Version: 2009.01.08
Author: Alberto Ornaghi, Fabio Busatto
AUTHORIZATION LEVELS

AL_NONE: the user has no privileges, typically before login

AL_VIEW: this role is assigned to users that can only view the logs. It cannot modify backdoors, targets or activity. It can create and modify notes and blotters

AL_TECH: this role can create, modify and reconfigure backdoors associated with a target, however the target can only be modified and created by ADMIN

AL_SERV: reserved role for the server components that require access to XML-RPC methods

AL_ADMN: this is the super user. It can perform any action. It is the only one that can create users, groups, activity and targets

METHODS

Once logged to the system an user will be able to call only the methods associated with its auth level. All the other methods will not be available and thus are not callable.

Conventions:
<name>:[type] a single parameter
{<param>:[type], …} a structure made of parameters
[<param>:[type], …] an array of parameters
[{<param>:[type], …}, …] an array of structures

1. ACTIVITY

	Method:
	activity.add
	Level:
	ADMN

	Input:
	<activity>:[string]

<desc>:[string]

<contact>:[string]

<status>:[string]

	Output:
	<activity_id>:[integer]

The function is used to add an activity to the system.

An activity is identified by its name <activity> a description <desc> and a contact for the person responsible of the activity <contact>.

An activity can have these <status> code:

· OPEN the activity is running and active

· PENDING the activity has been created but not yet active

· CLOSED the activity has been closed and cannot be modified anymore (only visualization is possible)

	Method:
	activity.mod
	Level:
	ADMN

	Input:
	<activity_id>:[integer]

<activity>:[string]

<desc>:[string]

<contact>:[string]

<status>:[string]

	Output:
	<success>:[bool]

This function is very similar to activity.add except that it is used to modify a parameter of an existing activity.

You have to specify the <activity_id> that you want to modify.

	Method:
	activity.del
	Level:
	ADMN

	Input:
	<activity_id>:[integer]

	Output:
	<success>:[bool]

This function is used to delete an activity.

Be carefull that deleting an activity will delete in cascade all the targets and backdoors associated with it.

Deleting a backdoor will wipe the logs, so it is better to mark an activity as closed instead of deleting it.

	Method:
	activity.get
	Level:
	ADMN

TECH

VIEW

	Input:
	<activity_id>:[integer]

	Output:
	{<activity_id>:[integer], <activity>:[string], <desc>:[string], <contact>:[string], <status>:[string]}

This function is used to get the details of a given activity. If the <activity_id> is equal to 0 (ZERO) it will return an array containing ALL the activity that the user can view. The association with the user is done with groups and assignments (see later).

	Method:
	activity.gettarget
	Level:
	ADMN

TECH

VIEW

	Input:
	<activity_id>:[integer]

	Output:
	[{<target_id>:[integer], <target>:[string], <desc>:[string]}, …]

This function is used to retrieve the targets associated with an activity.

	Method:
	activity.getvalidity
	Level:
	ADMN

TECH

VIEW

	Input:
	<activity_id>:[integer]

	Output:
	[{<validity_id>:[integer], <desc>:[string], <begin>:[datetime], <end>:[datetime]}, …]

This function is used to retrieve the validity associated with an activity.

The validiti express a timeframe in wich the activity is valid and active (see later to manipulate validities).

	Method:
	activity.getblotter
	Level:
	VIEW

	Input:
	<activity_id>:[integer]

	Output:
	[{<blotter_id>:[integer], <blotter>:[string], <desc>:[string]}, …]

This function is used to retrieve the blotters associated with an activity.

The blotter can be manipulated with its own functions (see later).

	Method:
	activity.stat
	Level:
	VIEW

	Input:
	[<activity_id>:[integer], ...]

	Output:
	[{<backdoor_id>:[integer], <remotehost>:[string], <remoteuser>:[string], <remoteip>:[string], <received>:[datetime], <type>:[integer], <type_new>:[integer], <target_id>:[integer], <activity_id>:[integer]}, …]

This function returns the statistics of an activity. The result is an array of backdoor statistics.

Each backdoor has its own <target_id> so you can even recreate the relationship between the activity, the targets and the backdoors.

