adb	daemon	on	Android,	which	starts	life	as	root	and	downgrades	its	permissions	if	root	is
not	needed.	This	attack	keeps	adb	as	root	and	returns	a	root	shell	to	the	user.	In	Linux
kernel	2.6,	the	setuid	system	call	returns	an	error	when	the	number	of	running	processes
RLIMIT_NPROC	is	met.	The	adb	daemon	code	does	not	check	the	return	of	setuid,	which
leaves	a	small	race	window	open	for	the	attacker.	The	attacker	needs	to	fork	enough
processes	to	reach	RLIMIT_NPROC	and	then	kill	the	daemon.	The	adb	daemon	downgrades
to	shell	UID	and	the	attacker	runs	the	program	as	shell	USER,	thus	the	kill	will	work.	At	this
point,	the	adb	service	is	respawned,	and	if	RLIMIT_NPROC	is	maxed	out,	setuid	will	fail
and	adb	will	stay	running	as	root.	Then,	running	adb	shell	from	a	host	returns	a	nice	root
shell	to	the	user.

www.it-ebooks.info

http://www.it-ebooks.info/

MotoChopper
CVE-2013-2596	is	a	vulnerability	in	the	mmap	functionality	of	a	Qualcomm	video	driver.
Access	to	the	GPU	is	provided	by	apps	to	do	advanced	graphics	rendering	such	as	in	the
case	of	OpenGL	calls.	The	vulnerability	in	mmap	allows	the	attacker	to	mmap	kernel	address
space,	at	which	point	the	attacker	is	able	to	directly	change	their	kernel	credential
structure.	This	exploit	is	an	example	where	the	DAC	model	was	not	at	fault.	In	reality,
outside	of	patching	the	code	or	removing	direct	graphics	access,	nothing	but	programming
checks	of	the	mmap	bounds	could	have	prevented	this	attack.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
The	DAC	model	is	extremely	powerful,	but	its	lack	of	fine	granularity	and	use	of	an
extraordinarily	powerful	root	user	leaves	something	to	be	desired.	With	the	increasing
sensitivity	of	mobile	handset	use,	the	case	to	increase	the	security	of	the	system	is	well-
founded.	Thankfully,	Android	is	built	on	Linux	and	thus	benefits	from	a	large	ecosystem
of	engineers	and	researchers.	Since	the	Linux	Kernel	2.6,	a	new	access	control	model
called	Mandatory	Access	Controls	(MAC)	was	added.	This	is	a	framework	by	which
modules	can	be	loaded	into	the	kernel	to	provide	a	new	form	of	access	control	model.	The
very	first	module	was	called	SELinux.	It	is	used	by	Red	Hat	and	others	to	secure	sensitive
government	systems.	Thus,	a	solution	was	found	to	enable	such	access	controls	for
Android.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	2.	Mandatory	Access	Controls
and	SELinux
In	Chapter	1,	Linux	Access	Controls,	we	introduced	some	of	the	shortcomings	of	a
discretionary	access	control	system.	In	these	systems,	the	owner	of	an	object	has	full
control	over	its	permissions	flags	and	can	demonstrate	greater	capabilities	(for	example,
the	ability	to	chown)	when	executing	as	root	or	with	certain	capabilities.	In	this	chapter,
we	will:

Examine	the	fundamentals	of	MAC
Introduce	some	industry	drivers	for	SELinux
Discuss	labels,	users,	roles,	and	types
Explore	the	implementation	of	tangible	policy	to	allow	and	constrain	object
interaction

Ideal	MAC	systems	maintain	the	property	of	providing	definitive	access	controls	on
kernel	resources,	such	as	files,	irrespective	of	an	object’s	owner.	For	instance,	with	a	MAC
system,	the	owner	of	an	object	might	not	have	full	control	of	its	permissions.	In	Linux,	the
MAC	framework	works	orthogonally	to	the	current	DAC	controls.	This	means	that	the
MAC	controls	do	not	interfere	with	the	DAC	controls.	In	other	words,	to	avoid	potential
conflicts	between	the	MAC	and	DAC	systems,	the	kernel	validates	access	using	the	DAC
permissions	before	checking	the	MAC	permissions.	If	the	DAC	permissions	result	in	a
permissions	violation,	then	the	MAC	permissions	are	never	checked.	The	kernel	will
validate	access	against	the	MAC	permissions	provider	only	when	the	DAC	permissions
pass.	Failure	at	either	level	will	result	in	a	return	of	EACCESS.	If	the	DAC	and	the	MAC
permissions	pass,	then	the	kernel	resource	(for	example,	a	file	descriptor)	is	sent	back	to
user	space.

In	Linux,	a	framework	called	the	Linux	Security	Module	(LSM)	framework	was	merged
during	the	Linux	2.6.x	series	of	kernels.	This	framework	allows	you	to	enable	the
mandatory	access	control	systems	in	a	build	time	selection	by	tethering	the	LSM	hooks	to
the	security	provider.	Security	Enhanced	Linux	(SELinux)	is	the	first	consumer	of	this
MAC	security	framework	within	the	kernel	and	is	an	implementation	of	a	mandatory
access	control	system.	SELinux	ships	in	a	wide	variety	of	Linux	systems,	such	as	Red	Hat
Enterprise	Linux	(RHEL)	and	consequently	Fedora.	Recently,	it	has	begun	shipping
with	Android.	The	source	code	for	SELinux	can	be	found	in	the	Linux	source	code	tree
under	kernel/security/selinux	for	those	wishing	to	review	it.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting	back	to	the	basics
SELinux	is	a	reimplementation	of	a	design	engineered	by	the	U.S.	government	and	The
University	of	Utah	known	as	the	FLUX	Advanced	Security	Kernel	(FLASK).	The
SELinux	and	FLASK	architecture	provide	a	central	policy	file	utilized	while	determining
the	results	of	access	control	decisions.	This	central	policy	is	in	a	whitelist	form.	This
means	that	all	access	control	rules	must	be	defined	explicitly	by	the	policy	file.	This
policy	file	is	abstracted	and	served	by	a	software	component	called	a	security	server.
When	the	Linux	kernel	needs	to	make	an	access	control	decision	and	SELinux	is	enabled,
the	kernel	interacts	with	the	security	server	by	means	of	the	LSM	hooks.

In	a	running	system,	a	process	is	the	active	entity	that	gets	time	on	the	CPU	to	perform
tasks.	The	user	merely	invokes	these	processes	to	do	the	work	on	their	behalf.	This	is	an
important	concept.	As	we	type	this	book,	we	trust	that	the	word	processors	running	on	our
machines	with	our	credentials	aren’t	opening	our	SSH	keys	and	embedding	them	in	the
document	metadata.	Right	now,	the	process	is	in	control	of	the	computing	resources,	not
the	user.	The	process	is	the	running	entity,	it	is	the	process	that	makes	system	calls	to	the
kernel	for	resources,	not	the	physical	human	being.	With	this	in	mind,	the	very	first	actor
in	this	SELinux	system	is	the	process,	typically	referred	to	as	the	subject.	It	is	the	subject
that	accesses	files.	It	is	the	subject	that	the	security	server	will	use	to	make	access
decisions	on.

Consequently,	the	subject	utilizes	kernel	resources.	This	kind	of	kernel	resource	is	an
example	of	a	target.	The	subject	performs	actions	on	the	target.	Naturally,	one	should	ask,
“What	actions	does	a	subject	perform?”	These	are	known	as	access	vectors	and	typically
correlate	to	the	name	of	the	syscall	performed.	For	example,	the	subject	could	perform	an
open	on	the	target.	It	is	important	to	note	that	targets	could	be	processes	as	well.	For
instance,	if	the	system	call	is	ptrace,	the	subject	could	be	something	along	the	lines	of	a
debugger,	and	the	target	would	be	the	process	you	wish	to	debug.	A	subject	is	frequently	a
process,	but	a	target	could	be	a	process,	socket,	file,	or	something	else.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Labels
SELinux	provides	semantics	for	describing	policies	related	to	the	targets	and	subjects
using	labels.	Labels	are	the	metadata	associated	with	an	object	that	maintains	the	subject’s
and	target’s	access	information.	The	data	associated	with	this	object	is	a	string.	Returning
to	the	debugger	example,	the	gdb	process	might	have	a	subject	label	string	of	debugger,
and	the	target	might	have	a	label	of	debugee.	Then	in	the	security	policy,	some	semantic
could	be	used	to	express	that	processes	with	the	subject	label	debugger	are	allowed	to
debug	applications	with	target	label	debugee.

Fortunately,	and	perhaps	unfortunately,	SELinux	does	not	use	such	simple	labels.	In	fact,
the	labels	are	made	up	of	four	colon-delimited	fields:	user,	role,	type,	and	level.	This
additional	complexity	affords	very	flexible	control	options.

www.it-ebooks.info

http://www.it-ebooks.info/

Users
The	very	first	field	in	a	label	identifies	the	user.	The	user	field	is	used	as	part	of	the	design
for	user-based	access	controls	(UBAC).	However,	this	is	not	typically	associated	with
human	users	as	it	is	with	the	concept	of	users	in	DAC.	SELinux	users	typically	define	a
group	of	traditional	users.	A	common	example	is	to	identify	all	normal	users	as	the
SELinux	user,	user_u.	Perhaps	a	separate	user	for	system	processes,	such	as	system_u.	By
convention	in	the	desktop	SELinux	community,	user	portions	of	the	string	are	suffixed
with	a	_u.

www.it-ebooks.info

http://www.it-ebooks.info/

Roles
The	second	field	in	a	label	is	role.	The	role	is	used	as	part	of	the	design	for	role-based
access	controls	(RBAC).	Roles	are	used	to	provide	additional	granularity	to	the	user.	For
instance,	suppose	we	have	the	user	field,	sysadm_u,	reserved	for	administrators.	The
administrator	might	be	in	separate	tasks,	and	depending	on	the	tasks,	the	role	(and
therefore,	privileges)	of	users	in	sysadm_u	may	change.	For	example,	when	an
administrator	needs	to	mount	and	unmount	file	systems,	the	role	field	might	change	to
mount_admin_r.	When	an	administrator	is	setting	the	iptables	rules,	the	role	might
change	to	net_admin_r.	Roles	allow	the	isolation	of	privileges	within	the	scope	of	the
tasks	being	performed.

www.it-ebooks.info

http://www.it-ebooks.info/

Types
Type	is	the	third	field	of	the	colon-delimited	label.	The	type	field	is	evaluated	during	the
type	enforcement	(TE)	portion	of	SELinux’s	access	control	model.	TE	is	the	major
component	that	drives	SELinux’s	security	capabilities,	and	it	is	at	this	point	where	the
policy	starts	to	take	effect.

SELinux	is	based	on	a	whitelist	system	where	everything	is	denied	by	default	and	requires
explicit	approval	from	the	policy	for	an	interaction	to	occur.	This	approval	is	initially
determined	from	the	policy	via	an	allow	rule	that	references	both	the	subject’s	and	target’s
type.	SELinux	types	can	also	be	assigned	attributes.	Attributes	allow	you	to	give
numerous	types	a	common	set	of	rules.	Attributes	can	help	minimize	the	amount	of	types,
and	can	be	used	in	fashion	similar	to	that	of	an	inheritance	model.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Access	vectors
Data	is	accessed	by	processes	via	system	calls	and	possible	user	defined	access	methods.
The	user	defined	access	methods	are	usually	controlled	via	a	userspace	object	manager.
These	access	paths,	also	known	as	vectors,	make	up	a	set	of	actions	that	can	be	applied	to
the	object.	For	instance,	if	a	process	opens	a	file,	writes	some	data	into	the	file,	and	then
reads	it	back,	the	access	vectors	exercised	would	be	open,	read,	and	write.	If	a	process
debugs	another	process,	the	access	vector	would	be	ptrace.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Multilevel	security
SELinux	also	supports	a	multilevel	security	(MLS)	model,	which	pays	homage	to	the
Bell-LaPadula	(BLP)	model,	but	alternate	models	could	be	used.	The	BLP	model	was
created	to	formalize	the	Department	of	Defense’s	security	policies.	For	example,	a	person
with	a	secret	clearance	should	not	be	able	to	read	top-secret	material.	However,	let’s
suppose	this	person	has	a	brilliant	idea	that	ultimately	needs	to	be	protected	at	the	top-
secret	level;	that	data	could	then	be	“up-classified”	to	top-secret.	This	is	referred	to	as	“no
read	up	or	write	down”.

The	SELinux	implementation	of	this	field	has	subfields.	The	first	field	is	sensitivity,	and
will	always	be	present.	In	the	context	of	the	previous	example,	pertinent	sensitivities
include	secret	and	top	secret.	The	second	subfield	is	category,	and	might	not	be	present.
These	fields	also	make	sense	in	the	context	of	government	classification.	The	data	itself
might	be	compartmentalized,	so	while	the	sensitivity	is	the	same,	such	as	top	secret,	the
data	should	only	be	disseminated	to	people	within	the	same	compartment	or	category.
Sensitivities	are	defined	in	a	hierarchical	fashion	via	the	dominance	keyword.	In	a	typical
policy,	s0	is	the	lowest	sensitivity	and	sN	where	n	>	0	is	the	highest.	Thus,	s1	has	a
greater	sensitivity	than	s0.	Categories	are	sets.	The	controls	associated	with	the	level,
which	is	comprised	of	sensitivities	and	potentially	categories,	follow	set	theory	concepts,
such	as	dominance	and	equality.	In	MLS	security,	all	interactions	are	allowed	by	default,
unlike	type	enforcement.	Both	the	sensitivity	and	the	category	can	be	ranged,	and
categories	can	be	enumerated.	Thus,	a	label	might	have	some	number	of	sensitivities	and
different	number	of	categories.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Putting	it	together
SELinux	labels	are	quite	flexible	and	sometimes	complex.	It’s	often	beneficial	to	start
with	a	contrived	example	that	focuses	on	type	enforcement.	Later,	we	can	add	additional
fields	later	as	the	need	for	finer	granularity	becomes	more	apparent.	Conveniently,	you	can
project	this	model	to	scenarios	in	everyday	life	to	provide	some	sense	of	tangibility	to	the
material.	Dan	Walsh,	a	prominent	SELinux	figure,	posted	a	blog	post	using	pets	as	an
analogy.	Let’s	continue	on	with	that	premise,	but	we	will	make	some	modifications	as	we
go	and	define	our	own	examples.	It’s	best	to	start	with	simple	type	enforcement	as	it	is	the
easiest	to	understand.

Note
You	can	read	Dan	Walsh’s	original	blog	post	introducing	the	pet	analogy	at
http://opensource.com/business/13/11/selinux-policy-guide.

Suppose	we	own	a	cat	and	a	dog.	We	don’t	want	the	cat	to	eat	dog	food.	We	don’t	want	the
dog	to	eat	cat	food.	At	this	point,	we	have	already	identified	two	subjects,	a	cat	and	a	dog,
and	two	targets,	cat	food	and	dog	food.	We	also	have	identified	an	access	vector,	eating.
We	can	use	allow	rules	to	implement	our	policy.	Possible	rules	could	look	like	this:

allow	cat	cat_chow:food	eat;

allow	dog	dog_chow:food	eat;

Let’s	use	this	example	to	start	and	define	a	basic	syntax	for	expressing	the	access	controls
we	would	like	to	enforce.	The	first	token	is	allow,	stating	we	wish	to	allow	an	interaction
between	a	subject	and	a	target.	The	dog	is	assigned	the	type,	dog,	and	the	cat,	cat.	The	cat
food	is	assigned	the	type	cat_chow,	and	the	dog	food,	dog_chow.	The	access	vector	in	this
case	is	eat.	With	this	basic	syntax,	which	is	also	valid	SELinux	syntax,	we	restrict	the
animals	to	the	food	they	should	eat.	Notice	the	:food	annotation	after	the	type.	This	is	the
class	field	of	the	target	object.	For	instance,	there	might	also	be	dog_chow	treat	and
cat_chow	classes	that	could	indicate	our	desire	to	allow	access	to	treats	in	a	fashion	that	is
potentially	different	from	the	way	we	allow	access	to	foods	that	are	not	treats.

Let’s	say	we	get	two	more	dogs,	and	our	scenario	has	three	dogs.	The	dogs	are	of	different
sizes:	small,	medium,	and	large.	We	want	to	make	sure	none	of	these	new	dogs	eat	others’
food.	We	could	do	something	like	create	a	new	type	for	each	of	the	dogs	and	prevent	dogs
from	eating	the	food	of	other	dogs.	It	would	look	something	like	this:

allow	cat	cat_chow:food	eat;

allow	dog_small	dog_small_chow:food	eat;

allow	dog_medium	dog_medium_chow:food	eat;

allow	dog_large	dog_large	chow:food	eat;

This	would	work;	however,	the	total	number	of	types	would	be	difficult	to	manage,	and
that	would	continue	to	grow	if	we	allow	the	large	dog	to	eat	the	smaller	breeds’	food.
What	we	could	do	is	use	MLS	support	to	assign	a	sensitivity	to	each	target	or	dog	food
bowl.	Let’s	assume	the	following:

The	cat’s	food	bowl	has	sensitivity,	tiny

www.it-ebooks.info

http://opensource.com/business/13/11/selinux-policy-guide
http://www.it-ebooks.info/

The	small	dog’s	food	bowl	has	sensitivity,	small
The	medium-sized	dog’s	food	bowl	has	sensitivity,	medium
The	large	dog’s	food	bowl	has	sensitivity,	large

We	also	need	to	make	sure	that	the	subjects	are	labeled	with	the	proper	sensitivity	as	well:

The	cat	should	have	sensitivity,	tiny
The	small	dog	should	have	sensitivity,	small
The	medium-sized	dog	should	have	sensitivity,	medium
The	large	dog	should	have	sensitivity,	large

At	this	point,	we	need	to	introduce	additional	syntax	to	allow	the	interactions,	since	by
default,	MLS	allows	everything	and	TE	denies	everything.	We’ll	use	mlsconstrain,	to
restrict	interactions	within	the	system.	The	rule	could	look	like	this:

mlsconstrain	food	eat	(l1	eq	l2);

This	constraint	only	allows	subjects	to	eat	food	with	the	same	sensitivity	level.	SELinux
defines	the	keywords	l1	and	l2.	The	l1	keyword	is	the	level	of	the	target	and	l2	is	the
level	of	the	source.	Because	the	rules	are	part	of	a	whitelist,	this	also	prevents	subjects
from	eating	food	that	does	not	have	the	equivalent	sensitivity	level.

Now,	let’s	say	we	get	yet	another	large	dog.	Now	we	have	two	large	breed	dogs.	However,
they	have	different	diets	and	need	to	access	different	foods.	We	could	add	a	new	type	or
modify	an	existing	type,	but	this	would	have	the	same	limitations	that	led	us	to	use
sensitivities	to	prevent	access.	We	could	add	another	sensitivity,	but	it	might	get	confusing
that	there	are	large1	and	large2	sensitivities.	At	this	point,	categories	would	allow	us	to
get	a	bit	more	granular	in	our	controls.	Suppose	we	add	a	category	denoting	the	breed.	Our
MLS	portion	of	our	label	would	look	something	like	this:

large:golden_retriever

large:black_lab

These	could	be	used	to	prevent	the	black	lab	from	eating	the	golden	retriever’s	food.	Now
suppose	you’re	surprised	with	another	dog,	a	Saint	Bernard.	Let’s	say	this	new	Bernard
can	eat	any	large	dog’s	food,	but	the	other	large	dogs	can’t	eat	his	food.	We	could	label	the
food	bowls	and	the	dogs.

Dog	Breed Subject	label Target	label

Golden	Retriever Dog:large:golden_retriver dog_chow:large:golden_retriver

Black	Lab Dog:large:black_lab dog_chow:large:black_lab

Saint	Bernard Dog:large:saint_bernard,	black_lab,	golden_retriever dog_chow:large:saint_bernard

Cat Cat:tiny cat_chow:tiny

The	existing	mlsconstraint	needs	modification.	If	the	Saint	Bernard	ran	out	of	food	and
went	to	the	Black	Lab’s	dish,	the	Saint	Bernard	would	not	be	able	to	eat	from	it	since	the
levels	are	not	equal	(Dog:large:saint_bernard,	black_lab,	golden_retriever	is	not

www.it-ebooks.info

http://www.it-ebooks.info/

the	same	as	dog_chow:large:black_lab).	Remember,	the	levels	are	sets,	so	we	need	to
introduce	some	notion	that	if	the	subjects	set	dominates	the	target	set,	that	interaction
should	be	allowed.

This	could	be	accomplished	with	the	dom	keyword:

mlsconstrain	food	eat	(l1	dom	l2);

The	dominate	keyword,	dom,	differs	from	equality,	indicating	l1	is	a	superset	of	l2	In
other	words,	the	levels	associated	with	the	target,	l2,	are	among	the	potentially	larger	set
of	levels	associated	with	the	subject,	l1.	At	this	point,	we	are	able	to	keep	all	the	food
separated	and	used	however	we	see	fit.

After	getting	all	these	dogs,	you	realize	it’s	time	to	feed	them,	so	you	get	a	bag	of	dog
food	and	put	some	in	each	bowl.	However,	before	you	can	add	dog	food	to	the	bowls,	we
need	some	allow	rules	and	labels	that	will	let	you.	Remember,	SELinux	is	a	whitelist-
based	system,	and	everything	must	be	explicitly	allowed.

We	will	label	the	human	with	the	human	label	and	define	some	rules.	Oh	yeah…	don’t
forget	to	feed	the	cat,	as	well:

allow	human	dog_chow:food	put;

allow	human	cat_chow:food	put;

We	will	also	need	to	label	human	with	all	the	sensitivities	and	categories,	but	this	would
become	cumbersome	when	we	need	to	add	additional	dogs,	breeds,	and	breed	sizes	to	our
system.	We	could	just	bypass	the	constraint	if	the	type	is	human.	With	this	approach,	we
always	trust	human	to	put	the	correct	food	in	the	appropriate	bowl:

mlsconstrain	food	eat	(l1	dom	l2);

mlsconstrain	food	put	(t1	==	human);

Note	the	addition	of	put	in	the	access	vectors	of	the	MLS	constraint.	Viola!	The	human
can	now	feed	his	ever-growing	pack	of	animals.

So	your	birthday	rolls	around,	and	you	receive	an	automatic	dog	feeder	as	a	present.	You
label	the	food	dispenser,	dispenser	and	modify	the	MLS	constraints:

mlsconstrain	food	eat	(l1	dom	l2);

mlsconstrain	food	put	(t1	==	human	or	t1	==	dispenser);

Again,	we	see	a	need	to	condense	the	number	of	types	and	get	organized	to	prevent	having
to	duplicate	lines.	This	is	where	attributes	are	quite	handy.	We	can	assign	an	attribute	to
our	human	and	dispenser	types	by	first	defining	the	attribute:

attribute	feeder;

Then	we	can	add	it	to	the	type:

typeattribute	human,	feeder;

typeattribute	dispenser,	feeder;

This	could	also	be	done	at	type	declaration:

type	human,	feeder;

www.it-ebooks.info

http://www.it-ebooks.info/

type	dispenser,	feeder;

At	this	point,	we	could	modify	the	MLS	statements	to	look	like	this:

mlsconstrain	food	eat	(l1	dom	l2);

mlsconstrain	food	put	(t1	==	feeder);

Now	let’s	suppose	you	hire	a	maid	service.	You	want	to	ensure	anyone	sent	by	the	maid
service	is	able	to	feed	your	pets.	For	that	matter,	let’s	let	your	family	members	feed	them,
as	well.	This	would	be	a	good	use	case	for	the	user	capabilities.	We	will	define	the
following	users:	adults_u,	kids_u,	and	maid_u.	Then	we’ll	need	to	add	a	constraint
statement	to	allow	interactions	by	these	users:

mlsconstrain	food	put	(u1	==	adults_u	or	u1	==	maid_u);

This	would	prevent	the	kids	from	feeding	the	dogs,	but	let	the	maids	and	adults	feed	them.
Now	suppose	you	hire	a	gardener.	You	could	create	yet	another	user,	gardener_u,	or	you
could	collapse	the	users	into	a	few	classes	and	use	roles.	Let’s	suppose	we	collapse
gardener_u	and	maid_u	into	staff_u.	There	is	no	reason	the	gardener	should	be	feeding
the	dog,	so	we	could	use	role-based	transitions	to	move	the	staff	between	their	duties.	For
instance,	suppose	staff	can	perform	more	than	one	service,	that	is,	the	same	person	might
garden	and	clean.	In	this	case,	they	might	take	on	the	role	of	gardener_r	or	maid_r.	We
could	use	the	role	capability	of	SELinux	to	meet	this	need:

mlsconstrain	food	put	(u1	==	adults_u	or	(u1	==	staff_u	and	r1	==	

animal_care_r);

Staff	may	only	feed	the	dogs	when	they’re	in	the	animal_care_r	role.	How	to	get	into	and
back	out	of	that	role	is	really	the	only	component	missing.	You	need	to	have	a	well-
defined	system	for	how	the	staff	can	move	into	the	animal	care	role	and	transition	back
out.	These	transitions	in	SELinux	occur	either	automatically	via	dynamic	role	transitions
or	via	source	code	modifications.	We’ll	assume	that	any	human	entity	(gardener,	adults,
kids)	all	start	in	the	human_r	role.

Dynamic	role	transitions	work	with	a	two-part	rule,	the	first	part	allows	the	transition	to
occur	via	an	allow	rule:

allow	human_r	animal_care_r;

The	role	transition	statements	are	as	follows:

role_transition	human_r	dog_chow	animal_care_r;

role_transition	human_r	cat_chow	animal_care_r;

This	would	be	a	good	case	to	attribute	the	dog_chow	and	cat_chow	types	to	a	new
attribute,	animal_chow,	and	rewrite	the	preceding	role	transitions	to:

typeattribute	dog_chow,	animal_chow;

typeattribute	cat_chow,	animal_chow;

role_transition	human_r	animal_chow	animal_care_r;

With	these	role	transitions,	you	can	only	go	from	the	human_r	role	to	animal_care_r.	You
would	need	to	define	transitions	to	get	back	as	well.	It’s	also	important	to	note	that	you

www.it-ebooks.info

http://www.it-ebooks.info/

might	define	other	roles.	Suppose	you	define	the	role	gardener_r,	and	when	someone	is
in	that	role,	they	cannot	transition	to	animal_care_r.	Suppose	your	justification	for	this
policy	is	that	gardeners	might	work	with	chemicals	unsafe	for	pets,	so	they	would	need	to
wash	their	hands	before	feeding	pets.	In	such	a	situation,	they	should	only	be	able	to
transition	to	animal_care_r	from	the	hand_wash_r	role.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Complexities	and	best	practices
As	you	can	now	appreciate,	SELinux	is	complex,	and	can	be	thought	of	as	a	general
purpose	“meta	programming	policy	language”.	You’re	literally	programming	what
interactions	are	allowed	to	occur	in	a	very	complex	OS	such	as	Linux,	where	the
interactions	themselves	are	often	complex.	Just	like	a	programming	language,	you	can	do
things	with	different	styles	and	methods	that	will	yield	differing	results.	Perhaps	using	a
switch()	in	that	program	will	make	it	cleaner	and	easier	to	understand	rather	than	an
else-if	block,	even	though	functionally	you	will	end	up	with	the	same	thing.	SELinux	is
the	same;	you	can	often	accomplish	things	with	one	portion	of	the	enforcement
mechanisms	that	would	be	more	appropriately	accomplished	using	an	alternate
mechanism.	In	later	chapters,	we	will	cover	the	process	of	labeling	the	target	and	subject,
one	of	the	more	difficult	parts	of	the	system.

When	someone	authors	a	program,	they	often	have	a	set	of	requirements	in	place	that	the
software	should	perform.	These	are	the	requirements	of	the	software.	In	SELinux,	you
should	do	the	same	thing.	You	should	gather	the	security	requirements	and	understand	the
threat	models	you	wish	to	protect	yourself	from.	A	well	designed	SELinux	policy	would
meet	these	goals.	A	great	design	would	do	it	in	a	way	that	is	easy	to	extend.	That’s
ultimately	where	careful	and	judicious	use	of	the	combination	of	UBAC,	RBAC,	TE,	and
MLS	will	help	achieve	the	requirements	and	design	goals.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	covered	the	major	working	portions	of	SELinux	that	include	type
enforcement,	multilevel	and	multicategory	security,	as	well	as	users	and	roles.
Additionally,	we	saw	how	to	apply	these	technologies	to	implement	increasingly	complex
access	policies	to	a	tangible	example.	In	the	next	chapter,	we	will	move	outside	of	the
kernel	and	discover	how	Android	works	in	its	very	unique	user	space.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	3.	Android	Is	Weird
It	really	is.	Although	it	is	built	on	the	familiar	Linux	kernel,	Android	has	a	completely
custom	user	space,	and	while	many	of	its	functionalities	are	rewrites	of	their	GNU
cousins,	some	are	either	new	or	have	significantly	different	functions	than	their	desktop
counterparts.	Because	of	these	differences,	these	systems	had	to	be	modified	to	support
SELinux.	In	this	chapter,	we	will:

Introduce	the	Android	security	model
Investigate	binder,	zygote,	and	the	property	service
Cover	which	SELinux	elements	were	added	to	complement	these	systems	and	why

The	coverage	of	these	systems	will	be	moderate,	but	we	will	present	more	intricate	details
of	each	system	later,	when	appropriate,	in	our	exploratory	investigation	of	SE	for	Android.

www.it-ebooks.info

http://www.it-ebooks.info/

Android’s	security	model
Android’s	core	security	model	is	based	on	Linux	DAC,	including	capabilities.	Android,
however,	uses	the	Linux	concept	of	UID/GID	in	a	very	non-traditional	way.	Each	process
on	the	system	has	its	own	UID	rather	than	the	UID	of	whoever	launched	it.	These	UIDs
(generally	unique)	provide	sandboxing	and	process	isolation.	There	are	a	few
circumstances,	though,	where	processes	can	share	UIDs	and	GIDs.	Typically,	when	a
process	shares	a	UID	with	another	process,	it	is	because	they	both	need	the	same	set	of
permissions	on	the	system	and	share	data.	The	same	could	be	possible	for	GIDs.	However,
some	GIDs	in	Android	are	actually	used	to	gain	permission	to	access	underlying	systems,
such	as	the	SD	card	filesystem.	In	a	nutshell,	the	UID	is	used	to	isolate	processes	and	not
the	human	users	of	the	system.	In	fact,	Android	didn’t	have	support	for	multiple	human
users	until	its	Jelly	Bean	4.3	release.	It	was	always	intended	for	devices	with	a	single
human	user…	at	least	in	operation.

Within	this	security	model,	there	are	two	process	classes.	The	first	is	called	system
component	services.	These	are	the	services	declared	in	the	system	init	scripts.	They	tend
to	be	highly	privileged	and	thus	almost	never	share	a	UID	with	another	process.	An
example	system	component	service	would	be	the	Radio	Interface	Layer	Daemon
(RILD).	RILD	is	responsible	for	processing	messages	between	Android	userspace	and	the
modem	on	the	device.	Because	of	the	nature	of	what	it	does,	it	typically	runs	as	UID	root.
There	is	no	requirement	that	processes	be	pure	native	code.	System	server	has	non-native
components,	runs	as	the	system	UID,	and	is	highly	privileged.	Almost	all	of	these	systems
share	a	common	theme;	they	have	a	UID	that	is	either	root	or	is	set	to	the	owner	of	many
sensitive	kernel	objects,	such	as	sockets,	pipes,	and	files.

The	second	class	is	applications.	Applications	are	typically	written	in	Java,	although	this	is
not	a	requirement;	this	is	similar	to	how	system	component	services	are	typically	written
in	native	code	without	it	being	a	requirement.	These	applications	have	UIDs	assigned
automatically	when	they	are	installed,	and	these	UIDs	are	reserved	by	the	system	for	this
purpose.	The	package	manager	is	responsible	for	issuing	UIDs	to	applications.	These
UIDs	have	no	ties	to	anything	sensitive	or	dangerous	on	the	system,	and	the	applications
run	with	no	capabilities.	In	order	to	access	a	system	resource,	an	application	must	have	its
supplementary	group	appended	to	or	it	must	be	arbitrated	by	a	separate	process.

A	simple	example	of	utilizing	the	supplementary	group	is	seen	when	an	application	needs
to	use	the	SD	card.	For	applications	to	access	the	SD	card,	they	must	have	SDCARD_RW	in
their	supplementary	GIDs.	These	permissions	are	enforced	with	standard	Linux	DAC
permissions	by	the	kernel.	The	supplementary	group	is	assigned	by	the	package	manager
during	the	application’s	installation	based	on	a	declared	permission.	Applications	in
Android	must	declare	something	called	uses-permission	in	the	application’s	manifest.
This	permission	appears	as	a	string	which	is	mapped	to	a	supplementary	GID.	This
mapping	is	maintained	in	a	file	in	the	system,	specifically
/system/etc/permissions/platform.xml.	You	will	see	an	application	of	these
permission	strings	in	a	later	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

The	second	way	an	application	gains	access	to	a	system	resource	is	through	another
process.	The	application	wishing	to	use	a	system	resource	must	get	another	process	to	do
this	on	its	behalf.	Most	requests	are	handled	by	a	process	known	as	the	system	server.
The	system	server	checks	whether	the	application	making	the	arbitration	request	had
declared	a	matching	permission	string	in	its	manifest	file.	If	it	did,	it’s	allowed	to	proceed,
otherwise	a	security	exception	is	thrown.	Even	arbitrated	accesses	in	Android	use	a	DAC
model,	in	essence.	While	the	object	owner	controls	the	access	rules	on	the	object	via
permission	strings,	any	consumer	of	the	protected	object	can	just	request	the	permission
string	to	get	access.	Essentially,	anyone	can	write	an	application	requesting	any
permission	strings	they	want.	While	installing	an	application,	the	user	is	presented	with
the	list	of	permissions	requested	by	the	application,	which	they	choose	to	accept	or	reject
en	masse.	If	the	user’s	intent	is	to	install	the	application,	all	requested	permissions	must	be
granted.	If	the	user	is	not	careful,	they	might	inadvertently	allow	that	application	to	access
protected	objects	in	a	way	that	can	threaten	the	security	of	the	device,	applications,	or	user
data.	The	owners	of	the	devices	should	always	ensure	they	are	comfortable	with	the
application	using	the	declared	permissions.

Note
For	examples	or	further	discussion,	refer	to
http://developer.android.com/guide/topics/security/permissions.html.

www.it-ebooks.info

http://developer.android.com/guide/topics/security/permissions.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Binder
The	arbitrated	access	method	discussed	before	requires	some	form	of	Interprocess
Communication	(IPC),	and	while	Android	does	use	Unix	domain	sockets,	it	also	brings
its	own	IPC	mechanism	that	is	used	more	widely	throughout	the	system.	This	IPC
mechanism	is	called	binder	and	is	the	core	IPC	mechanism	in	the	Android	operating
system.	It	has	historical	relevance	from	the	BeOS	and	Palm	OS	implementations	of
OpenBinder,	and	since	the	initial	Android	development	team	was	comprised	of	many
OpenBinder	engineers,	binder	went	with	them	to	Android.	However,	Android	has	a
complete,	from	scratch	rewrite	of	the	binder	code	base	that	is	specific	to	Linux.

Note
Binder	is	currently	not	completely	mainstreamed	into	the	Linux	kernel,	and	many	of
Android’s	kernel	changes	are	still	staged.

There	is	some	controversy	around	binder	and	its	mainline	adoption.	Some	people	argue
against	the	amount	of	heavy	lifting	it	does	within	the	driver	in	contrast	to	competing
implementations	such	as	dbus.	However,	it	will	likely	be	a	long	time	before	we	see	the
resolution	of	this	debate.	Regardless	of	whether	binder	stays	an	Android-specific
technology,	is	mainstreamed	in	the	Linux	kernel,	or	is	eventually	replaced	by	another
technology	in	Android,	binder	is	here	to	stay	for	the	foreseeable	future.

www.it-ebooks.info

http://www.it-ebooks.info/

Binder’s	architecture
Binder	IPC	follows	a	client/server	architecture.	A	service	publishes	an	interface	and
clients	consume	from	that	interface.	Clients	can	bind	to	services	via	one	of	the	two
methods:	known	address	or	service	name.

Each	binder	interface	in	the	system	is	known	as	a	binder	node.	Each	binder	node	has	an
address.	When	clients	want	to	use	an	interface,	they	must	bind	to	a	binder	node	via	this
address.	This	is	analogous	to	browsing	a	webpage	via	its	IP	address.	However,	unlike	an
IP	address	that	is	usually	fixed	for	long	durations	of	time,	the	binder	address	could	change
based	on	restarts	of	the	publishing	service	or	on	the	service	startup	order	at	the	boot	time
of	the	device.	The	order	of	processes	isn’t	quite	guaranteed,	thus	the	publishing	of	process
services	can	result	in	a	different	binder	token	(a	simple	binder	object	to	share	among
processes)	being	assigned.	Also,	this	indirection	allows	the	runtime	ability	to	reseat
service	implementations	using	just	the	published	service	names	without	the	necessity	to
utilize	the	token.

The	way	this	redirection	functions	is	similar	to	how	DNS	provides	the	resolution	from
name	to	IP	address	for	networked	device	accesses.	Binder	has	something	called	the
context	manager	(also	known	as	the	service	manager).	The	context	manager	lives	at	a
fixed	node	address	of	0.	Publishing	services	send	a	name	and	a	binder	token	to	the	context
manager,	and	then,	when	clients	need	to	find	a	service	by	name,	they	check	binder	node	0
and	resolve	the	name	to	the	binder	token.	A	binder	token	is	the	proper	name	for	this
address,	or	ID,	that	uniquely	addresses	a	binder	interface.	After	a	client	binds	to	the	binder
object,	which	is	a	process	that	implements	the	binder	interface,	the	processes	then	perform
binder	transactions	using	a	well-established	binder	protocol.	This	protocol	allows
synchronous	transactions	analog	to	a	method	call.

Since	binder	is	a	kernel	driver,	it	has	some	nice	features	that	determine	what	one	can	do
across	the	interface.	For	starters,	it	allows	the	transmission	of	file	descriptors.	It	also
manages	a	thread	pool	for	dispatching	service	methods.	Additionally,	it	employs	an
approach	referred	to	as	zero	copy	whereby	binder	does	not	copy	any	of	the	transaction
data	between	processes…	it	shares	them	instead.	Binder	also	affords	reference	counting	of
objects	and	lets	services	query	the	client	application’s	Linux	credentials	like	UID,	GID,
and	Process	ID	(PID).	Binder	also	allows	the	service	and	client	to	know	when	the	other
has	terminated	via	its	link	to	death	functionality.

Typically	in	Android,	you	don’t	work	with	binder	directly.	Instead,	you	work	with	a
service	rather	via	a	service	and	its	Android	Interface	Description	Language	(AIDL)
interface.	The	final	chapter	will	provide	detailed	examples	of	AIDL	in	practice	for	our
custom	SE	for	Android	system,	but	in	the	meantime,	the	following	is	a	simple	example	of
an	AIDL	interface	providing	the	means	for	remote	processes	to	execute	the
getAccountName()	and	putAccountName()	functions:

package	com.example.sample;

interface	IRemoteInterface	{

		String	getAccountName();

www.it-ebooks.info

http://www.it-ebooks.info/

		boolean	putAccountName(in	String	name);

}

The	beauty	in	working	with	an	AIDL	interface	is	that	it	is	used	to	generate	a	significant
amount	of	code	to	manage	data	and	processes	that	would	otherwise	have	to	be	done	by
hand.	For	example,	the	following	is	only	a	small	portion	of	the	code	generated	from	the
preceding	AIDL	sample:

@Override	public	boolean	onTransact(int	code,	android.os.Parcel	data,	

android.os.Parcel	reply,	int	flags)	throws	android.os.RemoteException

{

switch	(code)

{

case	INTERFACE_TRANSACTION:

{

reply.writeString(DESCRIPTOR);

return	true;

}

case	TRANSACTION_getAccountName:

{

data.enforceInterface(DESCRIPTOR);

java.lang.String	_result	=	this.getAccountName();

reply.writeNoException();

reply.writeString(_result);

return	true;

}

case	TRANSACTION_putAccountName:

{

data.enforceInterface(DESCRIPTOR);

java.lang.String	_arg0;

_arg0	=	data.readString();

...

www.it-ebooks.info

http://www.it-ebooks.info/

Binder	and	security
The	security	implications	of	binder	are	quite	large.	You	should	be	able	to	control	who
becomes	the	context	manager,	as	a	rogue	context	manager	could	compromise	the	whole
system	by	sending	clients	to	rogue	services,	rather	than	the	proper	ones.	Outside	of	that,
you	might	want	to	control	which	clients	can	bind	to	which	binder	objects.	Lastly,	you
might	wish	to	control	whether	file	descriptors	can	be	sent	via	binder.	The	binder	also	has
the	capability	to	allow	someone	to	fake	credentials	over	the	interface,	which	is	designed	to
be	used	for	good.	For	example,	some	privileged	system	processes,	such	as	Activity
Manager	Service	(AMS),	perform	operations	on	behalf	of	other	processes.	The
credentials	exposed	in	this	kind	of	masquerading	are	of	the	process	you	are	doing	the	work
for,	not	of	the	privileged	entity.	This	is	analogous	to	a	power	of	attorney,	used	when
someone	is	acting	on	your	behalf.

Android’s	binder	IPC	mechanism	was	traditionally	controlled	with	DAC	permissions.
However,	as	we	saw	in	Chapter	1,	Linux	Access	Controls,	these	permissions	have	some
flaws.	It	follows	that	binder	needs	to	be	modified	to	support	SELinux	because	the	binder
driver	does	not	otherwise	implement	hooks	to	any	additional	security	modules.	To	do	this,
a	patch	was	sent	to	Google	by	Stephen	Smalley	implementing	these	features.	The	patch
implements	new	hooks	for	consumers	of	what	is	known	as	the	Linux	Security	Module
(LSM)	framework.	This	framework	allows	LSMs	such	as	SELinux	to	be	invoked	and	then
make	access	decisions.	The	details	of	this	patch	are	outside	the	scope	of	this	book.	It
suffices	that	binder	was	patched,	and	SELinux	can	now	control	its	capabilities	with	MAC.

Note
Stephen	Smalley	is	a	computer	security	researcher	at	the	Trusted	Systems	Research
organization	of	the	United	States	National	Security	Agency	(NSA)	and	leads	the	SE
Android	project.	The	patch	he	sent	to	Google	to	modify	the	binder	for	SELinux	hooks	can
be	viewed	at	https://android-review.googlesource.com/45984.

Because	of	the	integration	of	SELinux	and	binder,	SE	for	Android	has	an	additional	class
with	access	vectors	(a	fancy	way	of	saying,	“things	it	can	do.”)	In	previous	examples	from
Chapter	2,	Mandatory	Access	Controls	and	SELinux,	the	target	class	is	food.	Similarly,	the
SELinux	class	for	binder	is	binder.	It	defines	the	access	vectors	listed	in	the	following
bullets.	If	you	recall,	the	access	vector	for	food	in	Chapter	2,	Mandatory	Access	Controls
and	SELinux,	was	eat.	The	following	access	vectors	are	available	for	binder:

impersonate:	This	creates	fake	credentials	over	a	binder	interface
call:	This	binds	a	client	to	a	binder	interface	and	uses	it
set_context_mgr:	This	sets	the	context	manager
transfer:	This	transfers	a	file	descriptor

www.it-ebooks.info

https://android-review.googlesource.com/45984
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Zygote	–	application	spawn
Non-native	applications	in	Android	historically	make	use	of	the	Dalvik	virtual	machine
(VM)	and	run	a	proprietary	byte	code	called	DEX.	Applications	are	also	spawned	from	a
common	process	called	zygote	through	a	mechanism	called	fork	and	specialize.	Zygote
itself	is	a	process	that	has	the	Dalvik	VM	and	some	common	classes,	such	as
java.util.*,	loaded	into	the	VM.	Fork	and	specialize	is	the	mechanism	of	going	from	a
zygote	to	a	child	process	of	zygote	that	executes	some	application	code.

Note
Versions	of	Android	since	Android	4.4	are	replacing	this	with	the	Android	RunTime
(ART).	It	is	speculated	that	Android	L	will	not	use	the	Dalvik	VM	at	all.

The	first	part	of	this	process	involves	a	socket	connection.	Zygote	listens	over	this	socket
for	an	application’s	spawn	requests.	Some	of	the	arguments	include	the	package	name	of
the	application	that	should	be	loaded	and	a	flag	that	indicates	whether	the	application	is
the	system	server	or	not.	Once	the	spawn	command	is	received,	the	fork	can	proceed.

Note
A	great	way	to	start	tracing	back	this	initial	socket	connection	is	with	the	app_process
tool.	This	command	starts	a	process	with	Dalvik.	For	more	information,	navigate	to
frameworks/base/cmds/app_process/app_main.cpp.

After	the	fork,	the	now	parent	zygote	returns	to	listen	on	the	socket	for	more	requests.	The
child	process	is	executing	and	a	few	things	need	to	happen.	The	first	thing	that	needs	to
happen	is	a	UID	and	GID	switch.	Zygote	runs	with	the	UID	root,	and	thus	to	meet	the
Android	security	model,	it	must	set	the	child	process	UIDs	and	GIDs	to	something	other
than	root.	The	child	process	will	set	UID	and	GID	as	defined	by	the	package	manager	and
the	supplementary	GIDs.	It	also	sets	the	process’	resource	limits	and	scheduling	policy.
Then	it	clears	the	capability	set	of	the	application	to	zero	(no	capabilities).	In	the	case	of
the	system	server,	the	capability	set	is	not	cleared	but	rather	set	as	one	of	the	arguments
sent	over	the	socket.	After	this	point,	the	child	process	runs.	Code	further	along	in	the
zygote	loads	the	class,	and	other	system	interactions,	such	as	intent	delivery,	are	used	to
start	an	activity.	These	parts	of	zygote	are	beyond	the	scope	of	this	book.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The	property	service
The	property	service	in	Android	provides	a	shared	mapping	of	key-value	pairs	between	all
processes.	All	processes	on	an	Android	system	share	some	pages	of	memory	dedicated	to
this	system.	However,	the	mapping	in	all	processes	is	READ	ONLY	with	the	exception	of	init
processes,	which	have	a	READ/WRITE	mapping.	The	property	service	system	resides	within
init,	and	it	is	this	system’s	job	to	update	or	add	values	to	this	key-value	map.	In	order	to
change	a	value,	you	must	go	through	property	service,	but	anyone	can	read	a	value.	It’s
imperative	that	if	you	use	property	service,	you	do	not	store	sensitive	information.	It	is
primarily	intended	to	be	used	for	small	values,	not	a	generic	large-value	store.	What
follows	is	only	a	very	basic	introduction	to	the	property	service.	A	thorough	investigation
will	be	conducted	later.

To	set	a	property,	you	must	send	a	request	using	a	Unix	domain	socket	to	the	property
service.	Property	service	will	then	parse	the	request	and	set	the	value	if	the	permissions
allow	it	to	do	so.	Properties	have	period-delimited	segments,	like	package	names,	that
have	permissions	assigned	to	it	statically	at	build	time.	The	permissions	and	property
service	code	can	be	found	together	at	system/core/property_service.c.	The	arguments
expected	over	this	interface	include	a	command,	the	property	name,	and	the	property
value.	For	those	who	are	curious,	these	are	all	defined	in	the	structure	prop_msg,	which	is
defined	in	bionic/libc/include/sys/_system_properties.h.	Upon	receiving	the
message,	the	property	service	checks	the	peer	socket’s	credentials	against	the	static	map	of
permissions.	If	the	UID	is	root,	it	can	write	to	anything,	otherwise	it	must	be	a	match	for
either	UID	or	GID.	In	very	new	Android	versions,	or	those	with	the	patch	applied	from
https://android-review.googlesource.com/#/c/98428/,	both	the	permission	checking	and
hardcoded	DAC	have	been	replaced	by	SELinux	controls.

