

VIP High Power Convoy Jammer 3260S Manual

VIP High Power Convoy Jammer 3260S Manual

Content

1.	Technical Specifications HP 3260S	3
2.	Proposal on ECM Jammer Systems against Terrorist's bomb attacks	
	during Convoy Operations	4
3.	Operation manual and short form of start up manual for	
	Jammer System HP 3260S	6
4.	ABC Charger	7
5.	Trouble shooting and service	9
6.	Servicing Manual for Jammer System HP 3260 S	10
7.	Electrical Specification	. 11
8.	Specifications of Antennas	16
9.	Batteries	25
10.	Contact	29

Safety Instructions

The unit HP 3260S is a Jammer. Jammers are transmitters which transmit millions of frequencies at the same time to block any type of receiver.

A Jammer is a high frequency transmitter. Therefore there are typical terms of use which have to be known during transmission. A safety distance to the antennas is necessary.

Safety Instruction

Electromagnetic waves can be dangerous for your health. For example we can give no statement regarding the effects on pacemakers at the moment. Therefore we suggest that people with pacemakers do not use any kind of transmission units or any kind of transmitters, as well as Jammers, were not used direct to people with a pacemaker.

During transmission

All doors and windows have to be closed.

Outside the vehicle a safety distance from the antennas has to be taken.

The use and operation of the Jammer is only allowed to trained people and end users.

1. Technical Specifications HP 3260S

Power supply:

12 V DC from the car 24 V DC from the Jammer battery

Power consumption: 470 W

 Frequency range:
 HF 20 - 80 MHz

 VHF 80 - 200 MHz
 UHF 200 - 500 MHz

 SHFI 500 - 1000 MHz
 SHFII 1000 - 2000 MHz

 SHFII 2000 - 2500 MHz
 SHFIII 2000 - 2500 MHz

 SHFIV 2500 - 3000 MHz
 SHFIV 2500 - 3000 MHz

 Output power:
 HF 150 W

 VHF 125 W
 UHF 100 W

 SHFI 40 W
 SHFII 25 W

 SHFII 15 W
 SHFIV 10 W

Dimensions: Jammer 46 x 52 x 28 cm 46 x 52 x 28 cm Voltage Con. 46 x 52 x 15 cm

Modulation Type: Sweep

Antennas: HF Omni-Directional VHF Antennas for HF, VHF UHF Log-periodic Ant. SHFI for UHF, SHFI SHFII and SHFII+III+IV SHFIII+IV

Accessories: Cables Remote control Batteries Special roof box

Operation

After the Jammer is assembled and installed to the car, including all cables for the supply voltage and antennas. It is ready for use. The Jammer should never be operated without connected antennas.

The first step for operation is to activate the keyswitch at the remote control to put the Jammer into stand-by mode. Now the single channels can be activated by the corresponding switches. The remote control will also show the channel status (ON/OFF).

2. Proposal on ECM Jammer Systems against Terrorist's bomb attacks during Convoy Operations

Electronic Counter Measures (ECM) or Jamming Systems which are designed to provide protection for VIPDignitaries against attacks by radio control. Improvised Explosive Devices (RCIED's) is a delicate and complicated task. Nobody knows when, where, on which frequency, what distance between bomb and terrorist & what distance between VIPCar and bomb during the attack.

ONLY THE TERRORIST KNOWS AND HAS A COMPLETE CONTROL ABOUT THE WHOLE SCENARIO.

Therefore the VIP protection must be on a very high sophisticated level.

Elaman the manufacturing company of such protection systems with experience all over the World - Europe, Near East, Middle East, Far East, Africa and America – since more than 20 years in business – has developed the **HP ECM Series** to the clients specifications and needs. Due to this long experience and the back-up with the user and clients we can give the following proposal:

- 1. IT must be a SYNTHESIZED SWEEP JAMMER **no** barrage or white noise which was already used in World War 2 and is an old technique.
- 2. NEVER USE FOR CONVOY OPERATION BARRAGE OR WHITE NOISE.
- 3. The lowest frequency should be around 20 MHz or 25 MHz.
- 4. The highest frequency should work now around 2000 MHz or higher 2,5 GHz and if required also up to 3 GHz.
- 5. Between both frequencies there should be no gaps. Nobody knows which frequency the terrorist is using.
- 6. For the own communication there are other tactical solutions which should only be discussed personally.
- 7. The unit should be MODULAR each channel is working on its own.

NO breakdown of the whole system if one channel is out of us the others are still in full operation.

Easy for repair, easy for maintenance, easy for upgrading in new technology or higher frequencies.