2. ASSIGN

	Method:
	assign.add
	Level:
	ADMN

	Input:
	<activity_id>:[integer]

<group_id>:[integer]

	Output:
	<success>:[bool]

This function is used to assign a group of users to an activity.

Only the users in that group will be able to view the activity and its related logs.

	Method:
	assign.del
	Level:
	ADMN

	Input:
	<activity_id>:[integer]

<group_id>:[integer]

	Output:
	<success>:[bool]

This function is used to remove an association between a group and an activity.

	Method:
	assign.get
	Level:
	ADMN

	Input:
	<activity_id>:[integer]

<group_id>:[integer]

	Output:
	[{<activity_id>:[integer], <group_id>:[integer]}, ...]

This function is used to get the list of groups assigned to a specific <activity_id> or the list of activity associated with a specific <group_id>.

Examples:

· assign.get(0, 3) will retrieve the activities associated with group_id 3.

· assign.get(5, 0) will retrieve the groups associated with activity_id 5

3. AUTH

	Method:
	auth.login
	Level:
	NONE

	Input:
	<user>:[string]

<pass>:[string]

	Output:
	{<user_id>:[integer], <user>:[string], <desc>:[string], [<level>:[string], ...]}

This function is used to login to the system.

Before this function is executed the system does NOT export any method. Once the user is logged only the methods that can be invoked are exported..

The function returns the level of authorization for the user logged in (see the authorization level paragraph).

	Method:
	auth.ping
	Level:
	ADMN

SERV
TECH
VIEW

	Input:
	

	Output:
	<success>:[bool]

This function does nothing. The only scope is to refresh the http session cookie.

	Method:
	auth.refresh
	Level:
	ADMN

SERV
TECH
VIEW

	Input:
	

	Output:
	<success>:[bool]

This function will refresh the objects that a user can view within its auth level and group membership.

Since all the functions will return results only within the user scope, its scope is maintained into the session specific information. However, this scope can be changed dynamically by the admin operating on other clients. To refresh this information the function should be called at least once per minute.

	Method:
	auth.logout
	Level:
	ADMN

SERV
TECH
VIEW

	Input:
	

	Output:
	<success>:[bool]

This function is used to logout from the system.

4. BACKDOOR

	Method:
	backdoor.add
	Level:
	TECH

	Input:
	<desc>:[string]

<type>:[string]

<target_id>:[integer]

	Output:
	<backdoor>:[string]

<backdoor_id>:[integer]

<build>:[string]

<desc>:[string]

<version>:[integer]

<type>:[string]

This function is used to create a backdoor. The result is an unique id that identifies the backdoor for later use.

	Method:
	backdoor.mod
	Level:
	TECH

	Input:
	<backdoor_id>:[integer]

<backdoor>:[string]

<desc>:[string]

<key>:[string]

<version>:[integer]

<target_id>:[integer]

	Output:
	<success>:[bool]

This function is used to modify a backdoor. It is identical to the backdoor.add except you have to specify the <backdoor_id> that you want to modify.

	Method:
	backdoor.del
	Level:
	TECH

	Input:
	<backdoor_id>:[integer]

	Output:
	<success>:[bool]

This function is used to delete a backdoor. Keep in mind that deleting a backdoor will delete all the associated logs.

	Method:
	backdoor.get
	Level:
	ADMN

TECH

VIEW

	Input:
	<backdoor_id>:[integer]

	Output:
	{<backdoor_id>:[integer], <backdoor>:[string], <desc>:[string], <version>:[integer], <target_id>:[integer]}

This function is used to retrieve the information of a backdoor. If the <backdoor_id> is equal to 0 (zero) it will return the list of ALL the backdoor that the user can view.

	Method:
	backdoor.getkey
	Level:
	SERV

TECH

	Input:
	<backdoor_id>:[integer]

	Output:
	[{<key>:[string]}]

This function is used to retrieve the key of a backdoor. This is needed since the backdoor.get will not return the key. The function are separated because of the different auth level needed to view the key.

	Method:
	backdoor.identify
	Level:
	SERV

	Input:
	<backdoor>:[string]

	Output:
	{<backdoor_id>:[string]}

This function returns the <backdoor_id> of a backdoor given its name. Used only internally by the ASP server. Should not be used and will be deprecated soon. A backdoor should be EVER identified by its backdoor_id and not by its name.