Since	the	permission	to	set	a	value	is	controlled	by	user	space	using	DAC,	it	follows	that
the	property	set	mechanisms	share	the	inherent	rooting	vulnerability	flaw.	With	this	in
mind,	the	property	service	code	was	augmented	in	SELinux.	Since	this	is	a	user	space
process,	it	uses	the	SELinux	API	through	the	kernel	to	program	something	called	a	user
space	object	manager.	This	just	means	the	user	space	application	checks	with	SELinux	in
the	kernel	to	ensure	it	can	perform	an	activity…	in	this	case,	set	on	a	property.

www.it-ebooks.info

https://android-review.googlesource.com/#/c/98428/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
Android	has	some	very	unique	properties.	From	its	use	of	the	common	UID	and	GID
model	to	promote	its	security	goals,	to	its	custom	binder	IPC	mechanism,	these	systems
have	implications	on	the	security	and	functionality	of	the	device.	In	the	next	chapter,	these
systems	will	come	back	into	play	as	we	get	the	UDOO	up	and	running	and	enable	SE	for
Android	on	it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	4.	Installation	on	the	UDOO
In	order	to	continue	our	exploration,	we	will	need	to	get	a	tangible	system	in	place	to	work
with.	In	this	chapter,	we	will:

Build	Android	4.3	for	the	UDOO	from	source
Flash	an	SD	card	with	our	boot	images
Get	the	UDOO	running	while	capturing	logs
Establish	an	adb	connection	to	the	UDOO
Rebuild	the	kernel	with	SELinux	support
Verify	our	SELinux	UDOO	image	works	as	expected

We	will	start	with	the	publicly	available	UDOO	Android	4.3	Jelly	Bean	source	code,
which	can	be	downloaded	from	http://www.udoo.org/downloads/.	It	is	assumed	you	have	a
UDOO	and	have	verified	that	it	is	functional.	It	is	recommended	you	follow	the
instructions	on	the	UDOO	website	for	getting	started	with	the	Android	4.3	prebuilt	image
as	an	initial	test	(for	more	information,	refer	to	http://www.udoo.org/getting-started/).

You	will	also	need	an	appropriate	development	system	for	working	with	Android	and	a
UDOO,	but	the	details	of	this	are	beyond	the	scope	of	this	chapter.	An	appendix	has	been
provided	detailing	the	setup	of	a	standard	Ubuntu	Linux	12.04	system	to	ensure	you	have
the	highest	probability	of	success	duplicating	the	work	in	this	book.

www.it-ebooks.info

http://www.udoo.org/downloads/
http://www.udoo.org/getting-started/
http://www.it-ebooks.info/

Retrieving	the	source
Let’s	start	this	exercise	by	downloading	the	Android	4.3	Jellybean	source	code	from	the
download	links	given	in	the	preceding	section,	and	extract	the	download	into	a	workspace
using	the	following	commands:

$	mkdir	~/udoo	&&	cd	~/udoo

$	tar	-xavf	~/Downloads/UDOO_Android_4.3_Source_v2.0.tar.gz

Once	this	is	done,	you	should	review	the	UDOO	documentation	and	the	Android	source
code	building	instructions	at	the	following	URLs:

http://www.elinux.org/UDOO_compile_android_4-2-2_from_sources
http://source.android.com/source/initializing.html

The	instructions	provided	by	the	preceding	URL	discuss	how	to	build	Android	with	Open
JDK	7.	However,	these	instructions	are	for	the	current	release	of	Android	(L	preview)	and
are	not	100	percent	relevant.	For	Android	4.3,	you	must	build	with	Oracle	Java	6,	which	is
archived	by	Oracle	and	found	at
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-
downloads-javase6-419409.html.

It	is	assumed	that	you	have	a	duplicate	of	the	system	detailed	in	the	Appendix,	The
Development	Environment.	That	appendix,	among	other	things,	walks	you	through	the
setup	of	Oracle	Java	6	as	your	only	Java	instance.	However,	for	those	who	prefer	to	work
from	their	existing	systems,	particularly	those	with	multiple	Java	SDKs,	please	keep	in
mind	you	will	need	to	ensure	your	system	is	using	the	Oracle	Java	6	tools	when	working
through	the	rest	of	this	book.

Finish	setting	up	your	environment	by	changing	to	the	root	of	your	UDOO	source	tree	and
execute	the	following	command:

$.	setup	udoo-eng

Once	the	environment	is	configured,	we	need	to	build	the	bootloader:

$	cd	bootable/bootloader/uboot-imx

$./compile.sh	-c

A	graphical	menu	will	appear.	Ensure	the	settings	are	as	follows:

DDR	Size:	Select	1	Giga,	bus	size	64,	and	active	CS	\	1	(256Mx4)
Board	Type:	Select	UDOO
CPU	type:	Select	quad-core	or	dual-core	option,	dependent	on	which	system	you
have.	We	happen	to	be	using	the	quad-core	system.
OS	type:	Select	Android
Environment	device:	Must	select	SD/MMC
Extra	options:	CLEAN	should	be	selected
Compiler	options:	Paths	to	tool	chains	can	be	selected	here;	just	take	the	defaults

The	following	screenshot	shows	the	graphical	menu	displayed	by	the	preceding	command:

www.it-ebooks.info

http://www.elinux.org/UDOO_compile_android_4-2-2_from_sources
http://source.android.com/source/initializing.html
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-javase6-419409.html
http://www.it-ebooks.info/

When	you	exit,	be	sure	to	save.	Then	start	the	compilation:

$./compile.sh	

Board	type	selected:	UDOO

CPU	Type:	QUAD/DUAL

OS	type:	Android

...

/home/bookuser/udoo/prebuilts/gcc/linux-x86/arm/arm-eabi-4.6/bin/arm-eabi-

objcopy	-O	srec	u-boot	u-boot.srec

/home/bookuser/udoo/prebuilts/gcc/linux-x86/arm/arm-eabi-4.6/bin/arm-eabi-

objcopy	--gap-fill=0xff	-O	binary	u-boot	u-boot.bin

Just	to	be	safe,	verify	your	build	was	successful	by	using	ls	u-boot.bin	to	ensure	the
bootloader	image	now	exists.	Now,	build	Android	using	the	following	command:

$	croot

$	make	–j4	2>&1	|	tee	logz

The	first	command	is	something	that	was	sourced	in	the	setup	scripts	for	Android	and
takes	us	back	to	the	root	of	our	project	tree.	The	second	command,	make,	builds	the
system.	You	should	set	the	option	for	j	to	twice	your	CPU/core	count	in	most	cases.
Because	many	of	you	might	have	a	dual-core	machine,	we’ll	use	–j4.	One	of	the	authors
of	this	book	uses	8	CPU	cores,	for	example,	and	uses	the	flag	-j16.	The	file	redirection
and	tee	commands	capture	the	build	output	to	a	file.	This	is	important	to	help	and	debug
any	build	issues.	This	build,	depending	on	your	system	can	take	a	long,	long	time.	On	the
previously	mentioned	8-core	system	with	16GB	RAM,	this	took	a	little	over	35	minutes.
On	other	systems,	we’ve	experienced	build	times	over	3	hours.

In	this	case,	capturing	the	logs	proved	very	useful.	The	build	terminated	with	an	error,	and
by	searching	the	logs	for	error,	we	found	the	following:

$	grep	error	logz	

...

external/mtd-utils/mkfs.ubifs/mkfs.ubifs.h:48:23:	fatal	error:	uuid/uuid.h:	

No	such	file	or	directory

external/mtd-utils/mkfs.ubifs/mkfs.ubifs.h:48:23:	fatal	error:	uuid/uuid.h:	

No	such	file	or	directory

www.it-ebooks.info

http://www.it-ebooks.info/

external/mtd-utils/mkfs.ubifs/mkfs.ubifs.h:48:23:	fatal	error:	uuid/uuid.h:	

No	such	file	or	directory

...

By	evaluating	those	errors,	we	discover	we	are	missing	headers	for	uuid	and	lzo1x.	We
can	also	open	the	Android	makefile,	external/mtd-utils/mkfs.ubifs/Android.mk,	and
determine	the	likely	libraries	involved	from	the	line	LOCAL_LDLIBS:=	-lz	-llzo2	-lm	-
luuid	-m64.	Searching	reveals	the	specific	Ubuntu	package	we’re	missing;	we	will	install
them	and	build	again.	The	$	character	at	the	end	of	the	search	string	ensures	we	only	get
results	ending	in	uuid/uuid.h.	Without	it,	we	might	match	files	ending	in	.html	or	.hpp:

$	sudo	apt-file	search	-x	“uuid/uuid.h$”

uuid-dev:	/usr/include/uuid/uuid.h

$	sudo	apt-get	install	uuid-dev

$	make	–j4	2>&1	|	tee	logz

A	successful	build	should	produce	some	final	output	similar	to	the	following:

...

Running:	mkuserimg.sh	out/target/product/udoo/system	

out/target/product/udoo/obj/PACKAGING/systemimage_intermediates/system.img	

ext4	system	293601280	out/target/product/udoo/root/file_contexts

Install	system	fs	image:	out/target/product/udoo/system.img

out/target/product/udoo/system.img+out/target/product/udoo/obj/PACKAGING/re

covery_patch_intermediates/recovery_from_boot.p	maxsize=299747712	

blocksize=4224	total=294120167	reserve=3028608

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Flashing	image	on	an	SD	card
With	the	bootloader,	Android	userspace,	and	Linux	kernel	built,	it’s	time	to	insert	an	SD
card	and	flash	the	images.	Insert	an	SD	card	into	your	host	computer,	and	ensure	it’s
unmounted.	In	Ubuntu,	removable	media	are	mounted	automatically,	so	you’ll	need	to
find	the	/dev/sd*	device	that	is	your	flash	drive,	and	umount	it.	For	the	remainder	of	the
text,	we	will	use	/dev/sdd	as	the	flash	drive,	but	it	is	important	to	use	the	correct	device
for	your	system.	If	you	have	used	this	SD	card	for	installing	UDOO	before,	the	card	will
contain	multiple	partitions,	so	you	might	see	/dev/sdd<num>	mounted	numerous	times:

$	mount	|	grep	sdd

/dev/sdd7	on	/media/vender	type	ext4	(rw,nosuid,nodev,uhelper=udisks)

/dev/sdd4	on	/media/data	type	ext4	(rw,nosuid,nodev,uhelper=udisks)

/dev/sdd5	on	/media/57f8f4bc-abf4-655f-bf67-946fc0f9f25b	type	ext4	

(rw,nosuid,nodev,uhelper=udisks)

/dev/sdd6	on	/media/cache	type	ext4	(rw,nosuid,nodev,uhelper=udisks)

$	sudo	bash	-c	"umount	/dev/sdd4	&&	umount	/dev/sdd5	&&	umount	/dev/sdd6	&&	

umount	/dev/sdd7"

Once	the	SD	card	is	properly	unmounted,	we	can	flash	our	image:

$	sudo	-E	./make_sd.sh	/dev/sdd

Tip
You	must	use	the	-E	parameter	on	sudo	to	preserve	all	the	exported	variables	from	the
Android	build.	You	must	be	in	the	same	terminal	session	you	built	Android	in.	Otherwise
you	will	see	the	error	No	OUT	export	variable	found!	Setup	not	called	in
advance….

Once	this	completes	(it	will	take	a	while),	it’s	important	to	flush	the	block	device	caches
back	to	the	disk	with	the	command,	sudo	sync.	Then,	you	can	remove	the	SD	card,	insert
it	into	the	UDOO,	and	boot!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

UDOO	serial	and	Android	Debug	Bridge
Now	that	the	UDOO	is	booting	into	Android,	we	want	to	make	sure	we	can	access	it	using
the	serial	port	as	well	as	the	Android	Debug	Bridge	(adb).	You’ll	need	the	UDOO	serial
drivers	appropriate	for	your	system.	The	details	of	this	for	Mac,	Linux,	and	Windows	can
be	found	at

http://www.udoo.org/ProjectsAndTutorials/connecting-via-serial-cable/.

The	serial	port	is	the	first	form	of	communication	that	will	come	from	the	system,	and	it	is
initialized	by	the	bootloader.	It	is	a	critical	link	for	debugging	any	kernel	or	system
issues	that	you	encounter	later	on.	It’s	also	required	in	order	to	configure	the	USB	port	to
allow	adb	connections	across	CN3	(the	USB	OTG	port	on	the	UDOO).	To	configure	the
port,	we	need	to	configure	and	use	minicom	to	connect	a	shell	to	the	device.	Start	by
plugging	a	micro	USB	cable	from	CN6	(the	micro	USB	port	closest	to	the	power	button)
to	the	host	machine.	Next,	let’s	find	the	serial	connection	by	looking	through	dmesg	for	the
connection	message	of	a	TTY	over	USB.

$	sudo	dmesg	|	tail	-n	5

[9019.090058]	usb	4-1:	Manufacturer:	Silicon	Labs

[9019.090061]	usb	4-1:	SerialNumber:	0078AEDB

[9019.096089]	cp210x	4-1:1.0:	cp210x	converter	detected

[9019.208023]	usb	4-1:	reset	full-speed	USB	device	number	4	using	uhci_hcd

[9019.359172]	usb	4-1:	cp210x	converter	now	attached	to	ttyUSB0

Our	TTY	terminal	is	on	the	last	line.	Let’s	connect	through	it	with	minicom:

$	sudo	minicom	-sw

Select	Serial	Port	Setup,	type	a,	change	Serial	Device	to	/dev/ttyUSB0,	and	type	f	to
toggle	the	hardware	flow	control	off:

To	exit,	hit	Enter,	select	Save	Setup	and	DFL,	then	select	Exit	from	Minicom,	and	press

www.it-ebooks.info

http://www.udoo.org/ProjectsAndTutorials/connecting-via-serial-cable/
http://www.it-ebooks.info/

Enter.	Now	run	minicom	to	connect	to	your	UDOO,	and	watch	it	boot:

$	sudo	minicom	-w

If	the	device	is	booted	and	running,	you’ll	get	a	friendly	root	shell:

If	it’s	booting,	you’ll	see	the	logs.	Just	wait	for	the	root	shell	prompt:

www.it-ebooks.info

http://www.it-ebooks.info/

Now	we	need	to	flip	some	GPIO	pins	to	move	the	CN3	micro	USB	into	debug	mode:

root@udoo:/	#	echo	0	>	/sys/class/gpio/gpio203/value	

root@udoo:/	#	echo	0	>	/sys/class/gpio/gpio128/value	

Then,	reset	the	SAM3X8E	processor	that	was	using	that	bus,	by	removing	and	replacing
the	J16	jumper.	Now	plug	in	a	micro	USB	cable	from	the	host	to	CN3.	You	should	now
see	a	USB	device	as	well	as	adb:

$	lsusb

Bus	001	Device	009:	ID	18d1:4e42	Google	Inc.

$	adb	devices

List	of	devices	attached	

0123456789ABCDEF		offline

You	need	to	select	Allow	USB	debugging	when	the	prompt	appears	on	the	UDOO
Android	side.	When	you	do	this,	the	device	should	go	from	offline	to	online;	this	way	you
can	use	adb.

Now	test	the	connection	and	grab	the	screenshot	over	adb:

$	adb	shell

root@udoo:/	#	

$	adb	shell	screencap	-p	|	perl	-pe	's/\x0D\x0A/\x0A/g'	>	screen.png

This	is	the	screenshot:

At	this	point,	we	have	a	working	development	system.	We	have	early	boot	logs	and	a
rescue	shell	through	the	serial	console.	We	also	have	an	adb	bridge	with	which	we	can	use
the	standard	Android	debugging	tools!	There’s	nothing	left	to	do	but	get	this	system

www.it-ebooks.info

http://www.it-ebooks.info/

secured	with	SELinux!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Flipping	the	switch
Now	that	we	are	enabling	SELinux	on	the	UDOO,	we	need	to	verify	it	isn’t	turned	on.	The
way	to	do	this	is	to	check	the	known	filesystem	types	in	the	/proc	filesystem.	SELinux
has	its	own	psuedo-filesystem,	so	if	it’s	enabled,	we	should	see	it	in	the	list:

$	adb	shell	cat	/proc/filesystems

nodev		sysfs

nodev		rootfs

nodev		bdev

nodev		proc

nodev		cgroup

nodev		cpuset

nodev		tmpfs

nodev		debugfs

nodev		sockfs

nodev		pipefs

nodev		anon_inodefs

nodev		rpc_pipefs

nodev		devpts

		ext3

		ext2

		ext4

		cramfs

nodev		ramfs

		vfat

		msdos

nodev		nfs

nodev		jffs2

nodev		fuse

		fuseblk

nodev		fusectl

nodev		mtd_inodefs

nodev		ubifs

There	is	no	evidence	of	SELinux	here,	so	let’s	find	the	kernel	configuration	and	turn	it	on.
Execute	this	command	from	the	~/udoo/kernel_imx	directory,	and	eventually	you	will	be
greeted	with	a	graphical	editing	screen:

$	make	menuconfig

First,	you	will	need	to	enable	Auditing	support,	as	this	is	a	dependency	of	SELinux.
Under	General	setup	|	Auditing	Support,	enable	Audit	Support	and	Enable	system-
call	auditing.	Use	the	up	and	down	arrow	keys	to	highlight	an	entry,	and	press	the
spacebar	to	enable	it.	When	an	item	is	enabled,	you	will	see	an	asterisk	(*)	next	to	it:

www.it-ebooks.info

http://www.it-ebooks.info/

Go	back	to	the	main	menu	by	selecting	Exit…	it’s	not	very	intuitive.	Enter	the	File
systems	menu,	and	for	each	of	the	three	filesystems,	Ext2,	Ext3,	and	Ext4,	ensure	that
Extended	attributes	and	Security	Labels	are	enabled.	Then,	go	back	to	the	main	menu
by	selecting	Exit:

From	that	screen,	exit	back	to	the	main	menu	and	go	to	Security	Options.	Once	in	the
Security	Options	submenu,	enable	the	Enable	different	security	models	and	Socket	and
Networking	Security	Hooks	options:

www.it-ebooks.info

http://www.it-ebooks.info/

Once	these	are	enabled,	more	options	will	appear.	Enable	NSA	SELinux	Support	and
ensure	the	other	selections	and	values	from	the	following	screenshot	are	duplicated:

Finally,	set	Default	security	module	to	SELinux:

Once	you	select	Default	security	module,	a	new	window	will	appear	from	which	you	can
select	SELinux.	Exit	the	configuration	menus	by	selecting	Exit	until	you	are	asked	to
save	your	new	configuration:

Save	the	new	configuration	and	write	these	changes	to	the	originating	kernel	configuration
file.	Otherwise,	it	will	be	overwritten	on	subsequent	builds.	To	do	this,	we’ll	need	to
discover	which	configuration	file	was	used	in	the	default	build,	which	we	built	earlier
before	we	made	our	own	configuration	with	make	menuconfig:

$	grep	defconfig	logz	make	-C	kernel_imx	imx6_udoo_android_defconfig	

www.it-ebooks.info

http://www.it-ebooks.info/

ARCH=arm	CROSS_COMPILE=`pwd`/prebuilts/gcc/linux-x86/arm/arm-eabi-

4.6/bin/arm-eabi-

You	can	see	that	imx6_udoo_android_defconfig	was	used	as	the	default	configuration.
Copy	your	custom	configuration	and	build	again:

$	cp	.config	arch/arm/configs/imx6_udoo_android_defconfig

$	croot

$	make	–j4	bootimage	2>&1	|	tee	logz

A	quick	sanity	check	of	the	log	file	is	always	a	good	idea	to	verify	SELinux	was	actually
built	into	the	kernel:

$	grep	-i	selinux	logz	

HOSTCC	scripts/selinux/mdp/mdp

HOSTCC	scripts/selinux/genheaders/genheaders

GEN	security/selinux/flask.h	security/selinux/av_permissions.h

CC	security/selinux/avc.o

...

Now,	with	a	built	kernel	supporting	SELinux,	insert	the	SD	card	into	the	host	and	run	the
following	commands:

$	sudo	-E	./make_sd.sh	/dev/sdd

$	sudo	sync

Tip
Don’t	forget	to	umount	any	automounted	partitions	from	the	SD	card	as	we	did	before.

Plug	the	SD	card	into	the	UDOO,	and	fire	it	up.	You	should	see	logs	over	the	serial
console	as	we	did	before:

Eventually,	the	serial	connection	should	take	us	to	a	root	shell.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

It’s	alive
How	do	we	know	that	we	have	successfully	enabled	SELinux	in	the	kernel?	Earlier	in	this
chapter,	you	ran	the	command,	adb	shell	cat	/proc/filesystems.	We’re	going	to	do
the	same	thing	and	look	for	a	new	filesystem	called	selinuxfs.	If	that	is	present,	it
indicates	we	have	enabled	SELinux	successfully.	Run	the	following	command	in	the	serial
terminal:

#	cat	/proc/filesystems	|	grep	selinux	

nodev	selinuxfs

We	can	see	that	selinuxfs	is	present!	Another	common	practice	is	to	check	dmesg	for	any
SELinux	output.	To	do	this,	execute	the	following	command	via	the	serial	terminal:

#	dmesg	|	grep	-i	selinux

<6>SELinux:	Initializing.

<7>SELinux:	Starting	in	permissive	mode

<7>SELinux:	Registering	netfilter	hooks

<3>SELinux:	policydb	version	26	does	not	match	my	version	range	15-23

<4>SELinux:	Could	not	load	policy:	Invalid	argument

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
This	was	a	very	exciting	chapter.	You	learned	how	to	enable	SELinux	in	the	kernel
configuration,	boot	the	“secured”	system,	and	how	to	verify	its	presence.	We	also	learned
how	to	flash	and	build	images	for	the	UDOO	in	general	and	how	to	connect	to	it	via	serial
and	adb	connections.	In	the	next	chapters,	we	will	focus	on	how	to	make	the	UDOO
usable	with	SE	for	Android	capabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	5.	Booting	the	System
Now	that	we	have	an	SE	for	Android	system,	we	need	to	see	how	we	can	make	use	of	it,
and	get	it	into	a	usable	state.	In	this	chapter,	we	will:

Modify	the	log	level	to	gain	more	details	while	debugging
Follow	the	boot	process	relative	to	the	policy	loader
Investigate	SELinux	APIs	and	SELinuxFS
Correct	issues	with	the	maximum	policy	version	number
Apply	patches	to	load	and	verify	an	NSA	policy

You	might	have	noticed	some	disturbing	error	messages	dmesg	in	Chapter	4,	Installation
on	the	UDOO.	To	refresh	your	memory,	here	are	some	of	them:

#	dmesg	|	grep	–i	selinux

<6>SELinux:	Initializing.

<7>SELinux:	Starting	in	permissive	mode

<7>SELinux:	Registering	netfilter	hooks

<3>SELinux:	policydb	version	26	does	not	match	my	version	range	15-23

...

It	would	appear	that	even	though	SELinux	is	enabled,	we	don’t	quite	have	an	error-free
system.	At	this	point,	we	need	to	understand	what	causes	this	error,	and	what	we	can	do	to
rectify	it.	At	the	end	of	this	chapter,	we	should	be	able	to	identify	the	boot	process	of	an
SE	for	Android	device	with	respect	to	policy	loading,	and	how	that	policy	is	loaded	into
the	kernel.	We	will	then	address	the	policy	version	error.

www.it-ebooks.info

http://www.it-ebooks.info/

Policy	load
An	Android	device	follows	a	boot	sequence	similar	to	that	of	the	*NIX	booting	sequence.
The	boot	loader	boots	the	kernel,	and	the	kernel	finally	executes	the	init	process.	The	init
process	is	responsible	for	managing	the	boot	process	of	the	device	through	init	scripts	and
some	hard	coded	logic	in	the	daemon.	Like	all	processes,	init	has	an	entry	point	at	the
main	function.	This	is	where	the	first	userspace	process	begins.	The	code	can	be	found	by
navigating	to	system/core/init/init.c.

When	the	init	process	enters	main	(refer	to	the	following	code	excerpt),	it	processes
cmdline,	mounts	some	tmpfs	filesystems	such	as	/dev,	and	some	pseudo-filesystems
such	as	procfs.	For	SE	for	Android	devices,	init	was	modified	to	load	the	policy	into	the
kernel	as	early	in	the	boot	process	as	possible.	The	policy	in	an	SELinux	system	is	not
built	into	the	kernel;	it	resides	in	a	separate	file.	In	Android,	the	only	filesystem	mounted
in	early	boot	is	the	root	filesystem,	a	ramdisk	built	into	boot.img.	The	policy	can	be	found
in	this	root	filesystem	at	/sepolicy	on	the	UDOO	or	target	device.	At	this	point,	the	init
process	calls	a	function	to	load	the	policy	from	the	disk	and	sends	it	to	the	kernel,	as
follows:

int	main(int	argc,	char	*argv[])	{

...

		process_kernel_cmdline();

		unionselinux_callback	cb;

		cb.func_log	=	klog_write;

		selinux_set_callback(SELINUX_CB_LOG,	cb);

		cb.func_audit	=	audit_callback;

		selinux_set_callback(SELINUX_CB_AUDIT,	cb);

		INFO("loading	selinux	policy\n");

		if	(selinux_enabled)	{

				if	(selinux_android_load_policy()	<	0)	{

						selinux_enabled	=	0;

						INFO("SELinux:	Disabled	due	to	failed	policy	load\n");

				}	else	{

						selinux_init_all_handles();

				}

		}	else	{

				INFO("SELinux:		Disabled	by	command	line	option\n");

		}

…

In	the	preceding	code,	you	will	notice	the	very	nice	log	message,	SELinux:	Disabled	due
to	failed	policy	load,	and	wonder	why	we	didn’t	see	this	when	we	ran	dmesg	before.
This	code	executes	before	setlevel	in	init.rc	is	executed.

The	default	init	log	level	is	set	by	the	definition	of	KLOG_DEFAULT_LEVEL	in
system/core/include/cutils/klog.h.	If	we	really	wanted	to,	we	could	change	that,
rebuild,	and	actually	see	that	message.

Now	that	we	have	identified	the	initial	path	of	the	policy	load,	let’s	follow	it	on	its	course

www.it-ebooks.info

http://www.it-ebooks.info/

through	the	system.	The	selinux_android_load_policy()	function	can	be	found	in	the
Android	fork	of	libselinux,	which	is	in	the	UDOO	Android	source	tree.	The	library	can
be	found	at	external/libselinux,	and	all	of	the	Android	modifications	can	be	found	in
src/android.c.

The	function	starts	by	mounting	a	pseudo-filesystem	called	SELinuxFS.	If	you	recall,	this
was	one	of	the	new	filesystems	mentioned	in	/proc/filesystems	that	we	saw	in	Chapter
4,	Installation	on	the	UDOO.	In	systems	that	do	not	have	sysfs	mounted,	the	mount	point
is	/selinux;	on	systems	that	have	sysfs	mounted,	the	mount	point	is	/sys/fs/selinux.

You	can	check	mountpoints	on	a	running	system	using	the	following	command:

#	mount	|	grep	selinuxfs	

selinuxfs	/sys/fs/selinux	selinuxfs	rw,relatime	0	0

SELinuxFS	is	an	important	filesystem	as	it	provides	the	interface	between	the	kernel	and
userspace	for	controlling	and	manipulating	SELinux.	As	such,	it	has	to	be	mounted	for	the
policy	load	to	work.	The	policy	load	uses	the	filesystem	to	send	the	policy	file	bytes	to	the
kernel.	This	happens	in	the	selinux_android_load_policy()	function:

int	selinux_android_load_policy(void)

{

		char	*mnt	=	SELINUXMNT;

		int	rc;

		rc	=	mount(SELINUXFS,	mnt,	SELINUXFS,	0,	NULL);

		if	(rc	<	0)	{

				if	(errno	==	ENODEV)	{

						/*	SELinux	not	enabled	in	kernel	*/

						return	-1;

				}

				if	(errno	==	ENOENT)	{

						/*	Fall	back	to	legacy	mountpoint.	*/

						mnt	=	OLDSELINUXMNT;

						rc	=	mkdir(mnt,	0755);

						if	(rc	==	-1	&&	errno	!=	EEXIST)	{

								selinux_log(SELINUX_ERROR,"SELinux:	Could	not	mkdir:		%s\n",

								strerror(errno));

								return	-1;

						}

						rc	=	mount(SELINUXFS,	mnt,	SELINUXFS,	0,	NULL);

				}

		}

		if	(rc	<	0)	{

				selinux_log(SELINUX_ERROR,"SELinux:		Could	not	mount	selinuxfs:		%s\n",

				strerror(errno));

				return	-1;

		}

		set_selinuxmnt(mnt);

		return	selinux_android_reload_policy();

}

The	set_selinuxmnt(car	*mnt)	function	changes	a	global	variable	in	libselinux	so	that
other	routines	can	find	the	location	of	this	vital	interface.	From	there	it	calls	another	helper

www.it-ebooks.info

http://www.it-ebooks.info/

function,	selinux_android_reload_policy(),	which	is	located	in	the	same	libselinux
android.c	file.	It	loops	through	an	array	of	possible	policy	locations	in	priority	order.
This	array	is	defined	as	follows:

Static	const	char	*const	sepolicy_file[]	=	{

		"/data/security/current/sepolicy",

		"/sepolicy",

		0	};

Since	only	the	root	filesystem	is	mounted,	it	chooses	/sepolicy	at	this	time.	The	other
path	is	for	dynamic	runtime	reloads	of	policy.	After	acquiring	a	valid	file	descriptor	to	the
policy	file,	the	system	is	memory	mapped	into	its	address	space,	and	calls
security_load_policy(map,	size)	to	load	it	to	the	kernel.	This	function	is	defined	in
load_policy.c.	Here,	the	map	parameter	is	the	pointer	to	the	beginning	of	the	policy	file,
and	the	size	parameter	is	the	size	of	the	file	in	bytes:

int	selinux_android_reload_policy(void)

{

		int	fd	=	-1,	rc;

		struct	stat	sb;

		void	*map	=	NULL;

		int	i	=	0;

		while	(fd	<	0	&&	sepolicy_file[i])	{

				fd	=	open(sepolicy_file[i],	O_RDONLY	|	O_NOFOLLOW);

				i++;

		}

		if	(fd	<	0)	{

				selinux_log(SELINUX_ERROR,	"SELinux:		Could	not	open	sepolicy:		%s\n",

				strerror(errno));

				return	-1;

		}

		if	(fstat(fd,	&sb)	<	0)	{

				selinux_log(SELINUX_ERROR,	"SELinux:		Could	not	stat	%s:		%s\n",

				sepolicy_file[i],	strerror(errno));

				close(fd);

				return	-1;

		}

		map	=	mmap(NULL,	sb.st_size,	PROT_READ,	MAP_PRIVATE,	fd,	0);

		if	(map	==	MAP_FAILED)	{

				selinux_log(SELINUX_ERROR,	"SELinux:		Could	not	map	%s:		%s\n",

				sepolicy_file[i],	strerror(errno));

				close(fd);

				return	-1;

		}

		rc	=	security_load_policy(map,	sb.st_size);

		if	(rc	<	0)	{

				selinux_log(SELINUX_ERROR,	"SELinux:		Could	not	load	policy:		%s\n",

				strerror(errno));

				munmap(map,	sb.st_size);

				close(fd);

				return	-1;

		}

www.it-ebooks.info

http://www.it-ebooks.info/

		munmap(map,	sb.st_size);

		close(fd);

		selinux_log(SELINUX_INFO,	"SELinux:	Loaded	policy	from	%s\n",	

sepolicy_file[i]);

		return	0;

}

The	security	load	policy	opens	the	<selinuxmnt>/load	file,	which	in	our	case	is
/sys/fs/selinux/load.	At	this	point,	the	policy	is	written	to	the	kernel	via	this	pseudo
file:

int	security_load_policy(void	*data,	size_t	len)

{

		char	path[PATH_MAX];

		int	fd,	ret;

		if	(!selinux_mnt)	{

				errno	=	ENOENT;

				return	-1;

		}

		snprintf(path,	sizeof	path,	"%s/load",	selinux_mnt);

		fd	=	open(path,	O_RDWR);

		if	(fd	<	0)

		return	-1;

		ret	=	write(fd,	data,	len);

		close(fd);

		if	(ret	<	0)

		return	-1;

		return	0;

}

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Fixing	the	policy	version
At	this	point,	we	have	a	clear	idea	of	how	the	policy	is	loaded	into	the	kernel.	This	is	very
important.	SELinux	integration	with	Android	began	in	Android	4.0,	so	when	porting	to
various	forks	and	fragments,	this	breaks,	and	code	is	often	missing.	Understanding	all
parts	of	the	system,	however	cursory,	will	help	us	to	correct	issues	as	they	appear	in	the
wild	and	develop.	This	information	is	also	useful	to	understand	the	system	as	a	whole,	so
when	modifications	need	to	be	made,	you’ll	know	where	to	look	and	how	things	work.	At
this	point,	we’re	ready	to	correct	the	policy	versions.

The	logs	and	kernel	config	are	clear;	only	policy	versions	up	to	23	are	supported,	and
we’re	trying	to	load	policy	version	26.	This	will	probably	be	a	common	problem	with
Android	considering	kernels	are	often	out	of	date.

There	is	also	an	issue	with	the	4.3	sepolicy	shipped	by	Google.	Some	changes	by	Google
made	it	a	bit	more	difficult	to	configure	devices	as	they	tailored	the	policy	to	meet	their
release	goals.	Essentially,	the	policy	allows	nearly	everything	and	therefore	generates	very
few	denial	logs.	Some	domains	in	the	policy	are	completely	permissive	via	a	per-domain
permissive	statement,	and	those	domains	also	have	rules	to	allow	everything	so	denial	logs
do	not	get	generated.	To	correct	this,	we	can	use	a	more	complete	policy	from	the	NSA.
Replace	external/sepolicy	with	the	download	from
https://bitbucket.org/seandroid/external-sepolicy/get/seandroid-4.3.tar.bz2.

After	we	extract	the	NSA’s	policy,	we	need	to	correct	the	policy	version.	The	policy	is
located	in	external/sepolicy	and	is	compiled	with	a	tool	called	check_policy.	The
Android.mk	file	for	sepolicy	will	have	to	pass	this	version	number	to	the	compiler,	so	we
can	adjust	this	here.	On	the	top	of	the	file,	we	find	the	culprit:

...

#	Must	be	<=	/selinux/policyvers	reported	by	the	Android	kernel.

#	Must	be	within	the	compatibility	range	reported	by	checkpolicy	-V.

POLICYVERS	?=	26

...

Since	the	variable	is	overridable	by	the	?=	assignment.	We	can	override	this	in
BoardConfig.mk.	Edit	device/fsl/imx6/BoardConfigCommon.mk,	adding	the	following
POLICYVERS	line	to	the	bottom	of	the	file:

...

BOARD_FLASH_BLOCK_SIZE	:=	4096

TARGET_RECOVERY_UI_LIB	:=	librecovery_ui_imx

#	SELinux	Settings

POLICYVERS	:=	23

-include	device/google/gapps/gapps_config.mk

Since	the	policy	is	on	the	boot.img	image,	build	the	policy	and	bootimage:

$	mmm	-B	external/sepolicy/

$	make	–j4	bootimage	2>&1	|	tee	logz

!!!!!!!!!	WARNING	!!!!!!!!!	VERIFY	BLOCK	DEVICE	!!!!!!!!!

$	sudo	chmod	666	/dev/sdd1

www.it-ebooks.info

https://bitbucket.org/seandroid/external-sepolicy/get/seandroid-4.3.tar.bz2
http://www.it-ebooks.info/

$	dd	if=$OUT/boot.img	of=/dev/sdd1	bs=8192	conv=fsync

Eject	the	SD	card,	place	it	into	the	UDOO,	and	boot.

Tip
The	first	of	the	preceding	commands	should	produce	the	following	log	output:

out/host/linux-x86/bin/checkpolicy:	writing	binary	representation	(version	

23)	to	out/target/product/udoo/obj/ETC/sepolicy_intermediates/sepolicy

At	this	point,	by	checking	the	SELinux	logs	using	dmesg,	we	can	see	the	following:

#	dmesg	|	grep	–i	selinux

<6>init:	loading	selinux	policy

<7>SELinux:	128	avtab	hash	slots,	490	rules.

<7>SELinux:	128	avtab	hash	slots,	490	rules.

<7>SELinux:	1	users,	2	roles,	274	types,	0	bools,	1	sens,	1024	cats

<7>SELinux:	84	classes,	490	rules

<7>SELinux:	Completing	initialization.

Another	command	we	need	to	run	is	getenforce.	The	getenforce	command	gets	the
SELinux	enforcing	status.	It	can	be	in	one	of	three	states:

Disabled:	No	policy	is	loaded	or	there	is	no	kernel	support
Permissive:	Policy	is	loaded	and	the	device	logs	denials	(but	is	not	in	enforcing
mode)
Enforcing:	This	state	is	similar	to	the	permissive	state	except	that	policy	violations
result	in	EACCESS	being	returned	to	userspace

One	of	the	goals	while	booting	an	SELinux	system	is	to	get	to	the	enforcing	state.
Permissive	is	used	for	debugging,	as	follows:

#	getenforce

Permissive

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	covered	the	important	policy	load	flow	through	the	init	process.	We
also	changed	the	policy	version	to	suit	our	development	efforts	and	kernel	version.	From
there,	we	were	able	to	load	the	NSA	policy	and	verify	that	the	system	loaded	it.	This
chapter	additionally	showcased	some	of	the	SELinux	APIs	and	their	interactions	with
SELinuxFS.	In	the	next	chapter,	we	will	examine	the	filesystem	and	then	move	forward	in
our	quest	to	get	the	system	into	enforcing	mode.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	6.	Exploring	SELinuxFS
In	the	last	few	chapters,	we	saw	SELinuxFS	surface	on	numerous	occasions.	From	its
entry	in	/proc/filesystems	to	the	policy	load	in	the	init	daemon,	it	sees	frequent	use	in
an	SELinux-enabled	system.	SELinuxFS	is	the	kernel-to-userspace	interface	and	the
foundation	on	which	higher	userspace	idioms	and	libselinux	are	built.	In	this	chapter,	we
will	explore	the	capabilities	of	this	filesystem	for	a	deeper	understanding	of	how	the
system	works.	Specifically,	we	will:

Determine	how	to	find	the	mount	point	of	the	SELinux	filesystem
Extract	status	information	about	our	current	SELinux	system
Modify	our	SELinux	system	status	on	the	fly	from	the	shell	and	through	code
Investigate	ProcFS	interfaces

www.it-ebooks.info

http://www.it-ebooks.info/

Locating	the	filesystem
The	first	thing	we	need	to	do	is	locate	the	mount	point	for	the	filesystem.	libselinux
mounts	the	filesystem	in	either	of	two	places:	/selinux	(by	default)	or	/sys/fs/selinux.
However,	this	is	not	a	strict	requirement	and	can	be	altered	with	a	call	to	void
set_selinuxmnt(char	*mnt),	which	sets	the	SELinux	mount	point	location.	However,
this	should	happen	and	should	not	need	any	adjustment	in	most	circumstances.

The	best	way	to	find	the	mount	point	in	the	system	is	by	running	the	mount	command	and
finding	the	location	of	the	filesystem.	From	the	serial	console,	issue	the	following
commands:

root@udoo:/	#	mount	|	grep	selinux

selinuxfs	/sys/fs/selinux	selinuxfs	rw,relatime	0	0

As	you	can	see,	the	mount	point	is	/sys/fs/selinux.	Let’s	go	to	that	directory	by	issuing
the	following	command	at	the	serial	terminal	prompt:

root@udoo:/	#	cd	/sys/fs/selinux

root@udoo:/sys/fs/selinux	#

You	are	now	in	the	root	of	the	SELinux	filesystem.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Interrogating	the	filesystem
You	can	interrogate	SELinuxFS	to	find	out	what	the	kernel’s	highest	supported	policy
version	is.	This	is	useful	when	you	begin	to	work	with	systems	you	did	not	build	from
source.	It	is	also	useful	when	you	do	not	have	direct	access	to	the	KConfig	file.	It	is
important	to	note	that	both	DAC	and	MAC	permissions	apply	to	this	filesystem.	With
respect	to	MAC	and	SELinux,	the	access	vectors	for	this	are	enumerated	in	class	security
in	the	policy	file	located	at	external/sepolicy/access_vectors:

root@udoo:/sys/fs/selinux	#	echo	'cat	policyvers'

23

Tip
In	the	previous	command,	and	in	several	commands	to	follow,	we	do	not	just	print	the
files	with	the	cat	command.	This	is	because	these	files	do	not	have	a	trailing	newline	at
the	end	of	the	file.	Without	the	newline,	the	command	prompt	following	the	command’s
execution	would	be	at	the	end	of	the	last	line	of	the	output.	Wrapping	the	cat	command
with	echo	guarantees	a	newline.	An	alternate	way	to	get	the	same	effect	is	by	using	cat
policyvers	;	echo.

As	we	expected,	the	supported	version	is	23.	As	you	recall,	we	set	this	value	in	Chapter	4,
Installation	on	the	UDOO	while	configuring	the	kernel	to	enable	SELinux	using	make
menuconfig	from	the	kernel_imx	directory.	This	is	also	accessible	by	the	libselinux
API:

int	security_policyvers(void);

It	should	not	require	any	elevated	permissions	and	is	readable	by	anyone	on	the	system.

www.it-ebooks.info

http://www.it-ebooks.info/

The	enforce	node
In	previous	chapters,	we	discussed	that	SELinux	operates	in	two	modes,	enforcing	and
permissive.	Both	modes	log	policy	violations,	however,	enforcing	mode	causes	the	kernel
to	deny	access	to	the	resource	and	return	an	error	to	the	calling	userspace	process	(for
example,	EACCESS).	SELinuxFS	has	an	interface	to	query	this	status—the	file	node
enforce.	Reading	from	this	file	returns	the	status	0	or	1	depending	on	whether	we	are
running	in	permissive	or	enforcing	mode,	respectively:

root@udoo:/sys/fs/selinux	#	echo	'cat	enforce'	

0

As	you	can	see,	our	system	is	in	permissive	mode.	Android	has	a	toolbox	command	for
printing	this	as	well.	This	command	returns	the	status	Permissive	or	Enforcing
depending	on	whether	we	are	running	in	a	permissive	or	enforcing	mode,	respectively:

root@udoo:/sys/fs/selinux	#	getenforce

Permissive

You	can	also	write	to	the	enforce	file.	The	DAC	permissions	for	this	filesystem	are:

Owner:	root	read,	write

Group:	root	read

Others:	read

Anyone	can	get	the	enforcing	status,	but	to	set	it,	you	must	be	the	root	user.	The	MAC
permission	required	for	this	is:

class:	security	

vector:	setenforce

A	command	called	setenforce	can	change	the	status:

root@udoo:/sys/fs/selinux	#	setenforce	0

To	see	what	the	command	does,	run	it	in	strace:

root@udoo:/sys/fs/selinux	#	strace	setenforce	0

...

open("/proc/self/task/3275/attr/current",	O_RDONLY)	=	4

brk(0x41d80000)	=	0x41d80000

read(4,	"u:r:init_shell:s0\0",	4095)	=	18

close(4)	=	0

open("/sys/fs/selinux/enforce",	O_RDWR)	=	4

write(4,	"0",	1)	

...

As	we	can	see,	the	interface	to	enforce	is	as	simple	as	writing	0	or	1.	The	function	in
libselinux	to	do	this	is	int	security_setenforce(int	value).	Another	interesting
artifact	of	the	preceding	command	is	we	can	see	procfs	was	accessed.	SELinux	has	some
additional	entries	in	procfs	as	well.	Those	will	be	covered	further	in	this	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

The	disable	file	interface
SELinux	can	also	be	disabled	at	runtime	using	the	disable	file	interface.	However,	the
kernel	must	be	built	with	CONFIG_SECURITY_SELINUX_DISABLE=y.	Our	kernel	was	not	built
with	this	option.	This	file	is	write	only	by	owner	and	has	no	specific	MAC	permission
associated	with	it.	We	recommend	keeping	this	option	disabled.	Additionally,	SELinux
can	be	disabled	before	a	policy	is	loaded.	Even	when	the	option	is	enabled,	once	a	policy
is	loaded,	it	is	disabled.

www.it-ebooks.info

http://www.it-ebooks.info/

The	policy	file
The	policy	file	lets	you	read	the	current	SELinux	policy	file	that	was	loaded	into	the
kernel.	This	can	be	read	and	saved	to	disk:

root@udoo:/sys/fs/selinux	#	cat	policy	>	/sdcard/policy

By	enabling	the	adb	interface,	you	can	now	extract	it	from	the	device	and	analyze	it	on	the
host	with	the	standard	SELinux	tools.	The	DAC	permissions	on	this	file	are	owner:	root,
read.	There	is	no	SELinux	permission	specific	to	this	file.

The	inverse	to	the	policy	file	is	the	load	file.	We	have	seen	this	file	appear	when	the
policy	file	is	loaded	by	init	using	the	libselinux	API:

int	security_load_policy(void	*data,	size_t	len);

www.it-ebooks.info

http://www.it-ebooks.info/

The	null	file
The	null	file	is	used	by	SELinux	to	redirect	unauthorized	file	accesses	when	domain
transitions	occur.	Remember	that	a	domain	transition	is	when	you	transition	from	one
context	to	another.	In	most	cases,	this	occurs	when	a	program	performs	a	fork	and	exec
function,	but	this	could	happen	programmatically.	In	either	case,	the	process	has	file
references	it	can	no	longer	access,	and	to	help	keep	processes	from	crashing,	they	just
write/read	from	the	SELinux	null	device.

www.it-ebooks.info

http://www.it-ebooks.info/

The	mls	file
One	of	the	capabilities	our	system	has	is	that	our	current	policy	is	using	multilevel
security	(MLS)	support.	This	is	either	0	or	1,	based	on	whether	the	loaded	policy	file	is
using	it.	Since	we	have	it	enabled,	we	would	expect	to	see	1	from	this	file:

root@udoo:/sys/fs/selinux	#	echo	'cat	mls'

1

The	mls	file	is	readable	by	all	and	has	a	corresponding	SELinux	API:

int	is_selinux_mls_enabled(void)

www.it-ebooks.info

http://www.it-ebooks.info/

The	status	file
The	version	file	allows	a	mechanism	by	which	you	can	be	informed	of	updates	that	occur
within	SELinux.	One	such	example	would	be	when	a	policy	reload	occurs.	A	userspace
object	manager	could	cache	decision	results	and	use	the	reload	event	as	a	trigger	to	flush
their	cache.	The	status	file	is	read	only	by	everyone	and	has	no	specific	MAC
permissions.	The	libselinux	API	interface	is:

int	selinux_status_open(int	fallback);

void	selinux_status_close();

int	selinux_status_updated(void);

int	selinux_status_getenforce(void);

int	selinux_status_policyload(void);

int	selinux_status_deny_unknown(void);

By	checking	the	status	structure,	you	can	detect	changes	and	flush	the	cache.	Currently,
however,	you	are	missing	this	API	in	your	libselinux,	but	we’ll	correct	that	in	Chapter	7,
Utilizing	Audit	Logs.