So no black box with no function if something is wrong always modules.

8. Different output power for the different channels. During all our tests and experience with our clients we would suggest:

HF	20 – 80 MHz	about 125 to 150 W
VHF	80 – 200 MHz	about 125 W
UHF	200 – 500 MHz	about 100 W
SHF	500 – 1000 MHz	about 40 W
SHF2	1000 – 2000 MHz	about 25 W
SHF3	2000 – 3000 MHz	about 15 W

The Channel HF and VHF have no gain with the used antennas all the other channels have a gain up to + 11 dBi. With these output powers the safety range is more than 250 meters in all directions which is more than sufficient to protect the VIPs.

- 9. Never install the Jammer HP 3260S into the VIP car always escort cars for more flexibility and safety.
- 10. 10. Use 2 HP 3260 S one in front and one in the back of the VIP car or convoy – for the double protection range.
- 11. The HP 3260 S is installed in all kinds of Off-Road Cars. Range Rover, Land Rover, MB V, G, M, Toyota Landcruiser, GMC Suburban, Nissan Patrol, Embassador, Ford Explorer etc.
- 12. The HP 3260 S is easy to operate. If installed once the operator can see and control each channel on its own, he has full information about power supply and RF transmission everything is shown on the remote control and on the unit itself by LEDs and other optical means.
- 13. We suggest a maintenance contract with our company to check the HP ECM Series every two years.
- 14. Elaman will give complete support for training, advice of spare parts and measure instruments.

We, Elaman, are proud to mention that all Jammers once supplied to our customers and installed into the various cars are in full operation although some of them are in use for more than 12 years.

Double Digital Sweep Technology:

We use three special IC's, which generate the sweep signals. These signals are being tuned digitally to each single frequency range.

Type of Modulation

We add to the carrier of the sweep signals a FM modulation. *We jam with our DDS all AM/ FM/ SSB signals either analog or digital.*

Difference between Technologies

White Noise is generated via a Diode or a Transistor which due to its nature can not be fine tuned (see attached diagram). This possibility is provided by the sweep signal.

In addition we like to stress that White Noise signals loose a lot of their initial capacity/output, as most of the input power get lost into heat. Double Digital Sweep in comparison maintains a constant Level of the output Signal.

3. Operation manual and short form of start up manual for Jammer System HP 3260S

STEP 1

Never use the HP Jammers without antennas!

So connect on the antennas before doing anything else!

STEP 2

Connect the remote control with the HP Jammer.

STEP 3

Switch on the "key switch", to power on the HP Jammer.

Use the "channel switches". There are special LEDs which show you that the Jammer channels are one power.

Special RF LEDs show you, that the Jammer is working and that there is power on the antennas.

CHARGING

To charge the battery pack of the HP 3260 S Jammer, connect the power pack with 230V. There is a LED which shows you the charging status.

RED

The unit is charging.

YELLOW

The unit is still charging. 80-90% of the capacity is charged.

GREEN

The unit is complete charged.

4. ABC Charger

User Manual

- Read this instruction before the charger is taken into use.
- Keep this manual within easy reach for the user of this battery charger.
- Hydrogen gas will be produced when charging lead-acid-batteries and hydrogen gas is explosive.
- Open flames and sparks should be kept away from batteries they may produce Explosions.
- The charger should be switched off before the charger/battery plug is disconnected.
- It is related with real danger to touch any parts inside the charger. Do not do any repair work with the main switch ON and to be real sure disconnect the mains connector.

General

The ABC Charger is suitable both for Freely Ventilated-(Wet) and Valve Regulated-(Dry) lead/acid batteries. The charger is small and very light (1,5 kg) an can therefore easily be fitted close to the battery. (The charger can be delivered with program compensating for the equipment base load.) The charger operates in high frequency and should be connected to a standard 230 V mains connection with ground. The built in micro controller controls the charging process according to the chosen charging algorithm. During charging the charging progress is displayed with a status indicator LED on the front panel. The microcontroller is also controlling the charging progress with regards to Temperature in the charger an time. If a fault occurs in some cells or the temperature rises the charging current will be limited. If you have a special requirement of charging algorithm or application, please contact LEAB.

Installation

The ABC Charger is mainly suited for indoor use. It can be used positioned horizontally on a table or a shelf, hang on a o-wall using the free supplied bracket or as a built-in charger in the vehicle or machinery. When it is built in it has to be shock absorbed. The charger can be with fixed connection to the battery or with conventional connectors.

