

Universal Counter API
EDM04-25

EDM04-25 Universal Counter API

©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008

Protection Against Harmful Interference
When present on equipment this manual pertains to, the statement "This device complies with part 15 of the FCC
rules" specifies the equipment has been tested and found to comply with the limits for a Class A digital device,
pursuant to Part 15 of the Federal Communications Commission [FCC] Rules.
These limits are designed to provide reasonable protection against harmful interference when the equipment is
operated in a commercial environment.
This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in
accordance with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will
be required to correct the interference at their own expense.

Extra Components and Materials
The product that this manual pertains to may include extra components and materials that are not essential to its
basic operation, but are necessary to ensure compliance to the product standards required by the United States
Federal Communications Commission, and the European EMC Directive. Modification or removal of these
components and/or materials, is liable to cause non compliance to these standards, and in doing so invalidate the
user’s right to operate this equipment in a Class A industrial environment.

Disclaimer
Whilst every effort has been made to ensure accuracy, neither Endace Technology Limited nor any employee of
the company, shall be liable on any ground whatsoever to any party in respect of decisions or actions they may
make as a result of using this information.
Endace Technology Limited has taken great effort to verify the accuracy of this manual, but nothing herein should
be construed as a warranty and Endace shall not be liable for technical or editorial errors or omissions contained
herein.
In accordance with the Endace Technology Limited policy of continuing development, the information contained
herein is subject to change without notice.

Published by:

 Endace Technology® Ltd
Level 9
85 Alexandra Street

PO Box 19246
Hamilton 3244
New Zealand

Phone: +64 7 839 0540
Fax: +64 7 839 0543
support@endace.com
http://www.endace.com

International Locations
New Zealand
Endace Technology Ltd
Building 7, Lambie Drive
PO Box 76802
Manukau City 2104
New Zealand
Phone: +64 9 262 7260
Fax: +64 9 262 7261

Americas
Endace Network Systems Inc
14425 Penrose Place
Suite 225
Chantilly, VA 20151
United States of America
Phone: +1 703 964 3740
Fax: +1 703 378 0602

Europe, Middle East & Africa
Endace Europe® Ltd
Sheraton House
Castle Park
Cambridge CB3 0AX
United Kingdom
Phone: +44 1223 370 176
Fax: +44 1223 370 040

Copyright 2008 Endace Technology Ltd. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
Endace Technology Limited.
Endace, the Endace logo, Endace Accelerated, DAG, NinjaBox and NinjaProbe are trademarks or registered
trademarks in New Zealand, or other countries, of Endace Technology Limited. Applied Watch and the Applied
Watch logo are registered trademarks of Applied Watch Technologies LLC in the USA. All other product or
service names are the property of their respective owners. Product and company names used are for identification
purposes only and such use does not imply any agreement between Endace and any named company, or any
sponsorship or endorsement by any named company.
Use of the Endace products described in this document is subject to the Endace Terms of Trade and the Endace
End User License Agreement (EULA).

 EDM04-25 Universal Counter API

©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008 i

Contents
1. Purpose 1
2. Overview 2

Goals: .. 2
3. Description 3

3.1 Component.. 3
3.2 Subcomponent .. 3

Command: ... 4
4. Function Definitions 5

4.1 Component implementation... 5
4.2 Printing of counters and statistic registers.. 5
4.3 Structures... 6
4.3 Functions ... 8

4.3.1 dag_config_get_number_block function .. 8
4.3.2 dag_config_get_number_counters function... 8
4.3.3 dag_config_get_number_all_counters function .. 8
4.3.4 dag_config_get_counter_id_subfct function.. 9
4.3.5 dag_config_get_all_block_id function .. 9
4.3.6 dag_config_latch_clear_all function.. 9
4.3.7 dag_config_latch_clear_block function... 10
4.3.8 dag_config_read_single_block function ... 10
4.3.9 dag_config_read_all_counters function.. 10
4.3.10 dag_config_read_single_counter function ... 11

Version History 12

 EDM04-25 Universal Counter API

©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008 1

1. Purpose

This document describes the implementation of the universal statistics and counters interface
(CSI). This interface facilitates the reading of the various counters and statistic registers of
any type of DAG card. The counters and registers characteristics are printed using command
from dagconfig.

Please be aware that this document is subject to change as additional functionality becomes
available.

EDM04-25 Universal Counter API

2 ©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008

2. Overview

The interface covers the DRB space and is implemented by the firmware. The software
implementation considers this interface as a firmware component/module.

CSI(counter statistics interface) enables the automatic identification by software of the
presence of counters or informational bits from a predefined set. Each counter and
information bit in this predefined set will have a set functionality. This will allow different
combinations of counters and functional bits to be used in different cards without the
requirement of additional software.

Each card can have multiple CSI blocks, thus allowing them to be placed in firmware
modules when required and be easily added or removed depending on the requirements of
the image. It also allows different accessing methods to be used depending on the counters.