There	are	many	SELinuxFS	files	in	the	file	tree;	our	intent	here	was	only	to	cover	several
files	because	of	their	importance	or	pertinence	to	what	we’ve	done	and	where	we’re	going.
We	did	not	cover:

access

checkreqprot

commit_pending_bools

context

create

deny_unknown

member

reject_unknown

relabel

The	use	of	these	files	is	not	simple	and	is	typically	done	by	userspace	object	managers	that
are	using	the	libselinux	API	to	abstract	the	complexities.

www.it-ebooks.info

http://www.it-ebooks.info/

Access	Vector	Cache
SELinuxFS	also	has	some	directories	you	can	explore.	The	first	is	avc.	This	stands	for
“Access	Vector	Cache”	and	can	be	used	to	get	statistics	about	the	security	server	in	the
kernel:

root@udoo:/sys/fs/selinux	#	cd	avc/

root@udoo:/sys/fs/selinux/avc	#	ls

cache_stats

cache_threshold

hash_stats

All	these	files	can	be	read	with	the	cat	command:

root@udoo:/sys/fs/selinux/avc	#	cat	cache_stats

lookups	hits	misses	allocations	reclaims	frees

285710	285438	272	272	128	128

245827	245409	418	418	288	288

267511	267227	284	284	192	193

214328	213883	445	445	288	298

The	cache_stats	file	is	readable	by	all	and	requires	no	special	MAC	permissions.

The	next	file	to	look	at	is	hash_stats:

root@udoo:/sys/fs/selinux/avc	#	cat	hash_stats

entries:	512

buckets	used:	284/512

longest	chain:	7

The	underlying	data	structure	for	the	Access	Vector	Cache	is	a	hash	table;	hash_stats
lists	the	current	properties.	As	we	can	see	in	the	output	of	the	preceding	command,	we
have	512	slots	in	the	table,	with	284	of	them	in	use.	For	collisions,	we	have	the	longest
chain	at	7	entries.	This	file	is	world	readable	and	requires	no	special	MAC	permissions.
You	can	modify	the	number	of	entries	in	this	table	through	the	cache_threshold	file.

The	cache_threshold	file	is	used	to	tune	the	number	of	entries	in	the	avc	hash	table.	It	is
world	readable	and	owner	writeable.	It	requires	the	SELinux	permission	setsecparam,	and
can	be	written	to	and	read	from	with	the	following	simple	commands,	respectively:

root@udoo:/sys/fs/selinux/avc	#	echo	"1024"	>	cache_threshold	

root@udoo:/sys/fs/selinux/avc	#	echo	'cat	cache_threshold'

1024

You	can	disable	the	cache	by	writing	0.	However,	outside	the	benchmarking	tests,	this	is
not	encouraged.

www.it-ebooks.info

http://www.it-ebooks.info/

The	booleans	directory
The	second	directory	to	look	into	is	booleans.	An	SELinux	boolean	allows	policy
statements	to	change	dynamically	via	boolean	conditions.	By	changing	the	boolean	state,
you	can	affect	the	behavior	of	the	loaded	policy.	The	current	policy	does	not	define	any
booleans;	so	this	directory	is	empty.	In	policies	that	define	booleans,	the	directory	would
be	populated	with	files	named	after	each	boolean.	You	can	then	read	and	write	to	these
files	to	change	the	boolean	state.	The	Android	toolbox	has	been	modified	to	include	the
getsebool	and	setsebool	commands.	The	libselinux	API	also	exposes	these
capabilities:

int	security_get_boolean_names(char	***names,	int	*len);

int	security_get_boolean_pending(const	char	*name);

int	security_get_boolean_active(const	char	*name);

int	security_set_boolean(const	char	*name,	int	value);

int	security_commit_booleans(void);

int	security_set_boolean_list(size_t	boolcnt,	SELboolean	*	boollist,	int	

permanent);

Booleans	are	transactional.	This	means	it	is	an	all	or	nothing	set.	When	you	use
security_set_boolean*,	you	must	call	security_commit_booleans()	to	make	it	take
effect.	Unlike	Linux	desktop	systems,	permanent	booleans	are	not	supported.	Changing
the	runtime	value	does	not	persist	across	reboots.	Also,	on	Android,	if	you	are	attempting
Android	Compatibility	Test	Suite	(CTS)	compliance,	booleans	will	cause	the	tests	to	fail.
Booleans	can	have	varying	DAC	permissions	based	on	the	target,	but	they	always	require
the	SELinux	permission,	setbool.

Tip
You	must	pass	the	Android	Compatability	Test	Suite	for	Android	branding.	More	on	CTS
can	be	found	at	https://source.android.com/compatibility/cts-intro.html.

www.it-ebooks.info

https://source.android.com/compatibility/cts-intro.html
http://www.it-ebooks.info/

The	class	directory
The	next	directory	to	look	at	is	class.	The	class	directory	contains	all	the	classes	defined
in	the	access_vectors	SELinux	policy	file	or	via	the	class	keyword	in	the	SELinux
policy	language.	For	each	class	defined	in	the	policy,	a	directory	exists	with	the	same
name.	For	instance,	run	the	following	on	the	serial	terminal:

root@udoo:/sys/fs/selinux/class	#	ls	-la

...

dr-xr-xr-x	root	root	1970-01-02	01:58	peer

dr-xr-xr-x	root	root	1970-01-02	01:58	process

dr-xr-xr-x	root	root	1970-01-02	01:58	property_service

dr-xr-xr-x	root	root	1970-01-02	01:58	rawip_socket

dr-xr-xr-x	root	root	1970-01-02	01:58	security

...

As	you	can	see	from	the	preceding	command,	there	are	quite	a	few	directories.	Let’s
examine	the	property_service	directory.	This	directory	was	chosen	because	it	is	only
one	defined	on	Android.	However,	the	files	present	in	each	directory	are	the	same	and
include	index	and	perms:

root@udoo:/sys/fs/selinux/class/property_service	#	ls

index

perms

The	mapping	between	string	and	some	arbitrary	integer	that	is	defined	in	the	SELinux
kernel	module	is	index.	A	directory	that	contains	all	the	permissions	possible	for	that	class
is	perms:

root@udoo:/sys/fs/selinux/class/property_service	#	cd	perms/

root@udoo:/sys/fs/selinux/class/property_service/perms	#	ls

set

As	you	can	see,	the	set	access	vector	is	available	for	the	property_service	class.	The
class	directory	can	be	very	beneficial	to	observe	a	policy	file	already	loaded	in	a	system.

www.it-ebooks.info

http://www.it-ebooks.info/

The	initial_contexts	directory
The	next	directory	entry	to	peer	into	is	initial_contexts.	This	is	the	static	mapping	of
the	initial	security	contexts,	better	known	as	security	identifier	(sid).	This	map	tells	the
SELinux	system	which	context	should	be	used	to	start	each	kernel	object:

root@udoo:/sys/fs/selinux/initial_contexts	#	ls

any_socket

devnull

file

...

We	can	see	what	the	initial	sid	for	file	is	by	performing:

root@udoo:/sys/fs/selinux/initial_contexts	#	echo	'cat	file'

u:object_r:unlabeled:s0

This	corresponds	to	the	entry	in	external/sepolicy/initial_sid_contexts:

...

sid	file	u:object_r:unlabeled:s0…

www.it-ebooks.info

http://www.it-ebooks.info/

The	policy_capabilities	directory
The	last	directory	to	look	into	is	policy_capabilities.	This	directory	defines	any
additional	capabilities	the	policy	might	have.	For	our	current	setup,	we	should	have:

root@udoo:/sys/fs/selinux/policy_capabilities	#	ls

network_peer_controls

open_perms

Each	file	entry	contains	a	boolean	indicating	whether	the	feature	is	enabled:

root@udoo:/sys/fs/selinux/policy_capabilities	#	echo	'cat	open_perms'

1

The	entries	are	readable	by	all	and	writeable	by	none.

www.it-ebooks.info

http://www.it-ebooks.info/

ProcFS
We	alluded	to	some	of	the	procfs	interfaces	that	are	being	exported.	Much	of	what	is
discussed	is	the	security	contexts,	so	that	means	the	shell	should	have	some	security
context	associated	with	it…	but	how	do	we	achieve	this?	Since	this	is	a	general
mechanism	that	all	LSMs	use,	the	security	contexts	are	both	read	and	written	through
procfs:

root@udoo:/sys/fs/selinux/policy_capabilities	#	echo	'cat	

/proc/self/attr/current'

u:r:init_shell:s0

You	can	also	get	per-thread	contexts	as	well:

root@udoo:/sys/fs/selinux/policy_capabilities	#	echo	

'/proc/self/task/2278/attr/current'

u:r:init_shell:s0

Just	replace	2278	with	the	thread	ID	you	want.

The	DAC	permissions	on	the	current	file	are	read	and	write	for	everyone,	but	those	files
are	typically	very	restricted	by	MAC	permissions.	Typically,	only	the	process	that	owns
the	procfs	entry	can	read	the	files,	and	you	must	have	both	standard	write	permissions	and
a	combination	of	setcurrent.	Note	that	the	“from”	and	“to”	domains	must	be	allowed
using	a	dyntransition.	To	read,	you	must	have	getattr.	All	of	these	permissions	are
attained	from	the	security	class,	process.	The	libselinux	API	functions	getcon	and
setcon	allow	you	to	manipulate	current.

The	prev	file	can	be	used	to	find	the	previous	context	you	switched	from.	This	file	is	not
writeable:

root@udoo:/proc/self/attr	#	echo	'cat	prev'

u:r:init:s0

Our	serial	terminal’s	former	domain	or	security	context	was	u:r:init:s0.

The	exec	file	is	used	to	set	the	label	for	children	processes.	This	is	set	before	running	an
exec.	All	the	permissions	on	these	files	are	the	same	with	respect	to	the	MAC	permissions
used	to	actually	set	them.	The	caller	attempting	to	set	this	must	also	hold	setexec	from
the	process	class.	The	libselinux	API	int	setexeccon(security_context_t	context)
and	int	getexeccon(security_context_t	*context)	can	be	used	for	setting	and
retrieving	the	label.

The	fscreate,	keycreate,	and	sockcreate	files	do	similar	things.	When	a	process	creates
any	one	of	the	corresponding	objects,	fs	objects	(files,	named	pipes,	or	other	objects),
keys,	or	sockets,	the	values	set	here	are	used.	The	caller	must	also	hold	setfscreate,
setsockcreate,	and	setkeycreate	from	the	process	class.	The	following	SELinux	API
is	used	to	alter	these:

int	set*createcon(security_context_t	context);

int	get*createcon(security_context_t	*con);

www.it-ebooks.info

http://www.it-ebooks.info/

Where	*	can	be	fs,	key,	or	socket.

It’s	important	to	note	that	these	special	process	class	permissions	give	you	the	ability	to
change	the	proc/attr	file.	You	still	need	to	get	through	the	DAC	permissions	and	any
SELinux	permissions	set	on	the	file	objects	themselves.	Then	and	only	then	do	you	need
the	additional	permission,	such	as	setfscreate.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Java	SELinux	API
Similar	APIs	to	the	C	APIs	discussed	previously	exist	for	Java	as	well.	In	this	case,	it	is
assumed	you	will	build	the	code	with	the	platform,	as	these	are	not	public	APIs	shipped
with	the	Android	SDK.	The	API	is	located	at
frameworks/base/core/java/android/os/SELinux.java.	However,	this	is	a	very	limited
subset	of	the	API.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	explored	the	interface	between	the	kernel	and	userspace	with	respect	to
SELinux,	and	reinforced	the	concepts	of	access	vector	class	and	security	context.	In	the
next	chapter,	we	will	perform	some	upgrades	to	our	system	and	look	at	the	audit	logs
getting	one	step	closer	to	our	ultimate	goal—an	operable	device	in	SELinux	enforcing
mode.	We	say	operable	because	we	can	put	it	in	enforcing	mode	now.	However,	if	you	do
it	now	via	setenforce	1	on	a	UDOO,	your	device	will	become	unstable.	On	our	system,
for	example,	the	browser	fails	to	launch	if	we	do	this.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	7.	Utilizing	Audit	Logs
So	far	we’ve	seen	AVC	records	or	the	SELinux	denial	messages	show	up	in	dmesg,	but
dmesg	is	a	circular	memory	buffer,	subject	to	frequent	rollover	dependent	on	how	verbose
your	kernel	is.	By	using	the	audit	kernel	subsystem,	we	can	route	these	messages	into	user
space	and	log	them	to	disk.	On	the	desktop,	the	daemon	that	does	this	is	called	auditd.	A
minimal	port	of	auditd	is	maintained	in	the	NSA	branches	however,	it	has	not	officially
been	merged	into	AOSP.	We	are	going	to	use	the	auditd	version	from	the	NSA	branches
since	we	are	working	on	Android	4.3.	The	officially	merged	version	as	of	April	7,	2014
can	be	found	at	https://android-review.googlesource.com/#/c/89645/.	It’s	implemented
within	logd,	and	merged	at	https://android-review.googlesource.com/#/c/83526/.

In	this	chapter,	we	will:

Update	our	system	with	the	fast-paced	SE	for	Android	Open	Source	Community
(AOSP)
Investigate	how	the	audit	subsystem	works
Learn	to	read	SELinux	audit	logs	and	start	writing	policy
Look	at	contexts	relative	to	the	logs

All	LSMs	should	log	their	messages	into	the	audit	subsystem.	The	audit	subsystem	can
then	route	the	messages	to	the	kernel	circular	buffer	using	printk,	or	to	the	auditing
daemon	in	user	space,	if	one	is	present.	The	kernel	and	userspace	logging	daemon
communicate	using	the	AUDIT_NETLINK	socket.	We	will	dissect	this	interface	further	in	the
chapter.

Lastly,	the	audit	subsystem	has	the	capability	to	print	comprehensive	records	when	policy
violations	occur.	Although	you	don’t	need	this	feature	to	enable	and	work	with	SELinux,	it
can	make	your	life	easier.	To	enable	this	system,	you	must	use	auditd,	because	logd
currently	doesn’t	have	this	support.	You’ll	need	to	build	your	kernel	with
CONFIG_AUDITSYSCALL=y	and	place	an	audit.rules	file	in	/data/misc/audit/.	After	you
patch	your	tree	with	the	following	instructions,	read	system/core/auditd/README.

Unfortunately,	the	UDOO	kernel	version	3.0.35	does	not	support	CONFIG_AUDITSYSCALL.
The	patch	located	at	https://git.kernel.org/cgit/linux/kernel/git/stable/linux-
stable.git/commit/?id=29ef73b7a823b77a7cd0bdd7d7cded3fb6c2587b	should	enable	the
support.	However,	on	the	UDOO,	it	causes	a	deadlock	we	could	not	trace	down.

www.it-ebooks.info

https://android-review.googlesource.com/#/c/89645/
https://android-review.googlesource.com/#/c/83526/
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/commit/?id=29ef73b7a823b77a7cd0bdd7d7cded3fb6c2587b
http://www.it-ebooks.info/

Upgrades	–	patches	galore
Although	Android	4.3,	released	from	Google,	had	SE	for	Android	support,	it	is	still
limited,	especially	in	the	areas	of	auditing.	One	of	the	simplest	ways	to	bring	this	to	a
more	useable	state	is	to	get	the	patches	for	some	of	the	projects	from	the	NSA’s	SE	for
Android	4.3	branch.	Here,	the	community	has	staged	and	deployed	many	of	the	more
advanced	features	which	were	not	merged	in	the	4.3	timeframe.

The	NSA	maintains	repositories	at	https://bitbucket.org/seandroid/.	There	are	many
projects	so	figuring	out	which	to	use	and	what	branch	can	be	daunting.	A	way	to	find	them
is	to	go	through	each	project	and	find	the	projects	with	a	SEAndroid-4.3	branch.	You
don’t	need	to	descend	into	the	device	trees	since	we’re	not	building	AOSP	devices.	The
list	of	such	project	is:

https://bitbucket.org/seandroid/system-core
https://bitbucket.org/seandroid/frameworks-base
https://bitbucket.org/seandroid/external-libselinux
https://bitbucket.org/seandroid/build
https://bitbucket.org/seandroid/frameworks-native

We	can	also	safely	skip	sepolicy	since	we’ve	already	updated	it	to	the	bleeding	edge,	but
the	kernels	are	a	bit	trickier.	We	need	the	changes	from	kernel-common
(https://bitbucket.org/seandroid/kernel-common)	and	the	binder	patch	(https://android-
review.googlesource.com/#/c/45984/),	which	can	be	attained	as	follows:

$	mkdir	~/sepatches

$	cd	~/sepatches

$	git	clone	https://bitbucket.org/seandroid/system-core.git

$	git	clone	https://bitbucket.org/seandroid/frameworks-base.git

$	git	clone	https://bitbucket.org/seandroid/external-libselinux.git

$	git	clone	https://bitbucket.org/seandroid/build.git

$	git	clone	https://bitbucket.org/seandroid/frameworks-native.git

We	can	start	by	figuring	out	the	exact	version	we	need	to	patch	to	by	looking	at	the
build/core/build_id.mk	file,	and	by	using	the	webpage
https://source.android.com/source/build-numbers.html	to	do	a	lookup.

The	file	shows	BUILD_ID	is	JSS15J,	and	the	lookup	shows	that	we	are	working	with	the
android-4.3_r2.1	release	for	the	UDOO.

For	each	downloaded	project	so	far,	generate	the	patches	by	running	the	command	git
checkout	origin/seandroid-4.3_r2.	Finally,	execute	git	format-patch	origin/jb-
mr2.0-release.	Since	there	is	no	4.3._r2.1	branch,	we’re	using	r2.

For	each	of	these	patches,	you’ll	need	to	apply	them	in	the	tree	from	their	corresponding
udoo/<project>	folder.	It	is	important	to	apply	the	patches	for	each	project	in	numeric
order	starting	with	the	0001*	patch,	moving	on	to	0002*,	and	so	on.	As	an	example	of	how
to	apply	a	specific	patch	for	a	project,	let’s	look	at	the	first	patch	needed	for	system-core.
Note	that	these	Git	repositories	use	hyphens	in	place	of	the	slashes	in	the	source	tree;	so
frameworks-base	correlates	to	frameworks/base.

www.it-ebooks.info

https://bitbucket.org/seandroid/
https://bitbucket.org/seandroid/system-core
https://bitbucket.org/seandroid/frameworks-base
https://bitbucket.org/seandroid/external-libselinux
https://bitbucket.org/seandroid/build
https://bitbucket.org/seandroid/frameworks-native
https://bitbucket.org/seandroid/kernel-common
https://android-review.googlesource.com/#/c/45984/
https://source.android.com/source/build-numbers.html
http://www.it-ebooks.info/

First,	generate	the	patches:

$	cd	sepatches/system-core

$	git	checkout	origin/seandroid-4.3_r2

$	git	format-patch	origin/jb-mr2.0-release

Apply	the	first	patch,	as	follows:

$	cd	<udoo_root>/system/core

$	patch	-p1	<	~/sepatches/system-core/0001-Add-writable-data-space-for-

radio.patch	

patching	file	rootdir/init.rc

Reversed	(or	previously	applied)	patch	detected!	Assume	-R?	[n]	

Note
Note	that	for	UDOO,	it	is	important	not	to	apply	a	patch	number	higher	than	0005	in
frameworks/base.	For	other	projects,	you	should	apply	all	the	patches.

Note	the	error.	Just	hit	Ctrl	+	C	to	quit	the	patching	process	whenever	you	see	this.	The
Git	trees	are	not	quite	perfect,	and	because	of	this,	some	of	the	patches	are	already	in	the
UDOO	source.	The	patch	command	will	let	us	know,	and	we	can	skip	these	by	canceling
them,	when	warned,	with	Ctrl	+	C.	Keep	going	through	the	patches,	canceling	the	ones
already	applied,	and	fixing	up	any	failures.	After	patching	userspace,	it’s	highly
recommended	that	you	build	to	ensure	nothing	is	broken.

Once	userspace	is	completely	patched,	we	need	to	patch	the	kernel.	Start	by	cloning	the
kernel-common	project	from	Bitbucket	with	the	git	clone
https://bitbucket.org/seandroid/kernel-common.git	command.	We	will	patch	the
kernel	with	the	same	method	as	the	rest	of	the	projects	with	the	exception	of	the	binder
patch.	By	viewing	the	link	for	the	binder	patch	mentioned,	https://android-
review.googlesource.com/#/c/45984/,	we	found	that	the	Git	SHA	hash	is
a3c9991b560cf0a8dec1622fcc0edca5d0ced936,	as	given	in	the	Patch	set	4	reference
field	in	the	following	screenshot:

We	can	then	generate	the	patch	for	this	SHA	hash:

$	git	format-patch	-1	a3c9991b560cf0a8dec1622fcc0edca5d0ced936

www.it-ebooks.info

https://android-review.googlesource.com/#/c/45984/
http://www.it-ebooks.info/

0001-Add-security-hooks-to-binder-and-implement-the-hooks.patch

Then,	apply	that	patch	with	the	patch	command	as	we	did	before.	The	patch	has	a	failed
hunk	for	a	header	file	inclusion;	just	fix	it	up	like	the	others	by	using	the	reject	file.	When
you	build,	you’ll	get	this	error	in	the	kernel:

security/selinux/hooks.c:1846:9:	error:	variable	'sad'	has	initializer	but	

incomplete	type

security/selinux/hooks.c:1846:28:	error:	storage	size	of	'sad'	isn't	known

Go	ahead	and	remove	this	line	and	all	references.	This	was	a	change	made	in	the	3.0
kernels:

struct	selinux_audit_data	sad	=	{0,};

ad.selinux_audit_data	=	&sad;

Note
We	figured	this	out	by	looking	through	the	original	3.0	patches,	which	can	be	found	at
following	link:

https://bitbucket.org/seandroid/kernel-
omap/commits/59bc19226c746f479edc2acca9a41f60669cbe82?at=seandroid-omap-tuna-
3.0

As	you	recall,	the	UDOO	uses	a	custom	init.rc.	We	need	to	add	any	changes	to	init.rc
to	the	one	UDOO	actually	uses.	All	the	patches	that	can	modify	init.rc	will	be	in	the
system-core	project,	specifically	these:

0003-Auditd-initial-commit.patch

0007-Handle-policy-reloads-within-ueventd-rather-than-res.patch

0009-Allow-system-UID-to-set-enforcing-and-booleans.patch

Go	ahead	and	find	the	changes	to	init.rc	in	these	patches	and	apply	them	to
device/fsl/imx6/etc/init.rc	using	the	same	patch	technique.

www.it-ebooks.info

https://bitbucket.org/seandroid/kernel-omap/commits/59bc19226c746f479edc2acca9a41f60669cbe82?at=seandroid-omap-tuna-3.0
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The	audit	system
In	the	previous	section,	we	did	a	lot	of	patching;	the	point	of	which	was	to	enable	the	audit
integration	work	done	on	Android	and	its	dependencies.	These	patches	also	fix	some	bugs
in	the	code	and,	very	importantly,	enable	the	SELinux/LSM	binder	hooks	and	policy
controls.

The	audit	system	in	Linux	is	used	by	LSMs	to	print	the	denial	records	as	well	as	to	gather
very	thorough	and	complete	records	of	events.	No	matter	what,	when	an	LSM	prints	a
message,	it	gets	propagated	to	the	audit	subsystem	and	printed.	However,	if	the	audit
subsystem	has	been	enabled,	then	you	get	more	context	associated	with	the	denial.	The
audit	subsystem	even	supports	loading	rules	for	watching	this.	For	instance,	you	could
watch	all	writes	to	/system	that	were	not	done	by	the	system	UID.

www.it-ebooks.info

http://www.it-ebooks.info/

The	auditd	daemon
The	auditd	daemon,	or	service,	runs	in	userspace	and	listens	over	a	NETLINK	socket	to
the	audit	subsystem.	The	daemon	registers	itself	to	receive	the	kernel	messages,	and	can
also	load	the	audit	rules	over	this	socket.	Once	registered,	the	auditd	daemon	receives	all
the	audit	events.	The	auditd	daemon	was	minimally	ported,	and	there	was	an	attempt	to
mainline	it	into	Android	that	was	later	rejected.	However,	auditd	has	been	used	by
various	OEMs	(such	as	Samsung)	and	by	the	NSA’s	4.3	branch.	An	alternative	approach
that	put	records	in	logcat	was	later	merged	into	Android	(for	more	information,	refer	to
https://android-review.googlesource.com/89645).

Earlier,	we	saw	the	AVC	denial	messages	from	SELinux	in	dmesg.	The	problem	with	this
is	that	the	circular	memory	log	is	prone	to	rollover	when	you	have	many	denials	or	a
chatty	kernel.	With	auditd,	all	the	messages	come	to	the	daemon	and	are	written	to	the
/data/misc/audit/audit.log	file.	This	log	file,	herein	referred	to	as	audit.log,	may
exist	on	device	boot	and	is	rotated	into	the	/data/misc/audit/audit.old	file,	known	as
audit.old.	The	daemon	resumes	logging	to	a	new	audit.log	file.	This	rotate	event
occurs	when	the	size	threshold	AUDITD_MAX_LOG_FILE_SIZEKB	(set	during	compile	time	in
the	system/core/auditd/Android.mk	file)	is	exceeded.	This	threshold	is	typically	1000
KB	but	can	be	changed	in	the	device’s	makefile.	Also,	sending	SIGHUP	with	kill	will
cause	a	rotate	as	in	the	following	example.

Verify	the	daemon	is	running	and	get	its	PID:

root@udoo:/	#	ps	-Z	|	grep	audit

u:r:auditd:s0	audit	2281	1	/system/bin/auditd

u:r:kernel:s0	root	2293	2	kauditd

Verify	only	one	log	exists:

root@udoo:/	#	ls	-la	/data/misc/audit/

-rw-r-----	audit	system	79173	1970-01-02	00:19	audit.log

Rotate	the	logs:

root@udoo:/	#	kill	-SIGHUP	2281

Verify	audit.old:

root@udoo:/	#	ls	-la	/data/misc/audit/

-rw-r-----	audit	system	319	1970-01-02	00:20	audit.log

-rw-r-----	audit	system	79173	1970-01-02	00:19	audit.old

www.it-ebooks.info

https://android-review.googlesource.com/89645
http://www.it-ebooks.info/

Auditd	internals
Since	the	auditd	and	libaudit	code	from	the	Linux	desktop	have	a	GPL	license,	a
rewrite	was	done	for	Android,	released	under	the	Apache	license.	The	rewrite	is	minimal,
thus	you	will	only	find	the	functions	implemented	that	were	required	to	support	the
daemon.	The	functional	and	header	interfaces	should	remain	identical	though.

The	auditd	daemon	starts	life	at	main()	in	system/core/auditd.c.	It	quickly	changes	its
permissions	from	UID	root	to	a	special	auditd	UID.	When	it	does	this,	it	retains
CAPSYS_AUDIT,	which	is	a	required	DAC	capability	check	to	use	the	AUDIT	NETLINK
socket.	It	does	this	via	a	call	to	drop_privileges_or_die().	From	there,	it	does	some
option	parsing	with	getopt(),	and	we	finally	get	to	the	audit-specific	calls,	the	first	of
which	opens	the	NETLINK	socket	using	audit_open().	This	function	simply	calls
socket(PF_NETLINK,	SOCK_RAW,	NETLINK_AUDIT),	which	opens	a	file	descriptor	to	the
NETLINK	socket.	After	opening	the	socket,	the	daemon	opens	a	handle	to	audit.log
with	a	call	to	audit_log_open(const	char	*logfile,	const	char	*rotatefile,
size_t	threshold).	This	function	checks	whether	the	audit.log	file	exists	and,	if	it
does,	renames	it	to	audit.old.	It	then	creates	a	new	empty	log	file	in	which	the	data	is
recorded.

The	next	step	is	to	register	the	daemon	with	the	audit	subsystem	so	that	it	knows	to	whom
to	send	messages.	By	setting	the	PID	of	the	daemon,	you	ensure	that	only	this	daemon	will
get	the	messages.	Since	NETLINK	can	support	many	readers,	you	don’t	want	a	“rogue
auditd”	to	read	the	messages.	With	that	stated,	the	daemon	calls
audit_set_pid(audit_fd,	getpid(),	WAIT_YES),	where	audit_fd	is	the	NETLINK
socket	from	audit_open(),	getpid()	returns	the	daemon’s	PID,	and	WAIT_YES	causes	the
daemon	to	block	until	the	operation	is	complete.	Next,	the	daemon	enables	the	audit
subsystem’s	advanced	features	with	a	call	to	audit_set_enabled(audit_fd,	1)	and	adds
rules	to	the	audit	subsystem	via	audit_rules_read_and_add(audit_fd,
AUDITD_RULES_FILE).	This	function	reads	the	rules	from	that	file,	formats	some	structures,
and	sends	those	structures	to	the	kernel.

The	audit_set_enabled()	and	audit_rules_read_and_add()only	have	an	effect	if	the
kernel	is	built	with	CONFIG_AUDITSYSCALL.	After	this,	the	daemon	checks	whether	the	-k
option	was	specified.	The	-k	option	tells	auditd	to	look	in	dmesg	for	any	missed	audit
records.	It	does	this	because	there	is	a	race	between	capturing	audit	records	before	the
circular	buffer	overflows	and	userspace	starting	many	services,	generating	audit	events
and	policy	violations.	Essentially,	this	helps	coalesce	the	audit	events	from	early	boot	into
the	same	log	files.

After	this,	the	daemon	enters	a	loop	to	read	from	the	NETLINK	socket,	formatting	the
messages,	and	writing	them	to	the	log	file.	It	starts	this	loop	by	waiting	for	IO	on	the
NETLINK	socket	using	poll().	If	poll()	exits	with	an	error,	the	loop	continues	to	check
the	quit	variable.	If	EINTR	is	raised,	the	loop	guard,	quit,	is	set	to	true	in	the	signal
handler,	and	the	daemon	exits.	If	poll()	is	data	on	the	NETLINK,	the	daemon	calls
audit_get_reply(audit_fd,	&rep,	GET_REPLY_BLOCKING,	0),	getting	an	audit_reply

www.it-ebooks.info

http://www.it-ebooks.info/

structure	back	with	the	rep	parameter.	It	then	writes	the	audit_reply	structure	(with
formatting)	to	the	audit.log	file	with	audit_log_write(alog,	"type=%d	msg=%.*s\n",
rep.type,	rep.len,	rep.msg.data).	It	does	this	until	EINTR	is	raised,	at	which	point,
the	daemon	exits.

When	the	daemon	exits,	it	clears	the	PID	registered	with	the	kernel
(audit_set_pid(audit_fd,	0)),	closes	the	audit	socket	via	audit_close()	(which	is
really	just	the	syscall,	close(audit_fd)),	and	closes	the	audit.log	with
audit_log_close().	The	audit_log_*	family	of	functions	is	not	part	of	the	GPLed
interface	to	audit	and	is	a	custom	write.

When	Google	ported	auditd	to	the	logd	infrastructure	in	Android,	it	used	the	same
functions	and	library	code	used	by	the	daemon’s	main()	and	wrapped	it	into	logd.
However,	Google	did	not	take	the	audit_set_enabled()	and
audit_rules_read_and_add()	functions.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Interpreting	SELinux	denial	logs
The	SELinux	denials	get	routed	to	the	kernel	audit	subsystem,	to	auditd,	and	finally,	to
audit.log	and	audit.old.	With	the	logs	resident	in	audit.log,	let’s	pull	this	file	over
adb	and	have	a	closer	look	at	it.

Run	the	following	command	from	the	host,	with	adb	enabled:

$	adb	pull	/data/misc/audit/audit.log

Now,	let’s	tail	that	file	and	look	for	these	lines:

$	tail	audit.log

...

type=1400	msg=audit(88526.980:312):	avc:	denied	{	getattr	}	for	pid=3083	

comm="adbd"	path="/data/misc/audit/audit.log"	dev=mmcblk0p4	ino=42	

scontext=u:r:adbd:s0	tcontext=u:object_r:audit_log:s0	tclass=file

type=1400	msg=audit(88527.030:313):	avc:	denied	{	read	}	for	pid=3083	

comm="adbd"	name="audit.log"	dev=mmcblk0p4	ino=42	scontext=u:r:adbd:s0	

tcontext=u:object_r:audit_log:s0	tclass=file

type=1400	msg=audit(88527.030:314):	avc:	denied	{	open	}	for	pid=3083	

comm="adbd"	name="audit.log"	dev=mmcblk0p4	ino=42	scontext=u:r:adbd:s0	

tcontext=u:object_r:audit_log:s0	tclass=file

The	records	here	consist	of	two	major	portions:	type	and	msg.	The	type	field	indicates
what	type	of	message	it	is.	Messages	with	type	1400	are	AVC	messages,	which	are
SELinux	denial	messages	(there	are	other	types,	as	well).	The	msg	(short	for	message)
portion	of	the	preceding	policy	contains	the	part	for	us	to	analyze.

The	last	command	we	executed	was	adb	pull	/data/misc/audit/aduit.log	and,	as	you
can	see,	we	have	a	few	adb	policy	violations	at	the	tail	of	the	audit.log	file.	Let’s	start	by
looking	at	this	event:

type=1400	msg=audit(88526.980:312):	avc:	denied	{	getattr	}	for	pid=3083	

comm="adbd"	path="/data/misc/audit/audit.log"	dev=mmcblk0p4	ino=42	

scontext=u:r:adbd:s0	tcontext=u:object_r:audit_log:s0	tclass=file

We	can	see	that	the	comm	field	is	adbd.	However,	it’s	not	wise	to	trust	this	value	since	it
can	be	controlled	from	userspace	using	the	prctl()	interface.	It	can	only	be	viewed	as	a
hint.	The	best	way	to	verify	this	is	to	check	the	PID	using	ps	-Z:

#	ps	-Z	|	grep	adbd

u:r:adbd:s0	root	3083	1	/sbin/adbd

With	the	daemon	verified,	we	can	now	check	the	message	in	more	detail.	The	message
consists	of	the	following	fields	(optional	fields	are	identified	by	*):

avc:	denied:	This	part	will	always	happen	and	denotes	it	is	a	denial	record.
{	permission	}:	This	is	the	permission	that	was	denied,	in	this	case,	getattr.
for:	This	will	always	be	printed	and	makes	the	output	readable.
Path*:	This	is	the	optional	field	that	contains	the	path	of	the	object	in	question.	It
only	makes	sense	for	filesystem	access	denials.
dev*:	This	is	the	optional	field	that	identifies	the	block	device	for	the	mounted

www.it-ebooks.info

http://www.it-ebooks.info/

filesystem.	It	only	makes	sense	for	filesystem	access	denials.
ino*:	This	is	the	optional	inode	of	the	file.	Only	the	anonymous	files	in	Linux	print
inode.	It	only	makes	sense	for	filesystem	access	denials.
tclass:	This	is	the	target	class	of	the	object,	which	in	our	case	was	file.

At	this	point,	we	need	to	understand	what	the	msg	portion	of	the	denial	record	is	telling	us
at	a	very	distilled	level.	It	is	saying	that	the	Android	debug	bridge	daemon	wants	to	be
able	to	call	getattr	on	our	policy	file.	A	few	events	down,	we	will	see	it	also	wants	read
and	open.	This	is	the	side	effect	of	running	adb	pull.	A	getattr	permission	denial	occurs
from	a	stat()	syscall,	and	the	read/open	are	from	read()	and	open()	syscalls.	If	you
want	to	allow	this	in	your	policy,	which	would	be	a	security	decision	based	on	your	threat
model,	you	should	add:

allow	adbd	audit_log:file	{	getattr	read	open	};

Alternatively,	use	the	macro	sets	defined	in	global_macros:

allow	adbd	audit_log:file	r_file_perms;

Most	of	the	time,	you	should	use	the	macros	defined	in	global_macros	for	file	permission
accesses.	Typically,	adding	them	one	by	one	is	very	time	consuming	and	tedious.	The
macros	group	the	permissions	in	a	context	analogous	to	read,	write,	and	execute	DAC
permissions.	For	instance,	if	you	give	it	open	and	read,	there’s	a	good	chance	at	some
point	that	the	source	domain	will	need	to	stat	the	file.	So,	the	r_file_perms	macro	has
those	permissions	in	it	already.

You	should	add	this	rule	to	external/sepolicy/adbd.te.	The	.te	files	(also	called	type
enforcement	files)	are	organized	by	source	context,	so	make	sure	you	add	it	to	the	correct
file.	We	do	not	recommend	adding	this	allow	rule—there’s	no	legitimate	reason	that	adbd
needs	access	to	the	audit	logs—we	can	safely	ignore	these	with	a	dontaudit	rule:

dontaudit	adbd	audit_log:file	r_file_perms;

The	dontaudit	rule	is	a	policy	statement	that	says	don’t	audit	(print)	denials	that	match
this	rule.

If	you’re	not	sure	what	to	do,	the	best	advice	is	to	leverage	the	mailing	lists	for	SE	for
Android,	SELinux,	and	audit.	Just	keep	the	messages	appropriate	to	the	specific	mailing
lists	topic.

A	tool	exists	called	audit2allow,	which	can	help	you	write	policy	allow	rules.	However,
it’s	only	a	tool	and	can	be	misused.	It	translates	the	policy	file	to	the	allow	rules	for	the
policy:

$	cat	audit.log	|	audit2allow	

#=============	adbd	==============

allow	adbd	audit_log:file	{	read	getattr	open	};

The	audit2allow	tool	is	not	macro	aware	or	aware	if	you	really	want	to	add	this	allow
rule	to	the	policy	file.	Only	the	policy	author	can	make	this	decision.

There	is	also	a	tool	to	enable	the	r_file_*	macro	mapping	called	fixup.py.	You	can	get

www.it-ebooks.info

http://www.it-ebooks.info/

the	tool	at	https://bitbucket.org/billcroberts/fixup/overview.	After	downloading,	make	it
executable,	and	place	it	somewhere	in	your	executable	path:

$	chmod	a+x	fixup.py

$	cat	audit.log	|	audit2allow	|	fixup.py	

#=============	adbd	==============

allow	adbd	audit_log:file	r_file_perms;

www.it-ebooks.info

https://bitbucket.org/billcroberts/fixup/overview
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Contexts
In	the	simplest	sense,	writing	policies	is	just	the	activity	of	identifying	policy	violations
and	adding	the	appropriate	allow	rules	to	the	policy	file.	However,	in	order	for	SELinux	to
be	effective,	the	source	and	target	contexts	must	be	correct.	If	they	are	not,	the	allow	rules
are	meaningless.

The	first	things	you	might	encounter	are	denials	where	the	target	type	is	unlabeled.	In	this
case,	the	proper	target	label	needs	to	be	set	(refer	to	Chapter	11,	Labeling	Properties).
Also,	process	labels	can	be	wrong.	Multiple	processes	can	belong	to	a	domain,	and	unless
explicitly	done	via	policy,	the	child	process	of	a	parent	inherits	the	parent’s	domain.
However,	in	Android,	domains	that	have	multiple	processes	are	quite	limited.	You	will
never	see	multiple	processes	in	init,	system_server,	adbd,	auditd,	debuggerd,	dhcp,
servicemanager,	vold,	netd,	surfaceflinger,	drmserver,	mediaserver,	installd,
keystore,	sdcardd,	wpa,	and	zygote	domains.

It’s	okay	to	see	multiple	processes	in	the	following	domains:

system_app

untrusted_app

platform_app

shared_app

media_app

release_app

isolated_app

shell

On	a	released	device,	nothing	should	be	run	in	the	su,	recovery,	and	init_shell
domains.	The	following	table	provides	a	complete	mapping	of	domains	to	the	expected
executables	and	cardinality:

Domain Executable(s) Cardinality	(N)

u:r:init:s0" /init N	==	1

u:r:ueventd:s0 /sbin/ueventd N	==	1

u:r:healthd:s0 /sbin/healthd N	==	1

u:r:servicemanager:s0 /system/bin/servicemanager N	==	1

u:r:vold:s0 /system/bin/vold N	==	1

u:r:netd:s0 /system/bin/netd N	==	1

u:r:debuggerd:s0 /system/bin/debuggerd,	/system/bin/debuggerd64 N	==	1

u:r:surfaceflinger:s0 /system/bin/surfaceflinger N	==	1

u:r:zygote:s0 zygote,	zygote64 N	==	1

u:r:drmserver:s0 /system/bin/drmserver N	==	1

www.it-ebooks.info

http://www.it-ebooks.info/

u:r:mediaserver:s0 /system/bin/mediaserver N	>=	1

u:r:installd:s0 /system/bin/installd N	==	1

u:r:keystore:s0 /system/bin/keystore N	==	1

u:r:system_server:s0 system_server N	==1

u:r:sdcardd:s0 /system/bin/sdcard N	>=1

u:r:watchdogd:s0 /sbin/watchdogd N	>=0	&&	N	<	2

u:r:wpa:s0 /system/bin/wpa_supplicant N	>=0	&&	N	<	2

u:r:init_shell:s0 null N	==	0

u:r:recovery:s0 null N	==	0

u:r:su:s0 null N	==	0

Several	Compatibility	Test	Suite	(CTS)	tests	have	been	written	around	this	and
submitted	to	AOSP	at	https://android-review.googlesource.com/#/c/82861/.

Based	on	these	generic	assertions	of	what	a	good	policy	should	look	like,	let’s	evaluate
ours.

First,	we	will	check	for	unlabeled	objects.	From	the	host,	with	the	audit.log	file	you
obtained	with	adb	pull:

$	cat	audit.log	|	grep	unlabeled

...

type=1400	msg=audit(86527.670:341):	avc:	denied	{	rename	}	for	pid=3206	

comm="pool-1-thread-1"	name="com.android.settings_preferences.xml"	

dev=mmcblk0p4	ino=129664	scontext=u:r:system_app:s0	

tcontext=u:object_r:unlabeled:s0	tclass=file

...

It	looks	like	we	have	some	files	and	other	things	that	are	not	labeled	properly;	we	will
address	these	in	the	Chapter	11,	Labeling	Properties.	Now,	let’s	check	for	domains	that
have	multiple	processes	when	they	should	not,	and	find	improper	binaries	in	those
domains	(refer	to	the	previous	table	for	the	complete	mapping.)

Init:

$	adb	shell	ps	-Z	|	grep	u:r:init:s0

u:r:init:s0	root	1	0	/init

u:r:init:s0	root	2267	1	/sbin/watchdogd

Zygote:

$	adb	shell	ps	-Z	|	grep	u:r:zygote:s0

u:r:zygote:s0	root	2285	1	zygote

$	adb	shell	ps	-Z	|	grep	u:r:init_shell

u:r:init_shell:s0	root	2278	1	/system/bin/sh

…	through	all	domains

www.it-ebooks.info

https://android-review.googlesource.com/#/c/82861/
http://www.it-ebooks.info/

After	doing	this,	we	found	issues	because	something	is	running	in	the	init_shell
domain,	and	watchdogd	is	in	the	init	domain.	These	must	be	corrected.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
Writing	sepolicy	is	relatively	easy,	writing	good	policy	is	an	art.	It	requires	the	policy
author	to	understand	the	system	and	the	implications	of	the	allow	rule.	Policy	itself	is	a
meta-programming	language	where	the	language	controls	how	userspace	and	the	kernel
get	along,	and	much	like	any	program,	the	policy	can	be	architected	for	a	specific	use.
Policies	can	be	too	porous	(essentially	useless)	or	very	tight	and	difficult	to	change
without	breaking	the	portions	that	already	work.

A	good	policy	needs	to	preserve	the	intended	proper	function	of	the	system,	so	thorough
testing	of	all	the	systems	within	Android	is	essential.	CTS	is	a	great	help	in	exercising
Android,	but	it	often	does	not	cover	all	the	cases;	user	testing	is	recommended.	In	the	next
chapter,	we	will	cover	how	filesystems	and	filesystem	objects	get	their	security	labels	and
how	we	can	change	them.	Later,	we	will	go	over	how	to	use	CTS	as	a	tool	to	test	the
system	and	generate	policy	violations	for	intended	behaviors.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	8.	Applying	Contexts	to	Files
In	the	last	chapter,	we	upgraded	our	system,	collected	the	audit	logs,	and	started	to	analyze
the	audit	records.	We	discovered	that	some	objects	on	the	filesystem	were	unlabeled.	In
this	chapter,	we	will:

Learn	how	filesystems	and	filesystem	objects	get	their	labels
Demonstrate	techniques	to	change	labels
Introduce	extended	attributes	for	labeling
Investigate	file	contexts	and	dynamic	type	transitions

www.it-ebooks.info

http://www.it-ebooks.info/

Labeling	filesystems
Filesystems	on	Linux	originate	from	mount,	with	the	exception	of	ramdisk	rootfs	on
Android.	Filesystems	on	Linux	vary	drastically.	In	general,	in	order	to	support	all	the
features	of	SELinux,	you	need	a	filesystem	with	the	support	for	xattr	and	the	security
namespace.	We	saw	this	requirement	when	we	were	setting	up	the	kernel	configuration.

Filesystem	objects,	as	they	are	created,	all	start	with	an	initial	context,	just	like	all	other
kernel	objects.	Contexts	on	files	simply	inherit	from	their	parent,	so	if	the	parent	is
unlabeled,	then	the	child	is	unlabeled,	with	the	exception	of	a	type	transition	rule.
Typically,	if	the	context	is	unlabeled,	it	infers	that	the	data	was	created	on	a	filesystem
prior	to	enabling	SELinux	support,	or	the	type	label	in	the	xattr	does	not	exist	in	the
currently	loaded	policy.

The	initial	label	or	initial	security	id	(sid),	is	in	the	sepolicy	file	initial_sid_contexts.
Each	object	class	has	its	associated	initial	sid	present.	For	example,	let’s	take	a	look	at	the
following	code	snippet:

...

sid	fs	u:object_r:labeledfs:s0

sid	file	u:object_r:unlabeled:s0…

www.it-ebooks.info

http://www.it-ebooks.info/

fs_use
Filesystems	can	be	labeled	in	a	variety	of	ways.	The	best	case	scenario	is	when	the
filesystem	supports	xattrs.	In	that	case,	an	fs_use_xattr	statement	should	appear	in	the
policy.	These	statements	appear	in	the	fs_use	file	in	the	sepolicy	directory.	The	syntax
for	fs_use_xattr	is:

fs_use_xattr	<fstype>	<context>

To	look	at	fs_use	from	sepolicy,	we	can	refer	to	an	example	for	the	ext4	filesystems:

...

fs_use_xattr	ext3	u:object_r:labeledfs:s0;

fs_use_xattr	ext4	u:object_r:labeledfs:s0;

fs_use_xattr	xfs	u:object_r:labeledfs:s0;

...

This	tells	SELinux	that	when	it	encounters	an	ext4	fs	object;	look	in	the	extended
attributes	for	the	label	or	file	context.

www.it-ebooks.info

http://www.it-ebooks.info/

fs_task_use
The	other	way	a	filesystem	can	be	labeled	is	by	using	the	process’	context	while	creating
objects.	This	makes	sense	for	pseudo	filesystems	where	the	objects	are	really	process
contexts,	such	as	pipefs	and	sockfs.	These	pseudo	filesystems	manage	the	pipe	and
socket	syscalls	and	are	not	really	mounted	to	userspace.	They	exist	internally	to	the	kernel,
for	the	kernels	use.	However,	they	do	have	objects,	and	like	any	other	object,	they	need	to
be	labeled.	This	is	the	context	in	which	the	fs_task_use	policy	statement	makes	sense.
These	internal	filesystems	can	only	be	accessed	by	processes	directly,	and	provide	services
to	those	processes.	Hence,	labeling	them	with	the	creator	makes	sense.	The	syntax	is	as
follows:

fs_task_use	<fstype>	<context>

Examples	from	the	sepolicy	file	fs_use	are	as	follows:

...