	Method:
	backdoor.stat
	Level:
	VIEW

	Input:
	[<backdoor_id>:[integer], ...]

	Output:
	[{<backdoor_id>:[integer], <type>:[string], <remotehost>:[string], <remoteuser>:[string], <remoteip>:[string], <received>:[datetime], <type>:[integer], <type_new>:[integer], <target_id>:[integer], <activity_id>:[integer]}, …]

This function is used to retrieve the statistics of a backdoor.

It will return the last synchronization time (<received>), the last hostname, username and ip address of the backdoor and the statistics of the logs generated. Each type of log has two entry: one for the total number of log and one for the newly added logs.

	Method:
	backdoor.sync
	Level:
	SERV

	Input:
	<backdoor_id>:[integer]

<remoteip>:[string]

<remotehost>:[string]

<remoteuser>:[string]

	Output:
	<success>:[bool]

This function is used internally by the ASP server when a backdoor syncs with it. It will update the statistics of that backdoor.

5. BLOTTER

	Method:
	blotter.add
	Level:
	VIEW

	Input:
	<blotter>:[string]

<desc>:[string]

<activity_id>:[integer]

	Output:
	<blotter_id>:[integer]

This function is used to create a blotter associated with an activity. You have to specify a name (<blotter>) a description (<desc>) and the activity_id of the activity.

	Method:
	blotter.mod
	Level:
	VIEW

	Input:
	<blotter_id>:[integer]

<blotter>:[string]

<desc>:[string]

	Output:
	<success>:[bool]

This function is used to modify an existing blotter. You can modify the name and the description but you cannot modify the associated <activity_id>. if you need to modify it, you have to delete and recreate it under the new activity.

	Method:
	blotter.del
	Level:
	VIEW

	Input:
	<blotter_id>:[integer]

	Output:
	<success>:[bool]

This function is used to delete a blotter.

	Method:
	blotter.addlog
	Level:
	VIEW

	Input:
	<blotter_id>:[integer]

[<log_id>:[integer], ...]

	Output:
	<success>:[bool]

This function is used to add a log (or an array of logs) to a blotter.

	Method:
	blotter.dellog
	Level:
	VIEW

	Input:
	<blotter_id>:[integer]

[<log_id>:[integer], ...]

	Output:
	<success>:[bool]

This function is used to remote a log (or an array of logs) from a blotter.

	Method:
	blotter.getlog
	Level:
	VIEW

	Input:
	<blotter_id>:[integer]

	Output:
	[<log_id>:[integer], ...]

This function is used to retrieve the list of logs associated to a blotter.

6. BUILD

	Method:
	build.getdll
	Level:
	TECH

	Input:
	

	Output:
	<dll>:[base64]

This function is used internally by HCM to get the dll used to create the backdoor.

	Method:
	build.getversion
	Level:
	TECH

	Input:
	

	Output:
	<version>:[integer]

This function is used internally by HCM to get the version of the dll for the backdoor.

	Method:
	build.getcert
	Level:
	SERV
TECH

	Input:
	

	Output:
	<cert>:[base64]

This function is used internally by HCM to get the certificate used to create the backdoor.

	Method:
	build.getsign
	Level:
	SERV

TECH

	Input:
	

	Output:
	<sign>:[string]

This function is used internally by HCM to get the signature used to create the backdoor.

7. CONFIG

	Method:
	config.add
	Level:
	TECH

	Input:
	<backdoor_id>:[integer]

<content>:[base64]

	Output:
	<config_id>:[integer]

This function is used internally by HCM to create a new configuration for a backdoor. The config is binary and it is transferred via base64.

	Method:
	config.get
	Level:
	SERV
TECH

	Input:
	<backdoor_id>:[integer]

	Output:
	{<config_id>:[integer], <sent>:[datetime], <content>:[base64]}

This function is used internally by HCM to get the config of a backdoor. The parameter <sent> is used to indicate whether or not a config as been sent by the ASP to the backdoor on the last sync.

	Method:
	config.setsent
	Level:
	SERV

	Input:
	<config_id>:[integer]

	Output:
	<success>:[bool]

This function is used internally by ASP server to indicate that a config has been sent to a backdoor.