Position the charger in such a way that the air supply will not be obstructed. When the charger is fitted on a wall or mounted in a vehicle it should be horizontal to limit dust and moisture to enter it.

Function

Check that battery type and size correspond to the setting of the charger. Also check that the polarity between the charger and the battery is right. Positive + to positive + and negative – to negative –. Connect the battery to the charger and switch on the charger. The charging starts after a few seconds and the status indicator, **Orange LED**, is lit up. **Orange LED** remains on until the battery is fully charged. If the charger is connected to a fully charged battery the charger will be charging for 1 hour. This is the minimum charging time.

Green LED, is lit up when the battery is ready to be used.

Maintenance charging will continue as long as the battery is connected.

ABC600/800: The charger will be reset as soon as the charger is switched off and then on.

1600W version is reset by the red knob on the front or by disconnecting the mains cable.

The charging time depends on the size of battery and the depth of discharge.

A freely ventilated battery (Wet) can be discharged to max. 800 and a valve regulated (Dry) with max. 70%.

OBS: Switch off the charger before the battery is disconnected. If the battery is disconnected without switching off the charger, sparks may be produces.

5. Trouble shooting and service

RED flashing LED may mean that the battery is not properly connected. Check cables, connection terminals, plugs and other connections to the battery. Rectify if possible. Measure the voltage at the battery and at the charger.

If the connecting points and the voltage are correct, contact for consultation.

Standard setting –free ventilated / valve regulated with parallel consumption, J-program Free ventilated, open lead acid Valve regulated, Gel									
Charging phase	Voltage level	Time	Voltage level	Time					
U 1-phase	>1,4 V/cell	max. 12 h	>1,4 V/cell	max. 12 h					
U 1-phase	2,4 V/cell	max. 12 h	2,35 V/cell	max. 12 h					
U 2-phase	2,3 V/cell	unlimited	2,3 V/cell	unlimited					
Traction batteries, M-/B-program									
Charging phase	Voltare level	Time	Voltane level	Time					
	voltage level	Time	Voltage level						
U 1-phase	>1,4 V/cell	max. 12 h	>1,4 V/cell	max. 12 h					
U 1-phase	2,4 V/cell	max. 5 h	2,35 V/cell	max. 7 h					
U 2-phase	max. 2,8V/cell	min. 1 h max 4 h	max. 2,8 V/cell	min.1 h max 4 h					
U 2-phase	2,26V/cell	unlimited	2,26 V/cell	unlimited					

Technical data

<i>Size:</i> 600-800W/1600W	L 230 x B 112 x H 75 l mm/ L 258 x B 136 x H 89 i mm
Weight: 600-800W/1600W	1,5 kg / 2,3 kg
Ambient Temperature:	-25°C - +40° C
Mains Voltage:	90 Volt – 255 Volt AC, 45Hz-400Hz (>200V will mean limited effect)
	If the charger is connected should be connected to a "c" characteristic fuse.
Power Factor:	~1
Rated Voltage:	12 Volt, 24 Volt, 36 Volt, 48 Volt DC
Rated Current:	15 Amp, 20 Amp, 30 Amp, 50 Amp, 60 Amp
Secondary Cables:	2m 6/10 mm?
Protection:	1, IP 21 (when fitted horizontally) Available in IP 44
General:	Temperature controlled cooling fan.
	Protected against wrong polarity and short circuit.
	This charger can be used as a voltage supply. (Special program)
	CE-certified in accordance with valid EN-standards.

Charging algorithms

The ABC charger is designed for freely ventilated and valve regulated batteries. All chargers are equipped with app. 15 different charging curves. Every charging algorithm covers a specific battery capacity, which means that faulty adjustment will have an Impact on the battery lifetime. When is informed of battery capacity and type the charger will be delivered with the correct setting.

If you change to another type or size of battery, please contact for change of charging algorithm.

If the wrong algorithm is chosen the warranty will be void.

6. Servicing Manual for Jammer System HP 3260 S

Measures instruments:

Spectrum Analyzer Wattmeter

Test procedure:

Connect the channel from 20-80 MHz with an attenuator. Then connect it with a Spectrum Analyzer, e.g. from Hewlett Packard.

Put the Spectrum Analyzer on start at 15 MHz and on stop at 100 MHz.

Connect the HP 3260 S with a cable to a battery or a kind of generator. Switch the "key *switch*" on the remote control ON. Then switch on the single channel from 20 to 80 MHz. Use the button on the remote control.

To check the frequency of each channel, repeat this procedure with every single channel and on the Spectrum Analyzer.