#	Label	inodes	from	task	label.

fs_use_task	pipefs	u:object_r:pipefs:s0;

fs_use_task	sockfs	u:object_r:sockfs:s0;

...

www.it-ebooks.info

http://www.it-ebooks.info/

fs_use_trans
The	next	way	you	might	wish	to	set	labels	on	pseudo	filesystems	that	are	actually
mounted,	is	by	using	fs_use_trans.	This	sets	a	filesystem	wide	label	on	the	pseudo
filesystem.	The	syntax	for	this	is	as	follows:

fs_use_trans	<fstype>	<context>

Example	from	the	sepolicy	file	fs_use	is	as	follows:

...

fs_use_trans	devpts	u:object_r:devpts:s0;

fs_use_trans	tmpfs	u:object_r:tmpfs:s0;

...

www.it-ebooks.info

http://www.it-ebooks.info/

genfscon
If	none	of	the	fs_use_*	statements	meet	your	use	cases,	which	would	be	the	case	for	vfat
filesystems	and	procfs,	then	you	would	use	the	genfscon	statement.	The	label	specified
for	genfscon	applies	to	all	instances	of	that	filesystem	mount.	For	instance,	you	might
wish	to	use	genfscon	with	the	vfat	filesystems.	If	you	have	two	vfat	mounts,	they	will
use	the	same	genfscon	statement	for	each	mount.	However,	genfscon	behaves	differently
with	procfs,	and	lets	you	label	each	file	or	directory	within	the	filesystem.

The	syntax	of	genfscon	is	as	follows:

genfscon	<fstype>	<path>	<context>

Examples	from	sepolicy	genfs_contexts	are	as	follows:

...

#	Label	inodes	with	the	fs	label.

genfscon	rootfs	/	u:object_r:rootfs:s0

#	proc	labeling	can	be	further	refined	(longest	matching	prefix).

genfscon	proc	/	u:object_r:proc:s0

genfscon	proc	/net/xt_qtaguid/ctrl	u:object_r:qtaguid_proc:s0…

Note	that	the	rootfs	partial	path	is	/.	It’s	not	procfs,	so	it	doesn’t	support	any	fine
granularity	to	its	labeling;	so	/	is	the	only	thing	you	can	use.	However,	you	can	get	wild
with	procfs	and	set	to	any	granularity	you	desire.

www.it-ebooks.info

http://www.it-ebooks.info/

Mount	options
Another	option,	if	none	of	those	fit	your	needs,	is	to	pass	the	context	option	via	the	mount
command	line.	This	sets	a	filesystem	wide	mount	context,	such	as	genfscon,	but	is	useful
in	the	case	of	multiple	filesystems	that	need	to	have	separate	labels.	For	instance,	if	you
have	two	vfat	filesystems	mounted,	you	might	wish	to	separate	accesses	to	them.	With
genfscon	statements,	both	filesystems	would	use	the	same	label	provided	by	genfscon.
By	specifying	the	label	at	mount	time,	you	can	have	two	vfat	filesystems	mounted	with
different	labels.

Take	the	following	command	as	an	example:

mount	-ocontext=u:object_r:vfat1:s0	/dev/block1	/mnt/vfat1

mount	-ocontext=u:object_r:vfat2:s0	/dev/block1	/mnt/vfat2

Additional	to	the	context	as	a	mount	option	are:	fscontext	and	defcontext.	These
options	are	mutually	exclusive	from	context.	The	fscontext	option	sets	the	meta
filesystem	type	that	is	used	for	certain	operations,	such	as	mount,	but	does	not	change	the
per	file	labels.	The	defcontext	sets	the	default	context	for	unlabeled	files	overriding	the
initial_sid	statements.	Lastly,	another	option,	rootcontext	allows	you	to	set	the	root
inode	context	in	the	filesystem,	but	only	for	that	object.	According	to	the	man	page	mount
(man	8	mount),	it	was	found	useful	in	stateless	Linux.

www.it-ebooks.info

http://www.it-ebooks.info/

Labeling	with	extended	attributes
Lastly,	and	probably	the	most	frequently	used	way	of	labeling,	is	by	using	the	extended
attributes	support	also	known	as	xattr	or	EA	support.	Even	with	xattr	support,	new
objects	inherit	the	context	of	their	parent	directory;	however,	these	labels	have	the
granularity	of	being	per	filesystem	object-based	or	inode-based.	If	you	remember,	we	had
to	turn	on	or	verify	that	XATTR(CONFIG_EXT4_FS_XATTR)	support	was	enabled	for	our
filesystems	on	Android	as	well	as	configuring	SELinux	to	use	it	via	the	config	option
CONFIG_EXT4_FS_SECURITY.

Extended	attributes	are	a	key-value	metadata	stores	for	files.	SELinux	security	contexts
use	the	security.selinux	key,	and	the	value	is	a	string	that	is	the	security	context	or
label.

www.it-ebooks.info

http://www.it-ebooks.info/

The	file_contexts	file
Within	the	sepolicy	directory,	you	will	find	the	file_contexts	file.	This	file	is	consulted
to	set	the	attributes	on	filesystems	that	support	per	file	security	labels.	Note	that	a	couple
of	pseudo	filesystems	support	this	as	well,	such	as	tmpfs,	sysfs,	and	recently	rootfs.	The
file_context	file	has	a	regular	expression-based	syntax	as	follows,	where	regexp	is	the
regular	expression	for	the	path:

regexp	<type>	(<file	label>	|	<<none>>)

If	multiple	regular	expressions	are	defined	for	a	file,	the	last	match	is	used,	so	order	is
important.

The	following	list	shows	each	type	field	value	for	the	type	of	filesystem	object,	their
meanings,	and	syscall	interface:

--:	This	denotes	a	regular	file.
-d:	This	denotes	a	directory.
-b:	This	denotes	a	block	file.
-s:	This	denotes	a	socket	file.
-c:	This	denotes	a	character	file.
-l:	This	denotes	a	link	file.
-p:	This	denotes	a	named	pipe	file.

As	you	can	see,	the	type	is	essentially	the	mode	as	output	by	ls	-la	command.	If	it’s	not
specified,	it	matches	everything.

The	next	field	is	the	file	label	or	the	special	identifier	<<none>>.	Either	one	would	supply	a
context	or	the	identifier	<<none>>.	If	you	specify	the	context,	the	SELinux	tools	that
consult	file_contexts	use	the	last	match	to	the	specified	context.	If	the	context	specified
is	<<none>>,	it	means	that	no	context	is	assigned.	So,	leave	the	one	that	we	have	found.
The	keyword	<<none>>	is	not	used	in	the	AOSP	reference,	sepolicy.

It’s	important	to	note	that	the	preceding	paragraph	explicitly	states	that	SELinux	tools	use
the	file_contexts	policy.	The	kernel	is	not	aware	that	this	file	exists.	SELinux	labels	all
its	objects	by	explicitly	setting	them	from	userspace	with	tools	that	look	up	the	context	in
file_context	or	via	the	fs_use_*	and	genfs	policy	statements.	In	other	words,
file_contexts	is	not	built	in	the	core	policy	file,	and	it	is	not	loaded	or	used	directly	by
the	kernel.	At	build	time,	the	file_contexts	file	is	built	in	the	ramdisk	rootfs	and	can	be
found	at	/file_contexts.	Also,	during	build	time,	the	system	image	is	labeled,	freeing
the	device	itself	from	this	burden.

In	Android,	init,	ueventd,	and	installd	have	all	been	modified	to	look	up	the	contexts
of	objects	they	are	creating;	so	that	they	can	label	them	properly.	Thus,	all	the	init	built	ins
that	create	filesystem	objects,	such	as	mkdir,	have	been	modified	to	make	use	of	the
file_contexts	file	if	it	exists,	and	the	same	goes	for	installd	and	ueventd.

Let’s	take	a	look	at	some	snippets	from	the	file_context	file	located	in	sepolicy:

...

www.it-ebooks.info

http://www.it-ebooks.info/

/dev(/.*)?	u:object_r:device:s0

/dev/accelerometer	u:object_r:sensors_device:s0

/dev/alarm	u:object_r:alarm_device:s0…

Here,	we	are	setting	up	the	contexts	for	files	in	/dev.	Note	how	the	entries	are	in	order
from	most	generic	to	more	specific	dev	files.	Thus,	any	files	not	covered	by	the	more
specific	entries	will	end	up	with	the	context	u:object_r:device:s0,	and	the	files	that
match	further	down,	end	up	with	a	more	specific	label.	For	instance,	the	accelerometer	at
/dev/accelerometer	will	get	the	context	u:object_r:sensors_device:s0.	Note	that	the
type	field	was	omitted,	which	means	that	it	matches	on	all	filesystem	objects,	such	as
directories	(type	-d).

You	might	be	wondering	how	/dev,	the	directory	itself,	gets	a	file	context.	Looking	at
some	of	the	snippets,	we	say	the	/	or	root,	got	labeled	via	the	statement	genfscon	rootfs
/	u:object_r:rootfs:s0	in	the	genfs_context	file.	This	chapter	stated	earlier	that,	“new
objects	inherit	the	context	of	their	parent	directory.”	Hence,	we	can	reason	that	/dev	is	of
context	u:object_r:rootfs:s0	since	that	is	the	label	/	has.	We	can	test	this	by	passing
the	-Z	flag	to	ls	to	show	us	the	label	of	/dev.	On	the	UDOO	serial	connection,	execute	the
following	command:

130|root@udoo:/	#	ls	-laZ	/	

...

drwxr-xr-x	root	root	u:object_r:device:s0	dev

...

It	seems	that	the	hypothesis	is	incorrect,	but	note	that	it	is	true	that	everything	has	a	label,
and	if	it’s	not	specified,	then	it	inherits	from	the	parent.	Looking	back	at	sepolicy,	we	can
see	that	the	dev	filesystem	was	initially	set	with	a	fs_use_trans	devtmpfs
u:object_r:device:s0;	policy	statement.	So	when	the	filesystem	is	mounted,	it	is	set
filesystem	wide.	Later,	when	entries	are	added	by	init	or	ueventd,	they	use
file_contexts	entries	to	set	the	context	of	the	newly	created	filesystem	object	to	what	is
specified	in	the	file_contexts	file.	The	filesystem	at	/dev,	which	is	a	devtmps	pseudo
filesystem,	is	an	example	of	a	filesystem	that	has	both	a	filesystem-wide	label	via	the
fs_use_trans	statement,	but	can	also	support	fine	grained	labeling	via	file_contexts;.
Filesystems	are	not	very	consistent	in	capabilities	on	Linux.

www.it-ebooks.info

http://www.it-ebooks.info/

Dynamic	type	transitions
Dynamic	type	transitions	indicated	by	the	SELinux	policy	statement	type_transition	are
a	way	to	allow	files	to	dynamically	determine	their	types.	Because	these	are	compiled	into
the	policy,	these	do	not	have	any	relation	to	the	file_contexts	file.	These	policy
statements	allow	the	policy	author	to	dynamically	dictate	the	context	of	a	file	based	on	the
context	in	which	the	file	is	created.	These	are	useful	in	situations	where	you	don’t	control
source	code,	or	do	not	wish	to	couple	SELinux	in	any	way.	For	instance,	the	wpa
supplicant,	which	is	a	service	that	runs	for	Wi-Fi	support	and	creates	a	socket	file	in	its
data	directory.	Its	data	directory	is	labeled	with	the	type	wifi_data_file	and	as	expected,
the	socket	ends	up	with	that	label.	However,	this	socket	is	shared	by	the	system	server.
Now,	we	can	allow	just	the	system	server	to	access	the	type	and	object	class,	however,
hostapd	and	other	things	are	creating	sockets	and	other	objects	in	that	directory	and	thus
the	objects	also	have	this	type.	We	really	want	to	ensure	that	the	two	sockets	in	question,
the	one	used	by	hostapd	and	the	other	by	system	server,	are	kept	exclusive	from	each
other.	To	do	this,	we	need	to	be	able	to	label	one	of	the	sockets	at	a	finer	granularity,	and
to	do	so,	we	can	either	modify	the	code	or	use	a	dynamic	type	transition.	Rather	than
mucking	with	the	code,	let’s	use	a	type	transition,	as	follows:

type_transition	wpa	wifi_data_file:sock_file	wpa_socket;

This	is	an	actual	statement	from	the	sepolicy	file,	wpa_supplicant.te.	It	says	that,	when
a	process	of	the	type	wpa	creates	a	file	of	the	type	wifi_data_file	and	the	object	class	is
sock_file	to	label	it	as	wpa_socket	on	creation.	The	statement	syntax	is	as	follows:

type_transition	<creating	type>	<created	type>:<class>	<new	type>;

As	of	SELinux	policy	version	25,	the	type_transition	statement	can	support	named	type
transitions	where	a	fourth	argument	exists	and	is	the	name	of	the	file:

type_transition	<creating	type>	<created	type>:<class>	<new	type>	<file	

name>;

We	will	see	an	example	use	of	this	filename	in	the	sepolicy	file,	system_server.te:

type_transition	system_server	system_data_file:sock_file	

system_ndebug_socket	"ndebugsocket";

Note	the	filename	or	basename	and	not	the	path,	and	it	must	match	exactly.	Regex	is	not
supported.	It’s	also	interesting	to	note	that	the	dynamic	transitions	are	not	limited	to	file
objects,	but	any	object	class	event	processes.	We	will	see	how	dynamic	process	transitions
are	used	in	Chapter	9,	Adding	Services	to	Domains.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Examples	and	tools
With	the	theory	behind	us,	let’s	look	at	the	tools	and	techniques	to	label	files	in	the
system.	Let’s	start	by	mounting	a	ramfs	filesystem.	We	will	start	by	remounting	/	since	it
is	read	only	and	create	a	mount	point	for	the	filesystem.	Via	the	UDOO	serial	console,
execute:

root@udoo:/	#	mount	-oremount,rw	/

root@udoo:/	#	mkdir	/ramdisk

root@udoo:/	#	mount	-t	ramfs	-o	size=20m	ramfs	/ramdisk

Now,	we	want	to	see	which	label	the	filesystem	has:

#	ls	-laZ	/	|	grep	ramdisk	

drwxr-xr-x	root	root	u:object_r:unlabeled:s0	ramdisk

As	you	can	recall,	the	initial_sid_context	file	had	this	initial	sid	set	for	the	filesystem:

sid	file	u:object_r:unlabeled:s0

If	we	want	to	get	this	ramdisk	in	a	new	label,	we	need	to	create	the	type	in	the	policy,	and
set	a	new	genfscon	statement	to	use	it.	We	will	declare	the	new	type	in	the	sepolicy	file
file.te:

type	ramdisk,	file_type,	fs_type;

The	type	policy	statement	syntax	is	as	follows:

type	<new	type>,	<attribute0,attribute1…attributeN>;

Attributes	in	SELinux	are	statements	that	let	you	define	common	groups.	They	are	defined
via	the	attribute	statement.	In	Android	SELinux	policy,	we	have	file_type	and
fs_type	defined	for	us	already.	We	will	use	them	here	because	this	new	type,	which	we’re
creating,	has	the	attributes	file_type	and	fs_type.	The	file_type	attribute	is	associated
with	a	type	for	a	file,	and	the	fs_type	attribute	means	that	this	type	is	also	associated	with
filesystems.	Attributes,	right	now,	are	not	of	great	importance;	so	don’t	get	caught	up	in
the	detail.

The	next	thing	to	modify	is	the	sepolicy	file,	genfs_context	by	adding	the	following:

genfscon	ramfs	/	u:object_r:ramdisk:s0

Now,	we	will	compile	the	boot	image	and	flash	it	to	the	device,	or	better	yet,	let’s	use	the
dynamic	policy	reload	support	like	the	following.

From	the	root	of	the	UDOO	project	tree	build	just	the	sepolicy	project:

$	mmm	external/sepolicy/

Push	the	new	policy	over	adb,	as	follows:

$	adb	push	$OUT/root/sepolicy	/data/security/current/sepolicy

544	KB/s	(86409	bytes	in	0.154s)

Trigger	a	reload	by	using	the	setprop	command:

www.it-ebooks.info

http://www.it-ebooks.info/

$	adb	shell	setprop	selinux.reload_policy	1

If	you	have	the	serial	console	connected,	you	should	see:

SELinux:	Loaded	policy	from	/data/security/current/sepolicy

If	you	don’t,	and	just	have	adb,	check	dmesg:

$	adb	shell	dmesg	|	grep	"SELinux:	Loaded"

<4>SELinux:	Loaded	policy	from	/sepolicy

<6>init:	SELinux:	Loaded	property	contexts	from	/property_contexts

<4>SELinux:	Loaded	policy	from	/data/security/current/sepolicy

A	successful	load	should	use	our	policy	at	the	path,	/data/security/current/sepolicy.
Let’s	unmount	the	ramdisk	and	remount	it	to	check	out	its	type:

root@udoo:/	#	umount	/ramdisk	

root@udoo:/	#	mount	-t	ramfs	-o	size=20m	ramfs	/ramdisk

root@udoo:/	#	ls	-laZ	/	|	grep	ramdisk

drwxr-xr-x	root	root	u:object_r:ramdisk:s0	ramdisk

We	were	able	to	modify	the	policy	and	use	genfscon	to	change	the	filesystem	type,	and
now	to	show	inheritance,	let’s	go	ahead	and	create	a	file	on	the	filesystem	with	touch:

root@udoo:/	#	cd	/ramdisk

root@udoo:/ramdisk	#	touch	hello

root@udoo:/ramdisk	#	ls	-Z

-rw-------	root	root	u:object_r:ramdisk:s0	hello

As	we	expected,	the	new	file	is	labeled	with	the	type	ramdisk.	Now,	suppose	when	we	do
touch	from	the	shell,	we	want	the	file	to	be	of	a	different	type,	such	as	ramdisk_newfile;
how	can	we	do	this?	We	can	do	this	by	modifying	touch	itself	to	consult	file_contexts,
or	we	can	define	a	dynamic	type	transition;	let	us	try	the	dynamic	type	transition
approach.	The	first	argument	to	the	type_transition	statement	is	the	creating	type;	so
what	type	is	our	shell	in?	You	can	get	this	by	performing:

root@udoo:/ramdisk	#	echo	`cat	/proc/self/attr/current`

u:r:init_shell:s0

A	simpler	way	is	to	run	the	id	-Z	command,	which	uses	the	aforementioned	proc	file.	For
a	serial	console,	execute:

root@udoo:/ramdisk	#	id	-Z

uid=0(root)	gid=0(root)	context=u:r:init_shell:s0

And	to	run	the	same	command	for	the	adb	shell:

$	adb	shell	id	-Z

uid=0(root)	gid=0(root)	context=u:r:shell:s0

Note	the	discrepancy	between	our	serial	console	shell	and	the	adb	shell,	in	Chapter	9,
Adding	Services	to	Domains;	we	will	fix	this.	Because	of	this,	the	policy	we	author	now
will	address	both	cases.

Start	by	opening	the	sepolicy	file,	init_shell.te	and	append	the	following	to	the	end	of
the	file:

www.it-ebooks.info

http://www.it-ebooks.info/

type_transition	init_shell	ramdisk:file	ramdisk_newfile;

Do	this	for	the	sepolicy	file,	shell.te:

type_transition	shell	ramdisk:file	ramdisk_newfile;

Now,	we	need	to	declare	the	new	type;	so	open	up	the	sepolicy	file,	file.te	and	append
the	following:

type	ramdisk_newfile,	file_type;

Note	that	we	have	only	used	the	file_type	attribute.	This	is	because	a	filesystem	should
never	have	the	type	ramdisk_newfile,	only	a	file	residing	within	that	file	system	should.

Now,	build	the	adb	policy,	push	it	to	the	device,	and	trigger	a	reload.	With	that	done,
create	the	file	and	check	the	results:

$	adb	shell	'touch	/ramdisk/shell_newfile'

$	adb	shell	'ls	-laZ	/ramdisk'

-rw-rw-rw-	root	root	u:object_r:ramdisk:s0	shell_newfile

So	it	didn’t	work.	Let’s	investigate	the	reason	by	trying	on	an	example	of	an	ext4
filesystem.	Let’s	use	the	following	commands:

root@udoo:/	#	cd	/data/

root@udoo:/data	#	mkdir	ramdisk

Now,	check	its	context:

root@udoo:/data	#	ls	-laZ	|	grep	ramdisk

drwx------	root	rootu:object_r:system_data_file:s0	ramdisk

The	label	is	system_data_file.	This	is	not	helpful,	as	it	doesn’t	apply	to	our	type
transition	rule;	to	fix	this,	we	can	use	the	chcon	command	to	explicitly	change	the	files
context:

root@udoo:/data	#	chcon	u:object_r:ramdisk:s0	ramdisk

root@udoo:/data	#	ls	-laZ	|	grep	ramdisk

drwx------	root	root	u:object_r:ramdisk:s0	ramdisk

Now	with	the	context	changed	to	match	what	we	were	trying	earlier	with	the	ramdisk,	let’s
try	to	create	a	file	within	this	directory:

root@udoo:/data/ramdisk	#	touch	newfile

root@udoo:/data/ramdisk	#	ls	-laZ

-rw-------	root	root	u:object_r:ramdisk_newfile:s0	newfile

As	you	can	see,	the	type	transition	has	occurred.	This	was	meant	to	illustrate	the	issues
you	may	find	while	working	with	SELinux	and	Android.	Now	that	we	have	shown	that
our	type_transition	statement	is	valid,	there	are	only	two	possibilities	why	this	is
failing:	the	filesystem	doesn’t	support	it	or	we’re	missing	something	somewhere	to	“turn	it
on”.	It	turns	out	that	the	latter	is	the	case;	we	were	missing	our	fs_use_trans	statements.
So	go	ahead	and	open	up	the	sepolicy	file,	fs_use	and	add	the	following	line:

fs_use_trans	ramfs	u:object_r:ramdisk:s0;

www.it-ebooks.info

http://www.it-ebooks.info/

This	statement	enables	SELinux	dynamic	transitions	on	this	filesystem.	Now,	rebuild	the
sepolicy	project,	adb	push	the	policy	file,	and	enable	a	dynamic	reload	via	setprop:

$	mmm	external/sepolicy

$	adb	push	$OUT/root/sepolicy	/data/security/current/sepolicy546	KB/s	

(86748	bytes	in	0.154s)

$	adb	shell	setprop	selinux.reload_policy	1

root@udoo:/	#	cd	ramdisk

root@udoo:/ramdisk	#	touch	foo

root@udoo:/ramdisk	#	ls	-Z

-rw-------	root	root	u:object_r:ramdisk_newfile:s0	foo

There	you	have	it,	the	object	has	the	right	value	determined	by	a	dynamic	type	transition.
We	were	missing	fs_use_trans,	which	enabled	type	transitions	on	filesystems	that	don’t
support	xattrs.

Now,	suppose	we	want	to	mount	another	ramdisk,	what	would	happen?	Well	since	it	was
labeled	with	the	genfscon	statement,	all	filesystems	mounted	with	that	type	should	get	the
context,	u:object_r:ramdisk:s0.	We	will	mount	this	filesystem	at	/ramdisk2,	and	verify
this	behavior:

root@udoo:/	#	mkdir	ramdisk2

root@udoo:/	#	mount	-t	ramfs	-o	size=20m	ramfs	/ramdisk2

Also,	check	the	contexts:

root@udoo:/	#	ls	-laZ	|	grep	ramdisk

drwxr-xr-x	root	root	u:object_r:ramdisk:s0	ramdisk

drwxr-xr-x	root	root	u:object_r:ramdisk:s0	ramdisk2

If	we	want	to	write	allow	rules	to	separate	accesses	to	these	file	systems,	we	will	need	to
have	their	target	files	in	separate	types.	To	do	this,	we	can	mount	the	new	ramdisk	with	the
context	option.	But	first,	we	need	to	create	the	new	type;	lets	go	to	the	sepolicy	file,
file.te	and	add	a	new	type	called	ramdisk2:

type	ramdisk2,	file_type,	fs_type;

Now,	build	the	sepolicy	with	the	command	mmm,	followed	be	using	the	command	abd
push	to	push	the	policy,	and	trigger	a	reload	with	the	setprop	command:

$	mmm	external/sepolicy/

$	adb	push	out/target/product/udoo/root/sepolicy	

/data/security/current/sepolicy542	KB/s	(86703	bytes	in	0.155s)

$	adb	shell	setprop	selinux.reload_policy	1

At	this	point,	let’s	umount	/ramdisk2	and	remount	it	with	the	context=	option:

root@udoo:/	#	umount	/ramdisk2/	

root@udoo:/	#	mount	-t	ramfs	-osize=20m,context=u:object_r:ramdisk2:s0	

ramfs	/ramdisk2

Now,	verify	the	contexts:

root@udoo:/	#	ls	-laZ	|	grep	ramdisk	

drwxr-xr-x	root	root	u:object_r:ramdisk:s0	ramdisk

drwxr-xr-x	root	root	u:object_r:ramdisk2:s0	ramdisk2

www.it-ebooks.info

http://www.it-ebooks.info/

We	can	override	the	genfscon	context	with	the	mount	option,	context=<context>.	In	fact,
if	we	look	at	dmesg,	we	can	see	some	great	messages.	When	we	mounted	ramfs	without
the	context	option,	we	got:

<7>SELinux:	initialized	(dev	ramfs,	type	ramfs),	uses	genfs_contexts

When	we	mounted	it	with	the	context=<context>	option,	we	got:

<7>SELinux:	initialized	(dev	ramfs,	type	ramfs),	uses	mountpoint	labeling

We	can	see	that	SELinux	gives	us	some	helpful	messages	while	trying	to	figure	out	from
where	it	sources	its	labels.

Now,	let’s	go	onto	labeling	filesystems	with	the	xattr	support,	such	as	ext4.	We	will	start
with	the	toolbox	command,	chcon.	The	chcon	command	allows	you	to	set	the	context	of	a
file	system	object	explicitly,	it	does	not	consult	file_contexts.

Let’s	take	a	look	at	/system/bin	and	in	it,	at	the	first	10	files:

$	adb	shell	ls	-laZ	/system/bin	|	head	-n10

-rwxr-xr-x	root	shell	u:object_r:system_file:s0	InputDispatcher_test

-rwxr-xr-x	root	shell	u:object_r:system_file:s0	InputReader_test

-rwxr-xr-x	root	shell	u:object_r:system_file:s0	abcc

-rwxr-xr-x	root	shell	u:object_r:system_file:s0	adb

-rwxr-xr-x	root	shell	u:object_r:system_file:s0	am

-rwxr-xr-x	root	shell	u:object_r:zygote_exec:s0	app_process

-rwxr-xr-x	root	shell	u:object_r:system_file:s0	applypatch

-rwxr-xr-x	root	shell	u:object_r:system_file:s0	applypatch_static

drwxr-xr-x	root	shell	u:object_r:system_file:s0	asan

-rwxr-xr-x	root	shell	u:object_r:system_file:s0	asanwrappe

We	can	see	that	many	of	them	have	the	system_file	label,	which	is	the	default	label	for
that	filesystem;	let’s	change	the	am	type	to	am_exec.	Again,	we	need	to	create	a	new	type
by	adding	the	following	to	sepolicy	file,	file.te:

type	am_exec,	file_type;

Now,	rebuild	the	policy	file,	push	it	to	the	UDOO,	and	trigger	a	reload.	After	that,	let’s
start	remounting	the	system,	since	it	is	read	only:

root@udoo:/	#	mount	-orw,remount	/system

Now	perform	chcon:

root@udoo:/	#	chcon	u:object_r:am_exec:s0	/system/bin/am	

Verify	the	result:

root@udoo:/	#	la	-laZ	/system/bin/am	

-rwxr-xr-x	root	shell	u:object_r:am_exec:s0	am

Additionally,	the	restorecon	command	will	use	file_contexts,	and	restore	that	file	to
what	is	set	in	the	file_contexts	file,	which	should	be	system_file:

root@udoo:/	#	restorecon	/system/bin/am	

root@udoo:/	#	la	-laZ	/system/bin/am	

www.it-ebooks.info

http://www.it-ebooks.info/

-rwxr-xr-x	root	shell	u:object_r:system_file:s0	am

As	you	can	see,	restorecon	was	able	to	consult	file_contexts	and	restore	the	specified
context	on	that	object.

The	Android	system’s	filesystem	gets	constructed	during	the	build	time,	and	consequently,
all	its	file	objects	are	labeled	during	that	process.	We	can	also	change	this	at	build	time	by
changing	file_contexts.	With	this	changed,	the	system	partition	rebuilt,	and	after
reflashing	the	system,	we	should	see	the	am	file	with	the	am_exec	type.	We	can	test	this	by
amending	the	sepolicy	file,	file_contexts	by	adding	this	line	at	the	end	of	the
system/bin	section:

/system/bin/am	u:object_r:am_exec:s0

Rebuild	the	whole	system	with:

$	make	-j8	2>&1	|	tee	logz

Now	flash	and	reboot,	and	let’s	take	a	look	at	the	/system/bin/am	context	as	follows:

root@udoo:/	#	ls	-laZ	/system/bin/am	

-rwxr-xr-x	root	shell	u:object_r:am_exec:s0	am

This	shows	that	the	system	partition	respects	the	file	contexts	for	build-time	labeling,	and
how	we	can	control	these	labels.

www.it-ebooks.info

http://www.it-ebooks.info/

Fixing	up	/data
Additionally	in	the	audit	logs,	we	have	seen	a	bunch	of	unlabeled	files,	for	instance,	the
following	denial:

type=1400	msg=audit(86559.780:344):	avc:	denied	{	append	}	for	pid=2668	

comm="UsbDebuggingHan"	name="adb_keys"	dev=mmcblk0p4	ino=42	

scontext=u:r:system_server:s0	tcontext=u:object_r:unlabeled:s0	tclass=file

We	can	see	that	the	device	is	mmcblk0p4,	which	mount	commands	and	will	tell	us	what
filesystem	this	is	mounted	to,	in	its	output:

root@udoo:/	#	mount	|	grep	mmcblk0p4

/dev/block/mmcblk0p4	/data	ext4	

rw,seclabel,nosuid,nodev,noatime,nodiratime,errors=panic,user_x0

So	why	does	the	/data	filesystem	have	so	many	unlabeled	files?	The	reason	is	that
SELinux	is	meant	to	be	turned	on	from	an	empty	device,	that	is,	from	first	boot.	Android
builds	the	data	directory	structures	on	demand.	Thus,	all	the	labels	for	the	/data	are
handled	by	the	file_contexts	file	since	it	is	ext4.	Also,	it	is	handled	by	the	systems	that
create	the	/data	files	and	directories.	These	systems	have	been	modified	to	label	the	data
partition	based	on	the	file_contexts	specifications.	So	this	presents	two	options:	wipe
/data	and	reboot,	or	restorecon	-R	/data.

Option	one	is	a	bit	harsh,	but	if	you	eject	the	SD	card	and	remove	all	the	files	on	the	data
partition,	partition	4,	Android	will	rebuild	and	you	won’t	see	any	more	unlabeled
issues.	However,	this	is	not	recommended	for	deployed	devices	when	you	upgrade;	you
will	destroy	all	of	the	users’	data.

Option	two	is	more	palatable	in	deployed	scenarios,	but	has	its	limitations.	Notably,
executing	restorecon	-R	/data	will	take	a	long	time	and	must	be	done	early	in	boot,
right	after	the	mount.	However,	this	is	really	the	only	option	at	this	point.	Google,
however,	has	done	a	lot	of	work	in	this	area,	and	created	a	system	that	intelligently
relabels	/data	on	policy	updates.	For	our	use,	we	will	choose	a	variant	of	option	two,
especially	after	considering	how	sparsely	populated	the	/data	filesystem	is;	we	really
haven’t	installed	or	generated	a	lot	of	user	data	yet.	With	that	stated,	execute:

root@udoo:/	#	restorecon	-R	/data

root@udoo:/	#	reboot

We	don’t	have	to	execute	restorecon	early	in	boot	since	our	system	is	in	permissive
mode,	and	we’re	not	in	a	deployed	scenario.	Now,	let’s	pull	the	audit.log	file	and
compare	it	to	the	already	pulled	audit.log:

$	adb	pull	/data/misc/audit/audit.log	audit_data_relabel.log

170	KB/s	(14645	bytes	in	0.084s)

Let’s	use	grep	to	count	the	number	of	occurrences	in	each	file:

$	grep	-c	unlabeled	audit.log	

185

$	grep	-c	unlabeled	audit_data_relabel.log	

www.it-ebooks.info

http://www.it-ebooks.info/

0

Great,	we	fixed	up	all	of	our	unlabeled	issues	on	/data!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

A	side	note	on	security
Note	that	even	though	we	are	running	all	these	commands	and	changing	all	these	things,
this	is	not	a	security	vulnerability	within	SELinux.	Being	able	to	change	type	labels,
mounting	filesystems,	and	associating	filesystems	with	a	type,	all	require	allow	rules.	If
you	look	through	the	audit	logs,	you’ll	see	a	slew	of	denials;	a	sample	is	provided:

type=1400	msg=audit(90074.080:192):	avc:	denied	{	associate	}	for	pid=3211	

comm="touch"	name="foo"	scontext=u:object_r:ramdisk_newfile:s0	

tcontext=u:object_r:ramdisk:s0	tclass=filesystem

type=1400	msg=audit(90069.120:187):	avc:	denied	{	mount	}	for	pid=3205	

comm="mount"	name="/"	dev=ramfs	ino=1992	scontext=u:r:init_shell:s0	

tcontext=u:object_r:ramdisk:s0	tclass=filesystem

If	we	were	in	an	enforcing	mode,	we	wouldn’t	have	been	able	to	perform	any	of	the
experiments	shown	here.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	saw	how	to	get	files	into	contexts	by	relabeling	them.	We	used	a	variety
of	techniques	to	accomplish	this	task,	from	toolbox	commands	such	as	chcon	and
restorecon,	to	mount	options	and	dynamic	transitions.	With	these	tools,	we	can	ensure
that	all	filesystem	objects	are	labeled	correctly.	This	way,	we	end	up	with	the	right	target
contexts	so	that	the	policies	we	author	are	effective.	In	the	next	chapter,	we	will	focus	on
the	processes,	making	sure	that	they	are	in	the	right	domain	or	context.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	9.	Adding	Services	to	Domains
In	the	previous	chapter,	we	covered	the	process	of	getting	file	objects	in	the	proper
domain.	In	most	cases,	the	file	object	is	the	target.	However,	in	this	chapter,	we	will:

Emphasize	labeling	processes—notably	Android	services	run	and	managed	by	init
Manage	the	ancillary	associated	objects	created	by	init

www.it-ebooks.info

http://www.it-ebooks.info/

Init	–	the	king	of	daemons
The	init	process	is	vital	in	a	Linux	system,	and	Android	is	not	special	in	this	case.
However,	Android	has	its	own	implementation	of	init.	Init	is	the	first	process	on	the
system,	and	thus	has	a	Process	ID	(PID)	of	1.	All	other	processes	are	the	result	of	a	direct
fork()	from	init,	thus	all	processes	eventually	are	parented	under	init,	either	directly	or
indirectly.	Init	is	responsible	for	cleaning	up	and	maintaining	these	processes.	For
instance,	any	child	process	whose	parent	dies	is	reparented	under	init	by	the	kernel.	In	this
way,	init	can	call	wait()	(man	2	wait	for	more	details)	to	clean	up	after	the	process	when
it	exits.

Note
A	process	which	has	terminated	but	has	not	had	wait()	called	is	a	zombie	process.	The
kernel	must	keep	the	process	data	structures	around	until	this	call.	Failing	to	do	so	will
consume	memory	indefinitely.

Since	init	is	the	root	of	all	processes,	it	also	provides	a	mechanism	to	declare	and	execute
commands	through	its	own	scripting	language.	Files	using	this	language	to	control	init	are
referred	to	as	init	scripts,	and	we	have	already	modified	some	of	them.	In	the	source	tree,
we	used	the	init.rc	file,	which	you	can	reach	by	navigating	to
device/fsl/imx6/etc/init.rc,	but	on	the	device,	it	is	packaged	with	the	ramdisk	at
/init.rc,	and	is	made	available	to	init,	which	is	also	packaged	in	the	ramdisk	at	/init.

To	add	a	service	to	the	init	script,	you	can	modihe	init.re	and	add	a	declaration,	as
follows:

service	<name>	<path>	[<argument>...]

Here,	name	is	the	service	name,	path	is	the	path	to	the	executable,	and	argument	are	space
delimited	argument	strings	to	be	delivered	to	the	executable	in	its	argv	array.

For	example,	here	is	the	service	declaration	for	rild,	the	Radio	Interface	Layer	Daemon
(RILD):

Service	ril-daemon	/system/bin/rild

It	is	often	the	case	that	additional	service	options	can	and	need	to	be	added.	The	init	script
service	statement	supports	a	rich	assortment	of	options.	For	the	complete	list,	refer	to	the
informational	file	located	at	system/core/init/readme.txt.	Additionally,	we	covered
the	SE	for	Android-specific	changes	in	Chapter	3,	Android	Is	Weird.

Continuing	to	dissect	rild,	we	see	that	the	rest	of	the	declaration	in	the	UDOO	init.rc	is
as	follows:

Service	ril-daemon	/system/bin/rild

		class	main

		socket	rild	stream	660	root	radio

		socket	rild-debug	stream	660	radio	system

		socket	rild-ppp	stream	660	radio	system

		user	root

www.it-ebooks.info

http://www.it-ebooks.info/

		group	radio	cache	inet	misc	audio	sdcard_rw	log

The	interesting	thing	to	note	here	is	that	it	creates	quite	a	few	sockets.	The	socket
keyword	in	init.rc	is	described	by	the	readme.txt	file:

Note
From	the	source	tree	file	system/core/init/readme.txt:

socket	<name>	<type>	<perm>	[<user>	[<group>	[<context>]]]

Create	a	Unix	domain	socket	named	/dev/socket/<name>	and	pass	its	fd	to	the	launched
process.	The	type	must	be	dgram,	stream,	or	seqpacket.	The	user	and	group	IDs	default
to	0.	The	SELinux	security	context	for	the	socket	is	context.	It	defaults	to	the	service
security	context,	as	specified	by	seclabel,	or	is	computed	based	on	the	service	executable
file’s	security	context.

Let’s	take	a	look	at	this	directory	and	see	what	we’ve	found.

root@udoo:/dev/socket	#	ls	-laZ	|	grep	adb

srw-rw----	system	system	u:object_r:adbd_socket:s0	adbd

This	raises	the	question,	“How	did	it	get	into	that	domain?”	Using	our	knowledge	from	the
previous	chapter,	we	know	that	/	dev	is	a	tmpfs,	so	we	know	that	it	did	not	enter	this
domain	through	xattrs.	It	must	be	either	a	code	modification	or	a	type	transition.	Let’s
check	whether	it’s	a	type	transition.	If	it	is,	we	would	expect	to	see	a	statement	in	the
expanded	policy.conf.	SELinux	policy	is	based	on	the	m4	macro	language.	During
builds,	it	is	expanded	into	policy.conf,	and	then	compiled.	Chapter	12,	Mastering	the
Tool	Chain,	has	more	details	on	this.

We	can	discover	this	by	using	sesearch	to	find	type	transitions	for	adbd_socket:

$	sesearch	-T	-t	adbd_socket	$OUT/sepolicy

As	you	can	see	from	the	empty	output,	there	are	zero	such	lines,	so	it’s	not	the	policy
which	is	doing	this	but	a	code	change.

In	Linux,	processes	are	created	with	fork()	followed	by	exec().	Because	of	this,	we	are
able	to	afford	great	keywords	to	search	the	init	daemon.	We	suspect	that	the	code	to	set	up
the	socket	is	just	after	a	call	to	fork()	in	the	child	processes	and	before	a	call	to	exec():

$	grep	-n	fork	system/core/init/init.c	

235:	pid	=	fork();

So,	the	fork	we	are	searching	for	is	on	line	235	of	init.c;	let’s	open	init.c	in	a	text
editor	and	take	a	look.	We	will	find	the	following	snippet	to	examine:

...

NOTICE("starting	'%s'\n",	svc->name);

		pid	=	fork();

		if	(pid	==	0)	{

				struct	socketinfo	*si;

				struct	svcenvinfo	*ei;

www.it-ebooks.info

http://www.it-ebooks.info/

				char	tmp[32];

				int	fd,	sz;

				umask(077);

				if	(properties_inited())	{

						get_property_workspace(&fd,	&sz);

						sprintf(tmp,	"%d,%d",	dup(fd),	sz);

						add_environment("ANDROID_PROPERTY_WORKSPACE",	tmp);

				}

				for	(ei	=	svc->envvars;	ei;	ei	=	ei->next)

						add_environment(ei->name,	ei->value);

				for	(si	=	svc->sockets;	si;	si	=	si->next)	{

						int	socket_type	=	(

								!strcmp(si->type,	"stream")	?	SOCK_STREAM	:

										(!strcmp(si->type,	"dgram")	?	SOCK_DGRAM	:	SOCK_SEQPACKET));

						int	s	=	create_socket(si->name,	socket_type,

												si->perm,	si->uid,	si->gid,	si->socketcon	?:	scon);

						if	(s	>=	0)	{

								publish_socket(si->name,	s);

						}

...

According	to	man	2	fork,	the	return	code	of	fork()	in	the	child	process	is	0.	The	child
process	executes	within	this	if	statement	and	the	parent	skips	it.	The	function	create	_
socket()	also	seems	interesting.	It	appears	to	take	the	name	of	the	service,	the	type	of
socket,	permissions	flags,	uid,	gid,	and	socketcon.	What	is	socketcon?	Let’s	check
whether	we	can	trace	back	to	where	it	is	set.

If	we	look	before	fork(),	we	can	see	that	the	parent	process	gets	its	scon	based	on	two
factors:

...

				if	(svc->seclabel)	{

						scon	=	strdup(svc->seclabel);

						if	(!scon)	{

								ERROR("Out	of	memory	while	starting	'%s'\n",	svc->name);

								return;

						}

						}	else	{

...

The	first	path	through	the	if	statement	occurs	when	svc->seclabel	is	not	null.	This	svc
structure	is	populated	with	the	options	that	can	be	associated	with	a	service.	As	a	refresher
from	Chapter	3,	Android	Is	Weird,	seclabel	lets	you	explicitly	set	the	context	on	a
service,	hardcoded	to	the	value	in	init.rc.	The	else	clause	is	a	bit	more	involved	and
interesting.

In	the	else	clause,	we	get	the	context	of	the	current	process	by	calling	getcon().	This
function,	since	we’re	running	in	init,	should	return	u:r:init:s0	and	store	it	in	mycon.	The
next	function,	getfilecon()	is	passed	the	path	of	the	executable,	and	checks	the	context
of	the	file	itself.	The	third	function	is	the	workhorse	here:	security_compute_create().

www.it-ebooks.info

http://www.it-ebooks.info/

This	takes	the	mycon,	fcon,	and	target	class	and	computes	the	security	context,	scon.
Given	these	inputs,	it	tries	to	determine,	based	on	policy	type	transitions,	what	the
resulting	domain	for	the	child	should	be.	If	no	transitions	are	defined,	scon	will	be	the
same	as	mycon.

A	conditional	expression	within	the	create_socket()	function	additionally	determines
the	socket	context	passed.	The	variable	si	is	a	structure	that	contains	all	the	options	to	the
socket	statement	in	the	init	service	section.	As	specified	by	the	readme.txt	file,	si-
>socketcon	is	the	socket	context	argument.	In	other	words,	the	socket	context	can	come
from	one	of	three	places	(in	descending	priority):

The	socketcon	option	on	the	socket	option	in	the	service	declaration
The	seclabel	option	on	the	service	keyword
Dynamically	computed	from	source	and	target	contexts

The	socket	context	is	passed	to	create_socket().	Now,	let’s	look	at	create_socket().
This	function	is	defined	at	system/core/init/util.c:87.	The	snippets	of	code	around
socket()	seem	interesting:

...

		if	(socketcon)

				setsockcreatecon(socketcon);

		fd	=	socket(PF_UNIX,	type,	0);

		if	(fd	<	0)	{

				ERROR("Failed	to	open	socket	'%s':	%s\n",	name,	strerror(errno));

				return	-1;

		}

		if	(socketcon)

				setsockcreatecon(NULL);

...

The	setsockcreatecon()	function	sets	the	process’	socket	creation	context.	This	means
that	the	socket	created	by	the	socket()	call	will	have	the	context	set	via
setsockcreatecon().	After	it’s	created,	the	process	resets	it	to	the	original	by	using
setsockcreatecon(NULL).

The	next	bit	of	interesting	code	is	around	bind():

...

		filecon	=	NULL;

		if	(sehandle)	{

				ret	=	selabel_lookup(sehandle,	&filecon,	addr.sun_path,	S_IFSOCK);

				if	(ret	==	0)

						setfscreatecon(filecon);

		}

		ret	=	bind(fd,	(struct	sockaddr	*)	&addr,	sizeof	(addr));

		if	(ret)	{

				ERROR("Failed	to	bind	socket	'%s':	%s\n",	name,	strerror(errno));

				goto	out_unlink;

		}

www.it-ebooks.info

http://www.it-ebooks.info/

		setfscreatecon(NULL);

		freecon(filecon);

...

Here,	we	have	set	the	file	creation	context.	The	functions	are	analogous	to
setsock_creation(),	but	work	for	filesystem	objects.	However,	the	selabel_lookup()
function	looks	in	file_contexts	for	the	context	of	the	file.	The	part	you	might	be	missing
is	that	the	call	to	bind(),	for	path-based	sockets,	creates	a	file	at	the	path	specified	in
sockaddr_un	struct.	So,	the	socket	object	and	the	filesystem	node	entry	are	distinctly
separate	things	and	can	have	different	contexts.	Typically,	the	socket	belongs	to	the
process’	context,	and	the	filesystem	node	is	given	some	other	context.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Dynamic	domain	transitions
We	saw	init	computing	of	the	contexts	for	the	init	sockets,	but	we	never	encountered	it
while	setting	the	domains	for	child	processes.	In	this	section,	we	will	dive	into	the	two
techniques	to	do	so:	explicit	setting	with	an	init	script	and	sepolicy	dynamic	domain
transitions.

The	first	way	to	the	domains	for	child	processes	is	with	the	seclabel	statement	in	the	init
script	service	declaration.	Within	the	child	processes	execution	after	fork(),	we	find	this
statement:

if	(svc->seclabel)	{

if	(is_selinux_enabled()	>	0	&&	setexeccon(svc->seclabel)	<	0)	{

ERROR("cannot	setexeccon('%s'):	%s\n",	svc->seclabel,	strerror(errno));

_exit(127);

}

}

To	clarify,	the	svc	variable	is	the	structure	that	contains	the	service	options	and	arguments,
so	svc->seclabel	is	seclabel.	If	it’s	set,	it	calls	setexeccon(),	which	sets	the	process’
execution	context	for	anything	it	executes	via	exec().	Further	down,	we	see	that	the
exec()	function	calls	are	made.	The	exec()	syscall	never	returns	on	success;	it	only
returns	on	failure.