8. DOWNLOAD

	Method:
	download.add
	Level:
	TECH

	Input:
	<backdoor_id>:[integer]

<filename>:[string]

	Output:
	<download_id>:[integer]

This function is used internally by HCM to set the download list for a backdoor.

	Method:
	download.del
	Level:
	SERV
TECH

	Input:
	<download_id>:[integer]

	Output:
	<success>:[bool]

This function is used internally by HCM and ASP to delete a download item for a backdoor.

	Method:
	download.get
	Level:
	SERV
TECH

	Input:
	<backdoor_id>:[integer]

	Output:
	[{<download_id>:[integer], <filename>:[string]}, ...]

This function is used internally by HCM and ASP to get the download list for a backdoor.

9. FORWARDER
	Method:
	forwarder.add
	Level:
	ADMN

	Input:
	<target_id>:[integer]

<case>:[string]

 <remote_ip>:[string]

<remote_port>:[integer]

	Output:
	<forwarder_id>:[integer]

This function is used to create a forwarder associated with a target.

	Method:
	forwarder.mod
	Level:
	ADMN

	Input:
	<forwarder_id>:[integer]

<case>:[string]

<remote_ip>:[string]

<remote_port>:[integer]

	Output:
	<success>:[bool]

This function is used to modify the informations of a forwarder.

	Method:
	forwarder.del
	Level:
	ADMN

	Input:
	<forwarder_id>:[integer]

	Output:
	<success>:[bool]

This function is used to delete a forwarder.

	Method:
	forwarder.get
	Level:
	ADMN

	Input:
	<target_id>:[integer]

	Output:
	{<forwarder_id>:[integer], <target_id>:[integer], <case>:[string], <remote_ip>:[string], <remote_port>:[integer]}

This function is used to get the list of a forwarders given the <target_id>. If the <target_id> is equal to 0 (zero) ALL the forwarder will be returned.

10. GROUP

	Method:
	group.add
	Level:
	ADMN

	Input:
	<group>:[string]

<desc>:[string]

	Output:
	<group_id>:[integer]

This function is used to create a grup of users. <group> is the name and <desc> is the description.

The group can be associated with an activity with the assign.* methods.

	Method:
	group.mod
	Level:
	ADMN

	Input:
	<group_id>:[integer]

<group>:[string]

<desc>:[string]

	Output:
	<success>:[bool]

This function is used to modify the informations of a group.

	Method:
	group.del
	Level:
	ADMN

	Input:
	<group_id>:[integer]

	Output:
	<success>:[bool]

This function is used to delete a group of users.

	Method:
	group.get
	Level:
	ADMN

	Input:
	<group_id>:[integer]

	Output:
	{<group_id>:[integer], <group>:[string], <desc>:[string]}

This function is used to get the information of a group given its <group_id>. If the <group_id> is equal to 0 (zero) ALL the groups will be returned.

10. LOG

	Method:
	log.count
	Level:
	VIEW

	Input:
	{[<backdoor_id>:[integer],...], [<tag>:[integer],...], [<type>:[string],...], <acquired>=[{<begin>:[datetime], <end>:[datetime]}, ...], [<varchar1>:[string], ...], [longtext1:[string], ...]}

	Output:
	<count>:[integer]

This function will return the total count of the logs matching the search criteria specified as the parameter.

The parameter is a structure made up of:

 - <backdoor_id> is an array of backdoor_id to match the filter.

 - <type> is an array of types to match the filter. type can be: [CHAT', 'CLIPBOARD', 'CONFIG', 'DOWNLOAD', 'FILECAP', 'FILEOPEN', 'KEYLOG', 'MIC', 'PASSWORD', 'PRINT', 'SNAPSHOT', 'UPLOAD', 'URL', 'VOIP']

 - <acquired> is an array of structures made up of 2 field:

 - <begin> the datetime of start

 - <end> the datetime of end

 all this structures will be used to search only logs between the temporal values of the filter.

 - <tag> is an array of tags. the tag usually indicate the priority of the log set by the user (0 the log is unread, 1 the log is not interesing, 2 low priority, 3 medium priority, 4 high priority)

 - <varchar1> is an array of strings that are used to match the "varchar1" field of the log (see later for the description).