It is very important that all other channels are still OFF for this test. Every channel that is working without connecting to an antenna or a coaxial resistor will damage the Jammer. The relevant channel will be broken.

To check the output power in watts use a special wattmeter like for example the BIRD Wattmeter model 4410A.

7. Electrical Specification

Electrical Specifications @ 1	=25°C, VDD= + 28 VDC; 50	Ohm Syst	em
Parameter	Characteristics	Unit	Range
Fre	equency Bands*		
Channel 1 (HF)	20-80	MHz	Min.
Channel 2 (VHF)	80-200	MHz	Min.
Channel 3 (UHF)	200-500	MHz	Min.
Channel 4 (SHF I)	500-1000	MHz	Min.
Channel 5 (SHF II)	1000-2000	MHz	Min.
Channel 6 (SHF III)	2000-2500	MHz	Min.
Channel 7 (SHF IV)	2500-3000	MHz	Min.
	Output Power		
Channel 1	150	Watts	+/-1.5 dB
Channel 2	125	Watts	+/-1.5 dB
Channel 3	100	Watts	+/-1.5 dB
Channel 4	40	Watts	+/-1.5 dB
Channel 5	25	Watts	+/-1.5 dB
Channel 6	15	Watts	+/-1.5 dB
Channel 7	10	Watts	+/-1.5 dB
Power Consumption	470	Watts	+/-1.5 dB
	Modulation		
Тур	sweep		
	Power Supply		
Operating Voltage	24	VDC	Nom.
Operating Current	65	A	Nom.
Self-Cor	tained Power Supply		
Voltage	12	VDC	Min.
Current	255	Ah	Min.
Тур	AGM maintenance free		
Number of Batteries	2	[
Operating Time (without Car-Generator)	2	h	Min.
	Charger		
Тур	built in		
Operating Voltage	160 to 260	VAC	
Operating Current	7	A	Min.
Output Voltage	28,6	VDC	Min.
Output Current	60	A	Min.
Charging Time	3 to 4	h	Min.
	Dimensions		
Jammer-Box (3 Channels)	460x520x280	mm	Max
Power-Box	460x520x150	mm	Max
Battery	530x275x220	mm	Max
Base Plate	1000x850x15	mm	Max
Antenna-Box	1500×1000×380	mm	Max