The	other	way	to	set	the	domains	for	child	processes,	which	is	the	preferred	way,	is	by
using	sepolicy.	It’s	preferred	because	the	policy	has	no	dependencies	on	anything	else.	By
hardcoding	a	context	into	init,	you’re	coupling	a	dependency	between	the	init	script	and
the	sepolicy.	For	instance,	if	the	sepolicy	removes	a	type	that	was	hardcoded	in	the	init
script,	the	init	setcon	will	fail,	but	both	systems	will	compile	correctly.	If	you	remove	a
type	for	a	type	transition	and	leave	the	transition	statement,	you	can	catch	the	error	at
compile	time.	Since	we	looked	at	the	rild	service	statement,	let’s	look	at	the	rild.te
policy	file	located	in	sepolicy.	We	should	search	for	the	type_transition	keyword	in
this	file	using	grep:

$	grep	-c	type_transition	rild.te	

0

No	instances	of	type_transition	are	found,	but	this	keyword	must	exist,	similar	to	files.
However,	it	can	be	hidden	in	an	unexpanded	macro.	The	SELinux	policy	files	are	in	the
m4	macro	language,	and	they	get	expanded	prior	to	being	compiled.	Let’s	look	through
rild.te	and	check	whether	we	can	find	some	macros.	They	are	distinguished	and	look
like	functions	with	parameters.	The	first	macro	we	come	across	is	the
init_daemon_domain(rild)	macro.	Now,	we	need	to	find	this	macro’s	definition	in
sepolicy.	The	m4	language	uses	the	define	keyword	to	declare	macros,	so	we	can	search
for	that:

$	grep	-n	init_daemon_domain	*	|	grep	define

te_macros:99:define(`init_daemon_domain',	`

Our	macro	is	declared	in	te_macros,	which	coincidentally	holds	all	the	macros	related	to

www.it-ebooks.info

http://www.it-ebooks.info/

type	enforcement	(TE).	Let’s	take	a	look	at	what	this	macro	does	in	more	detail.	First,	its
definition	is:

...

#####################################

#	init_daemon_domain(domain)

#	Set	up	a	transition	from	init	to	the	daemon	domain

#	upon	executing	its	binary.

define(`init_daemon_domain',	`

domain_auto_trans(init,	$1_exec,	$1)

tmpfs_domain($1)

')

...

The	commented	lines	in	the	preceding	code	(lines	starting	with	#	in	m4),	state	that	it	sets
up	a	transition	from	init	to	the	daemon	domain.	This	sounds	like	something	we	want.
However,	both	the	encompassing	statements	are	macros,	and	we	need	to	recursively
expand	them.	We	will	start	with	domain_auto_trans():

...

#####################################

#	domain_auto_trans(olddomain,	type,	newdomain)

#	Automatically	transition	from	olddomain	to	newdomain

#	upon	executing	a	file	labeled	with	type.

#

define(`domain_auto_trans',	`

#	Allow	the	necessary	permissions.

domain_trans($1,$2,$3)

#	Make	the	transition	occur	by	default.

type_transition	$1	$2:process	$3;

')

...

The	comment	here	indicates	that	we	are	headed	in	the	proper	direction;	however,	we	need
to	keep	expanding	macros	in	our	search.	According	to	the	comment,	the	domain_trans()
macro	allows	just	the	transition	to	occur.	Remember	that	almost	everything	in	SELinux
needs	explicit	permission	from	the	policy	in	order	to	happen,	including	type	transitions.
The	last	statement	in	the	macro	is	the	one	we	were	searching	for:

type_transition	$1	$2:process	$3;

If	you	expand	this	statement	out,	you’ll	get:

type_transition	init	rild_exec:process	rild;

What	this	statement	conveys	is	that	if	you	make	an	exec()	syscall	on	a	file	with	the	type
rild_exec,	and	the	executing	domain	is	init,	then	make	the	child	process’	domain	rild.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Explicit	contexts	via	seclabel
The	other	option	for	setting	contexts	is	very	straightforward.	It’s	hardcoding	them	with	the
init	script	in	the	service	declaration.	In	the	service	declaration,	as	we	saw	in	Chapter	3,
Android	Is	Weird,	there	were	modifications	to	the	init	language.	One	of	the	additions	is
seclabel.	This	option	just	lets	init	explicitly	change	the	context	of	the	service	to	the
argument	given	to	seclabel.	Here	is	an	example	of	adbd:

Service	adbd	/sbin/adbd

		class	core

		socket	adbd	stream	660	system	system

		disabled

		seclabel	u:r:adbd:s0

So	why	use	dynamic	transitions	on	some	and	seclabel	on	others?	The	answer	is
dependent	on	where	you’re	executing	from.	Things	such	as	adbd	execute	early	on	from	the
ramdisk,	and	since	the	ramdisk	really	doesn’t	use	per	file	labels,	you	can’t	set	up
transitions	properly—the	target	has	the	same	context.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Relabeling	processes
Now	that	we	are	armed	with	dynamic	process	transitions,	and	the	ability	to	set	socket
contexts	from	init	scripts	is	needed.	Let’s	attempt	to	relabel	the	services	that	are	in
improper	contexts.	We	can	tell	if	they’re	improper	by	checking	them	against	the	following
rules:

No	other	process	but	init	should	be	in	the	init	context
No	long	running	process	should	be	in	the	init_shell	domain
Nothing	but	zygote	should	be	in	the	zygote	domain

Note
A	more	comprehensive	test	suite	is	part	of	CTS	on	AOSP.	Refer	to	the	Android	CTS
project	for	more	details:	(git	clone)	https://android.googlesource.com/platform/cts.	Take
note	of	the
./hostsidetests/security/src/android/cts/security/SELinuxHostTest.java	and
./tests/tests/security/src/android/security/cts/SELinux.*.java	tests.

Let’s	run	some	basic	commands	and	evaluate	the	status	of	our	UDOO	over	the	adb
connection:

$	adb	shell	ps	-Z	|	grep	init

u:r:init:s0	root	1	0	/init

u:r:init:s0	root	2267	1	/sbin/watchdogd

u:r:init_shell:s0	root	2278	1	/system/bin/sh

$	adb	shell	ps	-Z	|	grep	zygote

u:r:zygote:s0	root	2285	1	zygote

We	have	two	processes	in	the	improper	domains.	The	first	is	watchdogd,	and	the	second	is
a	sh	process.	We	need	to	find	these	and	correct	them.

We	will	start	with	the	mystery	sh	program.	As	you	can	recall	from	the	previous	chapter,
our	UDOO	serial	console	process	had	the	context	of	init_shell,	so	this	is	a	good	suspect.
Let’s	check	PIDs	and	find	out.	From	a	UDOO	serial	console	execute:

root@udoo:/	#	echo	$$	

2278

We	can	compare	this	PID	to	the	PID	field	in	the	adb	shell	ps	output	here	(PID	field	is
the	third	field,	index	2),	and	as	you	can	see,	we	have	a	match.

From	there,	we	need	to	find	the	service	declaration	for	this.	We	know	that	it	is	in	init.rc
since	it’s	running	in	init_shell,	a	type	that	can	only	be	transitioned	to	by	init	directly	as
per	the	SELinux	policy.	Also,	init	only	starts	processing	things	by	service	declarations,	so
in	order	to	be	in	init_shell,	you	must	start	by	init	via	a	service	declaration.

Note
Use	sesearch	to	find	out	such	things	on	the	compiled	sepolicy	binary:

$	sesearch	-T	-s	init	-t	shell_exec	-c	process	$OUT/root/sepolicy

www.it-ebooks.info

https://android.googlesource.com/platform/cts
http://www.it-ebooks.info/

If	we	search	init.rc	for	the	UDOO,	which	is	in	udoo/device/fsl/imx6/etc,	we	can
grep	its	contents	for	/system/bin/sh,	the	command	in	question.	If	we	do	that,	we	will
find:

$	grep	-n	"/system/bin/sh"	init.rc	

499:service	console	/system/bin/sh

702:service	wifi_mac	/system/bin/sh	/system/etc/check_wifi_mac.sh

Let’s	look	at	499	since	we	don’t	have	anything	to	do	with	Wi-Fi:

service	console	/system/bin/sh

		class	core

		console

		user	root

		group	root

If	this	is	the	service	in	question,	we	should	be	able	to	disable	it,	and	verify	that	our	serial
connection	no	longer	works:

$	adb	shell	setprop	ctl.stop	console

My	live	serial	connection	died	at:

root@udoo:/	#	avc:	denied	{	set	}	for	property=ctl.console	

scontext=u:r:shell:s0	tcontext=u:e

Now	that	we	have	verified	what	it	is,	we	can	start	it	back	up:

$	adb	shell	setprop	ctl.start	console

With	the	system	back	in	a	working	state,	we	now	need	to	address	the	best	way	to	correct
the	label	on	this	service.	We	have	two	options:

Using	an	explicit	seclabel	entry	in	init.rc
Using	a	type	transition

The	option	we	will	use	here	is	the	first.	The	reason	is	because	init	executes	shell	from	time
to	time,	and	we	don’t	want	all	of	these	in	the	console	processes	domain.	We	want	least
privilege	to	segregate	the	running	processes.	By	using	the	explicit	seclabel,	we	won’t
change	any	of	the	other	shells	that	are	executed	along	the	way.

To	do	this,	we	need	to	modify	the	init.rc	entry	for	console;	add:

service	console	/system/bin/sh

		class	core

		console

		user	root

		group	root

		seclabel	u:r:shell:s0

The	proper	domain	for	this	executable	is	shell,	since	it	should	have	the	same	permission
set	as	adb	shell.	After	you	make	this	change,	recompile	the	bootimage,	flash,	and	then
reboot.	We	can	see	that	it	is	now	in	a	shell	domain.	To	verify,	execute	the	following	from	a
UDOO	serial	connection:

root@udoo:/	#	id	-Z	

www.it-ebooks.info

http://www.it-ebooks.info/

uid=0(root)	gid=0(root)	context=u:r:shell:s0

Alternatively,	execute	the	following	command	using	adb:

$	adb	shell	ps	-Z	|	grep	"system/bin/sh"

u:r:shell:s0	root	2279	1	/system/bin/sh

The	next	one	we	need	to	take	care	of	is	watchdogd.	The	watchdogd	process	already	has	a
domain	and	allows	rules	in	watchdog.te;	so	we	just	need	to	add	a	seclabel	statement	and
get	it	into	this	proper	domain.	Modify	init.rc:

#	Set	watchdog	timer	to	30	seconds	and	pet	it	every	10	seconds	to	get	a	20	

second	margin

service	watchdogd	/sbin/watchdogd	10	20

		class	core

		seclabel	u:r:watchdogd:s0

To	verify	using	adb,	execute	the	following	command:

$	adb	shell	ps	-Z	|	grep	watchdog

u:r:watchdogd:s0	root	2267	1	/sbin/watchdogd

At	this	point,	we	have	made	actual	policy	corrections	that	the	UDOO	was	in	need	of.
However,	we	need	to	practice	the	use	of	dynamic	domain	transitions.	A	good	teaching
example	would	have	subshells	from	a	shell	in	their	own	domain.	Let’s	start	by	defining	a
new	domain	and	setting	up	the	transition.

We	will	create	a	new	.te	file	in	sepolicy	called	subshell.te,	and	edit	it	so	that	its
contents	contain	the	following:

type	subshell,	domain,	shelldomain,	mlstrustedsubject;

#	domain_auto_trans(olddomain,	type,	newdomain)

#	Automatically	transition	from	olddomain	to	newdomain

#	upon	executing	a	file	labeled	with	type.

#

domain_auto_trans(shell,	shell_exec,	subshell)

Now,	the	mmm	trick	used	earlier	in	the	book	can	be	used	to	compile	just	the	policy	Also,	use
adb	push	command	to	push	the	new	policy	to	/data/security/current/sepolicy	and
execute	setprop	to	reload	the	policy,	just	as	we	did	in	Chapter	8,	Applying	Contexts	to
Files.

To	test	this,	we	should	be	able	to	type	sh,	and	verify	the	domain	transition.	We	will	start
by	getting	our	current	context:

root@udoo:/	#	id	-Z

uid=0(root)	gid=0(root)	context=u:r:shell:s0

Then	execute	a	shell	by	doing:

root@udoo:/	#	sh

root@udoo:/	#	id	-Z

uid=0(root)	gid=0(root)	context=u:r:subshell:s0

We	were	able	to	use	a	dynamic	type	transition	to	get	a	new	process	in	a	domain.	If	you
couple	this	with	labeling	files,	as	presented	in	Chapter	8,	Applying	Contexts	to	Files,	you

www.it-ebooks.info

http://www.it-ebooks.info/

have	a	powerful	tool	to	control	process	permissions.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Limitations	on	app	labeling
A	fundamental	limitation	of	these	dynamic	process	transitions	is	that	they	require	an
exec()	system	call	to	be	made.	Only	then	can	SELinux	compute	the	new	domain,	and
trigger	the	context	switch.	The	only	other	way	to	do	this	is	by	modifying	the	code,	which
essentially	is	what	init	is	doing	when	you	specify	seclabel().	The	init	code	sets	the	exec
context	for	its	process,	causing	the	next	exec	to	end	up	in	the	specified	domain.	In	fact,	we
can	see	this	in	the	init.c	code:

if	(svc->seclabel)	{

if	(is_selinux_enabled()	>	0	&&	setexeccon(svc->seclabel)	<	0)	{

ERROR("cannot	setexeccon('%s'):	%s\n",	svc->seclabel,	strerror(errno));

_exit(127);

}

}

Here,	the	child	process	gets	its	execute	context	set	by	a	call	to	setexeccon()	before	the
exec()	system	call	hands	over	control	to	a	new	binary	image.	In	Android,	applications	are
not	spawned	this	way,	and	no	exec()	syscall	exists	in	the	process	creation	path;	so	a	new
mechanism	will	be	needed.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	learned	how	to	label	processes	via	type	transitions	as	well	as	via	the
seclabel	statements.	We	also	investigated	how	init	manages	service	sockets,	and	how	to
properly	label	them.	We	then	corrected	the	process	contexts	for	the	serial	console	as	well
as	the	watchdog	daemon.

Applications	in	Android	never	have	an	explicit	call	to	exec()	to	start	their	program
execution.	Since	there	is	no	exec(),	we	have	to	label	applications	with	a	code	change.	In
the	next	chapter,	we	will	address	how	this	happens,	and	how	applications	get	labeled.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	10.	Placing	Applications	in
Domains
In	Chapter	3,	Android	Is	Weird,	we	introduced	the	zygote	and	that	all	applications,	APKs
in	Android	speak,	emanate	from	the	zygote	just	like	services	emanate	from	the	init
process.	As	such,	they	need	to	be	labeled,	as	we	did	in	the	previous	chapter.	Recall	that
labeling	is	the	same	as	placing	a	process	in	a	domain	of	that	label.	Applications	need	to	be
labeled	as	well.

Note
APK	is	the	file	extension	and	format	for	installable	application	packages	on	Android.	It’s
analogous	to	the	desktop	package	formats	like	RPM	(Redhat	based)	or	DEB	(Debian
based).

In	this	chapter,	we	will	learn	to:

Properly	label	application	private	data	directories	and	their	runtime	contexts
Further	examine	zygote	and	methods	to	secure	it
Discover	how	a	finished	mac_permssions.xml	file	assigns	seinfo	value
Create	a	new	custom	domain

www.it-ebooks.info

http://www.it-ebooks.info/

The	case	to	secure	the	zygote
Android	applications	with	elevated	permissions	and	capabilities	are	spawned	from	the
zygote.	An	example	of	this	is	the	system	server,	a	large	process	comprised	of	native	and
non-native	code	hosting	a	variety	of	services.	The	system	server	houses	the	activity
manager,	package	manager,	GPS	feeds	and	so	on.	The	system	server	also	runs	with	a
highly	sensitive	UID	of	system	(1000).	Also,	many	OEMs	package	what	are	known	as
system	apps,	which	are	standalone	applications	running	with	the	system	UID.

The	zygote	also	spawns	applications	that	do	not	need	elevated	permissions.	All	third-party
applications	represent	this.	Third	party	applications	run	as	their	own	UID,	separate	from
sensitive	UIDs,	such	as	system.	Additionally,	applications	get	spawned	into	various	UIDs
such	as	media,	nfc,	and	so	on.	OEMs	tend	to	define	additional	UIDs.

It’s	important	to	note	that	to	get	into	a	special	UID,	like	system,	you	must	be	signed	with
the	proper	key.	Android	has	four	major	keys	used	to	sign	applications:	media,	platform,
shared,	and	testkey.	They	are	located	in	build/target/product/security,	along	with	a
README.

According	to	the	README,	the	key	usage	is	as	follows:

testkey:	A	generic	key	for	packages	that	do	not	otherwise	specify	a	key.
platform:	A	test	key	for	packages	that	are	part	of	the	core	platform.
shared:	A	test	key	for	things	that	are	shared	in	the	home/contacts	process.
media:	A	test	key	for	packages	that	are	part	of	the	media/download	system.

In	order	to	request	system	UID	for	your	application,	you	must	be	signed	with	the
platform	key.	Possession	of	the	private	key	is	required	to	execute	in	these	more	privileged
environments.

As	you	can	see,	we	have	applications	executing	at	a	variety	of	permission	levels,	and	trust
levels.	We	cannot	trust	third	party	applications	since	they	are	created	by	unknown	entities,
and	we	can	trust	things	signed	with	our	private	keys.	However,	before	SELinux,
application	permissions	were	still	bound	by	the	same	DAC	permission	limitations	as	those
identified	in	Chapter	1,	Linux	Access	Controls.	Because	of	these	properties,	it	makes	the
zygote	a	prime	target	for	attack,	as	well	as	fortification	with	SELinux.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Fortifying	the	zygote
Now	that	we	have	identified	a	problem	with	zygote,	the	next	step	is	understanding	how	to
get	applications	into	appropriate	domains.	We	need	either	SELinux	policy	or	code	changes
to	place	new	processes	into	a	domain.	In	Chapter	9,	Adding	Services	to	Domains,	we
covered	dynamic	domain	transitions	with	init-based	services	and	the	end	of	the	chapter
mentions	the	importance	of	the	exec()	syscall	in	the	“Limitations	on	App	Labeling”
section.	This	is	the	trigger	on	which	dynamic	domain	transitions	occur.	If	there	is	no	exec
in	the	path,	we	would	have	to	rely	on	code	changes.	However,	one	also	has	to	consider	the
signing	key	in	this	security	model,	and	there	is	no	way	in	pure	SELinux	policy	language	to
express	the	key	the	process	was	signed	with.

Rather	than	exploring	the	whole	zygote,	we	can	dissect	the	following	patches	that
introduce	application	labeling	into	Android.	Additionally,	we	can	discover	how	the
introduced	design	meets	the	requirements	of	respecting	the	signing	key,	working	within
the	design	of	SELinux	and	the	zygote.

www.it-ebooks.info

http://www.it-ebooks.info/

Plumbing	the	zygote	socket
In	Chapter	3,	Android	Is	Weird,	we	learned	that	the	zygote	listens	for	requests	to	spawn	a
new	application	from	a	socket.	The	first	patch	to	examine	is	https://android-
review.googlesource.com/#/c/31066/.	This	patch	modifies	three	files	in	the	base
frameworks	of	Android.	The	first	file	is	Process.java	in	the	method	startViaZygote().
This	method	is	the	main	entry	point	for	other	methods	with	respect	to	building	string
arguments	and	passing	them	to	the	zygote	with	zygoteSendArgsAndGetResult().	The
patch	introduces	a	new	argument	called	seinfo.	Later	on,	we	will	see	how	this	gets	used.
It	appears	that	this	patch	is	plumbing	this	new	seinfo	argument	over	the	socket.	Note	that
this	code	is	called	external	to	the	zygote	process.

The	next	file	to	look	at	in	this	patch	is	ZygoteConnection.java.	This	code	executes	from
within	the	context.	The	patch	starts	off	by	declaring	a	string	member	variable
peerContext	in	the	ZygoteConnection	class.	In	the	constructor,	this	peerContext
member	is	set	to	the	value	obtained	from	a	call	to
SELinux.getPeerContext(mSocket.getFileDescriptor()).

Since	the	LocalSocket	mSocket	is	a	Unix	domain	socket	under	the	hood,	you	can	obtain
the	connected	client’s	credentials.	In	this	case,	the	call	to	getPeerContext()	gets	the
client’s	security	context,	or	in	more	formal	terms,	the	process	label.	After	the	initialization,
further	down	in	method	runOnce(),	we	see	it	being	used	in	calls	to
applyUidSecurityPolicy	and	other	apply*SecurityPolicy	routines.	The	protected
method	runOnce()	is	called	to	read	one	start	command	from	the	socket	and	arguments.
Eventually,	after	the	apply*SecurityPolicy	checks,	it	calls	forkandSpecialize().	Each
security	policy	check	has	been	modified	to	use	SELinux	on	top	of	the	existing	DAC
security	controls.	If	we	review	applyUidSecurityPolicy,	we	see	they	make	the	call:

boolean	allowed	=	SELinux.checkSELinuxAccess(peerSecurityContext,	

peerSecurityContext,	"zygote",	"specifyids");

This	is	an	example	of	a	userspace	leveraging	mandatory	access	controls	in	what	is	known
as	an	object	manager.	Additionally,	a	security	check	has	been	added	for	the	mysterious
seinfo	string	in	the	applyseInfoSecurityPolicy()	method.	All	the	security	checks	here
for	SELinux	specify	the	target	class	zygote.	So	if	we	look	into	sepolicy
access_vectors,	we	see	the	added	class	zygote.	This	is	a	custom	class	for	Android	and
defines	all	the	vectors	checked	in	the	security	checks.

The	last	file	we’ll	consider	from	this	patch	is	ActivityManagerService.java.	The
ActivityManager	is	responsible	for	starting	applications	and	managing	their	lifecycles.
It’s	a	consumer	of	the	Process.start	API	and	needs	to	specify	seinfo.	This	patch	is
simple,	and	for	now,	just	sends	null.	Later,	we	will	see	the	patch	enabling	its	use.

The	next	patch,	https://android-review.googlesource.com/#/c/31063/,	executes	within	the
context	of	the	Android	Dalvik	VM	and	is	coded	in	the	VM	zygote	process	space.	The
forkAndSpecialize()	we	saw	in	ZygoteConnection	ends	up	in	this	native	routine.	It
enters	using	static	pid_t	forkAndSpecializeCommon(const	u4*	args,	bool
isSystemServer).	This	routine	is	responsible	for	creating	the	new	process	that	becomes

www.it-ebooks.info

https://android-review.googlesource.com/#/c/31066/
https://android-review.googlesource.com/#/c/31063/
http://www.it-ebooks.info/

the	application.

It	begins	with	housekeeping	code	moving	from	Java	to	C	and	sets	up	the	niceName	and
seinfo	values	as	C-style	strings.	Eventually,	the	code	calls	fork()	and	the	child	process
starts	doing	things,	like	executing	setgid	and	setuid.	The	uid	and	gid	values	are
specified	to	the	zygote	connection	with	the	Process.start	method.	We	also	see	a	new
call	to	setSELinuxContext().	As	an	aside,	the	order	of	these	events	is	important	here.	If
you	set	the	SELinux	context	of	the	new	process	too	early,	the	process	would	need
additional	capabilities	in	the	new	context	to	do	things	like	setuid	and	setgid.	However,
those	permissions	are	best	left	to	the	zygote	domain,	so	the	application	domain	we	entered
can	be	as	minimal	as	possible.

Continuing,	setSELinuxContext	eventually	calls	selinux_android_setcontext().	Note
that	the	HAVE_SELINUX	conditional	compilation	macros	were	removed	after	this	commit,
but	prior	to	the	4.3	release.	Also	note	that	selinux_android_setcontext()	is	defined	in
libselinux,	so	our	journey	will	take	us	there.	Here	we	see	the	mysterious	seinfo	is	still
being	passed	along.

The	next	patch	to	evaluate	is	https://android-review.googlesource.com/#/c/39601/.	This
patch	actually	passes	a	more	meaningful	seinfo	value	from	the	Java	layer.	Rather	than
being	set	to	null,	this	patch	introduces	some	parsing	logic	from	an	XML	file,	and	passes
this	along	to	the	Process.start	method.

This	patch	modifies	two	major	components:	PackageManager	and	installd.
PackageManager	runs	inside	the	system_server,	and	performs	application	installation.	It
maintains	the	state	of	all	installed	packages	in	the	system.	The	second	component,	a
service	known	as	installd,	is	a	very	privileged	root	service	that	creates	all	the
applications’	private	directories	on	disk.	Rather	than	giving	system	server,	and	therefore
PackageManager,	the	capability	to	create	these	directories,	only	installd	has	these
permissions.	Using	this	approach,	even	the	system	server	cannot	read	data	in	your	private
data	directories	unless	you	make	it	world	readable.

This	patch	is	larger	than	the	others,	so	we	are	only	going	to	inspect	the	parts	directly
relevant	to	our	discussion.	We’ll	start	by	looking	at	PackageManagerService.java.	This
class	is	the	package	manager,	proper	for	Android.	In	the	constructor	for
PackageManagerService(),	we	see	the	addition	of	mFoundPolicyFile	=
SELinuxMMAC.readInstallPolicy();.

Based	on	the	naming,	we	can	conjecture	that	this	method	is	looking	for	some	type	of
policy	configuration	file,	and	if	found,	returns	true,	setting	the	mFoundPolicyFile	member
variable.	We	also	see	some	calls	to	createDataDirs	and	mInstaller.*	calls.	These	we
can	ignore,	since	those	calls	are	headed	to	installd.

The	next	major	portion	adds	the	following:

if	(mFoundPolicyFile)	{

		SELinuxMMAC.assignSeinfoValue(pkg);

}

It’s	important	to	note	that	this	code	was	added	into	the	scanPackageLI()	method.	This

www.it-ebooks.info

https://android-review.googlesource.com/#/c/39601/
http://www.it-ebooks.info/

method	is	called	every	time	a	package	needs	to	be	scanned	for	installation.	So	at	a	high
level,	if	some	policy	file	is	found	during	service	startup,	then	a	seinfo	value	is	assigned	to
the	package.

The	next	file	to	look	at	is	ApplicationInfo.java,	a	container	class	for	maintaining	meta
information	about	a	package.	As	we	can	see,	the	seinfo	value	is	specified	here	for	storage
purposes.	Additionally,	there	is	some	code	for	serializing	and	deserializing	the	class	via
the	Android	specific	Parcel	implementation.

At	this	point,	we	should	have	a	closer	look	at	the	SELinuxMMAC.java	code	to	confirm	our
understanding	of	what’s	going	on.	The	class	starts	by	declaring	two	locations	for	policy
files.

//	Locations	of	potential	install	policy	files.

private	static	final	File[]	INSTALL_POLICY_FILE	=	{

		new	File(Environment.getDataDirectory(),	"system/mac_permissions.xml"),

		new	File(Environment.getRootDirectory(),	

"etc/security/mac_permissions.xml"),

		null	};

According	to	this,	policy	files	can	exist	in	two	locations-
/data/system/mac_permissions.xml	and
/system/etc/security/mac_permissions.xml.	Eventually,	we	see	the	call	from
PackageManagerService	initialization	to	the	method	defined	in	the	class
readInstallPolicy(),	which	eventually	reduces	to	a	call	of:

private	static	boolean	readInstallPolicy(File[]	policyFiles)	{

		FileReader	policyFile	=	null;

		int	i	=	0;

		while	(policyFile	==	null	&&	policyFiles	!=	null	&&	policyFiles[i]	!=	

null)	{

				try	{

						policyFile	=	new	FileReader(policyFiles[i]);

						break;

				}	catch	(FileNotFoundException	e)	{

						Slog.d(TAG,"Couldn't	find	install	policy	"	+	

policyFiles[i].getPath());

				}

		i++;

		}

...

With	policyFiles	set	to	INSTALL_POLICY_FILE,	this	code	uses	the	array	to	find	a	file	at
the	specified	locations.	It	is	priority	based,	with	the	/data	location	taking	precedence	over
/system.	The	rest	of	the	code	in	this	method	looks	like	parsing	logic	and	fills	up	two	hash
tables	that	were	defined	in	the	class	declaration:

//	Signature	seinfo	values	read	from	policy.

private	static	final	HashMap<Signature,	String>	sSigSeinfo	=

new	HashMap<Signature,	String>();

//	Package	name	seinfo	values	read	from	policy.

private	static	final	HashMap<String,	String>	sPackageSeinfo	=

new	HashMap<String,	String>();

www.it-ebooks.info

http://www.it-ebooks.info/

The	sSigSeinfo	maps	Signatures,	or	signing	keys,	to	seinfo	strings.	The	other	map,
sPackageSeinfo	maps	a	package	name	to	a	string.

At	this	point,	we	can	read	some	formatted	XML	from	the	mac_permissions.xml	file	and
create	internal	mappings	from	signing	key	to	seinfo	and	package	name	to	seinfo.

The	other	call	from	PackageManagerService	into	this	class	came	from	void
assignSeinfoValue(PackageParser.Package	pkg).

Let’s	investigate	what	this	method	can	do.	It	starts	by	checking	if	the	application	is	system
UID	or	a	system	installed	app.	In	other	words,	it	checks	whether	the	application	is	a	third-
party	application:

if	(((pkg.applicationInfo.flags	&	ApplicationInfo.FLAG_SYSTEM)	!=	0)	||

((pkg.applicationInfo.flags	&	ApplicationInfo.FLAG_UPDATED_SYSTEM_APP)	!=	

0))	{

This	code	has	subsequently	been	dropped	by	Google,	and	was	initially	a	requirement	for
merge.	We	can,	however,	continue	our	evaluation.	The	code	loops	over	all	the	signatures
in	the	package,	and	checks	against	the	hash	table.	If	it	is	signed	with	something	in	that
map,	it	uses	the	associated	seinfo	value.	The	other	case	is	that	it	matches	by	package
name.	In	either	case,	the	package’s	ApplictionInfo	class	seinfo	value	is	updated	to
reflect	this	and	be	used	elsewhere	by	installd	and	zygote	application	spawn:

//	We	just	want	one	of	the	signatures	to	match.

for	(Signature	s	:	pkg.mSignatures)	{

		if	(s	==	null)

				continue;

		if	(sSigSeinfo.containsKey(s))	{

				String	seinfo	=	pkg.applicationInfo.seinfo	=	sSigSeinfo.get(s);

				if	(DEBUG_POLICY_INSTALL)

						Slog.i(TAG,	"package	("	+	pkg.packageName	+

								")	labeled	with	seinfo="	+	seinfo);

				return;

				}

		}

		//	Check	for	seinfo	labeled	by	package.

		if	(sPackageSeinfo.containsKey(pkg.packageName))	{

				String	seinfo	=	pkg.applicationInfo.seinfo	=	

sPackageSeinfo.get(pkg.packageName);

				if	(DEBUG_POLICY_INSTALL)

						Slog.i(TAG,	"package	("	+	pkg.packageName	+

								")	labeled	with	seinfo="	+	seinfo);

						return;

				}

		}

}

As	an	aside,	what	is	merged	into	mainline	AOSP	and	what	is	maintained	in	the	NSA
Bitbucket	repositories	is	a	bit	different.	The	NSA	has	additional	controls	in	these	policy
files	that	can	cause	an	application	installation	to	abort.	Google	and	the	NSA	are	“forked”
over	this	issue,	so	to	speak.	In	the	NSA	versions	of	SELinuxMMAC.java,	you	can	specify
that	applications	matching	a	specific	signature	or	package	name	are	allowed	to	have

www.it-ebooks.info

http://www.it-ebooks.info/

certain	sets	of	Android-level	permissions.	For	instance,	you	can	block	all	applications
from	being	installed	that	request	CAMERA	permissions	or	block	applications	signed	with
certain	keys.	This	also	highlights	how	important	it	can	be	to	find	patches	within	large	code
bases	and	quickly	come	up	to	speed	on	how	projects	evolve,	which	can	often	seem
daunting.

The	last	file	in	this	patch	for	us	to	consider	is	ActivityManagerService.java.	This	patch
replaces	the	null	with	app.info.seinfo.	After	all	that	work	and	all	that	plumbing,	we
finally	have	the	mystical	seinfo	value	fully	parsed,	associated	per	application	package,
and	sent	along	to	the	zygote	for	use	in	selinux_android_setcontext().

Now	it	would	benefit	us	to	sit	back	and	think	about	some	of	the	properties	we	wanted	to
achieve	in	labeling	applications.	One	of	them	is	to	somehow	couple	a	security	context
with	the	application	signing	key,	and	this	is	precisely	the	main	benefit	of	seinfo.	This	is	a
highly	sensitive	and	trusted	string	associated	value	of	a	signing	key.	The	actual	contents	of
the	string	are	arbitrary	and	dictated	in	mac_permissions.xml,	which	is	the	next	stop	on
our	adventure.

www.it-ebooks.info

http://www.it-ebooks.info/

The	mac_permissions.xml	file
The	mac_permissions.xml	file	has	a	very	confusing	name.	Expanded,	the	name	is	MAC
permissions.	However,	its	major	mainline	functionality	is	to	map	a	signing	key	to	a
seinfo	string.	Secondarily,	it	can	also	be	used	to	configure	a	non-mainstream	install-time
permission-checking	feature,	known	as	install	time	MMAC.	MMAC	controls	are	part	of
the	NSA’s	work	to	implement	mandatory	access	controls	in	the	middleware	layer.	MMAC
stands	for	“Middleware	Mandatory	Access	Controls”.	Google	has	not	merged	any	of	the
MMAC	features.	However,	since	we	used	the	NSA	Bitbucket	repositories,	our	code	base
contains	these	features.

The	mac_permissions.xml	is	an	XML	file,	and	should	adhere	to	the	following	rules,
where	italicized	portions	are	only	supported	on	NSA	branches:

A	signature	is	a	hex	encoded	X.509	certificate	and	is	required	for	each	signer	tag.
A	<signer	signature=""	>	element	may	have	multiple	child	elements:

allow-permission:	It	produces	a	set	of	maximal	allowed	permissions
(whitelist)
deny-permission:	It	produces	a	blacklist	of	permissions	to	deny
allow-all:	It	is	a	wildcard	tag	that	will	allow	every	permission	requested
package:	It	is	a	complex	tag	which	defines	allow,	deny,	and	wildcard	sub-
elements	for	a	specific	package	name	protected	by	the	signature

Zero	or	more	global	<package	name="">	tags	are	allowed.	These	tags	allow	a	policy
to	be	set	outside	any	signature	for	specific	package	names.
A	<default>	tag	is	allowed	that	can	contain	install	policy	for	all	apps	not	signed	with
a	previously	listed	cert	and	not	having	a	per	package	global	policy.
Unknown	tags	at	any	level	are	skipped.
Zero	or	more	signer	tags	are	allowed.
Zero	or	more	package	tags	are	allowed	per	signer	tag.
A	<package	name="">	tag	may	not	contain	another	<package	name="">	tag.	If
found,	it’s	skipped.
When	multiple	sub-elements	appear	for	a	tag,	the	following	logic	is	used	to
ultimately	determine	the	type	of	enforcement:

A	blacklist	is	used	if	at	least	one	deny-permission	tag	is	found.
A	whitelist	is	used,	if	not	a	blacklist,	and	at	least	one	allow-permission	tag	is
found.
A	wildcard	(accept	all	permissions)	policy	is	used	if	not	a	blacklist	and	not	a
whitelist,	and	at	least	one	allow-all	tag	is	present.
If	a	<package	name="">	sub-element	is	found,	then	that	sub-element’s	policy	is
used	according	to	the	earlier	logic	and	overrides	any	signature	global	policy
type.
In	order	for	a	policy	stanza	to	be	enforced,	at	least	one	of	the	preceding
situations	must	apply.	Meaning,	empty	signer,	default	or	package	tags	will	not
be	accepted.

www.it-ebooks.info

http://www.it-ebooks.info/

Each	signer/default/package	(global	or	attached	to	a	signer)	tag	is	allowed	to
contain	one	<seinfo	value=""/>	tag.	This	tag	represents	additional	info	that	each
app	can	use	in	setting	an	SELinux	security	context	on	the	eventual	process.
Strict	enforcing	of	any	XML	stanza	is	not	enforced	in	most	cases.	This	mainly
applies	to	duplicate	tags,	which	are	allowed.	In	the	event	that	a	tag	already	exists,	the
original	tag	is	replaced.
There	are	also	no	checks	on	the	validity	of	permission	names.	Although	valid
Android	permissions	are	expected,	nothing	prevents	unknowns.
Following	are	the	enforcement	decisions:

All	signatures	used	to	sign	an	app	are	checked	for	policy	according	to	signer
tags.	However,	only	one	of	the	signature	policies	has	to	pass.
In	the	event	that	none	of	the	signature	policies	pass,	or	none	even	match,	then	a
global	package	policy	is	sought.	If	found,	this	policy	mediates	the	install.
The	default	tag	is	consulted	last,	if	needed.
A	local	package	policy	always	overrides	any	parent	policy.
If	none	of	the	cases	apply,	then	the	app	is	denied.

The	following	examples	ignore	the	Install	MMAC	support	and	focus	on	the	mainline
usage	of	seinfo	mapping.	The	following	is	an	example	of	stanza	mapping	all	things
signed	with	the	platform	key	to	seinfo	value	platform:

<!--	Platform	dev	key	in	AOSP	-->

<signer	signature="@PLATFORM"	>

		<seinfo	value="platform"	/>

</signer>

Here	is	an	example	mapping	all	things	signed	with	the	release	key	to	the	release	domain
with	the	exception	of	the	browser.	The	browser	gets	assigned	a	seinfo	value	of	browser,
as	follows:

<!--	release	dev	key	in	AOSP	-->

<signer	signature="@RELEASE"	>

		<seinfo	value="release"	/>

		<package	name="com.android.browser"	>

		<seinfo	value="browser"	/>

		</package>

</signer>

...

Anything	with	an	unknown	key,	gets	mapped	to	the	default	tag:

...

<!--	All	other	keys	-->

<default>

		<seinfo	value="default"	/>

</default>

The	signing	tags	are	of	interest,	the	@PLATFORM	and	@RELEASE	are	special	processing
strings	used	during	build.	Another	mapping	file	maps	these	to	actual	key	values.	The	file
that	is	processed	and	placed	onto	the	device	has	all	key	references	replaced	with	hex
encoded	public	keys	rather	than	these	placeholders.	It	also	has	all	whitespace	and

www.it-ebooks.info

http://www.it-ebooks.info/

comments	stripped	to	reduce	size.	Let’s	take	a	look	by	pulling	the	built	file	from	the
device	and	formatting	it.

$	adb	pull	/system/etc/security/mac_permissions.xml

$	xmllint	--format	mac_permissions.xml

Now,	scroll	to	the	top	of	the	formatted	output;	you	should	see	the	following:

<?xml	version="1.0"	encoding="iso-8859-1"?>

<!--	AUTOGENERATED	FILE	DO	NOT	MODIFY	-->

<policy>

		<signer	

signature="308204ae30820396a003020102020900d2cba57296ebebe2300d06092a864886

f70d0101050500308196310b300906035504061302555331133…

dec513c8443956b7b0182bcf1f1d">

				<allow-all/>

				<seinfo	value="platform"/>

		</signer>

Notice	that	signature=@PLATFORM	is	now	a	hex	string.	This	hex	string	is	a	valid	X509
certificate.

www.it-ebooks.info

http://www.it-ebooks.info/

keys.conf
The	actual	magic	doing	the	mapping	from	signature=@PLATFORM	in
mac_permissions.xml	is	keys.conf.	This	configuration	file	allows	you	to	map	a	pem
encoded	x509	to	an	arbitrary	string.	The	convention	is	to	start	them	with	@,	but	this	is	not
enforced.	The	format	of	the	file	is	based	on	the	Python	config	parser	and	contains	sections.
The	section	names	are	the	tags	in	the	mac_permissions.xml	file	you	wish	to	replace	with
key	values.	The	platform	example	is:

[@PLATFORM]

ALL	:	$DEFAULT_SYSTEM_DEV_CERTIFICATE/platform.x509.pem

In	Android,	when	you	build,	you	can	have	three	levels	of	builds:	engineering,
userdebug,	or	user.	In	the	keys.conf	file,	you	can	associate	a	key	to	be	used	for	all	levels
with	the	section	attribute	ALL,	or	you	can	assign	different	keys	per	level.	This	is	helpful
when	building	release	or	user	builds	with	very	special	release	keys.	We	see	an	example	of
this	in	the	@RELEASE	section:

[@RELEASE]

ENG							:	$DEFAULT_SYSTEM_DEV_CERTIFICATE/testkey.x509.pem

USER						:	$DEFAULT_SYSTEM_DEV_CERTIFICATE/testkey.x509.pem

USERDEBUG	:	$DEFAULT_SYSTEM_DEV_CERTIFICATE/testkey.x509.pem

The	file	also	allows	the	use	of	environment	variables	through	the	traditional	$	special
character.	The	default	location	for	the	pem	files	is	build/target/product/security.
However,	you	should	never	use	these	keys	for	a	user	release	build.	These	keys	are	the
AOSP	test	keys	and	are	public!	By	doing	so,	anyone	can	use	the	system	key	to	sign	their
app	and	gain	system	privilege.	The	keys.conf	file	is	only	used	during	the	build	and	is	not
located	on	the	system.

www.it-ebooks.info

http://www.it-ebooks.info/

seapp_contexts
So	far,	we	have	looked	at	how	a	finished	mac_permssions.xml	file	assigns	the	seinfo
value.	Now	we	should	address	how	the	labeling	is	actually	configured	and	utilizes	this
value.	The	labeling	of	applications	is	managed	in	another	configuration	file,
seapp_contexts.	Like	mac_permissions.xml,	it	is	loaded	to	the	device.	However,	the
default	location	is	/seapp_contexts.	The	format	of	seapp_contexts	is	the	key=value
pair	mappings	per	line,	adhering	to	the	following	rules:

Input	selectors:

isSystemServer	(boolean)
user	(string)
seinfo	(string)
name	(string)
sebool	(string)

Input	selector	rules:

isSystemServer=true	can	only	be	used	once.
An	unspecified	isSystemServer	defaults	to	false.
An	unspecified	string	selector	will	match	any	value.
A	user	string	selector	that	ends	in	*	will	perform	a	prefix	match.
user=_app	will	match	any	regular	app	UID.
user=_isolated	will	match	any	isolated	service	UID.
All	specified	input	selectors	in	an	entry	must	match	(logical	AND).
Matching	is	case-insensitive.
Precedence	rules	in	order:

isSystemServer=true	before	isSystemServer=false
Specified	user=	string	before	unspecified	user=	string
Fixed	the	user=	string	before	the	user=	prefix	(ending	in	*)
Longer	user=	prefix	before	shorter	user=	prefix
Specified	seinfo=	string	before	unspecified	seinfo=	string.
Specified	name=	string	before	unspecified	name=	string.
Specified	sebool=	string	before	unspecified	sebool=	string.

Outputs:

domain	(string):	It	specifies	the	process	domain	for	the	application.
type	(string):	It	specifies	the	disk	label	for	the	applications’	private	data
directory.
levelFrom	(string;	one	of	none,	all,	app,	or	user):	It	gives	the	MLS	specifier.
level	(string):	It	shows	the	hardcoded	MLS	value.

Output	rules:

Only	entries	that	specify	domain=	will	be	used	for	app	process	labeling.
Only	entries	that	specify	type=	will	be	used	for	app	directory	labeling.

www.it-ebooks.info

http://www.it-ebooks.info/

levelFrom=user	is	only	supported	for	_app	or	_isolated	UIDs.
levelFrom=app	or	levelFrom=all	is	only	supported	for	_app	UIDs.
level	may	be	used	to	specify	a	fixed	level	for	any	UID.

During	application	spawn,	this	file	is	used	by	the	selinux_android_setcontext()	and
selinux_android_setfilecon2()	functions	to	look	up	the	proper	application	domain	or
filesystem	context,	respectively.	The	source	for	these	can	be	found	in
external/libselinux/src/android.c	and	are	recommended	reads.	For	example,	this
entry	places	all	applications	with	UID	bluetooth	in	the	bluetooth	domain	with	a	data
directory	label	of	bluetooth_data_file:

user=bluetooth	domain=bluetooth	type=bluetooth_data_file

This	example	places	all	third	party	or	“default”	applications	into	a	process	domain	of
untrusted_app	and	a	data	directory	of	app_data_file.	It	additionally	uses	MLS
categories	of	levelFrom=app	to	help	provide	additional	MLS-based	separations.

user=_app	domain=untrusted_app	type=app_data_file	levelFrom=app

Currently,	this	feature	is	experimental	as	this	breaks	some	known	application
compatibility	issues.	At	the	time	of	this	writing,	this	was	a	hot	item	of	focus	for	both
Google	and	NSA	engineers.	Since	it	is	experimental,	let’s	validate	its	functionality	and
then	disable	it.

We	have	not	installed	any	third	party	applications	yet,	so	we’ll	need	to	do	so	in	order	to
experiment.	FDroid	is	a	useful	place	to	find	third	party	applications,	so	let’s	download
something	from	there	and	install	it.	We	can	use	the	0xbenchmark	application	located	at
https://f-droid.org/repository/browse/?fdid=org.zeroxlab.zeroxbenchmark	with	an	APK	at
https://f-droid.org/repo/org.zeroxlab.zeroxbenchmark_9.apk,	as	follows:

$	wget	https://f-droid.org/repo/org.zeroxlab.zeroxbenchmark_9.apk

$	adb	install	org.zeroxlab.zeroxbenchmark_9.apk	

567	KB/s	(1193455	bytes	in	2.052s)

pkg:	/data/local/tmp/org.zeroxlab.zeroxbenchmark_9.apk

Success

Tip
Check	logcat	for	the	install	time	seinfo	value:

$	adb	logcat	|	grep	SELinux

I/SELinuxMMAC(2557):	package	(org.zeroxlab.zeroxbenchmark)	installed	with	

seinfo=default

From	your	UDOO,	launch	the	0xbenchmark	APK.	We	should	see	it	running	with	its	label
in	ps:

$	adb	shell	ps	-Z	|	grep	untrusted

u:r:untrusted_app:s0:c40,c256	u0_a40	17890	2285	org.zeroxlab.zeroxbenchmark

Notice	the	level	portion	of	the	context	string	s0:c40,c256.	These	categories	were	created
with	the	level=app	setting	from	seapp_contexts.

www.it-ebooks.info

https://f-droid.org/repository/browse/?fdid=org.zeroxlab.zeroxbenchmark
https://f-droid.org/repo/org.zeroxlab.zeroxbenchmark_9.apk
http://www.it-ebooks.info/

To	disable	it,	we	could	simply	remove	the	key-value	pair	for	level	from	the	entry	in
seapp_contexts,	or	we	could	leverage	the	sebool	conditional	assignment.	Let’s	use	the
Boolean	approach.	Modify	the	sepolicy	seapp_contexts	file	so	the	existing
untrusted_app	entry	is	modified,	and	a	new	one	is	added.	Change	user=_app
domain=untrusted_app	type=app_data_file	to	user=_app	sebool=app_level
domain=untrusted_app	type=app_data_file	levelFrom=app.