 - <longtext1> is an array of strings that are used to perform fulltext search on the "longtext1" field.

	Method:
	log.get
	Level:
	VIEW

	Input:
	{[<backdoor_id>:[integer],...], [<tag>:[integer],...], [<type>:[string],...], <acquired>=[{<begin>:[datetime], <end>:[datetime]}, ...], [<varchar1>:[string], ...], [longtext1:[string], ...]}

<offset>:[integer]

<count>:[integer]

	Output:
	[{<log_id>:[integer], <tag>:[integer], <type>:[string], <backdoor_id>:[integer], <flags>:[integer], <notes>:[integer] ...}, ...]

This function is used to retrieve the logs matching a criteria. (see the above explanation for the searching syntax).

<offset> is the base from which the server will start returning the logs

<count> is the number of logs that will be returned.

these two parameter are useful to implement paginations of the results.

for example:

 - log.get(..., 0, 30) will return the first (ordered by date descending) page made up of 30 entry

 - log.get(..., 30, 30) will return the second page

 - log.get(..., 60, 30) will return the third page and so on...

Each log has the same fields: some of them are common, others are specific and must be interpretated differently for each log type.

Common fields are:

· log_id: log identifier

· tag: user defined priority

· type: currently supported log types are:

· ADDRESSBOOK

· CALENDAR

· CHAT

· CLIPBOARD

· DOWNLOAD

· FILECAP

· FILEOPEN

· KEYLOG

· LOCATION

· MAIL

· MIC

· MMS

· PASSWORD

· PRINT

· SMS

· SNAPSHOT

· UPLOAD

· URL

· VOIP

· WEBCAM

· notes: number of notes associated

· flags: is used to represent some properties of the log, it is a bitmask:

· 0x00 the file is not cacheable by the viewer

· 0x01 the file is cacheable by the viewer

· backdoor_id: backdoor identifier

· remoteip: target ip

· remotehost: target hostname

· remoteuser: target login username

· received: timestamp (in UTC) when the log is received by the RCS server

· acquired: timestamp (in UTC) when the log is acquired on the target (based on target clock)

Specific fields are:

ADDRESSBOOK

· varchar1: contact name

· varchar2: info

· longtext1: extended info

CALENDAR

· varchar1: event name

· varchar2: type

· int1: date start (timestamp)

· int2: date finish (timestamp)

· longtext1: extended info

CHAT

· varchar1: program name

· varchar2: topic

· varchar3: users

· longtext1: content

CLIPBOARD

· varchar1: process name

· varchar2: window caption

· longtext1: content

DOWNLOAD

· varchar1: file name

· int1: file size

· longblob1: the binary file (will not be returned, you have to download it with download.php, see the download section)

FILECAP

· varchar1: file name

· varchar2: file md5 checksum

· int1: file size

· longblob1: the binary file (will not be returned, you have to download it with download.php, see the download section)

FILEOPEN

· varchar1: process name

· varchar2: file name

· int1: file size (high 4 bytes)

· int2: file size (low 4 bytes)

· int3: file flags:

·
0x80000000 -> Read

·
0x40000000 -> Write

·
0x20000000 -> eXecute

·
0x00010000 -> Delete

KEYLOG

· varchar1: process name

· varchar2: window caption

· longtext1: content

LOCATION

· varchar1: latitude

· varchar2: longitude

· varchar3: type (GPS, GSM CELL)

· int1: error range

MESSAGES (MAIL, SMS, MMS)
· varchar1: peer name (telephone number, or email sender)

· varchar2: subject

· longtext1: body

MIC

· int1: duration time (in seconds)

· int2: size of audio file

· longblob1: the mp3 file (will not be returned, you have to download it with download.php, see the download section)

PASSWORD

· varchar1: resource name

· varchar2: service

· varchar3: password

· varchar4: userid

PRINT

· varchar1: spool name

· int1: file size

· longtext1: OCR text

· longblob1: the image file (will not be returned, you have to download it with download.php, see the download section)

SNAPSHOT

· int1: file size

· longtext1: OCR text

· longblob1: the image file (will not be returned, you have to download it with download.php, see the download section)

UPLOAD

· varchar1: file name

· int1: file size

· longblob1: the binary file (will not be returned, you have to download it with download.php, see the download section)

URL

· varchar1: domain

· varchar2: page

· longtext1: url

VOIP

· varchar1: remote speaker username

· varchar2: program name

· int1: duration time (in seconds)

· int2: size of audio file

· longblob1: the mp3 file (will not be returned, you have to download it with download.php, see the download section)

	Method:
	log.tag
	Level:
	VIEW

	Input:
	[<log_id>:[integer], ...]