Goals:
• To make an easy translation of the existing firmware module statistics to unified

counter blocks interface. Which can be automatically recognized by the software
• To give both the firmware and software unique counter and deterministic Id's to

prevent name changes and duplications across different cards and images.
• Extend the possibility for customer specific statistics with out software changes
• Extend the possibility for debugging statistics and counters with out need of special

software support.
• Give the option for accumulated counters in near future and to backwards compatible

with the software
Function definitions are described in later chapters of this document.

 EDM04-25 Universal Counter API

©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008 3

3. Description

The main enumeration table will store entry(ies) of type CSI per 'counter statistics interface'
which will point to a CSI block in the DRB address space. The enumeration entry will have
different versions depending on the CSI format (type of data access: direct v0, or indirect v1).

3.1 Component
Each CSI block has a description field indicating:

• the number of counters,
• the type of the counters in the block (firmware module based or functional based),
• a 'latch and clear' set up.

Global latch and clear can be implemented at later stage through a single write-only DRB
register instantiated in each CSI block.

This CSI block is implemented as a new component in dagconfig with attributes.

Its attributes are:

• Counter Statistics Interface type (kUint32AttributeCSIType),
• Number of counters in CSI (kUint32AttributeNbCounters),
• Latch & Clear set up (kBooleanAttributeLatchClear),
• Counter description base address (kUint32AttributeCounterDescBaseAdd),
• Counter value base address (kUint32AttributeCounterValueBaseAdd).

The post-initialization function creates the subcomponent(s) counter and initializes their state
structure.

3.2 Subcomponent
Each counter is considered as a sub component of the CSI block component.

Each individual counter will have a 32-bit description entry containing:

• The counter ID which is unique and depending on the function is implemented when
applicable,

• A sub-function ID which covers multiple streams, filters or interfaces ports,
• A “block value” type (counter value or address), this value type determines whether it

is the counter value (0) or the address (1) where the counter value is stored,
• A 'Latch and Clear' information,
• The size of the counter can be 32 bits or 64 bits,
• type of access Indirect or Direct,
• Base address of the counter value.

The counter is implemented as a new sub-component of the CSI block component with these
attributes:

• Counter ID (kUint32AttributeCounterID),
• Sub-function (kUint32AttributeSubFunction),
• Value type (kBooleanAttributeValueType),
• Latch and Clear information (kBooleanAttributeLatchClear),
• Counter size (kUint32AttributeCounterSize),
• Type of access (kBooleanAttributeAccess),
• Counter value (kUint32AttributeCounterValue),
• Sub-function (KUnit32AttributeSubFunctionsType)

EDM04-25 Universal Counter API

4 ©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008

The state structure contains:

• the index of the subcomponent,
• the address or offset (from the DRB base) of the description field,
• the address or offset (from the DRB base) of the counter value.

typedef struct

{

 uint32_t mIndex;

 uint32_t mValueOffset;

 uint32_t mDescrOffset;

 uint32_t* mValueAddress;

 uint32_t* mDescrAddress;

 } counter_state_t;

A specific function is implemented to read and set up each attribute.

Command:
The command used to print the counters is : dagconfig -u

 EDM04-25 Universal Counter API

©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008 5

4. Function Definitions

4.1 Component implementation
The interface is implemented as a component called “counter_interface” in file
counter_interface_component.c (/lib/libdagconf/components/)

The usual function for a component has been implemented:

<component name>_get_new_component,
<component name>_post_initialize,
<component name>_reset,
<component name>_default,
<component name>_dispose,
<component name>_update_register_base.

4.2 Printing of counters and statistic registers
In order to print the various counters and statistics, a new functions has been created
“print_univ_counters”in file counter_printing.c (tools/dagconfig/)

Others files modified to implement the component:
/tools/dagconfig/process_cmdline.c

/tools/dagconfig/process_cmdline.h

/tools/dagconfig/dagconfig.c

/lib/libdagconf/cards/dagx_impl.c

EDM04-25 Universal Counter API

6 ©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008

4.3 Structures
Structure of one counter, dag_counter_value_t:

• dag_counter_type_t typeID: indicates the type ID,
• int size : indicates the size of counter (32 or 64 bits),
• dag_subfct_type_t subfct: indicates the type of sub-function,
• int lc: indicates if there is a latch and clear bit to read the register,
• int value_type: indicates whether it is the counter value (0) or the address where the

counter value is stored (1),
• uint64_t value: indicates the counter value,
typedef struct

{

 dag_counter_type_t typeID; (see below.)

 int size;

 dag_subfct_type_t subfct; (see below.)

 uint32_t interface_number

 int lc;

 int value_type; /* Only available for direct register */

 uint64_t value;