Build	that	with	mmm	external/sepolicy,	as	follows:

Error:

out/host/linux-x86/bin/checkseapp	-p	

out/target/product/udoo/obj/ETC/sepolicy_intermediates/sepolicy	-o	

out/target/product/udoo/obj/ETC/seapp_contexts_intermediates/seapp_contexts	

out/target/product/udoo/obj/ETC/seapp_contexts_intermediates/seapp_contexts

.tmp

Error:	Could	not	find	selinux	boolean	"app_level"	on	line:	42	in	file:	

out/target/product/udoo/obj/ETC/seapp_contexts_intermediates/seapp_contexts

Error:	Could	not	validate

Well,	there	was	a	build	error	complaining	about	not	finding	the	selinux	Boolean	on	line
42	of	seapp_contexts.	Let’s	attempt	to	correct	the	issue	by	declaring	the	Boolean.	In
app.te,	add:	bool	app_level	false;.	Now	push	the	newly	built	seapp_contexts	and
sepolicy	file	to	the	device	and	trigger	a	dynamic	reload:

$	adb	push	$OUT/root/sepolicy	/data/security/current/

$	adb	push	$OUT/root/seapp_contexts	/data/security/current/

$	adb	shell	setprop	selinux.reload_policy	1

We	can	verify	that	the	Boolean	exists	by:

$	adb	shell	getsebool	-a	|	grep	app_level

app_level	-->	off

Due	to	design	limitations,	we	need	to	uninstall	and	reinstall	the	application:

$	adb	uninstall	org.zeroxlab.zeroxbenchmark

Re-install	and	check	the	context	of	the	process	after	launching	it:

$	adb	shell	ps	-Z	|	grep	untrusted

u:r:untrusted_app:s0:c40,c256	u0_a40	17890	2285	org.zeroxlab.zeroxbenchmark

Great!	It	failed.	After	some	debugging,	we	discovered	the	source	of	the	issue	is	that	the
path	/data/security	is	not	world	searchable,	causing	a	DAC	permissions	failure.

Note
We	found	this	by	printing	off	the	result	and	error	codes	in	android.c	where	we	saw	the
fopen	on	seapp_contexts_file[]	array	(files	in	priority	order)	while	checking	the	result
of	fp	=	fopen(seapp_contexts_file[i++],	"r")	in
selinux_android_seapp_context_reload()	and	using	selinux_log()	to	dump	the	data
to	logcat.

$	adb	shell	ls	-la	/data	|	grep	security

drwx------	system	system	1970-01-04	00:22	security

www.it-ebooks.info

http://www.it-ebooks.info/

Remember	the	set	selinux	context	occurs	after	the	UID	switch,	so	we	need	to	make	it
searchable	for	others.	We	can	fix	the	permissions	on	the	UDOO	init.rc	script	by
changing	device/fsl/imx6/etc/init.rc.	Specifically,	change	the	line	mkdir
/data/security	0700	system	system	to	mkdir	/data/security	0711	system	system.
Build	and	flash	the	bootimage,	and	try	the	context	test	again.

$	adb	uninstall	org.zeroxlab.zeroxbenchmark

$	adb	install	~/org.zeroxlab.zeroxbenchmark_9.apk

<launch	apk>

$	adb	shell	ps	-Z	|	grep	org.zeroxlab.zeroxbenchmark

u:r:untrusted_app:s0	u0_a40	3324	2285	org.zeroxlab.zeroxbenchmark

So	far,	we’ve	demonstrated	how	to	use	the	sebool	option	on	seapp_contexts	to	disable
the	MLS	categories.	It’s	important	to	note	that	when	changing	categories	or	types	on
APKs,	it	is	required	to	remove	and	install	the	APK,	or	you	will	orphan	the	process	from	its
data	directory	because	it	won’t	have	access	permissions	under	most	circumstances.

Next,	let’s	take	this	APK,	uninstall	it,	and	assign	it	a	unique	domain	by	changing	its
seinfo	string.	Typically,	you	use	this	feature	to	take	a	set	of	applications	signed	with	a
common	key	and	get	them	into	a	custom	domain	to	do	custom	things.	For	example,	if
you’re	an	OEM,	you	may	need	to	allow	custom	permissions	to	third	party	applications	that
are	not	signed	with	an	OEM	controlled	key.	Start	by	uninstalling	the	APK:

$	adb	uninstall	org.zeroxlab.zeroxbenchmark

Create	a	new	entry	in	mac_permissions.xml	by	adding:

<signer	signature="@BENCHMARK"	>

<allow-all	/>

<seinfo	value="benchmark"	/>

</signer>

Now	we	need	to	get	a	pem	file	for	keys.conf.	So	unpackage	the	APK	and	extract	the
public	certificate:

$	mkdir	tmp

$	cd	tmp

$	unzip	~/org.zeroxlab.zeroxbenchmark_9.apk

$	cd	META-INF/

$	$	openssl	pkcs7	-inform	DER	-in	*.RSA	-out	CERT.pem	-outform	PEM		-

print_certs

We’ll	have	to	strip	any	cruft	from	the	generated	CERT.pem	file.	If	you	open	it	up,	you
should	see	these	lines	at	the	top:

subject=/C=UK/ST=ORG/L=ORG/O=fdroid.org/OU=FDroid/CN=FDroid

issuer=/C=UK/ST=ORG/L=ORG/O=fdroid.org/OU=FDroid/CN=FDroid

-----BEGIN	CERTIFICATE-----

MIIDPDCCAiSgAwIBAgIEUVJuojANBgkqhkiG9w0BAQUFADBgMQswCQYDVQQGEwJV

SzEMMAoGA1UECBMDT1JHMQwwCgYDVQQHEwNPUkcxEzARBgNVBAoTCmZkcm9pZC5v…

They	need	to	be	removed,	so	remove	only	the	subject	and	issuer	lines.	The	file	should	start
with	BEGIN	CERTIFICATE	and	end	with	END	CERTIFICATE	scissor	lines.

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s	move	this	to	a	new	folder	in	our	workspace	called	certs	and	move	the	certificate
into	this	folder	with	a	better	name:

$	mkdir	UDOO_SOURCE_ROOT/certs

$	mv	CERT.pem	UDOO_SOURCE_ROOT/certs/benchmark.x509.pem

We	can	set	up	our	keys.conf	by	adding:

[@BENCHMARK]

ALL	:	certs/benchmark.x509.pem

Don’t	forget	to	update	seapp_contexts	in	order	to	use	the	new	mapping:

user=_app	seinfo=benchmark	domain=benchmark_app	

type=benchmark_app_data_file

Now	declare	the	new	types	to	be	used.	The	domain	type	should	be	declared	in	a	file	called
benchmark_app.te	in	sepolicy:

#	Declare	the	new	type

type	benchmark_app,	domain;

#	This	macro	adds	it	to	the	untrusted	app	domain	set	and	gives	it	some	

allow	rules

#	for	basic	functionality	as	well	as	object	access	to	the	type	in	argument	

2.

untrustedapp_domain(benchmark_app,	benchmark_app_data_file)

Also,	add	the	benchmark_app_data_file	in	file.te:

type	benchmark_app_data_file,	file_type,	data_file_type,	

app_public_data_type;

Tip
You	may	not	always	want	all	of	these	attributes,	especially	if	you’re	doing	something
security	critical.	Make	sure	you	look	at	each	attribute	and	macro	and	see	its	usage.	You
don’t	want	to	open	up	an	unintended	hole	by	having	an	overly	permissive	domain.

Rebuild	the	policy,	push	the	required	pieces,	and	trigger	a	reload.

$	mmm	external/sepolicy/

$	adb	push	$OUT/system/etc/security/mac_permissions.xml	

/data/security/current/

$	adb	push	$OUT/root/sepolicy	/data/security/current/

$	adb	push	$OUT/root/seapp_contexts	/data/security/current/

$	adb	shell	setprop	selinux.reload_policy	1

Start	a	shell	and	grep	logcat	to	see	the	seinfo	value	the	benchmark	APK	is	installed	as.
Then	install	the	APK:

$	adb	install	~/org.zeroxlab.zeroxbenchmark_9.apk

$	adb	logcat	|	grep	-i	SELinux

On	the	logcat	output,	you	should	see:

I/SELinuxMMAC(2564):	package	(org.zeroxlab.zeroxbenchmark)	installed	with	

seinfo=default

www.it-ebooks.info

http://www.it-ebooks.info/

It	should	have	been	seinfo=benchmark!	What	could	have	happened?

The	problem	is	in
frameworks/base/services/java/com/android/server/pm/SELinuxMMAC.java.	It	looks
in	/data/security/mac_permissions.xml;	so	we	can	just	push	mac_permissions.xml.
This	is	another	bug	in	the	dynamic	policy	reload	and	has	to	do	with	historical	changes	in
this	loading	procedure.	The	culprit	is	within	the
frameworks/base/services/java/com/android/server/pm/SELinuxMMAC.java	file:

private	static	final	File[]	INSTALL_POLICY_FILE	=	{

new	File(Environment.getDataDirectory(),	"security/mac_permissions.xml"),

new	File(Environment.getRootDirectory(),	

"etc/security/mac_permissions.xml"),

null};

To	get	around	this,	remount	system	and	push	it	to	the	default	location.

$	adb	remount

$	adb	push	$OUT/system/etc/security/mac_permissions.xml	

/system/etc/security/

This	does	not	require	a	setprop	selinux.reload_policy	1.	Uninstall	and	reinstall	the
benchmark	APK,	and	check	the	logs:

I/SELinuxMMAC(2564):	package	(org.zeroxlab.zeroxbenchmark)	installed	with	

seinfo=default

OK.	It	still	didn’t	work.	When	we	examined	the	code,	the	mac_permissions.xml	file	was
loaded	during	package	manager	service	start.	This	file	won’t	get	reloaded	without	a
reboot,	so	let’s	uninstall	the	benchmark	APK,	and	reboot	the	UDOO.	After	it’s	been
booted	and	adb	is	enabled,	trigger	a	dynamic	reload,	install	the	APK,	and	check	logcat.	It
should	have:

I/SELinuxMMAC(2559):	package	(org.zeroxlab.zeroxbenchmark)	installed	with	

seinfo=benchmark

Now	let’s	verify	the	process	domain	by	launching	the	APK,	checking	ps,	and	verifying	its
application	private	directory:

<launch	apk>

$	adb	shell	ps	-Z	|	grep	org.zeroxlab.zeroxbenchmark

u:r:benchmark_app:s0	u0_a45	3493	2285	org.zeroxlab.zeroxbenchmark

$	adb	shell	ls	-Z	/data/data	|	grep	org.zeroxlab.zeroxbenchmark

drwxr-x--x	u0_a45	u0_a45	u:object_r:benchmark_app_data_file:s0	

org.zeroxlab.zeroxbenchmark

This	time,	all	the	types	check	out.	We	successfully	created	a	new	custom	domain.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	investigated	how	to	properly	label	application	private	data	directories
as	well	as	their	runtime	contexts	via	the	configuration	files	and	SELinux	policy.	We	also
looked	into	the	subsystems	and	code	to	make	all	of	this	work	as	well	as	some	basic	things
that	may	go	wrong	along	the	way.	In	the	next	chapter,	we	will	expand	on	how	the	policy
and	configuration	files	get	built	by	peering	into	the	SE	for	Android	build	system.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	11.	Labeling	Properties
In	this	chapter,	we	will	cover	how	to	label	properties	via	the	property_contexts	file.

Properties	are	a	unique	Android	feature	we	learned	about	in	Chapter	3,	Android	Is	Weird.
We	want	to	label	these	to	restrict	setting	of	our	properties	to	only	the	domains	that	should
set	them,	preventing	a	classic	DAC	root	attack	from	inadvertently	changing	the	value.	In
this	chapter,	we	will	learn	to:

Create	new	properties
Label	new	and	existing	properties
Interpret	and	deal	with	property	denials
Enumerate	special	Android	properties	and	their	behaviors

www.it-ebooks.info

http://www.it-ebooks.info/

Labeling	via	property_contexts
All	properties	are	labeled	using	the	property_contexts	file,	and	its	syntax	is	similar	to
file_contexts.	However,	instead	of	working	on	file	paths,	it	works	on	property	names	or
property	keys	(properties	in	Android	are	a	key-value	store).	The	property	keys	themselves
are	typically	delimited	with	periods	(.).	This	is	analogous	to	file_contexts,	except	the
slash	(/)	becomes	a	period.	Some	sample	properties	and	their	entries	in
property_contexts	would	look	like	the	following:

ctl.ril-daemon		u:object_r:ctl_rildaemon_prop:s0

ctl.			u:object_r:ctl_default_prop:s0

Notice	how	all	ctl.	properties	are	labeled	with	the	ctl_default_prop	type,	but	ctl.ril-
daemon	has	a	different	type	label	of	ctl_rildaemon_prop.	These	are	representative	of	how
you	can	start	generically	and	move	to	more	specific	values/types	as	necessary.

Additionally,	anything	not	explicitly	labeled	defaults	to	default_prop	through	a	“match
all”	expression	in	property_contexts:

#	default	property	context

*	u:object_r:default_prop:s0

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Permissions	on	properties
One	can	view	the	current	properties	on	the	system,	and	create	new	ones	with	the	command
line	utilities	getprop	and	setprop,	as	shown	in	the	following	code	snippet:

root@udoo:/	#	getprop

...

[sys.usb.state]:	[mtp,adb]

[wifi.interface]:	[wlan0]

[wlan.driver.status]:	[unloaded]

Recall	from	Chapter	3,	Android	Is	Weird,	that	properties	are	mapped	into	everyone’s
address	space,	thus	anyone	can	read	them.	However,	not	everyone	can	set	(write)	them.
The	DAC	permission	model	for	properties	is	hardcoded	into
system/core/init/property_service.c:

/*	White	list	of	permissions	for	setting	property	services.	*/

struct	{

		const	char	*prefix;

		unsigned	int	uid;

		unsigned	int	gid;

}	property_perms[]	=	{

		{	"net.rmnet0.",	AID_RADIO,	0	},

		{	"net.gprs.",	AID_RADIO,	0	},

		{	"net.ppp",	AID_RADIO,	0	},

...

		{	"persist.service.bdroid.",	AID_BLUETOOTH,	0	},

		{	"selinux."	,	AID_SYSTEM,	0	},

		{	"persist.audio.device",	AID_SYSTEM,	0	},

		{	NULL,	0,	0	}

You	must	have	the	UID	or	GID	in	the	property_perms	array	to	set	any	property	that	the
prefix	matches	with.	For	instance,	in	order	to	set	the	selinux.	properties,	you	must	be
UID	AID_SYSTEM	(uid	1000)	or	root.	Yes,	root	can	always	set	a	property,	and	this	is	a	key
benefit	to	applying	SELinux	to	Android	properties.	Unfortunately,	there	is	no	way	to
getprop	-Z	to	list	the	properties	and	their	labels,	like	with	ls	-Z	and	files.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Relabeling	existing	properties
In	order	to	become	more	comfortable	with	labeling	properties,	let’s	relabel	the
wifi.interface	property.	First,	let’s	verify	its	context	by	causing	a	denial	and	viewing
the	denial	log,	as	shown	in	the	following	code:

root@udoo:/	#	setprop	wifi.interface	wlan0

avc:	denied	{	set	}	for	property=wifi.interface	scontext=u:r:shell:s0	

tcontext=u:object_r:default_prop:s0	tclass=property_service

An	interesting	action	occurred	when	we	executed	the	setprop	command	over	the	UDOO
serial	console.	The	AVC	denial	record	was	printed	out.	This	is	because	the	serial	console
includes	anything	printed	from	the	kernel	using	printk().	What	happens	here	is	the	init
process,	which	controls	setprops	as	detailed	in	Chapter	3,	Android	Is	Weird,	writes	a
message	to	the	kernel	log.	This	log	message	shows	up	when	we	execute	our	setprop
command.	If	you	run	this	through	adb	shell,	you’ll	see	the	message	on	the	serial	console,
but	not	in	the	adb	console.	To	do	this,	however,	you	must	reboot	your	system	because
SELinux	only	prints	denial	records	once	while	in	permissive	mode.

The	command	using	adb	shell	is	as	follows:

$	adb	shell	setprop	wifi.interface	wlan0

The	command	using	the	serial	console	is	as	follows:

root@udoo:/	#	avc:	denied	{set}	for	property=wifi.interface	

scontext=u:r:shell:s0	tcontext=u:object_r:default_prop

usb	2-1.3:	device	descriptor	read/64,	error	-110

From	the	denial	output,	we	can	see	that	the	property	type	label	is	default_prop.	Let’s
change	this	to	wifi_prop.

We	start	by	editing	property.te	in	the	sepolicy	directory	to	declare	the	new	type	to
label	these	properties	by	appending	the	following	line:

type	wifi_prop,	property_type;

With	the	type	declared,	the	next	step	is	to	apply	the	label	by	modifying
property_contexts	by	adding	the	following:

#	wifi	properties

wifi.	u:object_r:wifi_prop:s0

Build	the	policy,	as	follows:

$	mmm	external/sepolicy

Push	the	new	property_contexts	file:

$	adb	push	out/target/product/udoo/root/property_contexts	

/data/security/current

51	KB/s	(2261	bytes	in	0.042s)

Trigger	a	dynamic	reload:

www.it-ebooks.info

http://www.it-ebooks.info/

$	adb	shell	setprop	selinux.reload_policy	1

#	setprop	wifi.interface	wlan0

avc:	denied	{	set	}	for	property=wifi.interface	scontext=u:r:shell:s0	

tcontext=u:object_r:default_prop:s0	tclass=property_service

Ok,	that	didn’t	work!	The	property_contexts	file	must	be	in	/data/security,	not
/data/security/current.

To	discover	this,	search	the	libselinux/src/android.c	file.	There	is	no	mention	of
property_contexts	in	this	file;	thus,	it	must	be	mentioned	elsewhere.	This	leads	us	to
search	system/core,	which	contains	the	property	service	for	uses	of	that	file.	The	matches
are	on	code	in	init.c	to	load	the	file	from	priority	locations.

$	grep	-rn	property_contexts	*

init/init.c:745:	{	SELABEL_OPT_PATH,	"/data/security/property_contexts"	},

init/init.c:746:	{	SELABEL_OPT_PATH,	"/property_contexts"	},

init/init.c:760:	ERROR("SELinux:	Could	not	load	property_contexts:	%s\n",

Let’s	push	the	property_contexts	file	to	the	proper	location	and	try	again:

$	adb	push	out/target/product/udoo/root/property_contexts	/data/security

51	KB/s	(2261	bytes	in	0.042s)

$	adb	shell	setprop	selinux.reload_policy	1

root@udoo:/	#	setprop	wifi.interface	wlan0

avc:	received	policyload	notice	(seqno=3)

init:	sys_prop:	permission	denied	uid:0	name:wifi.interface

Wow!	It	failed	yet	again.	This	exercise	was	meant	to	point	out	how	tricky	this	can	be	if
you	forget	to	do	something.	No	informative	denial	messages	were	displayed,	only	an
indicator	that	it	was	denied.	This	is	because	the	sepolicy	file	that	contains	the	type
declaration	for	wifi_prop	was	never	pushed.	This	causes	check_mac_perms()	in
system/core/init/property_service.c	to	fail	in	the	selinux_check_access()	function
because	it	cannot	find	the	type	to	compute	the	access	check	against,	even	though	the	look
up	in	property_contexts	succeeded.	There	are	no	verbose	error	logs	from	this.

We	can	correct	this	by	ensuring	that	the	sepolicy	is	pushed	as	well:

$	adb	push	out/target/product/udoo/root/sepolicy	/data/security/current/

550	KB/s	(87385	bytes	in	0.154s)

$	adb	shell	setprop	selinux.reload_policy	1

root@udoo:/	#	setprop	wifi.interface	wlan0

avc:	received	policyload	notice	(seqno=4)

avc:	denied	{	set	}	for	property=wifi.interface	scontext=u:r:shell:s0	

tcontext=u:object_r:wifi_prop:s0	tclass=property_service

Now	we	see	a	denial	message,	as	expected,	but	the	label	of	the	target	(or	property)	is
u:object_r:wifi_prop:s0.

Now	with	the	target	property	labeled,	you	can	allow	access	to	it.	Note	that	this	is	a
contrived	example,	and	in	the	real	world,	you	probably	would	not	want	to	allow	access
from	shell	to	most	properties.	The	policy	should	align	with	your	security	goals	and	the
property	of	least	privilege.

We	can	add	an	allow	rule	in	shell.te	in	the	following	way:

www.it-ebooks.info

http://www.it-ebooks.info/

#	wifi	prop

allow	shelldomain	wifi_prop:property_service	set;

Compile	the	policy,	push	it	to	the	phone,	and	trigger	a	dynamic	reload:

$	mmm	external/sepolicy/

$	adb	push	out/target/product/udoo/root/sepolicy	/data/security/current/

547	KB/s	(87397	bytes	in	0.155s)

$	adb	shell	setprop	selinux.reload_policy	1

Now	attempt	to	set	the	wifi.interface	property	and	notice	the	lack	of	denial.

root@udoo:/	#	setprop	wifi.interface	wlan0

avc:	received	policyload	notice	(seqno=5)

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	and	labeling	new	properties
All	properties	are	dynamically	created	in	the	system	using	setprop	calls	or	function	calls
that	do	the	equivalent	from	C	(bionic/libc/include/sys/system_properties.h)	and
Java	(android.os.SystemProperties).	Note	that	the	System.getProperty()	and
System.setProperty()	Java	calls	work	on	application	private	property	stores	and	are	not
tied	into	the	global	one.

For	DAC	controls,	you	need	to	modify	property_perms[]	as	noted	earlier	to	have
permissions	for	non-root	users	to	create	or	set	the	property.	Note	that	root	can	always	set
and	create,	unless	constrained	by	SELinux	policy.

Suppose	we	want	to	create	the	udoo.name	and	udoo.owner	properties;	we	only	want	the
root	user	and	shell	domain	to	access	them.	We	could	create	them	like	this:

root@udoo:/	#	setprop	udoo.name	udoo

avc:	denied	{	set	}	for	property=udoo.name	scontext=u:r:shell:s0	

tcontext=u:object_r:default_prop:s0	tclass=property_service

root@udoo:/	#	setprop	udoo.owner	William

Notice	the	denial	shows	these	as	being	default_prop	type.	To	correct	this,	we	would
relabel	these,	exactly	as	we	did	in	the	preceding	section,	Relabeling	existing	properties.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Special	properties
In	Android,	there	are	some	special	properties	that	have	different	behaviors.	We	enumerate
the	property	names	and	meanings	in	the	proceeding	sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Control	properties
Properties	that	start	with	ctl	are	reserved	as	control	properties	for	controlling	services
through	init:

start:	Starts	a	service	(setprop	ctl.start	<servicename>)
stop:	Stops	a	service	(setprop	ctl.stop	<servicename>)
restart:	Restarts	a	service	(setprop	ctl.restart	<servicename>)

www.it-ebooks.info

http://www.it-ebooks.info/

Persistent	properties
Any	property	starting	with	the	prefix	persist	persists	across	reboots	and	is	restored.	The
data	is	saved	to	/data/property	in	files	of	the	same	name	as	the	property.

root@udoo:/	#	ls	/data/property/

persist.gps.oacmode

persist.service.bdroid.bdaddr

persist.sys.profiler_ms

persist.sys.usb.config

www.it-ebooks.info

http://www.it-ebooks.info/

SELinux	properties
The	selinux.reload_policy	property	is	special.	As	we	have	seen,	its	use	is	for	triggering
a	dynamic	reload	event.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	have	examined	how	to	create	and	label	new	and	existing	properties	and
some	of	the	oddities	that	occur	when	doing	so.	We	have	also	examined	the	hard	coded
DAC	permission	table	for	properties	in	property_service.c,	as	well	as	the	hardcoded
specialty	properties	like	the	ctl.	family.	In	the	next	chapter,	we	look	at	how	the	tool	chain
builds	and	creates	all	the	policy	files	we	have	been	using.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	12.	Mastering	the	Tool	Chain
So	far,	we	have	taken	a	deep	dive	into	the	code	and	policies	that	drive	SE	for	Android
technologies,	but	the	build	system	and	tools	are	often	overlooked.	Mastering	the	tool	chain
will	help	you	improve	your	development	practices.	In	this	chapter,	we	will	look	at	all	the
components	of	the	SE	for	Android	build	and	how	they	work.	We	will	cover	the	following
topics:

Building	specific	targets
The	sepolicy	Android.mk	file
Custom	build	policy	configuration
Build	tools:

check_seapp

insertkeys.py

checkpolicy

checkfc

sepolicy-check

sepolicy-analyze

www.it-ebooks.info

http://www.it-ebooks.info/

Building	subcomponents	–	targets	and
projects
So	far,	we	have	run	some	magical	commands	such	as	mm,	mmm,	and	make	bootimage	to
actually	build	various	portions	of	the	SE	for	Android	code.	Google	officially	describes
some	of	these	tools	in	the	documents	at	https://source.android.com/source/building-
running.html,	but	most	commands	are	not	listed.	Nonetheless,
http://elinux.org/Android_Build_System	has	a	write	up	that	is	more	comprehensive.

In	Google’s	“building	and	running”	documentation,	they	describe	the	target	as	the	device,
which	is	ultimately	what	you	lunch	for.	When	building	Android,	the	lunch	command	sets
up	environment	variables	for	the	make	command	you	execute	later.	It	sets	up	the	build
system	to	output	the	correct	configuration	for	the	target	device.	This	concept	of	a	target	is
not	what	will	be	discussed	in	this	chapter.	Instead,	when	target	is	mentioned	herein,	it
means	a	specific	make	target.	However,	in	the	event	of	needing	to	mention	the	target
device,	the	complete	phrase	“target	device”	will	be	used.	While	somewhat	confusing,
this	terminology	is	standard	and	will	be	understood	by	engineers	in	the	field.

We	have	issued	make	a	few	times,	optionally	providing	a	target	as	an	argument	and	an
option,	for	example	the	-j16	option.	Something	like	make	or	make	-j16	essentially	builds
all	of	Android.	Optionally,	you	can	specify	a	target	or	list	of	targets	as	command
arguments.	An	example	of	this	is	when	boot.img	was	built.	The	boot.img	file	can	be	built
and	rebuilt	by	specifying	the	bootimage	target.	The	command	we	use	for	this	purpose	is
make	bootimage.	It	helps	to	expedite	builds	by	rebuilding	only	the	portions	of	the	system
that	are	needed.	But	what	if	you	only	need	to	rebuild	a	particular	file?	Perhaps,	you	only
want	to	rebuild	sepolicy.	You	can	specify	that	as	the	target	to	build,	as	in	make	sepolicy.
This	leads	to	the	question,	“What	about	the	other	files	such	as	mac_permissions.xml,
seapp_contexts,	and	so	on?”	They	can	be	built	in	the	same	way.	The	more	intriguing
question	is,	“How	does	one	know	what	the	target	name	is?	Is	it	always	the	file	output
name?”

Android’s	build	system	is	constructed	on	top	of	GNU	make
(http://www.gnu.org/software/make/).	The	core	of	the	Android	build	system’s	makefiles
system	can	be	found	in	build/core,	and	the	documentation	can	be	found	in	the	NDK
(https://developer.android.com/tools/sdk/ndk/index.html).	The	major	take	away	from	that
reading	is	that	a	typical	Android.mk	file	defines	something	called	LOCAL_MODULE	:=
mymodulename,	and	something	called	mymodulename	is	built.	The	target	names	are	defined
by	these	LOCAL_MODULE	statements.	Let’s	look	at	the	Android.mk	for	external	sepolicy,	and
focus	on	the	sepolicy	portion	of	it,	as	there	are	other	local	modules	or	targets	defined	in
that	Makefile.	The	following	is	an	example	from	Android	4.3:

include	$(CLEAR_VARS)

LOCAL_MODULE	:=	sepolicy

LOCAL_MODULE_CLASS	:=	ETC

LOCAL_MODULE_TAGS	:=	optional

LOCAL_MODULE_PATH	:=	$(TARGET_ROOT_OUT)

www.it-ebooks.info

https://source.android.com/source/building-running.html
http://elinux.org/Android_Build_System
http://www.gnu.org/software/make/
https://developer.android.com/tools/sdk/ndk/index.html
http://www.it-ebooks.info/

...

One	can	find	all	the	modules	for	within	an	Android.mk	file	by	just	looking	for	lines	that
begin	with	LOCAL_MODULE	declarations	and	are	whole	word	matches:

$	grep	-w	'^LOCAL_MODULE'	Android.mk

LOCAL_MODULE	:=	sepolicy

LOCAL_MODULE	:=	file_contexts

LOCAL_MODULE	:=	seapp_contexts

LOCAL_MODULE	:=	property_contexts

LOCAL_MODULE	:=	selinux-network.sh

LOCAL_MODULE	:=	mac_permissions.xml

LOCAL_MODULE	:=	eops.xml

Regular	expressions	dictate	that	^	is	the	beginning	of	the	line,	and	the	grep	man	page
states	that	-w	provides	whole	word	search.

The	preceding	list	is	comprehensive	for	the	version	of	Android	we	are	using	on	the
UDOO.	However,	you	should	run	the	command	on	your	exact	version	of	the	Makefile	to
get	an	idea	of	what	things	can	be	built.

Android	has	some	additional	tools	that	are	separate	from	building	targets	and	get	added	to
your	environment	when	you	use	source	build/envsetup.sh.	These	are	mm	and	mmm.	They
both	perform	the	same	task,	which	is	to	build	all	the	targets	specified	in	an	Android.mk
file,	however,	differing	that	they	do	not	build	any	of	their	dependencies.	The	two
commands	only	differ	in	where	they	source	the	location	of	the	Android.mk	to	scour	for
build	targets.	The	mm	command	uses	the	current	working	directory,	whereas	mmm	uses	a
supplied	path.	Also,	a	great	option	for	either	command	is	-B,	which	forces	a	rebuild.	An
engineer	can	save	a	lot	of	time	by	using	the	mm(m)	commands	over	make	<target>.	The
full	make	command	wastes	a	lot	of	time	figuring	out	the	dependency	tree,	so	executing	mmm
path/to/project	on	a	previously	built	source	tree	(if	you	know	that	all	your	changes	are
within	a	project)	can	save	a	few	minutes.	However,	since	it	doesn’t	build	the
dependencies,	you’ll	need	to	ensure	that	they	are	already	built	and	have	no	dependent
changes.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Exploring	sepolicy’s	Android.mk
The	project	located	at	external/sepolicy	uses	an	Android.mk	file,	like	any	other
Android	project,	to	build	their	outputs.	Let’s	dissect	this	file	and	see	what	it	does.

www.it-ebooks.info

http://www.it-ebooks.info/

Building	sepolicy
We’ll	start	in	the	middle	by	looking	at	the	target	for	sepolicy.	It	starts	off	with	fairly
boilerplate	Android.mk	stuff:

...

include	$(CLEAR_VARS)

LOCAL_MODULE	:=	sepolicy

LOCAL_MODULE_CLASS	:=	ETC

LOCAL_MODULE_TAGS	:=	optional

LOCAL_MODULE_PATH	:=	$(TARGET_ROOT_OUT)

include	$(BUILD_SYSTEM)/base_rules.mk…

The	next	portion	is	a	bit	more	like	standard	make.	It	starts	off	by	declaring	a	target	file	that
gets	built	into	the	intermediates	location.	The	intermediates	location	is	defined	by	the
Android	build	system.	It	then	assigns	the	values	of	MLS_SENS	and	MLS_CATS	to	some	local
variables	for	later	use.	The	last	line	is	the	most	interesting.	It	uses	a	make	function,	called
build_policy,	and	takes	filenames	as	arguments:

...

sepolicy_policy.conf	:=	$(intermediates)/policy.conf

$(sepolicy_policy.conf):	PRIVATE_MLS_SENS	:=	$(MLS_SENS)

$(sepolicy_policy.conf):	PRIVATE_MLS_CATS	:=	$(MLS_CATS)

$(sepolicy_policy.conf)	:	$(call	build_policy,	security_classes	

initial_sids	access_vectors	global_macros	mls_macros	mls	

policy_capabilities	te_macros	attributes	bools	*.te	roles	users	

initial_sid_contexts	fs_use	genfs_contexts	port_contexts)

...

Next,	we	define	the	recipe	for	building	this	intermediate	target,	policy.conf.	The
interesting	bits	of	the	recipe	are	the	m4	command	and	the	sed	command.

Note
For	more	information	on	m4,	see	http://www.gnu.org/software/m4/manual/m4.html,	and
for	more	information	on	sed,	refer	to	https://www.gnu.org/software/sed/manual/sed.html.

SELinux	policy	files	get	processed	using	m4.	m4	is	a	macro	processor	language	that	is	often
used	as	a	frontend	to	a	compiler.	The	m4	command	takes	some	of	the	values	such	as
PRIVATE_MLS_SENS	and	PRIVATE_MLS_CATS	and	passes	them	through	as	macro	definitions.
This	is	analogous	to	the	gcc	-D	option.	It	then	takes	the	dependencies	for	the	target	as
input	via	the	make	expansion,	$^,	and	outputs	them	to	the	target	name	using	the	make
expansion	of	$@.	It	also	takes	that	output	and	generates	a	.dontaudit	version.	That	version
has	all	of	the	dontaudit	lines	deleted	from	the	policy	file	using	sed.	The	MLS	values	tell
SELinux	how	many	categories	and	sensitivities	to	generate.	These	must	be	statically
defined	in	the	policy	blob	that	is	loaded	into	the	kernel,	as	follows:

...

@mkdir	-p	$(dir	$@)

$(hide)	m4	-D	mls_num_sens=$(PRIVATE_MLS_SENS)	-D	

mls_num_cats=$(PRIVATE_MLS_CATS)	-s	$^	>	$@

$(hide)	sed	'/dontaudit/d'	$@	>	$@.dontaudit…

www.it-ebooks.info

http://www.gnu.org/software/m4/manual/m4.html
https://www.gnu.org/software/sed/manual/sed.html
http://www.it-ebooks.info/

The	next	portion	defines	the	recipe	for	building	the	actual	target,	named	from
LOCAL_MODULE_POLICY,	even	if	this	is	not	obvious.	LOCAL_BUILT_MODULE	expands	to	the
intermediate	file	to	be	built,	sepolicy	in	this	case.	It	finally	gets	copied	by	the	Android
build	system	as	LOCAL_INSTALLED_MODULE	behind	the	scenes.	This	target	depends	on	the
intermediate	policy.conf	file	and	on	checkpolicy.	It	uses	checkpolicy	to	transform	the
m4	expanded	policy.conf	and	policy.conf.dontaudit	into	two	sepolicy	files,	sepolicy
and	sepolicy.dontaudit.	The	actual	tool	that	is	used	to	compile	the	SELinux	statements
in	binary	form	to	load	to	the	kernel	is	checkpolicy,	as	follows:

...

$(LOCAL_BUILT_MODULE)	:	$(sepolicy_policy.conf)	

$(HOST_OUT_EXECUTABLES)/checkpolicy

@mkdir	-p	$(dir	$@)

$(hide)	$(HOST_OUT_EXECUTABLES)/checkpolicy	-M	-c	$(POLICYVERS)	-o	$@	$<

$(hide)	$(HOST_OUT_EXECUTABLES)/checkpolicy	-M	-c	$(POLICYVERS)	-o	$(dir	

$<)/$(notdir	$@).dontaudit	$<.dontaudit…

Finally,	it	ends	by	setting	a	local	variable,	built_policy,	for	use	elsewhere	within	the
Android.mk	file,	and	clears	policy.conf	to	avoid	polluting	the	global	namespace	of	make,
as	shown:

...

built_sepolicy	:=	$(LOCAL_BUILT_MODULE)

sepolicy_policy.conf	:=

...

Additionally,	building	sepolicy	also	depends	on	the	POLICYVERS	variable,	which	is
conditionally	assigned	a	value	of	26	if	not	set.	This	is	the	policy	version	number	used	by
checkpolicy,	and	as	we	saw	earlier	in	the	book,	we	had	to	override	this	for	our	UDOO.

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling	the	policy	build
We	saw	that	the	sepolicy	statement	calls	the	build_policy	function.	We	also	see	its	use
in	that	Android.mk	file	for	building	sepolicy,	file_contexts,	seapp_contexts,
property_contexts,	and	mac_permissions.xml,	so	it	reasons	that	it	is	fairly	important.
This	function	outputs	a	list	of	fully	resolved	paths	used	for	policy	files.	The	function	takes
as	inputs	a	variable	argument	list	of	filenames	and	includes	regular	expression	support
(note	*.te	in	the	build_policy	for	target	sepolicy).	Internally,	that	function	uses	some
magic	to	allow	you	to	override	or	append	to	the	current	policy	build	without	modifying	the
external/sepolicy	directory	directly.	This	is	meant	for	OEMs	and	device	builders	to	be
able	to	augment	policy	to	cover	their	specific	devices.

When	building	a	policy,	you	can	set	the	following	make	variables,	typically	in	the	device’s
Makefile,	to	control	the	resulting	build.	The	variables	are	as	follows:

BOARD_SEPOLICY_DIRS:	This	is	the	search	path	for	potential	policy	files
BOARD_SEPOLICY_UNION:	This	is	a	policy	file	of	name	to	append	to	all	files	with	the
same	name
BOARD_SEPOLICY_REPLACE:	This	is	a	policy	file	used	to	override	the	base
external/sepolicy	policy	file
BOARD_SEPOLICY_IGNORE:	This	is	used	to	remove	a	particular	policy	file	from	the
build,	given	a	repository’s	relative	path

Using	the	UDOO	as	an	example,	the	proper	way	to	author	a	policy	was	never	to	modify
external/sepolicy	but	to	create	a	directory	in	device/fsl/udoo/sepolicy:

$	mkdir	<PATH>

Then	we	modify	the	BoardConfig.mk:

$	vim	BoardConfig.mk

Next,	we	add	the	following	lines:

BOARD_SEPOLICY_DIRS	+=	device/fsl/udoo/sepolicy

Tip
Be	very	careful	with	+=	as	opposed	to	:=.	In	large	project	trees,	some	of	these	variables
may	be	set	higher	in	the	build	tree	by	common	BoardConfigs,	and	you	could	wipe	out
their	settings.	Typically,	the	safest	bet	is	+=.	For	further	details,	see	Variable	Assignment	in
the	GNU	make	manual,	at	http://www.gnu.org/software/make/manual/make.html.

This	will	tell	the	build_policy()	function	in	Android.mk	to	search	not	only
external/sepolicy	but	also	device/fsl/udoo/sepolicy	for	policy	files.

Next,	we	can	create	a	file_contexts	file	in	this	directory,	and	move	our	changes	for
labeling	to	this	directory	by	creating	a	new	file_contexts	file	in
device/fsl/udoo/sepolicy.

After	this,	we	need	to	instruct	the	build	system	to	combine,	or	union,	our	file_contexts

www.it-ebooks.info

http://www.gnu.org/software/make/manual/make.html
http://www.it-ebooks.info/

file	with	the	one	in	external/sepolicy.	We	accomplish	this	by	adding	the	following
statement	to	the	BoardConfig.mk	file:

BOARD_SEPOLICY_UNION	+=	file_contexts

You	can	do	this	for	any	policy	file,	even	custom	files.	It	does	a	match	on	the	filename	by
basename	only	(no	directories).	For	instance,	if	you	had	a	watchdog.te	rules	file	you
wanted	to	add	to	the	base	watchdog.te	rules	file,	you	could	just	add	watchdog.te,	as
shown:

BOARD_SEPOLICY_UNION	+=	file_contexts	watchdog.te

This	produces	a	new	watchdog.te	file	during	the	build	that	unions	your	new	rules	with	the
ones	found	in	external/sepolicy/watchdog.te.

Also	note	that	you	add	new	files	into	the	build	with	BOARD_SEPOLICY_UNION,	so	to	add	a
.te	file	for	a	custom	domain,	such	as	custom.te,	you	could:

BOARD_SEPOLICY_UNION	+=	file_contexts	watchdog.te	custom.te

Let’s	say	you	want	to	override	the	external/sepolicy	watchdog.te	file	with	your	own.
You	can	add	it	to	BOARD_SEPOLICY_REPLACE,	as	shown:

BOARD_SEPOLICY_REPLACE	:=	watchdog.te

Note	that	you	can’t	replace	a	file	that	does	not	exist	in	the	base	policy.	Also,	you	can’t
have	the	same	file	appear	in	UNION	and	REPLACE,	as	it’s	ambiguous.	You	can’t	have	more
than	one	specification	of	BOARD_SEPOLICY_REPLACE	on	the	same	policy	file.

Suppose	we	have	a	hierarchical	build	occurring	for	two	fictitious	devices,	device	X	and
device	Y.	The	two	devices,	device	X	and	device	Y,	both	inherit	BoardConfigCommon.mk
from	device	A.	Device	A	is	not	a	real	device,	but	since	X	and	Y	share	commonalities,	the
common	bits	are	kept	in	device	A.

Suppose	the	BoardConfigCommon.mk	for	device	A	contains	these	statements:

BOARD_SEPOLICY_DIRS	+=	device/OEM/A

BOARD_SEPOLICY_UNION	+=	file_contexts	custom.te

Suppose	that	device	X’s	BoardConfig.mk	contains:

BOARD_SEPOLICY_DIRS	+=	device/OEM/X

BOARD_SEPOLICY_UNION	+=	file_contexts	custom.te

Finally,	suppose	device	Y’s	BoardConfig.mk	contains:

BOARD_SEPOLICY_DIRS	+=	device/OEM/Y

BOARD_SEPOLICY_UNION	+=	file_contexts	custom.te

The	resulting	policy	sets	used	to	build	device	X	and	device	Y	are	the	following:

Device	X	policy	set:

device/OEM/A/file_contexts

device/OEM/A/custom.te

device/OEM/X/file_contexts

www.it-ebooks.info

http://www.it-ebooks.info/

device/OEM/X/custome.te

external/sepolicy/*	(base	policy	files)

Device	Y	also	contains:

device/OEM/A/file_contexts

device/OEM/A/custom.te

device/OEM/Y/file_contexts

device/OEM/Y/custom.te

external/sepolicy/*	(base	policy	files)

In	a	common	scenario,	you	might	not	want	the	resulting	policy	set	for	device	Y	to	contain
device/OEM/A/custom.te.	This	is	a	use	case	for	BOARD_SEPOLICY_IGNORE.	You	can	use
this	to	filter	out	specific	policy	files.	However,	you	have	to	be	specific	and	use	the
repository’s	relative	path.	For	example,	in	device	Y’s	BoardConfig.mk:

BOARD_SEPOLICY_IGNORE	+=	device/OEM/A/custom.te

Now,	when	you	build	a	policy	for	device	Y,	the	policy	set	will	not	include	that	file.
BOARD_SEPOLICY_IGNORE	can	also	be	used	with	BOARD_SEPOLICY_REPLACE,	allowing
multiple	uses	in	the	device	hierarchy,	but	only	one	BOARD_SEPOLICY_REPLACE	statement
takes	effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Digging	deeper	into	build_policy
Now	that	we	have	seen	how	to	use	some	new	mechanisms	to	control	the	policy	build,	let’s
actually	dissect	where	in	the	build	process	happens.	As	stated	earlier,	the	policy	build	is
controlled	by	the	Android.mk	file.	We	encountered	calls	to	the	build_policy()	function
earlier,	and	this	is	precisely	where	the	magic	happens	with	respect	to	all	of	the
BOARD_SEPOLICY_*	variables	we	set.	Examining	the	build_policy	function,	we	see
references	to	the	sepolicy_replace_paths	variable,	so	let’s	start	by	looking	at	that
variable.

The	sepolicy_replace_paths	variable	begins	life	by	getting	evaluated	when	the
Makefile	is	evaluated.	In	other	words,	it	is	executed	unconditionally.	The	code	starts	off
by	looping	over	all	the	BOARD_SEPOLICY_REPLACE	files	and	checks	whether	any	are	in
BOARD_SEPOLICY_UNION.	If	one	is	found,	an	error	is	printed	and	the	build	fails,	showing
Ambiguous	request	for	sepolicy	$(pf).	Appears	in	both

BOARD_SEPOLICY_REPLACE	and	BOARD_SEPOLICY_UNION,	where	$(pf)	is	expanded	to	the
offending	policy	file.	After	that,	it	expands	the	BOARD_SEPOLICY_REPLACE	entries	with
those	found	on	the	search	paths	set	by	BOARD_SEPOLICY_DIRS,	thus	resulting	in	full
relative	paths	from	the	root	of	the	Android	tree.	Then	it	filters	these	entries	against
BOARD_SEPOLICY_IGNORE,	dropping	anything	that	should	be	ignored.	It	then	ensures	that
only	one	file	candidate	for	replacement	is	found.	Otherwise,	it	issues	the	appropriate	error
message.	Lastly,	it	ensures	that	the	file	exists	in	the	LOCAL_PATH	or	base	policy,	and	if	none
of	the	two	is	found,	it	issues	an	error	message:

...

#	Quick	edge	case	error	detection	for	BOARD_SEPOLICY_REPLACE.

#	Builds	the	singular	path	for	each	replace	file.

sepolicy_replace_paths	:=

$(foreach	pf,	$(BOARD_SEPOLICY_REPLACE),	\

		$(if	$(filter	$(pf),	$(BOARD_SEPOLICY_UNION)),	\

				$(error	Ambiguous	request	for	sepolicy	$(pf).	Appears	in	both	\

						BOARD_SEPOLICY_REPLACE	and	BOARD_SEPOLICY_UNION),	\

)	\

		$(eval	_paths	:=	$(filter-out	$(BOARD_SEPOLICY_IGNORE),	\

		$(wildcard	$(addsuffix	/$(pf),	$(BOARD_SEPOLICY_DIRS)))))	\

		$(eval	_occurrences	:=	$(words	$(_paths)))	\

		$(if	$(filter	0,$(_occurrences)),	\

				$(error	No	sepolicy	file	found	for	$(pf)	in	$(BOARD_SEPOLICY_DIRS)),	\

)	\

		$(if	$(filter	1,	$(_occurrences)),	\

				$(eval	sepolicy_replace_paths	+=	$(_paths)),	\

				$(error	Multiple	occurrences	of	replace	file	$(pf)	in	$(_paths))	\

)	\

		$(if	$(filter	0,	$(words	$(wildcard	$(addsuffix	/$(pf),	

$(LOCAL_PATH))))),	\

				$(error	Specified	the	sepolicy	file	$(pf)	in	BOARD_SEPOLICY_REPLACE,	\

						but	none	found	in	$(LOCAL_PATH)),	\

)	\

)

After	this,	calls	to	build	policy	can	use	replace_paths	as	an	expanded	list	of	files	that

www.it-ebooks.info

http://www.it-ebooks.info/

will	be	replaced	during	the	build.