<tag>:[integer]

	Output:
	<success>:[bool]

This function is used to modify the tag of a log (or an array of logs).

11. MEMBER

	Method:
	member.add
	Level:
	ADMN

	Input:
	<group_id>:[integer]

<user_id>:[integer]

	Output:
	<success>:[bool]

This function is used to make a user member of a group.

	Method:
	member.del
	Level:
	ADMN

	Input:
	<group_id>:[integer]

<user_id>:[integer]

	Output:
	<success>:[bool]

This function is used to remove a user from a group.

	Method:
	member.get
	Level:
	ADMN

	Input:
	<group_id>:[integer]

<user_id>:[integer]

	Output:
	[{<group_id>:[integer], <user_id>:[integer]}, ...]

This function is used to get the list of users member of a specific <group_id> or the list of groups joined by a specific <user_id>.

Examples:

· member.get(0, 3) will retrieve the groups joined by user_id 3.

· member.get(5, 0) will retrieve the users associated with group_id 5

12. MONITOR
	Method:
	monitor.set
	Level:
	SERV

	Input:
	<monitor>:[string]

<status>:[string]

<desc>:[string]

<disk>:[int]

<cputotal>:[int]

<cpuprocess>:[int]

	Output:
	<success>:[bool]

This function is used to update the status of a component.

	Method:
	monitor.stat
	Level:
	SERV
TECH ADMN VIEW

	Input:
	

	Output:
	[{<monitor_id>:[integer], <monitor >:[string], <status>:[string], <desc>:[string], <disk>:[int], <cputotal>:[int], <cpuprocess>:[int]}, ...]

This function is used to retrieve the monitor informations. The array contains an entry for each component to be monitored.

	Method:
	monitor.del
	Level:
	ADMN

	Input:
	<monitor_id>:[int]

	Output:
	<success>:[bool]

This function is used to delete an entry from the monitor table. Useful if you change the ip address of a component. If a component is deleted erroneously, it will reappear automatically at the next update.

13. NOTE
	Method:
	note.add
	Level:
	VIEW

	Input:
	<content>:[string]

<private>:[bool]

<log_id>:[integer]

	Output:
	<note_id>:[integer]

This function is used to add a note referring to a specific <log_id>.

You can create private notes (<private> set to true) or public notes (<private> false):

· private: only the author can view the note

· public: everyone that can access the activity is able to view and edit the note

	Method:
	note.mod
	Level:
	VIEW

	Input:
	<note_id>:[integer]

<content>:[string]

	Output:
	<success>:[bool]

This function is used to modify an existing note (public or owned by the user).

	Method:
	note.del
	Level:
	VIEW

	Input:
	<note_id>:[integer]

	Output:
	<success>:[bool]

This function is used to delete an existing note (public or owned by the user).

	Method:
	note.get
	Level:
	VIEW

	Input:
	[<log_id>:[integer], …]

	Output:
	[{<note_id>:[integer], <timestamp>:[datetime], <content>:[string], <private>:[bool]}, ...]

This function is used to retrieve notes (public and private) associated to a specific <log_id> or an array of <log_id>.

13. TARGET

	Method:
	target.add
	Level:
	ADMN

	Input:
	<target>:[string]

<desc>:[string]

<activity_id>:[integer]

	Output:
	<target_id>:[integer]

This function is used to add a new target and assign it to an <activity_id>.

	Method:
	target.mod
	Level:
	ADMN

	Input:
	<target_id>:[integer]

<target>:[string]

<desc>:[string]

<activity_id>:[integer]

	Output:
	<success>:[bool]

This function is used to modify an existing target.

	Method:
	target.del
	Level:
	ADMN

	Input:
	<target_id>:[integer]

	Output:
	<success>:[bool]

This function is used to remove an existing target.