HP 3260S

	gilent									
HP Ma	irketing	& Consult	ing 20-80) MHz					Mkr4	80.0 MHz
Ref 1.	.995 kW		Γ A	itten 40 di	3					160.8 W
Peak		1		2		3		4		
Log		-		~		>		Q		
10										<u> </u>
dB/	\vdash									
Uffst	H									
dB	⊬									
чъ		_								
		_								
Start	10 MHz								Stop	100 MHz
#Res I	<u>BW 5 M</u> F	lz			VBW 3 M	Hz		#Sweep	20 ms (200 pts)
Mar	ker T	race	Type	Х	Axis		Amplitu	ıde		
	L	(1)	Freq Freq	20. 49	.0 MHz .0 MH⁊		141	1 M 3 M		
3	3	(1)	Freq	60.	0 MHz		147	W		
4	1	(1)	Freq	80.	.0 MHz		160.8	3 W		
1										
₩ A	gilent									
🔆 🔆 A HP Ma	gilent Irketing	& Consult	ting 80-20	00MHz					Mkr4 á	200.0 MHz
₩ A HP Ma Ref 1.	i gilent Irketing .585 kW	& Consult	ting 80-20 #A	00MHz Atten 40 dl	3				Mkr4 á	200.0 MHz 135.5 W
HP Ma Ref 1. Peak	gilent Irketing .585 kW	& Consult	ting 80-20 #A	00MHz Atten 40 dl	3	3		4	Mkr4 á	200.0 MHz 135.5 W
HP Ma Ref 1. Peak Log	gilent Irketing .585 kW	& Consult	ing 80-20 #A	00MHz Atten 40 dl	3	3 •		4	Mkr4 2	200.0 MHz 135.5 W
HP Ma Ref 1. Peak Log 10	igilent irketing .585 kW	& Consult	ting 80-20 #A	00MHz Atten 40 dl	3	3 •		4	Mkr4 2	200.0 MHz 135.5 W
HP Ma Ref 1. Peak Log 10 dB/	igilent irketing .585 kW	& Consult	ing 80-20 #A	00MHz Atten 40 dl	3	3 		*	Mkr4 2	200.0 MHz 135.5 W
HP Ma Ref 1. Peak Log 10 dB/ Offst 32	gilent Irketing .585 kW	& Consult	ting 80–20 #A	NOMHz Ntten 40 dl	3	3 		*	Mkr4 2	200.0 MHz 135.5 W
HP Ma Ref 1. Peak Log dB/ Offst 32 dB	gilent Irketing .585 kW	& Consult	ting 80–20 #A	10MHz Atten 40 dl	3	3 •		*	Mkr4 2	200.0 MHz 135.5 W
HP Ma Ref 1. Peak Log 10 dB/ Offst 32 dB	gilent Irketing .585 kW	& Consult	ting 80–20 #A	10MHz Atten 40 dl	3	3 •		*	Mkr4 2	200.0 MHz 135.5 W
HP Ma Ref 1. Peak Log 10 dB/ Offst 32 dB	ngilent Irketing .585 kW	& Consult	ing 80–20 #A	10MHz Atten 40 dl	3	3 •		*	Mkr4 2	200.0 MHz 135.5 W
HP Ma Ref 1. Peak Log 10 dB/ Offst 32 dB	ngilent Irketing .585 kW	& Consult	ing 80–20 #A	10MHz Itten 40 dl	3	3 		*	Mkr4 2	200.0 MHz 135.5 W
HP Ma Ref 1. Peak Log 10 dB/ Offst 32 dB	sgilent Irketing .585 kW	& Consult	ing 80–20 #A	10MHz Atten 40 dl	3	3 		*	Mkr4 2	200.0 MHz 135.5 W
HP Ma Ref 1. Peak Log 10 dB/ Offst 32 dB	sgilent Irketing .585 kW	& Consult	ing 80–20 #A	10MHz Atten 40 dl	3	3 		*	Mkr4 2	200.0 MHz 135.5 W
HP Ma Ref 1. Peak Log 10 dB/ Offst 32 dB	gilent Irketing .585 kW	& Consult	ing 80–20 #A	10MHz Atten 40 dl 2	3	3 		*	Mkr4 2	200.0 MHz 135.5 W
HP Ma Ref 1. Peak Log 10 dB/ Offst 32 dB	gilent Irketing .585 kW 	& Consult	ting 80–20 #A	10MHz Atten 40 dl	3	3 ◆		4 • •	Mkr4 2	200.0 MHz 135.5 W
HP Ma Ref 1. Peak Log 10 dB/ Offst 32 dB Start #Res I	gilent Irketing .585 kW 50 MHz BW 5 MH ker T	& Consult	ting 80–20 #A	NOMHZ Atten 40 dl 2 	3	3 ◆	Amplitu	#Sweep	Mkr4 2	200.0 MHz 135.5 W
HP Ma Ref 1. Peak Log 10 dB/ Offst 32 dB Start #Res I 1 2	gilent Irketing .585 kW 50 MHz BW 5 MH ker T	& Consult	Type Freq Freq	00MHz Atten 40 dl 2 	3 VBW 3 M Axis .0 MHz.	3 ◆	Amplitu 1110	4 A #Sweep ade 3 W 4 W	Mkr4 2	200.0 MHz 135.5 W
HP Ma Ref 1. Peak Log 10 dB/ Offst 32 dB Start #Res I 1 1 2 3	gilent Irketing .585 kW 50 MHz BW 5 MHz ker T	& Consult	Type Freq Freq Freq Freq	00MHz Atten 40 dl 2 	3 VBW 3 M Axis .0 MHz .0 MHz .0 MHz	3 ◆	Amplito 118 125.4 137.2	4 *Sweep #Sweep ade # W # W	Mkr4 (200.0 MHz 135.5 W
HP Ma Ref 1. Peak Log 10 dB/ Offst 32 dB Start #Res I 1 1 2 3 4	gilent Irketing .585 kW 50 MHz BW 5 MHz ker T	& Consult	Type Freq Freq Freq Freq Freq	00MHz Atten 40 dl 2 	3 VBW 3 M Axis .0 MHz .0 MHz .0 MHz .0 MHz .0 MHz	3 	Amplita 118 125.4 137.2 135.5	4 *Sweep #Sweep #Sweep #Sweep #Sweep	Mkr4 (200.0 MHz 135.5 W
HP Ma Ref 1. Peak Log 10 dB/ Offst 32 dB Start #Res I 1 2 3 4	gilent Irketing .585 kW 50 MHz BW 5 MHz ker T	& Consult	Type Freq Freq Freq Freq Freq	00MHz Atten 40 dl 2 	3 VBW 3 M Axis .0 MHz .0 MHz .0 MHz .0 MHz .0 MHz	Hz	Amplita 118 125.4 137.2 135.5	4 #Sweep #Sweep #Sweep #Sweep #Sweep	Mkr4 a	200.0 MHz 135.5 W
HP Ma Ref 1. Peak Log 10 dB/ Offst 32 dB Start #Res I 1 2 3 4	gilent Irketing .585 kW 50 MHz BW 5 MH ker T	& Consult	Type Freq Freq Freq Freq	00MHz Atten 40 dl 2 	3 WBW 3 M Axis 0 MHz 0 MHz 0 MHz 0 MHz 0 MHz 0 MHz	3 ◆	Amplitu 118 125.4 137.2 135.5	4 ◆ #Sweep ade #Sweep AW AW AW AW AW AW AW AW AW AW	Mkr4 (200.0 MHz 135.5 W
HP Ma Ref 1. Peak Log 10 dB/ Offst 32 dB Start #Res I 1 2 3 3 4	gilent Irketing .585 kW 50 MHz BW 5 MH ker T	& Consult	Type Freq Freq Freq Freq	00MHz Atten 40 dl 2 	3 VBW 3 M Axis 0 MHz 0 MHz 0 MHz 0 MHz 0 MHz 0 MHz	3 ◆	Amplitu 118 125.4 137.2 135.5	4 #Sweep #Sweep иde 3 Ш 4 Ш 2 Ш 5 Ш	Mkr4 a	200.0 MHz 135.5 W
HP Ma Ref 1. Peak Log 10 dB/ Offst 32 dB Start #Res I 1 2 3 4	gilent Irketing .585 kW 50 MHz BW 5 MHker T	& Consult	Type Freq Freq Freq Freq Freq	00MHz Atten 40 dl 2 	3 VBW 3 M Axis 0 MHz 0 MHz 0 MHz 0 MHz 0 MHz 0 MHz	Hz	Amplitu 118 125.4 137.2 135.5	4 *\$weep #\$weep #\$weep # # # W # W # W	Mkr4 4	200.0 MHz 135.5 W