The	arguments	of	the	build_policy	function	are	the	filenames	you	wish	to	expand	into
their	Android	root-relative	path	names,	using	the	power	provided	by	the
BOARD_SEPOLICY_*	family	of	variables.	For	instance,	a	call	to	$(build_policy,
file_contexts)	in	the	context	of	our	devices	A,	X,	and	Y	would	result	in	this:

device/OEM/A/file_contexts

device/OEM/Y/file_contexts

The	build_policy	function	is	a	bit	tricky	to	read.	Many	nested	function	calls	result	in	the
deepest	indents	running	first.	However,	like	all	code,	we	read	it	from	top	to	bottom	and
left	to	right,	so	the	explanation	will	begin	there.	The	function	starts	by	looping	through	all
the	files	passed	as	arguments.	It	then	expands	them	against	the	BOARD_SEPOLICY_DIRS
once	for	replace	and	once	for	a	union.	The	sepolicy_replace_paths	variable	is	error
checked	to	ensure	a	file	does	not	appear	in	both	locations,	replace	and	union.	For	the
replace	path	expansion,	it	checks	whether	the	expanded	path	is	in
sepolicy_replace_dirs,	and	if	it	is,	replaces	it.	For	the	union	portion,	it	just	expands
them.	The	results	of	these	expansions	are	then	fed	through	a	filter	on
BOARD_SEPOLICY_IGNORE,	thus	dropping	any	of	the	explicitly	ignored	paths:

#	Builds	paths	for	all	requested	policy	files	w.r.t

#	both	BOARD_SEPOLICY_REPLACE	and	BOARD_SEPOLICY_UNION

#	product	variables.

#	$(1):	the	set	of	policy	name	paths	to	build

build_policy	=	$(foreach	type,	$(1),	\

		$(filter-out	$(BOARD_SEPOLICY_IGNORE),	\

				$(foreach	expanded_type,	$(notdir	$(wildcard	$(addsuffix	/$(type),	

$(LOCAL_PATH)))),	\

						$(if	$(filter	$(expanded_type),	$(BOARD_SEPOLICY_REPLACE)),	\

								$(wildcard	$(addsuffix	$(expanded_type),	$(sort	$(dir	

$(sepolicy_replace_paths))))),	\

								$(LOCAL_PATH)/$(expanded_type)	\

)	\

)	\

				$(foreach	union_policy,	$(wildcard	$(addsuffix	/$(type),	

$(BOARD_SEPOLICY_DIRS))),	\

						$(if	$(filter	$(notdir	$(union_policy)),	$(BOARD_SEPOLICY_UNION)),	\

								$(union_policy),	\

)	\

)	\

)	\

)

...

www.it-ebooks.info

http://www.it-ebooks.info/

Building	mac_permissions.xml
The	mac_permissions.xml	build	is	a	bit	tricky,	as	we	saw	in	Chapter	10,	Placing
Applications	in	Domains.	First,	mac_permissions.xml	can	be	used	with	all	the
BOARD_SEPOLICY_*	variables	introduced	thus	far.	The	end	result	is	one	XML	file	adhering
to	the	rules	of	those	variables.	Additionally,	the	raw	XML	files	are	processed	by	a	tool
called	insertkeys.py,	located	in	sepolicy/tools.	The	insertkeys.py	tool	uses
keys.conf	to	map	tags	in	the	XML	file	signature	stanza	with	.pem	files	containing	the
certificate.	The	keys.conf	file	is	also	subject	to	use	in	BOARD_SEPOLICY_*	variables.	The
build	recipe	first	calls	build_policy	on	keys.conf	and	uses	m4	to	concatenate	the	results.
Thus,	m4	declarations	in	keys.conf	will	be	respected.	However,	this	has	not	been	used.
The	initial	intention	was	to	use	the	m4	-s	sync	lines	so	that	you	can	follow	the	inclusion
chain	in	the	keys.conf	file	when	concatenated	by	m4	processing.	On	the	other	hand,	sync
lines	are	provided	by	m4	when	concatenating	many	files,	and	they	provide	commented
lines	adhering	to	the	#line	NUM	"FILE"'	lines.	These	are	useful	because	m4	takes	multiple
input	files	and	combines	them	into	a	single,	expanded	output	file.	There	will	be	sync	lines
indicating	the	beginning	of	each	of	those	files,	and	they	can	help	you	track	down	issues.
Continuing	back	to	the	mac_permissions.xml	build,	after	expansion	of	keys.conf	by	m4,
this	file,	along	with	all	the	mac_permissions.xml	files	from	a	call	to	build_policy()	are
finally	fed	to	insertkeys.py.	The	insertkeys.py	tool	then	uses	the	keys.conf	file	to
replace	all	matching	signature=<TAG>	lines	with	an	actual	hex-encoded	X509	from	the
PEM	file,	that	is,	signature=308E3600.	Additionally,	the	insertkeys.py	tool	combines
the	XML	files	into	one	file,	and	strips	whitespace	and	comments	to	reduce	its	size	on	disk.
This	has	no	build	dependencies	on	the	other	major	files	such	as	sepolicy,
seapp_contexts,	property_contexts,	and	mac_permissions.xml.

www.it-ebooks.info

http://www.it-ebooks.info/

Building	seapp_contexts
The	seapp_contexts	file	is	also	subject	to	all	the	BOARD_SEPOLICY_*	variables.	All	of	the
seapp_contexts	files	from	a	resultant	call	to	build_policy()	are	also	fed	through	m4	-s
to	get	a	single	seapp_contexts	file	that	contains	sync	lines.	Again,	like
mac_permissions.xml	file’s	build	of	keys.conf,	m4	hasn’t	been	used	other	than	for	the
synclines.	This	resulting,	concatenated	seapp_contexts	file	is	then	fed	into	check_seapp.
This	tool	is	authored	in	the	C	programming	language	and	built	into	an	executable	during
the	build.	The	source	can	be	found	in	tools/check_seapp.	This	tool	reads	the
seapp_contexts	file	and	checks	its	syntax.	It	verifies	that	there	are	no	invalid	key	value
pairs,	that	levelFrom	is	a	valid	identifier,	and	that	the	type	and	domain	fields	are	valid	for
a	given	sepolicy.	This	build	is	dependent	on	sepolicy	for	the	strict	type	checking	of
domain	and	type	fields	against	the	policy	file.

www.it-ebooks.info

http://www.it-ebooks.info/

Building	file_contexts
The	file_contexts	file	is	also	subject	to	all	of	the	BOARD_SEPOLICY_*	variables.	The
resulting	set	is	passed	through	m4	-s,	and	the	single	output	is	run	through	the	checkfc
tool.	The	checkfc	tool	checks	the	grammar	and	syntax	of	the	file	and	also	verifies	that	the
types	exist	in	the	built	sepolicy.	Because	of	this,	it	is	dependent	on	the	sepolicy	build.

www.it-ebooks.info

http://www.it-ebooks.info/

Building	property_contexts
The	property_contexts	behaves	exactly	like	the	file_contexts	build,	except	that	it
checks	a	property_contexts	file.	It	also	uses	checkfc.

www.it-ebooks.info

http://www.it-ebooks.info/

Current	NSA	research	files
Additionally,	work	on	Enterprise	Operations	(eops)	is	already	underway	at	the	NSA.	As
this	feature	hasn’t	been	merged	into	mainstream	Android	and	is	likely	to	change	wildly,	it
won’t	be	covered	here.	However,	the	best	place	for	the	bleeding	edge	is	always	the	source
and	NSA	Bitbucket	repositories.	The	selinux-network.sh	also	falls	under	this	category;
it	hasn’t	seen	mainstream	adoption	yet,	and	will	likely	be	dropped	from	AOSP
(https://android-review.googlesource.com/#/c/114380/).

www.it-ebooks.info

https://android-review.googlesource.com/#/c/114380/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Standalone	tools
There	are	also	some	standalone	tools	built	for	Android	policy	evaluation	that	you	may	find
useful.	We	will	explore	some	of	them	and	their	usages.	Most	of	the	standard	desktop	tools
you’ll	find	in	other	references	still	work	on	SE	for	Android	SELinux	policy.	Note	that	if
you	run	any	of	the	following	tools	and	get	a	segmentation	fault,	you	will	likely	need	to
apply	the	patch	from	the	thread	at	http://marc.info/?l=seandroid-
list&m=141684060409894&w=2.

www.it-ebooks.info

http://marc.info/?l=seandroid-list&m=141684060409894&w=2
http://www.it-ebooks.info/

sepolicy-check
This	tool	allows	you	to	see	whether	a	given	allow	rule	exists	in	a	policy	file.	The	basic
syntax	of	its	command	is	as	follows:

sepolicy-check	-s	<domain>	-t	<type>	-c	<class>	-p	<permission>	-P	

<policy_file>

For	instance,	if	you	want	to	see	whether	system_app	can	write	to	system_data_file	for
class	file,	you	can	execute:

$	sepolicy-check	-s	system_app	-t	system_data_file	-c	file	-p	write	-P	

$OUT/root/sepolicy

www.it-ebooks.info

http://www.it-ebooks.info/

sepolicy-analyze
This	is	a	good	tool	to	check	for	common	issues	in	SELinux	development	and	it	catches
some	of	the	common	pitfalls	of	new	SELinux	policy	writers.	It	can	check	for	equivalent
domains,	duplicate	allow	rules.	It	can	also	perform	policy	type	difference	checks.

The	domain	equivalence	check	feature	is	very	helpful.	It	shows	you	domains	you	may	(in
theory)	want	to	be	different,	even	though	they	converged	in	the	implementation.	These
types	would	be	ideal	candidates	to	coalesce.	However,	it	might	have	also	shown	an	issue
in	the	design	of	the	policy	that	should	be	corrected.	In	other	words,	you	didn’t	expect	these
domains	to	be	equivalent.	Invoking	the	command	is	as	follows:

$	sepolicy-analyze	-e	-P	$OUT/root/sepolicy

The	duplicate	allow	rule	checks	whether	allow	rules	exist	on	types	that	also	exist	on
attributes	that	the	type	inherits	from.	The	allow	rule	on	the	specific	type	is	a	candidate	for
removal,	since	there	is	already	an	allow	on	the	attribute.	To	execute	this	check,	run	the
following	command:

$sepolicy-analyze	-D	-P	$OUT/root/sepolicy

The	difference	is	also	handy	is	also	handy	to	view	type	differences	within	a	file.	If	you
want	to	see	what	the	difference	between	two	domains	is,	you	can	use	this	feature.	This	is
useful	for	identifying	possible	domains	to	coalesce.	To	perform	this	check,	execute	the
following	command:

$sepolicy-analyze	-d	-P	$OUT/root/sepolicy

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	we	covered	how	the	various	components	that	control	the	policy	on	the
device	are	actually	built	and	created,	such	as	sepolicy	and	mac_permissions.xml.	This
chapter	also	presented	the	BOARD_SEPOLICY_*	variables	used	to	manage	and	build	a	policy
across	devices	and	configurations.	Then	we	reviewed	the	Android.mk	components,
detailing	how	the	heart	of	the	build	and	configuration	management	works.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	13.	Getting	to	Enforcing	Mode
As	an	engineer,	you’re	handed	some	Android	device,	and	the	requirement	is	to	apply	SE
for	Android	controls	to	the	device	to	enhance	its	security	posture.	So	far,	we	have	seen	all
the	pieces	that	need	to	be	configured	and	how	they	work	to	enable	such	a	system.	In	this
chapter,	we’ll	take	all	the	skills	covered	to	get	our	UDOO	in	enforcing	mode.	We	will:

Run,	evaluate,	and	respond	to	audit	logs	from	CTS
Develop	secure	policy	for	the	UDOO
Switch	to	enforcing	mode

www.it-ebooks.info

http://www.it-ebooks.info/

Updating	to	SEPolicy	master
Many	changes	to	the	sepolicy	directory	have	occurred	in	the	AOSP	master	branch	since
the	4.3	release.	At	the	time	of	this	writing,	the	master	branch	of	the	external/sepolicy
project	was	on	Git	commit	SHA	b5ffb.	The	authors	recommend	attempting	to	use	the
most	recent	commit.	However,	for	illustrative	purposes,	we	will	show	you	how	to
optionally	check	out	commit	b5ffb	so	you	can	accurately	follow	the	examples	in	this
chapter.

First,	you’ll	need	to	clone	the	external/sepolicy	project.	In	these	instructions,	we
assume	your	working	directory	has	the	UDOO	sources	contained	in	the	./udoo	directory:

$	git	clone	https://android.googlesource.com/platform/external/sepolicy

$	cd	sepolicy

If	you	want	to	follow	the	examples	in	this	chapter	precisely,	you’ll	need	to	check	out
commit	b5ffb	with	the	following	command.	If	you	skip	it,	you	will	end	up	using	the	latest
commit	in	the	master	branch:

$	git	checkout	b5ffb

Now,	we’ll	replace	the	UDOO	4.3	sepolicy	with	what	we	just	acquired	from	Google:

$	cd	..

$	rm	-rf	udoo/external/sepolicy

$	cp	-r	sepolicy	udoo/external/sepolicy

Optionally,	you	can	remove	the	.git	folder	from	the	newly	copied	sepolicy	with	the
following	command,	but	this	is	not	necessary:

$	rm	–rf	udoo/external/sepolicy/.git

Also,	copy	the	audit.te	file	and	restore	it.

Additionally,	restore	the	auditd	commit	from	the	NSA	Bitbucket	seandroid	repository.
For	your	reference,	it’s	commit	SHA	d270aa3.

After	that,	remove	all	references	to	setool	from	udoo/build/core/Makefile.	This
command	will	help	you	locate	them:

$	grep	-nw	setool	udoo/build/core/Makefile

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Purging	the	device
At	this	point,	our	UDOO	is	messy,	so	let’s	reflash	it,	including	the	data	directory,	and	start
afresh.	We	want	to	have	only	the	code	and	the	init	script	changes,	without	the	additional
sepolicy.	Then	we	can	author	a	policy	properly	and	apply	all	the	techniques	and	tools
we’ve	encountered.	We’ll	start	by	resetting	to	a	state	analogous	to	the	completion	of
Chapter	4,	Installation	on	the	UDOO.	However,	the	major	difference	is	we	need	to	build	a
userdebug	version	rather	than	an	engineering	(eng)	version	for	CTS.	The	version	is
selected	in	the	setup	script,	which	ultimately	calls	lunch.	To	build	this	version,	execute	the
following	commands	from	the	UDOO	workspace:

$.	setup	udoo-userdebug

$	make	-j8	2>&1	|	tee	logz

Flash	the	system,	boot	to	the	SD	card,	and	wipe	userdata	with	the	following	commands,
assuming	the	SD	card	is	inserted	into	the	host	and	userdata	is	not	mounted:

$	mkdir	~/userdata

$	sudo	mount	/dev/sdd4	~/userdata

$	cd	~/userdata/

$	sudo	rm	-rf	*

$	cd	..

$	sudo	umount	~/userdata

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Setting	up	CTS
You	must	pass	CTS	if	your	organization	seeks	Android	branding.	However,	even	if	you
don’t,	it’s	a	good	idea	to	run	these	tests	to	help	ensure	a	device	will	be	compliant	with
applications.	Based	on	your	security	goals	and	desires,	you	may	fail	portions	of	CTS	if
you’re	not	seeking	Android	branding.	For	our	case,	we’re	looking	at	CTS	as	a	way	to
exercise	the	system	and	uncover	policy	issues	that	prevent	the	proper	functioning	of	the
UDOO.	Its	source	is	located	in	the	cts/	directory,	but	we	recommend	downloading	the
binary	directly	from	Google.	You	can	get	more	information	and	the	CTS	binary	itself	from
https://source.android.com/compatibility/cts-intro.html	and
https://source.android.com/compatibility/android-cts-manual.pdf.

Download	the	CTS	4.3	binary	from	the	Downloads	tab.	Then	select	the	CTS	binary.	The
Compatibility	Definition	Document	(CDD)	is	also	worth	reading.	It	covers	the	high-
level	details	of	CTS	and	compatibility	requirements.

Download	CTS	from	https://source.android.com/compatibility/downloads.html	and	extract
it.	Select	the	CTS	version	that	matches	your	Android	version.	If	you	don’t	know	which
version	your	device	is	running,	you	can	always	check	the	ro.build.version.release
property	from	the	UDOO	with	getprop	ro.build.version.release:

$	mkdir	~/udoo-cts

$	cd	~/udoo-cts

$	wget	https://dl.google.com/dl/android/cts/android-cts-4.3_r2-linux_x86-

arm.zip

$	unzip	android-cts-4.3_r2-linux_x86-arm.zip

www.it-ebooks.info

https://source.android.com/compatibility/cts-intro.html
https://source.android.com/compatibility/android-cts-manual.pdf
https://source.android.com/compatibility/downloads.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Running	CTS
The	CTS	exercises	many	components	on	the	device	and	helps	test	various	parts	of	the
system.	A	good,	general	policy	should	allow	proper	functioning	of	Android	and	pass	CTS.

Follow	the	directions	in	the	Android	CTS	user	manual	to	set	up	your	device	(see	Section
3.3,	Setting	up	your	device).	Typically,	you	will	see	some	failures	if	you	don’t	follow	all
the	steps	precisely,	as	you	may	not	have	the	access	or	the	capabilities	to	acquire	all	the
resources	needed.	However,	CTS	will	still	exercise	some	code	paths.	At	a	minimum,	we
recommend	getting	the	media	files	copied	and	Wi-Fi	active.	Once	your	device	is	set	up,
ensure	adb	is	active	and	initiate	the	testing:

$./cts-tradefed

11-30	10:30:08	I/:	Detected	new	device	0123456789ABCDEF

cts-tf	>	run	cts	--plan	CTS

cts-tf	>	

time	passes	here

11-30	10:30:28	I/TestInvocation:	Starting	invocation	for	'cts'	on	build	

'4.3_r2'	on	device	0123456789ABCDEF

11-30	10:30:28	I/0123456789ABCDEF:	Created	result	dir	2014.11.30_10.30.28

11-30	10:31:44	I/0123456789ABCDEF:	Collecting	device	info

11-30	10:31:45	I/0123456789ABCDEF:	--

-

11-30	10:31:45	I/0123456789ABCDEF:	Test	package	android.aadb	started

11-30	10:31:45	I/0123456789ABCDEF:	--

-

11-30	10:32:15	I/0123456789ABCDEF:	

com.android.cts.aadb.TestDeviceFuncTest#testBugreport	PASS	

...

The	tests	take	many	hours	to	execute,	so	be	patient;	but	you	can	check	the	status	of	the
test:

cts-tf	>	l	i

Command	Id		Exec	Time	Device	State	

1	8m:22	0123456789ABCDEF	running	cts	on	build	4.3_r2	

Plug	in	speakers	to	enjoy	the	sounds	from	the	media	tests	and	ringtones!	Also,	CTS
reboots	the	device.	If	your	ADB	session	is	not	restored	after	rebooting,	ADB	may	not
execute	any	tests.	Use	the	--disable-reboot	option	when	running	the	cts-tf	>	run	cts
--plan	CTS	--disable-reboot	plan.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Gathering	the	results
First,	we’ll	consider	the	CTS	results.	Although	we	expect	some	failures,	we	also	expect
the	problem	will	not	get	worse	when	we	go	to	enforcing	mode.	Second,	we’ll	look	at	the
audit	logs.	Let’s	pull	both	of	these	files	from	the	device.

www.it-ebooks.info

http://www.it-ebooks.info/

CTS	test	results
CTS	creates	a	test	results	directory	each	time	it	is	run.	CTS	is	indicating	the	directory
name	but	not	the	location:

11-30	10:30:28	I/0123456789ABCDEF:	Created	result	dir	2014.11.30_10.30.28

The	location	is	mentioned	by	the	CTS	manual	and	can	be	found	under	the	extracted	CTS
directory	in	repository/results,	typically	at	android-cts/repository/results.	The
test	directories	contain	an	XML	test	report,	testResult.xml.	This	can	be	opened	in	most
web	browsers.	It	has	a	nice	overview	of	the	tests	and	details	of	all	executed	tests.	The
pass:fail	ratio	is	our	baseline.	The	authors	had	18,736	pass,	and	only	53	fail,	which	is
fairly	good	considering	half	of	those	are	feature	issues,	such	as	no	Bluetooth	or	returning
true	for	camera	support.

www.it-ebooks.info

http://www.it-ebooks.info/

Audit	logs
We	will	use	the	audit	logs	to	address	deficiencies	in	our	policy.	Pull	these	off	the	device
using	the	standard	adb	pull	commands	we	have	used	throughout	the	book.	Since	this	is	a
userdebug	build	and	default	adb	terminals	are	shell	uid	(not	root),	start	adb	as	root	with
adb	root.	su	is	also	available	on	userdebug	builds.

Tip
You	may	get	an	error	saying	/data/misc/audit/audit.log	does	not	exist.	The	solution	is
to	run	adb	as	root	via	the	adb	root	command.	Also,	when	running	this	command,	it	may
hang.	Just	go	to	settings,	disable,	and	then	enable	USB	Debugging	under	Developer
Options.	Then	kill	the	adb-root	command	and	verify	you	have	root	by	running	adb
shell.	Now	you	should	be	a	root	user	again.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Authoring	device	policy
Run	both	audit.log	and	audit.old	through	audit2allow	to	see	what’s	going	on.	The
output	of	audit2allow	is	grouped	by	source	domain.	Rather	than	going	through	it	all,	we
will	highlight	the	unusual	cases,	starting	with	the	interpreted	results	of	audit2allow.
Assuming	you	are	in	the	audit	log	directory,	perform	cat	audit.*	|	audit2allow	|
less.	Any	policy	work	will	be	done	in	the	device-specific	UDOO	sepolicy	directory.

www.it-ebooks.info

http://www.it-ebooks.info/

adbd
The	following	are	our	adbd	denials	as	filtered	through	audit2allow:

#=============	adbd	==============

allow	adbd	ashmem_device:chr_file	execute;

allow	adbd	dumpstate:unix_stream_socket	connectto;

allow	adbd	dumpstate_socket:sock_file	write;

allow	adbd	input_device:chr_file	{	write	getattr	open	};

allow	adbd	log_device:chr_file	{	write	read	ioctl	open	};

allow	adbd	logcat_exec:file	{	read	getattr	open	execute	execute_no_trans	};

allow	adbd	mediaserver:binder	{	transfer	call	};

allow	adbd	mediaserver:fd	use;

allow	adbd	self:capability	{	net_raw	dac_override	};

allow	adbd	self:process	execmem;

allow	adbd	shell_data_file:file	{	execute	execute_no_trans	};

allow	adbd	system_server:binder	{	transfer	call	};

allow	adbd	tmpfs:file	execute;

allow	adbd	unlabeled:dir	getattr;

The	denials	in	the	adbd	domain	are	quite	strange.	The	first	thing	that	caught	our	eye	was
the	execute	on	/dev/ashmem,	which	is	a	character	driver.	Typically,	this	is	only	needed	for
Dalvik	JIT.	Looking	at	the	raw	audits	(cat	audit.*	|	grep	adbd	|	grep	execute),	we
see	the	following:

type=1400	msg=audit(1417416666.182:788):	avc:	denied	{	execute	}	for	

pid=3680	comm="Compiler"	

path=2F6465762F6173686D656D2F64616C76696B2D6A69742D636F64652D63616368652028

64656C6574656429	dev=tmpfs	ino=412027	scontext=u:r:adbd:s0	

tcontext=u:object_r:tmpfs:s0	tclass=file

type=1400	msg=audit(1417416670.352:831):	avc:	denied	{	execute	}	for	

pid=3753	comm="Compiler"	path="/dev/ashmem"	dev=tmpfs	ino=1127	

scontext=u:r:adbd:s0	tcontext=u:object_r:ashmem_device:s0	tclass=chr_file

Something	with	the	process	comm	field	of	the	compiler	is	executing	on	ashmem.	Our	guess
is	it	has	something	to	do	with	Dalvik,	but	why	is	it	in	the	adbd	domain?	Also,	why	is	adbd
writing	to	the	input	device?	All	this	is	strange	behavior.	Typically,	when	you	see	things
like	this,	it’s	because	the	children	didn’t	end	up	in	the	proper	domain.	Run	this	command
to	check	the	domains	and	confirm	our	suspicions:

$	adb	shell	ps	-Z	|	grep	adbd

u:r:adbd:s0	root	20046	1	/sbin/adbd

u:r:adbd:s0	root	20101	20046	ps

We	then	run	adb	shell	ps	-Z	|	grep	adbd	to	see	which	things	were	running	in	the	adb
domain,	further	confirming	our	suspicions:

u:r:adbd:s0	root	20046	1	/sbin/adbd

u:r:adbd:s0	root	20101	20046	ps

The	ps	command	should	not	be	running	in	the	adbd	context;	it	should	be	running	in	shell.
This	confirmed	that	shell	is	not	in	the	right	domain:

$	adb	shell

www.it-ebooks.info

http://www.it-ebooks.info/

root@udoo:/	#	id

uid=0(root)	gid=0(root)	context=u:r:adbd:s0

The	first	thing	to	check	is	the	context	on	the	file:

root@udoo:/	#	ls	-Z	/system/bin/sh

lrwxr-xr-x	root	shell	u:object_r:system_file:s0	sh	->	mksh

root@udoo:/	#	ls	-Z	/system/bin/mksh

-rwxr-xr-x	root	shell	u:object_r:system_file:s0	mksh

The	base	policy	defines	a	domain	transition	when	adbd	loads	the	shell	using	exec	to	go	to
the	shell	domain.	This	is	defined	in	the	adbd.te	external	sepolicy	as
domain_auto_trans(adbd,	shell_exec,	shell).

Obviously,	an	incorrect	label	has	been	applied	to	shell,	so	let’s	look	at	file_contexts	in
the	external	sepolicy	to	find	out	why.

$	cat	file_contexts	|	grep	shell_exec

/system/bin/sh—u:object_r:shell_exec:s0

The	two	dashes	mean	that	only	regular	files	will	be	labeled	and	symbolic	links	will	be
skipped.	We	probably	don’t	want	to	label	the	symlink,	but	rather	the	mksh	destination.	Do
this	by	adding	a	custom	file_contexts	entry	to	the	device	UDOO	sepolicy	and	adding
the	file	to	the	BOARD_SEPOLICY_UNION	config.	In	file_contexts,	add	/system/bin/mksh—
u:object_r:shell_exec:s0,	and	in	sepolicy.mk,	add	BOARD_SEPOLICY_UNION	+=
file_contexts.

Tip
Throughout	the	remainder	of	the	chapter,	whenever	you	create	or	modify	policy	files	(for
example,	context	files	or	*.te	files),	don’t	forget	to	add	them	to	BOARD_SEPOLICY_UNION
in	sepolicy.mk.

Since	this	is	a	fairly	fatal	issue	with	the	policy	and	adbd,	we	won’t	worry	about	the	denials
for	now,	with	the	exception	of	the	unlabeled.	Whenever	one	encounters	an	unlabeled	file,
it	should	be	addressed.	The	avc	denial	that	caused	this	is	as	follows:

type=1400	msg=audit(1417405835.872:435):	avc:	denied	{	getattr	}	for	

pid=4078	comm="ls"	path="/device"	dev=mmcblk0p7	ino=2	scontext=u:r:adbd:s0	

tcontext=u:object_r:unlabeled:s0	tclass=dir

Because	this	is	mounted	at	/device	and	Android	mounts	are	typically	at	/,	we	should	look
at	the	mount	table:

root@udoo:/	#	mount	|	grep	device

/dev/block/mmcblk0p7	/device	ext4	

ro,seclabel,nosuid,nodev,relatime,user_xattr,barrier=1,data=ordered	0	0

Typically,	mount	commands	are	in	the	init	scripts	following	a	mkdir,	or	in	an	fstab	file
with	the	init	built-in,	mount_all.	A	quick	search	for	device	and	mkdir	in	init.rc	finds
nothing,	but	we	do	find	it	in	fstab.freescale.	The	device	is	read-only,	so	we	should	be
able	to	give	it	a	type,	label	it	with	file	contexts,	and	apply	the	getattr	domain	to	its
directory	class.	Since	it’s	read-only	and	empty,	nobody	should	need	more	permissions.
Looking	at	the	make_sd.sh	script,	we	notice	that	partition	7	of	the	block	device	is	the

www.it-ebooks.info

http://www.it-ebooks.info/

vender	directory.	This	is	a	misspelling	of	the	common	vendor	directory	that	OEMs	place
proprietary	blobs	in.	We	place	file	types	in	file.te	and	the	domain	allow	rules	in
domain.te.

In	file.te,	add	this:

type	udoo_device_file,	file_type;

In	domain.te,	add	the	following:

allow	domain	udoo_device_file:dir	getattr;

In	file_contexts,	add	this:

/device	u:object_r:udoo_device_file:s0

If	this	directory	is	not	empty,	you	must	manually	run	restorecon	-R	on	it	to	label	existing
files.

If	you	pull	the	audit	logs	multiple	times	from	the	UDOO,	you	may	also	end	up	with
denials	showing	that	you	did	so,	as	adbd	will	not	be	able	to	access	them.	You	may	see	this:

#=============	adbd	==============

allow	adbd	audit_log:file	{	read	getattr	open	};

This	rule	comes	from	the	end	of	the	test	when	you	adb	pulled	the	audit	logs.	We	can
safely	dontaudit	this	and	add	a	neverallow	to	ensure	it	doesn’t	accidentally	get	allowed.
The	audit	logs	contain	information	a	malware	writer	could	use	to	navigate	through	the
policy,	and	this	information	should	be	protected.	In	a	device	sepolicy	folder,	add	an
adbd.te	file	and	union	it	in	the	sepolicy.mk	file:

In	adbd.te,	add	this:

#	dont	audit	adb	pull	and	adb	shell	cat	of	audit	logs

dontaudit	adbd	audit_log:file	r_file_perms;

dontaudit	shell	audit_log:file	r_file_perms;

In	auditd.te,	add	this:

#	Make	sure	no	one	adds	an	allow	to	the	audit	logs

#	from	anything	but	system	server	(read	only)	and

#	auditd,	rw	access.

neverallow	{	domain	-system_server	-auditd	-init	-kernel	}	audit_log:file	

~getattr;

neverallow	system_server	audit_log:file	~r_file_perms;

If	auditd.te	is	still	in	external/sepolicy,	move	it	to	device/fsl/udoo/sepolicy	along
with	all	dependent	types.

The	neverallow	entries	show	you	how	to	use	the	compliment,	~,	and	set	difference,	-,
operators	for	strong	assertions	or	brevity.	The	first	neverallow	starts	with	domain,	and	all
process	types	(domains)	are	members	of	the	domain	attribute.	We	prevent	access	through
set	difference,	leaving	the	set	that	must	never	have	access.	We	then	compliment	the	access
vector	set	to	allow	only	getattr	or	stat	on	the	logs.	The	second	neverallow	uses
compliment	to	ensure	system_server	is	limited	to	read	operations.

www.it-ebooks.info

http://www.it-ebooks.info/

bootanim
The	bootanim	domain	is	assigned	to	the	boot	animation	service	that	presents	splash
screens	on	boot,	typically	the	carrier’s	branding:

#=============	bootanim	==============

allow	bootanim	init:unix_stream_socket	connectto;

allow	bootanim	log_device:chr_file	{	write	open	};

allow	bootanim	property_socket:sock_file	write;

Anything	touching	the	init	domain	is	a	red	flag.	Here,	bootanim	connects	to	an	init	Unix
domain	socket.	This	is	a	part	of	the	property	system,	and	we	can	see	that	after	connecting,
it	writes	to	the	property	socket.	The	socket	object	and	its	URI	are	separate.	In	this	case,	it’s
the	filesystem,	but	it	could	be	an	anonymous	socket:

type=1400	msg=audit(1417405616.640:255):	avc:	denied	{	connectto	}	for	

pid=2534	comm="BootAnimation"	path="/dev/socket/property_service"	

scontext=u:r:bootanim:s0	tcontext=u:r:init:s0	tclass=unix_stream_socket

The	log_device	is	deprecated	in	new	versions	of	Android	and	replaced	with	logd.
However,	we	are	backporting	a	new	master	sepolicy	to	4.3,	so	we	must	support	this.	The
patch	that	removed	support	is	at	https://android-review.googlesource.com/#/c/108147/.

Rather	than	apply	a	reverse	patch	to	the	external	sepolicy,	we	can	just	add	the	rules	to	our
device	policy	in	a	domain.te	file.	We	can	safely	allow	these	using	the	proper	macros	and
styles	in	the	device	UDOO	sepolicy	folder.	In	bootanim.te,	add
unix_socket_connect(bootanim,	property,	init),	and	in	domain.te,	add	this:

allow	domain	udoo_device_file:dir	getattr;

allow	domain	log_device:dir	search;

allow	domain	log_device:chr_file	rw_file_perms;

www.it-ebooks.info

https://android-review.googlesource.com/#/c/108147/
http://www.it-ebooks.info/

debuggerd
#=============	debuggerd	==============

allow	debuggerd	log_device:chr_file	{	write	read	open	};

allow	debuggerd	system_data_file:sock_file	write;

The	log	device	denial	was	addressed	under	bootanim	by	adding	the	allow	rules	for	all
domains	to	use	log_device.	The	system_data_file:sock_file	write	is	strange.	In	most
circumstances,	you’ll	almost	never	want	to	allow	a	cross-domain	write,	but	this	is	special.
Look	at	the	raw	denial:

type=1400	msg=audit(1417415122.602:502):	avc:	denied	{	write	}	for	pid=2284	

comm="debuggerd"	name="ndebugsocket"	dev=mmcblk0p4	ino=129525	

scontext=u:r:debuggerd:s0	tcontext=u:object_r:system_data_file:s0	

tclass=sock_file

The	denial	is	on	ndebugsocket.	Grepping	for	this	uncovers	a	named	type	transition,	which
policy	version	23	does	not	support:

system_server.te:297:type_transition	system_server	

system_data_file:sock_file	system_ndebug_socket	"ndebugsocket";

We	have	to	change	the	code	to	set	the	proper	context	or	just	allow	it,	which	we	will.	We
won’t	grant	additional	permissions	because	it	never	asked	for	open,	and	we’re	crossing
domains.	Preventing	file	opens	across	domains	is	ideal,	as	the	only	way	to	get	this	file
descriptor	is	through	an	IPC	call	into	the	owning	domain.	In	debuggerd.te,	add	allow
debuggerd	system_data_file:sock_file	write;.

www.it-ebooks.info

http://www.it-ebooks.info/

drmserver
#=============	drmserver	==============

allow	drmserver	log_device:chr_file	{	write	open	};

This	is	taken	care	of	by	domain.te	rules,	so	we	have	nothing	to	do	here.

www.it-ebooks.info

http://www.it-ebooks.info/

dumpstate
#=============	dumpstate	==============

allow	dumpstate	init:binder	call;

allow	dumpstate	init:process	signal;

allow	dumpstate	log_device:chr_file	{	write	read	open	};

allow	dumpstate	node:rawip_socket	node_bind;

allow	dumpstate	self:capability	sys_resource;

allow	dumpstate	system_data_file:file	{	write	rename	create	setattr	};

The	denial	to	init:binder	call	on	dumpstate	is	strange	because	init	doesn’t	use
binder.	Some	process	must	stay	in	the	init	domain.	Let’s	check	our	process	listing	for	init:

$	adb	shell	ps	-Z	|	grep	init

u:r:init:s0	root	1	0	/init

u:r:init:s0	root	2286	1	zygote

u:r:init:s0	radio	2759	2286	com.android.phone

Here,	zygote	and	com.android.phone	should	not	be	running	as	init.	This	must	be	a
labeling	error	on	the	app_process	file,	which	is	the	zygote.	The	ls	-laZ
/system/bin/app_process	command	reveals	u:object_r:system_file:s0
app_process,	so	add	an	entry	to	file_contexts	to	correct	this.	We	can	find	the	label	to
use	in	zygote.te	in	the	base	sepolicy	defined	as	the	zygote_exec	type:

#	zygote

type	zygote,	domain;

type	zygote_exec,	exec_type,	file_type;

In	file_contexts,	add	/system/bin/app_process	u:object_r:zygote_exec:s0.

www.it-ebooks.info

http://www.it-ebooks.info/

installd
The	added	domain.te	rules	handle	installd.

www.it-ebooks.info

http://www.it-ebooks.info/

keystore
#=============	keystore	==============

allow	keystore	app_data_file:file	write;

allow	keystore	log_device:chr_file	{	write	open	};

The	log	device	is	taken	care	of	by	the	domain.te	rules.	Let’s	look	at	the	raw
app_data_file	denial:

type=1400	msg=audit(1417417454.442:845):	avc:	denied	{	write	}	for	

pid=15339	comm="onCtsTestRunner"	

path="/data/data/com.android.cts.stub/cache/CTS_DUMP"	dev=mmcblk0p4	

ino=131242	scontext=u:r:keystore:s0	

tcontext=u:object_r:app_data_file:s0:c512,c768	tclass=file

Categories	are	defined	in	the	contexts.	This	means	MLS	support	is	activated	for	app
domains.	In	the	seapp_contexts	base	sepolicy,	we	see	this:

user=_app	domain=untrusted_app	type=app_data_file	levelFrom=user

user=_app	seinfo=platform	domain=platform_app	type=app_data_file	

levelFrom=user

MLS	separation	of	application	data	is	still	under	development	and	didn’t	work	on	4.3,	so
we	can	disable	this.	We	can	just	declare	them	in	a	device-specific	seapp_contexts	file.	In
seapp_contexts,	add	user=_app	domain=untrusted_app	type=app_data_file	and
user=_app	seinfo=platform	domain=platform_app	type=app_data_file.	In	4.3,	any
changes	to	context	on	data	require	a	factory	reset.	The	4.4	version	added	smart	relabel
capabilities.

www.it-ebooks.info

http://www.it-ebooks.info/

mediaserver
#=============	mediaserver	==============

allow	mediaserver	adbd:binder	{	transfer	call	};

allow	mediaserver	init:binder	{	transfer	call	};

allow	mediaserver	log_device:chr_file	{	write	open	};

The	log	device	was	addressed	in	the	domain.te	rules.	We’ll	skip	init	and	adbd	too,	since
their	issues	were	triggered	by	improper	process	domains.	It’s	important	not	to	add	allow
rules	blindly,	as	most	of	the	work	for	existing	domains	can	be	handled	with	small	label
changes	or	a	few	rules.

www.it-ebooks.info

http://www.it-ebooks.info/

netd
#=============	netd	==============

allow	netd	kernel:system	module_request;

allow	netd	log_device:chr_file	{	write	open	};

The	log	device	denial	of	netd	was	addressed	by	domain.te.	However,	we	should
scrutinize	anything	requesting	a	capability.	When	granting	capabilities,	the	policy	author
needs	to	be	very	careful.	If	a	domain	is	granted	the	ability	to	load	a	system	module	and
that	domain	or	module	binary	itself	is	compromised,	it	could	lead	to	the	injection	of
malware	into	the	kernel	via	loadable	modules.	However,	netd	needs	loadable	kernel
module	support	to	support	some	cards.	Add	the	allow	rule	to	a	file	called	netd.te	in	the
device	UDOO	sepolicy.	In	netd.te,	add	allow	netd	self:capability	sys_module;.

www.it-ebooks.info

http://www.it-ebooks.info/

rild
#=============	rild	==============

allow	rild	log_device:chr_file	{	write	open	};

This	is	taken	care	of	by	domain.te	rules,	so	we	have	nothing	to	do	here.

www.it-ebooks.info

http://www.it-ebooks.info/

servicemanager
#=============	servicemanager	==============

allow	servicemanager	init:binder	transfer;

allow	servicemanager	log_device:chr_file	{	write	open	};

Again,	the	log	device	was	handled	in	domain.te.	We’ll	skip	init,	since	its	issues	were
triggered	by	improper	process	domains.

www.it-ebooks.info

http://www.it-ebooks.info/

surfaceflinger
#=============	surfaceflinger	==============

allow	surfaceflinger	init:binder	transfer;

allow	surfaceflinger	log_device:chr_file	{	write	open	};

Again,	the	log	device	was	handled	in	domain.te.	We’ll	skip	init	too,	since	its	issues	were
triggered	by	improper	process	domains.

www.it-ebooks.info

http://www.it-ebooks.info/

system_server
#=============	system_server	==============

allow	system_server	adbd:binder	{	transfer	call	};

allow	system_server	dalvikcache_data_file:file	{	write	setattr	};

allow	system_server	init:binder	{	transfer	call	};

allow	system_server	init:file	write;

allow	system_server	init:process	{	setsched	sigkill	getsched	};

allow	system_server	init_tmpfs:file	read;

allow	system_server	log_device:chr_file	write;

Since	log_device	is	taken	care	of	by	domain.te,	and	init	and	adbd	are	polluted,	we	will
only	address	the	Dalvik	cache	denial:

type=1400	msg=audit(1417405611.550:159):	avc:	denied	{	write	}	for	pid=2571	

comm="er.ServerThread"	name="system@app@SettingsProvider.apk@classes.dex"	

dev=mmcblk0p4	ino=129458	scontext=u:r:system_server:s0	

tcontext=u:object_r:dalvikcache_data_file:s0	tclass=file

type=1400	msg=audit(1417405611.550:160):	avc:	denied	{	setattr	}	for	

pid=2571	comm="er.ServerThread"	

name="system@app@SettingsProvider.apk@classes.dex"	dev=mmcblk0p4	ino=129458	

scontext=u:r:system_server:s0	tcontext=u:object_r:dalvikcache_data_file:s0	

tclass=file

The	external	sepolicy	seandroid-4.3	branch	allowed	domain.te:allow	domain
dalvikcache_data_file:file	r_file_perms;.	Writes	were	allowed	by	system_app	with
system_app.te:allow	system_app	dalvikcache_data_file:file	{	write	setattr

};.	We	should	be	able	to	grant	this	write	access	because	there	may	be	a	need	to	update	its
Dalvik	cache	file.	In	domain.te,	add	allow	domain	dalvikcache_data_file:file
r_file_perms;,	and	in	system_server.te,	add	allow	system_server
dalvikcache_data_file:file	{	write	setattr	};.

www.it-ebooks.info

http://www.it-ebooks.info/

toolbox
#=============	toolbox	==============

allow	toolbox	sysfs:file	write;

Typically,	one	should	not	write	to	sysfs.	Now	look	at	the	raw	denial	for	the	offending
sysfs	file:

type=1400	msg=audit(1417405599.660:43):	avc:	denied	{	write	}	for	pid=2309	

comm="cat"	path="/sys/module/usbtouchscreen/parameters/calibration"	

dev=sysfs	ino=2318	scontext=u:r:toolbox:s0	tcontext=u:object_r:sysfs:s0	

tclass=file

From	here,	we	properly	label	/sys/module/usbtouchscreen/parameters/calibration.
We	place	an	entry	in	file_contexts	to	label	sysfs,	declare	a	type	in	file.te,	and	allow
toolbox	access	to	it.	In	file.te,	add	type	sysfs_touchscreen_calibration,	fs_type,
sysfs_type,	mlstrustedobject;,	and	in	file_contexts,	add
/sys/module/usbtouchscreen/parameters/calibration—

u:object_r:sysfs_touchscreen_calibration:s0,	and	in	toolbox.te,	add	allow
toolbox	sysfs_touchscreen_calibration:file	w_file_perms;.

www.it-ebooks.info

http://www.it-ebooks.info/

untrusted_app
#=============	untrusted_app	==============

allow	untrusted_app	adb_device:chr_file	getattr;

allow	untrusted_app	adbd:binder	{	transfer	call	};

allow	untrusted_app	adbd:dir	{	read	getattr	open	search	};

allow	untrusted_app	adbd:file	{	read	getattr	open	};

allow	untrusted_app	adbd:lnk_file	read;

...

untrusted_app	had	many	denials.	Considering	the	domain	labeling	issues,	we	won’t
address	most	of	these	now.	However,	you	should	look	out	for	mislabeled	and	unlabeled
target	files.	While	searching	the	denial	logs	as	interpreted	by	audit2allow,	the	following
was	found:

allow	untrusted_app	device:chr_file	{	read	getattr	};

allow	untrusted_app	unlabeled:dir	{	read	getattr	open	};

For	the	chr_file	device,	we	get	this:

type=1400	msg=audit(1417416653.742:620):	avc:	denied	{	read	}	for	pid=3696	

comm="onCtsTestRunner"	name="rfkill"	dev=tmpfs	ino=1126	

scontext=u:r:untrusted_app:s0:c512,c768	tcontext=u:object_r:device:s0	

tclass=chr_file

type=1400	msg=audit(1417416666.152:784):	avc:	denied	{	getattr	}	for	

pid=3696	comm="onCtsTestRunner"	path="/dev/mxs_viim"	dev=tmpfs	ino=1131	

scontext=u:r:untrusted_app:s0:c512,c768	tcontext=u:object_r:device:s0	

tclass=chr_file

type=1400	msg=audit(1417416653.592:561):	avc:	denied	{	getattr	}	for	

pid=3696	comm="onCtsTestRunner"	path="/dev/.coldboot_done"	dev=tmpfs	

ino=578	scontext=u:r:untrusted_app:s0:c512,c768	

tcontext=u:object_r:device:s0	tclass=file

Therefore,	we	need	to	label	/dev/.coldboot_done,	/dev/rfkill	properly,	and
/dev/mxs_viim.	/dev/rfkill	should	be	labeled	in	line	with	what	the	4.3	policy	had:

file_contexts:/sys/class/rfkill/rfkill[0-9]*/state—

u:object_r:sysfs_bluetooth_writable:s0

file_contexts:/sys/class/rfkill/rfkill[0-9]*/type—

u:object_r:sysfs_bluetooth_writable:s0

The	/dev/mxs_viim	device	seems	to	be	a	globally	accessible	GPU.	We	recommend	a
thorough	review	of	the	source	code,	but	for	now,	we	will	label	it	as	gpu_device.
/dev/.coldboot_done	is	created	by	ueventd	when	the	coldboot	process	completes.	If
ueventd	is	restarted,	it	skips	the	coldboot.	We	don’t	need	to	label	this.	This	denial	is
caused	by	the	source	domain	MLS	on	a	target	file	that	is	not	a	subset	of	the	categories	of
the	source	and	does	not	have	the	mlstrustedsubject	attribute;	it	should	go	away	when
we	drop	MLS	support	from	apps.