	Method:
	target.get
	Level:
	ADMN

TECH

VIEW

	Input:
	<target_id>:[integer]

	Output:
	{<target_id>:[integer], <target>:[string], <desc>:[string], <activity_id>:[integer]}

This function is used to retrieve <target_id> details.

If <target_id> is 0, the full list of targets is returned.

	Method:
	target.getbackdoor
	Level:
	ADMN

TECH

VIEW

	Input:
	<target_id>:[integer]

	Output:
	[{<backdoor_id>:[integer], <backdoor>:[string], <desc>:[string]}, …]

This function is used to get the list of backdoors associated to <target_id>.

	Method:
	target.stat
	Level:
	VIEW

	Input:
	[<target_id>:[integer], ...]

	Output:
	[{<backdoor_id>:[integer], <remotehost>:[string], <remoteuser>:[string], <remoteip>:[string], <received>:[datetime], <type>:[integer], <type_new>:[integer], <target_id>:[integer], <activity_id>:[integer]}, …]

This function is used to retrieve the statistics of a target.

It will return the last synchronization time (<received>), the last hostname, username and ip address of the backdoors assigned to <target_id> and the statistics of the logs generated. Each type of log has two entry: one for the total number of log and one for the newly added logs.

14. TRACE

	Method:
	trace.get
	Level:
	ADMN

	Input:
	{[<timestamp>=[{<begin>:[datetime], <end>:[datetime]}, , ...], [<user>:[string], ...], [<action>:[string], ...], [<desc>:[string], …], …}

	Output:
	[{<timestamp>:[datetime], <user>:[string], <action>:[string], <desc>:[string], <user_id>:[integer], <group_id>:[integer], <activity_id>:[integer], <target_id>:[integer], <backdoor_id>:[integer], <user_name>:[string], <group_name>:[string], <activity_name>:[string], <target_name>:[string], <backdoor_name>:[string]}, ...]

This function is used to get the trace logs generated by user activity.

15. UPLOAD

	Method:
	upload.add
	Level:
	TECH

	Input:
	<backdoor_id>:[integer]

<filename>:[string]

<contentfile>:[string]

	Output:
	<upload_id>:[integer]

This function is used to add an upload file in the upload queue of <backdoor_id>.

<contentfile> must be a valid handle for a previously uploaded file.

	Method:
	upload.del
	Level:
	SERV
TECH

	Input:
	<upload_id>:[integer]

	Output:
	<success>:[bool]

This function is used to delete an existing upload file in the queue.

	Method:
	upload.get
	Level:
	SERV
TECH

	Input:
	<backdoor_id>:[integer]

	Output:
	[{<upload_id>:[integer], <filename>:[string]}, ...]

This function is used to get the list of upload files names in queue for <backdoor_id>.

16. USER

	Method:
	user.add
	Level:
	ADMN

	Input:
	<user>:[string]

<desc>:[string]

<pass>:[string]

[<level>:[string], ...]

	Output:
	<user_id>:[integer]

This function is used to add a new user.

<level> must be an array of the following access levels:

· ADMN

· SERV

· TECH

· VIEW

	Method:
	user.mod
	Level:
	ADMN

	Input:
	<user_id>:[integer]

<user>:[string]

<desc>:[string]

<pass>:[string]

[<level>:[string], ...]

	Output:
	<success>:[bool]

This function is used to modify an existing user.

	Method:
	user.del
	Level:
	ADMN

	Input:
	<user_id>:[integer]

	Output:
	<success>:[bool]

This function is used to remove an existing user.

	Method:
	user.get
	Level:
	ADMN

	Input:
	<user_id>:[integer]

	Output:
	{<user_id>:[integer], <user>:[string], <desc>:[string], [<level>:[string], ...]}

This function is used to retrieve <user_id> details.

If <user_id> is 0, the full list of users is returned.

LOG DOWNLOAD
To download log contents (blob field), you have to execute a POST request to download.php with the following parameters:

· resource: must be set to 'log'

· log_id: must be the <log_id> identifier

The request must be performed after the auth.login method and must send the session cookie.
The HTTP response is the log content, or an error if the request is unauthorized.