∰ A	gilent										
HP Mar Ref 1	'keting & k⊎	Consulting	g 1-2 GH: #At:	z ten 40 dF	2				Mkr3 1	.825 GHz 34 14 W	
Ref 1 Peak Log 10 dB/ Offst 30 dB								3		4	
Start Start	950 MHz								Stop (2.05 GHz	
#Kes E	<u>SWIS MHZ</u> Ar Tra	ice T	VD0	VBW 3 MHz			Amplitu	#Sweep 20 ms (200 pts)			
1 2 3 4	(1 (1 (1 (1 (1) F) F) F	req req req req	1.00 1.50 1.82 2.00	90 GHz 90 GHz 90 GHz 90 GHz 90 GHz		24.18 27.69 34.14 37.57	40 9 W 9 W 4 W 7 W			

· 亲 Agilent									
HP Marketing & Consulting 2-2.5 GHz Mkr3 2.400 GHz									
Ref 1 kW	Ref 1 kW #Atten 40 dB								26.67 W
Геак	1			2			3	4	
10	<u> </u>				<u> </u>		<u>~</u>	<u>+X</u>	
dB/								\downarrow	
Offst	\downarrow							\downarrow	
30	₩							<u>μ</u> ι,	
	_								
	_								
Start 1.9 GHZ					1-		Succe 2	Stop 0.01 mo (2.6 GHZ
Marker Tr	<u> </u>	vno	VDW 3 MHZ			Amplitude			
1 <	1)	Freq	2.000 GHz			19.93 W			
	1) 1)	Freq Freq	2.250 GHz			18.51 W			
4 (1) Freq			2.500 GHz			31.65 W			
· · · · · ·									

8. Specifications of Antennas

HF Broadband Antenna

Polyurethane lacquer, olive drab. -55 °C, +71°C; -67 °F, +160 °F

Finish

Temperature range

HF Broadband Antenna

Application:

- * 80 200 MHz
- Designed for operation on all kinds of vehicles including Jeeps, Trucks and other armoured vehicles
- Suitable for operation on shelters and to be mounted on masts or in other permanent installations
- Different kinds of bases available, with or without spring for flexible or rigid installations
- No groundplane needed
- No tuning electronics in the base
- No tuning required

Electrical specifications:

Frequency range	80 - 200 MHz		
VSWR	< 3.5		
Nominal impedance	50 ohm		
Power rating	200 W		
Gain	0 dBd		
Radiation diagram (Pattern)	Azimuth: Elevation:	Omnidirectional	See over- leaf

Mechanical specifications:

Design	Centerfed dipole. Radiating elements com- pletely enclosed in epoxy/fibreglass laminate. Metal parts are brass and stainless steel.				
Length, mounted	3.1 m, 3.3m with base 1.				
Weight	1.65kg, ex. Base, 3.4kg with base 1.				
Wind rating	55 m/s = 125 mph				
Finish	Polyurethane lacguer, olive drab.				
Temperature range	-55 °C, +71°C; -67 °F, +160 °F				

HF Radiation Diagram

HF Radiation Diagram

Element Loc-Periodic Antenna 200-500 MHz

TYPE NO.	LP 200-500 MHz					
POLARIZATION	horizontal / vertical					
IMPEDANCE	50 Ω					
GAIN / BEAMWIDTH	MHz gain dBd 200 4.5 350 5.0 500 3.4	<i>dBi</i> 6.7 7.2 5.6	beamwidth E plane H plane 69° 131° 64° 115° 66° 133°			
VSWR	<u><</u> 2					
POWER	200 MHz 500 MHz	500 V 300 V	V V			
TERMINATION	N female other termin	ation or	n request			
GROUNDING	all metal par	rts are D	0C grounded			
MOUNTING	<i>mast Ø</i> 30 - 80 mn 50 - 104 m	า m	<i>clamp (see chapt. 10)</i> WG 11 (standard) WG 12 (option)			
MATERIALS	aluminium, s weather res	stainles: istant pl	s steel astics			
WEIGHT WIND AREA WIND LOAD	1.8 kg 0.09 m ² 86 N at 130 km/h 114 N at 150 km/h					
DIMENSIONS (LxW)	810 x 760 m	nm				

Radiation Diagram at 350 MHz

Element Loc-Periodic Antenna 500-1000 MHz

TYPE NO.	LP 500-1000 MHz					
POLARIZATION	horizontal / vertical					
IMPEDANCE	50 Ω					
GAIN / BEAMWIDTH	MHz g	gain dBd	dBi		beamwidth E plane	H plane
	400 5 600 5 800 5	5.3 5.5 5.4	7.3 7.5 7.4		69° 53° 50°	108° 100° 104°
VSWR	<u><</u> 2,5					
POWER	500 MHz 500 W 900 MHz 300 W			/ /		
TERMINATION	N femal other te	le ermina	tion on	reque	st	
GROUNDING	all meta	al parts	s are D	C grou	nded	
MOUNTING	mast Ø 30 - 80 50 - 10	9 0 mm 04 mn	n	<i>clamp</i> WG 1 WG 1	o (see chapt. 1 1 (standard) 2 (option)	0)
MATERIALS	aluminiu weather	um, st r resis	ainless tant pla	s steel astics		
WEIGHT WIND AREA WIND LOAD	1.8 kg 0.1 m ² 127 N at 130 km/h 95 N at 150 km/h					
DIMENSIONS (LxW)	960 x 70	60 mr	n			

Radiation Diagram at 850 MHz

Element Loc-Periodic Antenna 1-3 GHz

TYPE NO	LP 1-3 GHz		
POLARIZATION	horizontal / vertical		
IMPEDANCE	50 Ω		
GAIN	4,2 dBd, 6 dBi		
VSWR	<u>≤</u> 2.5		
POWER	100 W		
3 dB BEAMWIDTH mid-band	in polarization, E plane: 61° vertical to pol., H plane: 106°		
TERMINATION	N female other termination on request		
GROUNDING	all metal parts are DC grounded		
MOUNTING	<i>mast Ø</i> 30 - 80 mm 50 - 104 mm	<i>clamp (see chapt. 10)</i> WG 11 (standard) WG 12 (option)	
MATERIALS	aluminium, stainless steel weather resistant plastics		
WEIGHT WIND AREA WIND LOAD	650 g 0.008 m ² 7 N at 130 km/h 10 N at 150 km/h		
DIMENSIONS (LxW)	350 x 160 mm		

Radiation Diagram at 2 GHz

9. Batteries

Jammer Battery

AGM Absorbed Glass Mat (AGM) batteries

Developed for aircraft, AGM batteries surround the lead plates with layers of glass mat, which is little more than damp with electrolyte. The result is that the batteries are particularly tough since the plates are well supported and there's no electrolyte sloshing around. They are relatively new to the UK and European market, but are now the most popular battery type used in the American marine and recreational vehicle market.

The battery is completely sealed and waterproof, and should continue to work even under the most extreme conditions. The battery has a very low self-rate of discharge providing exceptional life during periods of non-activity.