In	file_contexts:

#	touch	screen	calibration

/sys/module/usbtouchscreen/parameters/calibration—

u:object_r:sysfs_touchscreen_calibration:s0

www.it-ebooks.info

http://www.it-ebooks.info/

#BT	RFKill	node

/sys/class/rfkill/rfkill[0-9]*/state—u:object_r:sysfs_bluetooth_writable:s0

/sys/class/rfkill/rfkill[0-9]*/type—u:object_r:sysfs_bluetooth_writable:s0

www.it-ebooks.info

http://www.it-ebooks.info/

vold
#=============	vold	==============

allow	vold	log_device:chr_file	{	write	open	};

Again,	the	log	device	was	handled	in	domain.te.

www.it-ebooks.info

http://www.it-ebooks.info/

watchdogd
#=============	watchdogd	==============

allow	watchdogd	device:chr_file	{	read	write	create	unlink	open	};

The	raw	denials	from	watchdog	paint	in	interesting	portrait:

type=1400	msg=audit(1417405598.000:8):	avc:	denied	{	create	}	for	pid=2267	

comm="watchdogd"	name="__null__"	scontext=u:r:watchdogd:s0	

tcontext=u:object_r:device:s0	tclass=chr_file

type=1400	msg=audit(1417405598.000:9):	avc:	denied	{	read	write	}	for	

pid=2267	comm="watchdogd"	name="__null__"	dev=tmpfs	ino=2580	

scontext=u:r:watchdogd:s0	tcontext=u:object_r:device:s0	tclass=chr_file

type=1400	msg=audit(1417405598.000:10):	avc:	denied	{	open	}	for	pid=2267	

comm="watchdogd"	name="__null__"	dev=tmpfs	ino=2580	

scontext=u:r:watchdogd:s0	tcontext=u:object_r:device:s0	tclass=chr_file

type=1400	msg=audit(1417405598.000:11):	avc:	denied	{	unlink	}	for	pid=2267	

comm="watchdogd"	name="__null__"	dev=tmpfs	ino=2580	

scontext=u:r:watchdogd:s0	tcontext=u:object_r:device:s0	tclass=chr_file

type=1400	msg=audit(1417416653.602:575):	avc:	denied	{	getattr	}	for	

pid=3696	comm="onCtsTestRunner"	path="/dev/watchdog"	dev=tmpfs	ino=1095	

scontext=u:r:untrusted_app:s0:c512,c768	

tcontext=u:object_r:watchdog_device:s0	tclass=chr_file

A	file	is	created	and	unlinked	by	watchdog,	which	keeps	a	handle	to	an	anonymous	file.
No	filesystem	reference	exists	after	the	unlink,	but	the	file	descriptor	is	valid	and	only
watchdog	can	use	it.	In	this	case,	we	can	just	allow	watchdog	this	rule.	In	watchdogd.te,
add	allow	watchdogd	device:chr_file	create_file_perms;.	This	rule,	however,
causes	a	neverallow	violation	in	the	base	policy:

out/host/linux-x86/bin/checkpolicy:	loading	policy	configuration	from	

out/target/product/udoo/obj/ETC/sepolicy_intermediates/policy.conf

libsepol.check_assertion_helper:	neverallow	on	line	5375	violated	by	allow	

watchdogd	device:chr_file	{	read	write	open	};

Error	while	expanding	policy

The	neverallow	rule	is	in	the	domain.te	base	policy	as	neverallow	{	domain	-init	-
ueventd	-recovery	}	device:chr_file	{	open	read	write	};.	For	such	a	simple
change,	we’ll	just	modify	the	base	sepolicy	to	neverallow	{	domain	-init	-ueventd	-
recovery	-watchdogd	}	device:chr_file	{	open	read	write	};.

www.it-ebooks.info

http://www.it-ebooks.info/

wpa
#=============	wpa	==============

allow	wpa	device:chr_file	{	read	open	};

allow	wpa	log_device:chr_file	{	write	open	};

allow	wpa	system_data_file:dir	{	write	remove_name	add_name	setattr	};

allow	wpa	system_data_file:sock_file	{	write	create	unlink	setattr	};

Again,	the	log	device	was	handled	in	domain.te.	The	system	data	accesses	need	further
investigation,	starting	with	the	raw	denials:

type=1400	msg=audit(1417405614.060:193):	avc:	denied	{	setattr	}	for	

pid=2639	comm="wpa_supplicant"	name="wpa_supplicant"	dev=mmcblk0p4	

ino=129295	scontext=u:r:wpa:s0	tcontext=u:object_r:system_data_file:s0	

tclass=dir

type=1400	msg=audit(1417405614.060:194):	avc:	denied	{	write	}	for	pid=2639	

comm="wpa_supplicant"	name="wlan0"	dev=mmcblk0p4	ino=129318	

scontext=u:r:wpa:s0	tcontext=u:object_r:system_data_file:s0	

tclass=sock_file

type=1400	msg=audit(1417405614.060:195):	avc:	denied	{	write	}	for	pid=2639	

comm="wpa_supplicant"	name="wpa_supplicant"	dev=mmcblk0p4	ino=129295	

scontext=u:r:wpa:s0	tcontext=u:object_r:system_data_file:s0	tclass=dir

type=1400	msg=audit(1417405614.060:196):	avc:	denied	{	remove_name	}	for	

pid=2639	co

The	offending	file	was	located	using	ls	-laR:

/data/system/wpa_supplicant:

srwxrwx---	wifi	wifi	2014-12-01	06:43	wlan0

This	socket	is	created	by	the	wpa_supplicant	itself.	Relabeling	it	without	type	transitions
is	impossible,	so	we	have	to	allow	it.	In	wpa.te,	add	allow	wpa	system_data_file:dir
rw_dir_perms;	and	allow	wpa	system_data_file:sock_file	create_file_perms;.
The	unlabeled	device	has	already	been	dealt	with;	it	was	on	rfkill:

type=1400	msg=audit(1417405613.640:175):	avc:	denied	{	read	}	for	pid=2639	

comm="wpa_supplicant"	name="rfkill"	dev=tmpfs	ino=1126	scontext=u:r:wpa:s0	

tcontext=u:object_r:device:s0	tclass=chr_file

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Second	policy	pass
After	loading	the	drafted	policy,	the	device	still	has	denials	on	boot:

#=============	init	==============

allow	init	rootfs:file	{	write	create	};

allow	init	system_file:file	execute_no_trans;

#=============	shell	==============

allow	shell	device:chr_file	{	read	write	getattr	};

allow	shell	system_file:file	entrypoint;

All	of	these	denials	should	be	investigated	because	they	target	sensitive	types,	tcontext
specifically.

www.it-ebooks.info

http://www.it-ebooks.info/

init
The	raw	denials	for	init	are	as	follows:

<5>type=1400	audit(4.380:3):	avc:	denied	{	create	}	for	pid=2268	

comm="init"	name="tasks"	scontext=u:r:init:s0	tcontext=u:object_r:rootfs:s0	

tclass=file

<5>type=1400	audit(4.380:4):	avc:	denied	{	write	}	for	pid=2268	comm="init"	

name="tasks"	dev=rootfs	ino=3080	scontext=u:r:init:s0	

tcontext=u:object_r:rootfs:s0	tclass=file

These	occur	before	init	remounts	/	as	read-only.	We	can	safely	allow	these,	and	since
init	is	running	unconfined,	we	can	just	add	it	to	init.te.	We	could	add	the	allow	rule	to
the	unconfined	set,	but	since	that	is	going	away,	let’s	minimize	the	permission	only	to
init:

allow	int	rootfs:file	create_file_perms;

Note
Unconfined	is	not	completely	unconfined.	Rules	get	stripped	from	this	domain	as	AOSP
moves	closer	to	zero	unconfined	domains.

Doing	this,	however,	causes	another	neverallow	to	fail.	We	can	modify
external/sepolicy	domain.te	to	bypass	this.	Change	the	neverallow	from	this:

#	Nothing	should	be	writing	to	files	in	the	rootfs.

neverallow	{	domain	-recovery}	rootfs:file	{	create	write	setattr	relabelto	

append	unlink	link	rename	};

Change	it	to	this:

#	Nothing	should	be	writing	to	files	in	the	rootfs.

neverallow	{	domain	-recovery	-init	}	rootfs:file	{	create	write	setattr	

relabelto	append	unlink	link	rename	};

Note
If	you	need	to	modify	neverallow	entries	to	build,	you	will	fail	CTS.	The	proper	approach
is	to	remove	this	behavior	from	init.

Additionally,	we	need	to	see	what	is	loaded	with	exec	without	a	domain	transition,
causing	the	execute_no_trans	denial:

<5>type=1400	audit(4.460:6):	avc:	denied	{	execute_no_trans	}	for	pid=2292	

comm="init"	path="/system/bin/magd"	dev=mmcblk0p5	ino=146	

scontext=u:r:init:s0	tcontext=u:object_r:system_file:s0	tclass=file

<5>type=1400	audit(4.460:6):	avc:	denied	{	execute_no_trans	}	for	pid=2292	

comm="init"	path="/system/bin/rfkill"	dev=mmcblk0p5	ino=148	

scontext=u:r:init:s0	tcontext=u:object_r:system_file:s0	tclass=file

To	resolve	this,	we	can	relabel	magd	with	its	own	type	and	place	it	in	its	own	unconfined
domain.	A	neverallow	in	the	base	policy	forces	us	to	move	each	executable	into	its	own
domain.

www.it-ebooks.info

http://www.it-ebooks.info/

Create	a	file	called	magd.te,	add	it	to	BOARD_SEPOLICY_UNION,	and	add	the	following
contents	to	it:

type	magd,	domain;

type	magd_exec,	exec_type,	file_type;

permissive_or_unconfined(magd);

Also	update	file_contexts	to	contain	this:

/system/bin/magd		u:object_r:magd_exec:s0

Repeat	the	steps	that	were	done	for	magd	for	rfkill.	Just	replace	magd	with	rfkill	in	the
preceding	example.	Later	testing	revealed	an	entry-point	denial	where	the	source	context
was	init_shell	and	the	target	was	rfkill_exec.	After	adding	the	shell	rules,	it	was
discovered	that	rfkill	is	loaded	using	exec	from	the	init_shell	domain,	so	let’s	also
add	domain_auto_trans(init_shell,	rfkill_exec,	rfkill)	to	the	rfkill.te	file.
Additionally	grouped	with	this	discovery	was	rfkill	attempting	to	open,	read,	and	write
/dev/rfkill.	So	we	must	label	/dev/rfkill	with	rfkill_device,	allow	rfkill	access
to	it,	and	append	allow	rfkill	rfkill_device:chr_file	rw_file_perms;	to	the
rfkill.te	file.	Create	a	new	file	to	declare	this	device	type,	called	device.te,	and	add
type	rfkill_device,	dev_type;.	After	that,	label	it	with	file_contexts	by	adding
/dev/rfkill	u:object_r:rfkill_device:s0.

www.it-ebooks.info

http://www.it-ebooks.info/

shell
The	first	shell	denial	we	will	evaluate	is	the	denial	on	entrypoint:

<5>type=1400	audit(4.460:5):	avc:	denied	{	entrypoint	}	for	pid=2279	

comm="init"	path="/system/bin/mksh"	dev=mmcblk0p5	ino=154	

scontext=u:r:shell:s0	tcontext=u:object_r:system_file:s0	tclass=file

Since	we	did	not	label	mksh,	we	need	to	label	it	now.	We	can	create	an	unconfined	domain
for	shells	spawned	by	init	to	end	up	in	the	init_shell	domain.	The	console	still	ends	up
in	the	shell	domain	via	an	explicit	seclabel,	and	other	invocations	end	up	as
init_shell.	Create	a	new	file,	init_shell.te,	and	add	it	to	BOARD_SEPOLICY_UNION.

www.it-ebooks.info

http://www.it-ebooks.info/

init_shell.te
type	init_shell,	domain;

domain_auto_trans(init,	shell_exec,	init_shell);

permissive_or_unconfined(init_shell);

Update	file_contexts	to	include	this:

/system/bin/mksh		u:object_r:shell_exec:s0;

Now	we	will	handle	shell	access	to	the	raw	device:

<5>type=1400	audit(6.510:7):	avc:	denied	{	read	write	}	for	pid=2279	

comm="sh"	name="ttymxc1"	dev=tmpfs	ino=122	scontext=u:r:shell:s0	

tcontext=u:object_r:device:s0	tclass=chr_file

<5>type=1400	audit(7.339:8):	avc:	denied	{	getattr	}	for	pid=2279	comm="sh"	

path="/dev/ttymxc1"	dev=tmpfs	ino=122	scontext=u:r:shell:s0	

tcontext=u:object_r:device:s0	tclass=chr_file

This	is	just	a	mislabeled	tty,	so	we	can	label	this	as	a	tty_device.	Add	the	following
entry	to	the	file	contexts:

/dev/ttymxc[0-9]*		u:object_r:tty_device:s0

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Field	trials
At	this	point,	rebuild	the	source	tree,	wipe	the	data	filesystem,	flash,	and	re-run	CTS.
Repeat	this	until	all	denials	are	addressed.

Once	you’re	done	with	CTS	and	internal	QA	trials,	we	recommend	performing	a	field	trial
with	the	device	in	permissive	mode.	During	this	period,	you	should	be	gathering	the	logs
and	refining	policy.	If	the	domains	are	not	stable,	you	can	declare	them	as	permissive	in
the	policy	file	and	still	put	the	device	in	enforcing	mode;	enforcing	some	domains	is	better
than	enforcing	none.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Going	enforcing
You	can	pass	the	enforcing	mode	either	using	bootloader	(which	will	not	be	covered
here)	or	with	the	init.rc	script	early	in	boot	time.	You	can	do	this	right	after	setcon:

setcon	u:r:init:s0

setenforce	1

Once	this	statement	is	compiled	into	the	init.rc	script,	it	can	only	be	undone	with	a
subsequent	build	and	a	reflash	of	boot.img.	You	can	check	this	by	running	the
getenforce	command.	Also,	as	an	interesting	test,	you	can	try	to	run	the	reboot
command	from	the	root	serial	console	and	watch	it	fail:

root@udoo:/	#	getenforce

Enforcing

root@udoo:/	#	reboot

reboot:	Operation	not	permitted

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	chapter,	all	of	your	previous	understanding	of	the	system	was	used	to	develop	real
SE	for	Android	policy	for	a	brand	new	device.	You	are	now	empowered	with	the
knowledge	of	how	to	write	SELinux	policy	for	Android,	where	and	how	the	components
of	the	system	work,	and	how	to	port	and	enable	these	features	on	various	Android
platforms.	Since	this	is	a	fairly	new	feature	that	influences	many	system	interactions,
issues	that	will	require	code	changes	as	well	as	policy	changes	will	arise.	Understanding
both	is	crucial.

As	policy	authors	and	security	personnel	in	general,	the	responsibility	to	secure	the	system
rests	on	our	shoulders.	In	most	organizations,	you’re	required	to	work	in	the	dark.
However,	if	you	can,	do	as	much	work	and	ask	as	many	questions	as	you	want	to	in	the
mailing	list,	and	never	accept	the	status	quo.	The	SE	for	Android	and	AOSP	projects
welcome	all	to	contribute,	and	by	contributing,	you	will	help	make	the	project	better	and
enhance	the	feature	sets	for	all.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix	A.	The	Development
Environment
In	order	to	build	the	Android	4.3	sources	provided	by	UDOO,	you	need	an	Ubuntu	Linux
system	with	Oracle	Java	6.	While	it	may	be	possible	to	use	a	variant	of	this	setup,
Google’s	standard	target	development	platform	for	Android	4.3	is	Ubuntu	12.04.
Therefore,	we	will	use	this	setup	to	ensure	the	highest	probability	of	success	in	our
exploration	of	Linux,	SE	Linux,	Android,	the	UDOO,	and	SE	for	Android.

In	this	appendix,	we	will	do	the	following:

Download	and	install	Ubuntu	12.04	using	a	virtual	machine	(VM)
Enhance	our	VM’s	performance	by	installing	the	VirtualBox	Extension	Pack	and
VirtualBox	Guest	Additions
Set	up	a	development	environment	appropriate	for	building	the	Linux	kernel	and
UDOO	sources
Install	Oracle	Java	6

Tip
If	you	already	use	Ubuntu	Linux	12.04,	you	can	skip	to	the	The	Build	Environment
section.	If	you	intend	to	install	Ubuntu	natively	(not	in	a	VM),	you	should	skip	to	the
Ubuntu	Linux	12.04	section	and	follow	those	directions,	ignoring	the	VirtualBox	steps.

www.it-ebooks.info

http://www.it-ebooks.info/

VirtualBox
There	are	a	number	of	virtualization	products	available	for	running	guest	operating
systems,	such	as	Ubuntu	Linux,	but	for	this	setup	we	will	use	VirtualBox.	VirtualBox	is	a
widely	used	open	source	virtualization	system	available	for	Mac,	Linux,	Solaris,	and
Windows	hosts	(among	others).	It	supports	a	variety	of	guest	operating	systems.
VirtualBox	also	allows	the	use	of	hardware	virtualization	of	many	modern/common
processor	families	to	increase	performance	by	providing	each	virtual	machine	its	own
private	address	space.

The	VirtualBox	documentation	has	excellent	installation	instructions	for	various
platforms,	and	we	recommend	referring	to	these	for	your	host	platform.	You	can	find
information	about	installing	and	running	VirtualBox	for	your	host	operating	system	at
http://www.virtualbox.org/manual/ch02.html.

www.it-ebooks.info

http://www.virtualbox.org/manual/ch02.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Ubuntu	Linux	12.04	(precise	pangolin)
To	install	Ubuntu	Linux	12.04,	you	will	first	need	to	download	an	appropriate	distribution
image.	These	can	be	found	at	http://releases.ubuntu.com/12.04/.	While	there	are	a	number
of	acceptable	images	there,	we	will	install	the	64-bit	desktop	version	of	the	distribution
—http://releases.ubuntu.com/12.04/ubuntu-12.04.5-desktop-amd64.iso.	The	host	machine
we’re	using	in	this	example	is	a	64-bit	Macbook	Pro	running	OS	X	10.9.2,	so	we’re
targeting	a	64-bit	guest	as	well.	If	you	have	a	32-bit	machine,	the	basic	mechanics	of	what
we	cover	will	be	the	same;	only	a	few	details	will	be	different,	so	we	will	leave	those	for
you	to	discover	and	resolve.

Launch	VirtualBox	on	your	host,	wait	for	the	VM	Manager	window	to	appear,	and
perform	the	following	steps:

1.	 Click	on	New.
2.	 For	the	Name	and	Operating	System	settings,	make	the	following	selections:

Name:	SE	for	Android	Book
Type:	Linux
Version:	Ubuntu	(64	bit)

3.	 Set	Memory	Size	to	a	value	to	at	least	16	GB.	Anything	lower	than	this	will	lead	to
unsuccessful	builds.

4.	 To	set	up	the	hard	drive,	select	Create	a	virtual	hard	drive	now.	Set	this	value	to	at
least	80	GB.

5.	 Choose	the	Hard	Drive	File	Type,	VDI	(VirtualBox	Disk	Image).
6.	 Ensure	storage	on	the	physical	hard	drive	is	set	to	dynamically	allocated.
7.	 When	prompted	for	file	location	and	size,	name	the	new	virtual	hard	drive	SE	for

Android	Book,	and	set	its	size	to	80	GB.

Ensure	the	SE	for	Android	Book	VM	is	selected	in	the	left	pane.	Click	on	the	green	Start
arrow	to	perform	an	initial	launch	of	the	VM.	A	dialog	will	appear,	asking	you	to	select	a
virtual	optical	disk	file.	Click	on	the	small	folder	icon	and	locate	the	ubuntu-12.04.5-
desktop-amd64.iso	CD	image	you	downloaded	earlier.	Then	click	on	Start.

When	the	screen	turns	black	and	shows	a	keyboard	image	at	the	bottom	center	of	the	VM
window,	press	any	key	to	begin	the	Ubuntu	installation.	As	soon	as	you	do	this,	the
language	selection	screen	will	appear.	Choose	whichever	language	is	most	appropriate	for
you,	but	for	this	example,	we’ll	select	English.	Then	select	Install	Ubuntu.

Sometimes,	you	may	see	an	unusual-looking	error	printed	across	your	VM	window—
something	like	SMBus	base	address	uninitialized.	This	message	is	shown	because
VirtualBox	doesn’t	support	a	particular	kernel	module	that	is	loaded	by	default	with
Ubuntu	12.04.	However,	this	will	not	cause	any	difficulty	and	is	only	a	cosmetic
annoyance.	After	a	few	moments,	a	nice	GUI	installation	screen	will	appear,	waiting	for
you	to	choose	a	language	again.	We’ll	choose	English	again.

On	the	following	Preparing	to	install	Ubuntu	screen,	three	checklist	items	are	shown.

www.it-ebooks.info

http://releases.ubuntu.com/12.04/
http://releases.ubuntu.com/12.04/ubuntu-12.04.5-desktop-amd64.iso
http://www.it-ebooks.info/

You	should	have	already	satisfied	the	first	item,	since	your	virtual	drive	is	much	larger
than	the	minimum	requirement	for	Ubuntu.	To	satisfy	the	others,	ensure	your	host	system
is	plugged	in	with	a	power	supply	and	has	an	established	network	connection.	Although
this	is	entirely	unnecessary	for	our	purposes	here,	we	almost	always	mark	the	Download
updates	while	installing	and	Install	this	third-party	software	boxes	before	continuing.

On	the	Installation	type	screen,	we’ll	take	the	easy	path	and	select	Erase	disk	and	install
Ubuntu.	Keep	in	mind	that	this	will	only	erase	the	disk	of	your	VM’s	virtual	hard	drive
and	leaves	your	host	system	intact.	On	the	Erase	disk	and	install	Ubuntu	screen,	your
virtual	hard	drive	should	already	be	selected,	so	you	only	need	to	click	Install	Now.

From	this	point	forward	in	the	Ubuntu	installation,	two	separate	tasks	will	happen
simultaneously:	in	a	background	thread,	the	installer	will	prepare	the	virtual	drive	for	the
installation	of	the	base	system;	secondly,	you	will	configure	some	basic	aspects	of	your
new	system.	But	first,	you	will	have	to	identify	your	time	zone	by	clicking	on	the
appropriate	point	on	the	world	map	before	continuing.	Then	identify	your	keyboard	layout
and	continue.

Set	up	your	first	user	account.	In	this	case,	it	will	be	the	account	we	used	to	do	the	work	in
this	book,	so	we	will	enter	the	following	information:

Your	Name:	Book	User
Your	computer’s	name:	SE-for-Android
Pick	a	username:	bookuser
Password	fields:	(whatever	you	prefer)

We	will	also	select	Log	in	automatically.	While	we	would	not	normally	do	this	for
security	reasons,	we	will	do	it	in	our	local	VM	for	convenience;	but	you	may	protect	this
account	in	whichever	way	you	prefer.

Once	the	Ubuntu	installation	is	complete,	a	dialog	asking	you	to	restart	the	computer	will
appear.	Click	the	Restart	now	button,	and	after	a	few	moments,	a	terminal	prompt	will
inform	you	to	remove	all	installation	media	and	press	Enter.	To	remove	the	virtual
installation	CD,	go	to	Devices	|	CD/DVD	Devices	|	Remove	disk	from	virtual	drive
using	the	VirtualBox	menu	bar.	Then	press	Enter	to	restart	the	VM,	but	interrupt	the	boot
process	by	closing	the	VM	window.	It	will	ask	you	if	you	want	to	power	off	the	machine.
Just	click	OK.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

VirtualBox	extension	pack	and	guest
additions
To	get	the	best	performance	from	your	guest	Ubuntu	VM	and	access	to	the	virtual	USB
devices	necessary	for	working	with	the	UDOO,	you	will	need	to	install	the	VirtualBox
extension	pack	and	guest	additions.

www.it-ebooks.info

http://www.it-ebooks.info/

VirtualBox	extension	pack
Download	the	extension	pack	from	the	VirtualBox	website,	at
http://www.virtualbox.org/wiki/Downloads.	There	will	be	a	download	link	there	intended
for	All	supported	platforms.	Once	this	file	is	downloaded,	you’ll	need	to	install	it.	This
process	is	different	for	each	type	of	host	system,	but	it	is	very	straightforward.	For	Linux
and	Mac	OS	X	hosts,	simply	double-clicking	on	the	downloaded	extension	pack	file	will
do	the	trick.	For	Windows	systems,	you	will	need	to	run	the	installer	you’ve	downloaded.

www.it-ebooks.info

http://www.virtualbox.org/wiki/Downloads
http://www.it-ebooks.info/

VirtualBox	guest	additions
Once	you’ve	completed	the	installation	of	the	extension	pack,	boot	your	Ubuntu	Linux
12.04	VM	from	VirtualBox	by	selecting	the	VM	from	the	left	pane	and	clicking	on	Start
in	the	toolbar.	Once	your	Ubuntu	desktop	is	active,	you’ll	notice	it	does	not	fit	into	your
VM	window.	Resize	the	VM	window	to	make	it	larger,	and	the	VM	screen	will	remain	the
same	size.	This,	among	other	performance	issues,	will	be	resolved	by	installing	the
VirtualBox	guest	additions.	You	may	also	see	a	window	open	on	your	virtual	desktop
indicating	a	new	version	of	Ubuntu	is	available.	Do	not	upgrade;	just	close	that	window.

Using	the	VirtualBox	menu	bar,	go	to	Devices	|	Insert	Guest	Additions	CD	Image….
Shortly	afterward,	a	dialog	will	appear,	asking	whether	you	want	to	run	the	software	on
the	new	media	you	just	inserted.	Click	the	Run	button.	You	will	then	need	to	authenticate
your	user	by	entering	your	user’s	password	(which	you	entered	during	setup).	Once	the
user	is	authenticated,	a	script	will	automatically	build	and	update	several	kernel	modules.
Once	the	script	completes,	reboot	the	VM	by	clicking	on	the	gear	in	the	top-right	corner	of
the	screen,	selecting	Shutdown…,	and	clicking	on	Restart	in	the	dialog	that	follows.

When	the	VM	reboots,	the	first	thing	you	should	notice	is	that	the	VM	screen	now	fits	into
the	VM	window.	Moreover,	if	you	resize	the	VM	window,	the	VM	screen	resizes	with	it.
This	is	the	simplest	way	to	determine	you’ve	successfully	installed	the	VirtualBox	guest
additions.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Save	time	with	shared	folders
Another	thing	you	can	do	to	boost	your	aggregate	performance	while	developing	images
for	the	UDOO	is	to	set	up	shared	folders	between	your	host	system	and	your	Ubuntu
Linux	guest	system.	In	this	way,	once	you’ve	built	a	new	SD	card	image	for	the	UDOO,
you	can	make	the	image	directly	available	to	the	host	through	the	shared	folder.	The	host
can	then	execute	the	long-running	commands	to	flash	the	SD	card	without	adding	time	to
the	process	by	slowing	down	access	to	your	host’s	card	reader	through	the	virtualization
layer.	In	the	case	of	the	system	we’re	using	to	write	this	book,	there	is	a	savings	of	around
10	minutes	per	image	flashed.

To	set	up	a	shared	folder,	you	must	begin	with	the	VirtualBox	Manager	open	and	your
Ubuntu	VM	powered	off.	Click	the	Settings	toolbar	icon.	Then	select	the	Shared	Folders
tab	of	the	Settings	dialog	that	opens.	Click	the	Add	Shared	Folder	icon	to	the	right.	Enter
Folder	Path	to	a	folder	on	your	host	that	you	want	to	share.	In	our	case,	we	created	a	new
folder	called	vbox_share	to	share	with	our	VM	guest.	VirtualBox	will	generate	Folder
Name,	but	make	sure	you	select	Auto-mount	before	clicking	OK.	When	you	boot	your
Ubuntu	VM	from	now	on,	the	shared	folder	will	be	accessible	in	your	guest	VM	as
/media/sf_<folder_name>.	However,	if	you	attempt	to	list	the	files	in	that	directory	from
your	guest,	you	will	likely	be	denied.	To	gain	full	access	to	this	folder	(as	in	read-and-
write	access)	for	our	bookuser,	we’ll	need	to	add	that	UID	to	the	vboxsf	group:

$	sudo	usermod	-a	-G	vboxsf	bookuser

Log	out	and	log	in	to	your	guest	again	or	restart	the	guest	VM	to	complete	the	process.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

The	build	environment
To	prepare	our	system	to	build	the	Linux	kernel,	Android,	and	Android	applications,	we
need	to	install	and	set	up	some	key	pieces	of	software.	Click	the	Ubuntu	dashboard	icon	at
the	top	of	the	launch	bar	on	the	left	of	your	screen.	In	the	search	bar	that	appears,	type
term	and	press	Enter.	A	terminal	window	will	open.	Then	execute	the	following
commands:

$	sudo	apt-get	update

$	sudo	apt-get	install	apt-file	git-core	gnupg	flex	bison	gperf	build-

essential	zip	curl	zlib1g-dev	libc6-dev	lib32ncurses5-dev	ia32-libs	

x11proto-core-dev	libx11-dev	ia32-libs	dialog	liblzo2-dev	libxml2-utils	

minicom

Type	y	and	press	Enter	when	asked	whether	you	want	to	continue.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle	Java	6
Download	the	most	recent	Java	6	SE	Development	Kit	(version	6u45)	from	the	Oracle
Java	archive	website,	at	http://www.oracle.com/technetwork/java/javase/archive-
139210.html.	You’ll	need	the	jdk-6u45-linux-x64.bin	version	to	satisfy	Google’s	target
development	environment.	Once	it	is	downloaded,	execute	the	following	commands	to
install	the	Java	6	JDK:

$	chmod	a+x	jdk-6u45-linux-x64.bin

$	sudo	mkdir	-p	/usr/lib/jvm

$	sudo	mv	jdk-6u45-linux-x64.bin	/usr/lib/jvm/

$	cd	/usr/lib/jvm/

$	sudo	./jdk-6u45-linux-x64.bin

$	sudo	update-alternatives	--install	"/usr/bin/java"	"java"	

"/usr/lib/jvm/jdk1.6.0_45/bin/java"	1

$	sudo	update-alternatives	--install	"/usr/bin/jar"	"jar"	

"/usr/lib/jvm/jdk1.6.0_45/bin/jar"	1

$	sudo	update-alternatives	--install	"/usr/bin/javac"	"javac"	

"/usr/lib/jvm/jdk1.6.0_45/bin/javac"	1

$	sudo	update-alternatives	--install	"/usr/bin/javaws"	"javaws"	

"/usr/lib/jvm/jdk1.6.0_45/bin/javaws"	1

$	sudo	update-alternatives	--install	"/usr/bin/jar"	"jar"	

"/usr/lib/jvm/jdk1.6.0_35/bin/jar"	1

$	sudo	update-alternatives	--install	"/usr/bin/javadoc"	"javadoc"	

"/usr/lib/jvm/jdk1.6.0_45/bin/javadoc"	1

$	sudo	update-alternatives	--install	"/usr/bin/jarsigner"	"jarsigner"	

"/usr/lib/jvm/jdk1.6.0_45/bin/jarsigner"	1

$	sudo	update-alternatives	--install	"/usr/bin/javah"	"javah"	

"/usr/lib/jvm/jdk1.6.0_45/bin/javah"	1

$	sudo	rm	jdk-6u45-linux-x64.bin

www.it-ebooks.info

http://www.oracle.com/technetwork/java/javase/archive-139210.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
In	this	appendix,	we	discussed	Google’s	target	development	environment	for	Android	and
showed	how	to	create	a	compatible	environment,	potentially	in	a	virtual	machine.	You
should	feel	free	to	modify	other	elements	of	your	system,	but	having	the	elements	of	this
appendix	installed	will	provide	you	with	the	minimally	viable	environment	necessary	to
perform	all	the	steps	outlined	in	Chapter	4,	Installation	on	the	UDOO,	and	beyond.

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A

absolute	authority
about	/	The	case	for	more

Access	Vector	Cache	/	Access	Vector	Cache
access	vectors

about	/	Access	vectors
impersonate	/	Binder	and	security
call	/	Binder	and	security
set_context_mgr	/	Binder	and	security
transfer	/	Binder	and	security

Activity	Manager	Service	(AMS)
about	/	Binder	and	security

Android
DAC,	using	for	/	Android’s	use	of	DAC
security	model	/	Android’s	security	model

Android.mk,	sepolicy
exploring	/	Exploring	sepolicy’s	Android.mk
sepolicy,	building	/	Building	sepolicy
policy	build,	controlling	/	Controlling	the	policy	build
build_policy,	defining	/	Digging	deeper	into	build_policy
mac_permissions.xml,	building	/	Building	mac_permissions.xml
seapp_contexts,	building	/	Building	seapp_contexts
file_contexts,	building	/	Building	file_contexts
property_contexts,	building	/	Building	property_contexts
NSA	research	files	/	Current	NSA	research	files

Android	Debug	Bridge	(adb)
about	/	UDOO	serial	and	Android	Debug	Bridge

Android	Interface	Description	Language	(AIDL)	/	Binder’s	architecture
Android	RunTime	(ART)	/	Zygote	–	application	spawn
Android	versions

URL	/	The	property	service
Android	vulnerabilities

about	/	Glancing	at	Android	vulnerabilities
Skype	vulnerability	/	Skype	vulnerability
GingerBreak	/	GingerBreak
CVE-2010-EASY	/	Rage	against	the	cage
MotoChopper	/	MotoChopper

AOSP	devices
URL	/	Upgrades	–	patches	galore

app	labeling
limitations	/	Limitations	on	app	labeling

www.it-ebooks.info

http://www.it-ebooks.info/

applications	/	Android’s	security	model
auditd	daemon	/	The	auditd	daemon
auditd	internals	/	Auditd	internals
audit	logs	/	Audit	logs
audit	system

about	/	The	audit	system
auditd	daemon	/	The	auditd	daemon
auditd	internals	/	Auditd	internals

www.it-ebooks.info

http://www.it-ebooks.info/

B
Bell-LaPadula	(BLP)	model

about	/	Multilevel	security
Binder

about	/	Binder
architecture	/	Binder’s	architecture
features	/	Binder’s	architecture
and	security	/	Binder	and	security

binder	patch
URL	/	Upgrades	–	patches	galore

booleans	directory	/	The	booleans	directory
build	environment

about	/	The	build	environment
build_policy

defining	/	Digging	deeper	into	build_policy

www.it-ebooks.info

http://www.it-ebooks.info/

C
cache_threshold	file	/	Access	Vector	Cache
capabilities	model

about	/	Capabilities	model
chcon	command	/	Examples	and	tools
class	directory	/	The	class	directory
Compatibility	Definition	Document	(CDD)	/	Setting	up	CTS
Compatibility	Test	Suite	(CTS)	/	Contexts
Compatibility	Test	Suite	compliance	(CTS)

about	/	The	booleans	directory
URL	/	The	booleans	directory

contexts
about	/	Contexts
domains,	mapping	/	Contexts

control	properties	/	Control	properties
CTS

URL	/	Relabeling	processes
setting	up	/	Setting	up	CTS
running	/	Running	CTS

CTS	binary
URL	/	Setting	up	CTS

CTS	results
gathering	/	Gathering	the	results
CTS	test	results	/	CTS	test	results
audit	logs	/	Audit	logs

CTS	test	results	/	CTS	test	results
CVE-2010-EASY	/	Rage	against	the	cage

www.it-ebooks.info

http://www.it-ebooks.info/

D
/data	filesystem

fixing	up	/	Fixing	up	/data
DAC

used,	for	Android	/	Android’s	use	of	DAC
define	keyword	/	Dynamic	domain	transitions
device

purging	/	Purging	the	device
device	policy

authoring	/	Authoring	device	policy
adbd	/	adbd
bootanim	/	bootanim
debuggerd	/	debuggerd
drmserver	/	drmserver
dumpstate	/	dumpstate
installd	/	installd
keystore	/	keystore
mediaserver	/	mediaserver
netd	/	netd
rild	/	rild
servicemanager	/	servicemanager
surfaceflinger	/	surfaceflinger
system_server	/	system_server
toolbox	/	toolbox
untrusted_app	/	untrusted_app
vold	/	vold
watchdogd	/	watchdogd
wpa	/	wpa

disable	file	interface	/	The	disable	file	interface
dynamic	domain	transitions

about	/	Dynamic	domain	transitions
dynamic	type	transitions	/	Dynamic	type	transitions
dyntransition	/	ProcFS

www.it-ebooks.info

http://www.it-ebooks.info/

E
enforce	file	/	The	enforce	node
enforcing

about	/	The	enforce	node
enforcing	mode

passing	/	Going	enforcing
existing	properties

relabeling	/	Relabeling	existing	properties
explicit	contexts

via	seclabel	/	Explicit	contexts	via	seclabel
extended	attributes

labeling	with	/	Labeling	with	extended	attributes

www.it-ebooks.info

http://www.it-ebooks.info/

F
field	trials

about	/	Field	trials
filesystem

locating	/	Locating	the	filesystem
interrogating	/	Interrogating	the	filesystem
enforce	file	/	The	enforce	node
disable	file	interface	/	The	disable	file	interface
policy	file	/	The	policy	file
null	file	/	The	null	file
mls	file	/	The	mls	file
status	file	/	The	status	file
Access	Vector	Cache	/	Access	Vector	Cache
booleans	directory	/	The	booleans	directory
class	directory	/	The	class	directory
initial_contexts	directory	/	The	initial_contexts	directory
policy_capabilities	directory	/	The	policy_capabilities	directory
procfs	/	ProcFS

filesystems
labeling	/	Labeling	filesystems
fs_use	/	fs_use
fs_task_use	/	fs_task_use
fs_use_trans	/	fs_use_trans
genfscon	/	genfscon
mount	options	/	Mount	options
extended	attributes	/	Labeling	with	extended	attributes
file_contexts	file	/	The	file_contexts	file
dynamic	type	transitions	/	Dynamic	type	transitions

file_contexts
building	/	Building	file_contexts

file_contexts	file	/	The	file_contexts	file
fixup.py

URL	/	Interpreting	SELinux	denial	logs
flashing

about	/	Flashing	image	on	an	SD	card
FLASK

about	/	Getting	back	to	the	basics
fs_task_use	/	fs_task_use
fs_use	/	fs_use
fs_use_trans	/	fs_use_trans

www.it-ebooks.info

http://www.it-ebooks.info/

G
genfscon	/	genfscon
getenforce	command,	states

disabled	/	Fixing	the	policy	version
permissive	/	Fixing	the	policy	version
enforcing	/	Fixing	the	policy	version

GingerBreak	/	GingerBreak
graphical	menu

settings	/	Retrieving	the	source
groups

changing	/	Changing	owners	and	groups

www.it-ebooks.info

http://www.it-ebooks.info/

I
initial_contexts	directory	/	The	initial_contexts	directory
init	process

about	/	Init	–	the	king	of	daemons
Interprocess	Communication	(IPC)

about	/	Binder

www.it-ebooks.info

http://www.it-ebooks.info/

J
Java	SELinux	API

about	/	Java	SELinux	API

www.it-ebooks.info

http://www.it-ebooks.info/

K
kernel

SELinux,	enabling	in	/	It’s	alive
kernel-common

URL	/	Upgrades	–	patches	galore
kernel-common	project

URL	/	Upgrades	–	patches	galore
keys.conf	/	keys.conf

www.it-ebooks.info

http://www.it-ebooks.info/

L
labeling

via	property_contexts	/	Labeling	via	property_contexts
labels

about	/	Labels
users	/	Users
roles	/	Roles
types	/	Types

Linux	Security	Module	(LSM)
about	/	Binder	and	security

www.it-ebooks.info

http://www.it-ebooks.info/

M
mac_permissions.xml

building	/	Building	mac_permissions.xml
mac_permissions.xml	file

about	/	The	mac_permissions.xml	file
mls	file	/	The	mls	file
MotoChopper	/	MotoChopper
mount	options	/	Mount	options
multi-level	security	(MLS)	/	The	mls	file
multilevel	security	(MLS)	model

about	/	Multilevel	security

www.it-ebooks.info

http://www.it-ebooks.info/

N
National	Security	Agency	(NSA)

about	/	Binder	and	security
NSA	repositories

URL	/	Upgrades	–	patches	galore
NSA	research	files	/	Current	NSA	research	files
null	file	/	The	null	file

www.it-ebooks.info

http://www.it-ebooks.info/

O
Oracle	Java	6

about	/	Oracle	Java	6
Oracle	Java	archive

URL	/	Oracle	Java	6
owners

changing	/	Changing	owners	and	groups

www.it-ebooks.info

http://www.it-ebooks.info/

P
patches

about	/	Upgrades	–	patches	galore
permission	bits

changing	/	Changing	permission	bits
permissions,	on	properties

about	/	Permissions	on	properties
permissive

about	/	The	enforce	node
persistent	properties	/	Persistent	properties
pet	analogy

URL	/	Putting	it	together
about	/	Putting	it	together

policy	build
controlling	/	Controlling	the	policy	build

policy	file	/	The	policy	file
policy	load

about	/	Policy	load
policy	pass

about	/	Second	policy	pass
init	/	init
shell	/	shell
init_shell.te	/	init_shell.te

policy	version
fixing	/	Fixing	the	policy	version

policy_capabilities	directory	/	The	policy_capabilities	directory
processes

relabeling	/	Relabeling	processes
Process	ID	(PID)	/	Binder’s	architecture,	Init	–	the	king	of	daemons
procfs	/	ProcFS
projects

building	/	Building	subcomponents	–	targets	and	projects
properties

creating	/	Creating	and	labeling	new	properties
labeling	/	Creating	and	labeling	new	properties

property	service
about	/	The	property	service

property_contexts
labeling	via	/	Labeling	via	property_contexts
building	/	Building	property_contexts

www.it-ebooks.info

http://www.it-ebooks.info/

R
Radio	Interface	Layer	Daemon	(RILD)	/	Android’s	security	model,	Init	–	the	king	of
daemons
README

testkey	/	The	case	to	secure	the	zygote
platform	/	The	case	to	secure	the	zygote
shared	/	The	case	to	secure	the	zygote
media	/	The	case	to	secure	the	zygote

role-based	access	controls	(RBAC)
about	/	Roles

roles,	labels	/	Roles

www.it-ebooks.info

http://www.it-ebooks.info/

S
seapp_contexts	/	seapp_contexts

building	/	Building	seapp_contexts
security

and	Binder	/	Binder	and	security
security	id	(sid)	/	Labeling	filesystems
security	identifier	(sid)	/	The	initial_contexts	directory
security	model

system	component	services	/	Android’s	security	model
applications	/	Android’s	security	model

SELinux
about	/	Getting	back	to	the	basics
implementing	/	Multilevel	security
benefits	/	Putting	it	together
best	practices	/	Complexities	and	best	practices
complexities	/	Complexities	and	best	practices
enabling,	in	kernel	/	It’s	alive

SELinux	denial	logs
interpreting	/	Interpreting	SELinux	denial	logs

SELinuxFS
about	/	Policy	load

SELinux	properties	/	SELinux	properties
sepolicy

building	/	Building	sepolicy
sepolicy-analyze	tool	/	sepolicy-analyze
sepolicy-check	tool	/	sepolicy-check
SEPolicy	master

updating	/	Updating	to	SEPolicy	master
setsockcreatecon()	function	/	Init	–	the	king	of	daemons
shared	folders

about	/	Save	time	with	shared	folders
Skype	vulnerability	/	Skype	vulnerability
source

retrieving	/	Retrieving	the	source
special	properties

about	/	Special	properties
control	properties	/	Control	properties
persistent	properties	/	Persistent	properties
SELinux	properties	/	SELinux	properties

standalone	tools
about	/	Standalone	tools
sepolicy-check	/	sepolicy-check
sepolicy-analyze	/	sepolicy-analyze

www.it-ebooks.info

http://www.it-ebooks.info/

status	file	/	The	status	file
subject

about	/	Getting	back	to	the	basics
switch

flipping	/	Flipping	the	switch
system	apps

about	/	The	case	to	secure	the	zygote
system	component	services	/	Android’s	security	model
system	server

about	/	Android’s	security	model

www.it-ebooks.info

http://www.it-ebooks.info/

T
target

about	/	Getting	back	to	the	basics
targets

building	/	Building	subcomponents	–	targets	and	projects
tools,	filesystems

about	/	Examples	and	tools
/data	filesystem,	fixing	up	/	Fixing	up	/data
security	/	A	side	note	on	security

type	enforcement	(TE)
about	/	Types,	Dynamic	domain	transitions

type	field	value,	filesystem	object
about	/	The	file_contexts	file
—	/	The	file_contexts	file
-d	/	The	file_contexts	file
-b	/	The	file_contexts	file
-s	/	The	file_contexts	file
-c	/	The	file_contexts	file
-l	/	The	file_contexts	file
-p	/	The	file_contexts	file

types,	labels	/	Types

www.it-ebooks.info

http://www.it-ebooks.info/

U
Ubuntu	Linux	12.04

about	/	Ubuntu	Linux	12.04	(precise	pangolin)
URL	/	Ubuntu	Linux	12.04	(precise	pangolin)

UDOO	documentation
URL	/	Retrieving	the	source

UDOO	serial
about	/	UDOO	serial	and	Android	Debug	Bridge

user-based	access	controls	(UBAC)
about	/	Users

users,	labels	/	Users
userspace	object	manager	/	The	status	file

www.it-ebooks.info

http://www.it-ebooks.info/

V
variables

BOARD_SEPOLICY_DIRS	/	Controlling	the	policy	build
BOARD_SEPOLICY_UNION	/	Controlling	the	policy	build
BOARD_SEPOLICY_REPLACE	/	Controlling	the	policy	build
BOARD_SEPOLICY_IGNORE	/	Controlling	the	policy	build

VirtualBox
about	/	VirtualBox
URL	/	VirtualBox
extension	pack	/	VirtualBox	extension	pack
guest	additions	/	VirtualBox	guest	additions

virtual	machine	(VM)	/	Zygote	–	application	spawn

www.it-ebooks.info

http://www.it-ebooks.info/

Z
Zygote

about	/	Zygote	–	application	spawn
zygote

securing	/	The	case	to	secure	the	zygote
fortifying	/	Fortifying	the	zygote
socket,	plumbing	/	Plumbing	the	zygote	socket
mac_permissions.xml	file	/	The	mac_permissions.xml	file
keys.conf	/	keys.conf
seapp_contexts	/	seapp_contexts

zygote	socket
plumbing	/	Plumbing	the	zygote	socket

www.it-ebooks.info

http://www.it-ebooks.info/

	Exploring SE for Android
	Credits
	Foreword
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Linux Access Controls
	Changing permission bits
	Changing owners and groups
	The case for more
	Capabilities model
	Android's use of DAC
	Glancing at Android vulnerabilities
	Skype vulnerability
	GingerBreak
	Rage against the cage
	MotoChopper
	Summary
	2. Mandatory Access Controls and SELinux
	Getting back to the basics
	Labels
	Users
	Roles
	Types
	Access vectors
	Multilevel security
	Putting it together
	Complexities and best practices
	Summary
	3. Android Is Weird
	Android's security model
	Binder
	Binder's architecture
	Binder and security
	Zygote – application spawn
	The property service
	Summary
	4. Installation on the UDOO
	Retrieving the source
	Flashing image on an SD card
	UDOO serial and Android Debug Bridge
	Flipping the switch
	It's alive
	Summary
	5. Booting the System
	Policy load
	Fixing the policy version
	Summary
	6. Exploring SELinuxFS
	Locating the filesystem
	Interrogating the filesystem
	The enforce node
	The disable file interface
	The policy file
	The null file
	The mls file
	The status file
	Access Vector Cache
	The booleans directory
	The class directory
	The initial_contexts directory
	The policy_capabilities directory
	ProcFS
	Java SELinux API
	Summary
	7. Utilizing Audit Logs
	Upgrades – patches galore
	The audit system
	The auditd daemon
	Auditd internals
	Interpreting SELinux denial logs
	Contexts
	Summary
	8. Applying Contexts to Files
	Labeling filesystems
	fs_use
	fs_task_use
	fs_use_trans
	genfscon
	Mount options
	Labeling with extended attributes
	The file_contexts file
	Dynamic type transitions
	Examples and tools
	Fixing up /data
	A side note on security
	Summary
	9. Adding Services to Domains
	Init – the king of daemons
	Dynamic domain transitions
	Explicit contexts via seclabel
	Relabeling processes
	Limitations on app labeling
	Summary
	10. Placing Applications in Domains
	The case to secure the zygote
	Fortifying the zygote
	Plumbing the zygote socket
	The mac_permissions.xml file
	keys.conf
	seapp_contexts
	Summary
	11. Labeling Properties
	Labeling via property_contexts
	Permissions on properties
	Relabeling existing properties
	Creating and labeling new properties
	Special properties
	Control properties
	Persistent properties
	SELinux properties
	Summary
	12. Mastering the Tool Chain
	Building subcomponents – targets and projects
	Exploring sepolicy's Android.mk
	Building sepolicy
	Controlling the policy build
	Digging deeper into build_policy
	Building mac_permissions.xml
	Building seapp_contexts
	Building file_contexts
	Building property_contexts
	Current NSA research files
	Standalone tools
	sepolicy-check
	sepolicy-analyze
	Summary
	13. Getting to Enforcing Mode
	Updating to SEPolicy master
	Purging the device
	Setting up CTS
	Running CTS
	Gathering the results
	CTS test results
	Audit logs
	Authoring device policy
	adbd
	bootanim
	debuggerd
	drmserver
	dumpstate
	installd
	keystore
	mediaserver
	netd
	rild
	servicemanager
	surfaceflinger
	system_server
	toolbox
	untrusted_app
	vold
	watchdogd
	wpa
	Second policy pass
	init
	shell
	init_shell.te
	Field trials
	Going enforcing
	Summary
	A. The Development Environment
	VirtualBox
	Ubuntu Linux 12.04 (precise pangolin)
	VirtualBox extension pack and guest additions
	VirtualBox extension pack
	VirtualBox guest additions
	Save time with shared folders
	The build environment
	Oracle Java 6
	Summary
	Index