Lifeline

DMS technologies - Engineering with Energy

General Technical Data

- Technology Lead Calcium AGM (Absorbed
- Glass Mat)
- Voltage Range 12V and 6V options
- Capacity Range 33AH to 255AH
- High Rate Discharge Capability Good
- Installation Any orientation
- Cycle Life Approx 950 at 50% depth of discharge
- Temperature Range 40°C to +60°C
- High resistance to shock and vibration
- Charge Regime Constant voltage unlimited current (fast charge)
- Termination Din post/lug terminal
- Shelf Life 2 years from full recharge
- Non-hazardous, non-spillable cargo

Battery Technology Comparison

Technology	AGM	Gel	Wet Lead Acid	Carbon fibre
Voltage	6V & 12V	6V & 12V	12V	12V
Range				
Capacity				
Range	33-255Ah	24-225Ah	60-170Ah	70-270Ah
Installation	Any orientation	up to 180°C	upright only	up to 75°C
Temperature	-40°C to +60°C	-20°C to +50°C	-10°C to +50°C	-40°C to +50°C
Charging	Constant	Constant	Constant	Constant
	Voltage	Voltage	Voltage	Voltage
	Unlimited	C/3 continuous	C10	C10
	current		continuous	continuous
Shelf Life	2 years from	2 years from		
	full charge	full recharge	8 months	N/A
Weight	11Kg - 74 Kg	10Kg - 70 Kg	15Kg - 44Kg	18Kg - 62Kg
Cargo	Non-hazardous	Non-hazardous	Hazardous	Hazardous
Cycle Life	950	600	400	1,000
50% D.O.D.				
Venting	no special			
	provision	Venting	Venting	Vent tube
	required	required	required	required
Topping up	No	No	Yes	Yes
Leakage if		Some		
damaged	No	Thixotropic gel leakage	Yes	Yes

Possible Applications

- Marine Ancillary Equipment and Starting
- Motorhome Ancillary Equipment
- Caravan Ancillary Equipment
- Utilities Transportation
- Remote Power/Solar
- Recreational Vehicle
- Trolling

Note: Laboratory testing has confirmed the amount of carbon present in batteries marketed is minimal, and in fact should be classed as Lead Calcium.

Typical Power Requirements

Item	Watts	Amps	Hrs/Day	Ah
Autopilot	20	1.67	5	8.33
Echo sounder	4	0.33	7.0	7.0
Instrument	10	0.83	5	4.17
Lamp				
Log	2	0.17	7	1.17
Nav lights	80	6.67	6	40
VHS transmit	50	4.17	0.2	0.83
VHF receive	5	0.42	5	2.08
Fridge	40	3.33	3.0	10
Bilge Pump	50	4.17	0.1	0.42
Shower pump	50	4.17	0.3	1.25
AM/FM radio	40	3.33	2	6.67
12V TV	40	3.33	2.0	6.67
Reading lamp	15	1.25	3.0	3.75
Extras	60	5	3	15
Total		38.84		102.67

Battery Care-Safety

Large capacity batteries can be heavy, take care when handling all batteries.

Do not short circuit the battery

Red Flash and Lifeline batteries are designed to give very high starting currents therefore care must be taken not to short circuit the batteries in any way.

Do not attempt to open the battery

Red Flash and Lifeline batteries are sealed and cannot be opened in any way, this action would allow oxygen into the battery and render it useless.

 Always observe the correct polarity of the battery positive and negative terminals.

Battery Care – Installation

- Use the recommended torque settings for battery terminals when installing. (RF4NM) (LL 7NM)
- Check that you have sufficient battery capacity prior to the installation or additional electronic/electrical marine applicances/equipment.
- Do not mix AGM, Gel or Wet batteries within the same battery bank.
- Ensure that your battery charger is working correctly prior to installation of batteries and at regular intervals.
- Never lift or lower the battery using the connection lead as this is dangerous and may damage the battery terminals.
- Ensure that the battery tray is clean and clear of any debris.

Battery Care - Routine Checks

- Check battery casing for damage
- Check battery connections are tight and not corroded.
- Fully charge battery bank to 100% capacity at regular intervals (every 60 days)
- Isolate the battery bank and fully charge prior to lay-up over winter.
- Fully charge battery after winter lay-up prior to first voyage.

If you would like further Information about ELAMAN, or would like to discuss a specific requirement or project, please contact us at:

Elaman GmbH German Security Solutions Seitzstr. 23 80538 Munich Germany

> Tel: +49-89-24 20 91 80 Fax: +49-89-24 20 91 81 info@elaman.de www.elaman.de