} dag_counter_value_t;

typedef enum

{

 kIDSubfctPort = 0x00,

 kIDSubfctStream = 0x01,

 kIDSubfctFilter = 0x02,

 kIDSubfctGeneral = 0x03,

} dag_subfct_type_t;

typedef enum

{

 kIDCounterInvalid = 0x0,

 kIDCounterRXFrame = 0x01,

 kIDCounterRXByte= 0x02,

 kIDCounterRXShort = 0x03,

 kIDCounterRXLong = 0x04,

 kIDCounterRXError = 0x05,

 kIDCounterRXFCS = 0x06,

 kIDCounterRXAbort = 0x07,

 kIDCounterTXFrame = 0x08,

 kIDCounterTXByte = 0x09,

 kIDCounterDIP4Error = 0x0A,

 kIDCounterDIP4PlError = 0x0B,

 kIDCounterBurstError = 0x0C,

 kIDCounterPlError = 0x0D,

 kIDCounterDebug = 0x0E,

 kIDCounterFilter = 0x0F,

 kIDCounterB1Error = 0x10,

 kIDCounterB2Error = 0x11,

 kIDCounterB3Error = 0x12,

 kIDCounterRXErr = 0x13,

 kIDCounterSpaceError = 0x14,

 EDM04-25 Universal Counter API

©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008 7

 kIDCounterContWdError = 0x15,

 kIDCounterPlContError = 0x16,

 kIDCounterTRDip4Error = 0x17,

 kIDCounterResvWd = 0x18,

 kIDCounterAddrError = 0x19,

 kIDCounterOOFPeriod = 0x1A,

 kIDCounterNbOOF = 0x1B,

 kIDCounterTXOOFPeriod = 0x1C,

 kIDCounterTXNbOOF = 0x1D,

 kIDCounterTXError = 0x1E,

 kIDCounterStatFrError = 0x1F,

 kIDCounterDip2Error = 0x20,

 kIDCounterPatternError = 0x21,

 kIDCounterRXStreamPacket = 0x22,

 kIDCounterRXStreamByte = 0x23,

 kIDCounterTXStreamPacket = 0x24,

 kIDCounterTXStreamByte = 0x25,

 kIDCounterPortDrop = 0x26,

 kIDCounterStreamDrop = 0x27,

 kIDCounterSubStreamDrop = 0x28,

 kIDCounterFilterDrop = 0x29,

} dag_counter_type_t;

EDM04-25 Universal Counter API

8 ©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008

4.3 Functions

4.3.1 dag_config_get_number_block function

Purpose Return the number of block(s) of this card

Declared In dag_config.h

Prototype uint32_t dag_config_get_number_block(dag_card_ref_t card_ref)

Parameters → card_ref
 Reference of the DAG card

Returns Number of block (counter statistic interface) of the DAG card.

Comments

4.3.2 dag_config_get_number_counters function

Purpose Return the number of counter(s) for a particular block

Declared In dag_config.h

Prototype uint32_t dag_config_get_number_counters(dag_card_ref_t card_ref, dag_block_type_t
block_type)

Parameters → card_ref
 Reference of the DAG card
→ block_type
 Type of csi block

Returns Number of statistic counter(s) for the block “block type”

Comments

4.3.3 dag_config_get_number_all_counters function

Purpose Return the total number of counter(s) of this card

Declared In dag_config.h

Prototype uint32_t dag_config_get_number_counters(dag_card_ref_t card_ref)

Parameters → card_ref
 Reference of the DAG card

Returns Number of statistic counter(s) of the DAG card.

Comments

 EDM04-25 Universal Counter API

©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008 9

4.3.4 dag_config_get_counter_id_subfct function

Purpose Return the id and the sub-function of counters in a specific block.

Declared In dag_config.h

Prototype uint32_t dag_config_get_counter_id_subfct(dag_card_ref_t card_ref, dag_block_type_t
block_type, dag_counter_value_t counter_id[], uint32_t size)

Parameters → card_ref
 Reference of the DAG card
→ block_type
 Type of csi block
→ counter_id[]
 returned array of dag_counter_value_t structure.
→ size
 Size of counter_id array.

Returns Number of statistic counter(s) found for the block “block type”.

Comments

4.3.5 dag_config_get_all_block_id function

Purpose Return all block ids.

Declared In dag_config.h

Prototype uint32_t dag_config_get_all_block_id(dag_card_ref_t card_ref, uint32_t block_id[],
uint32_t size)

Parameters → card_ref
 Reference of the DAG card
→ block_type
 Type of csi block
→ block_id[]
 returned array of uint32_t. Contains all block ids.
→ size
 Size of block_id array.

Returns Number of statistic counter(s) found for the block “block type”.

Comments

4.3.6 dag_config_latch_clear_all function

Purpose Latch and clear all the csi blocks.

Declared In dag_config.h

Prototype void dag_config_latch_clear_all(dag_card_ref_t card_ref)

Parameters → card_ref
 Reference of the DAG card

Returns N/A

Comments This function is called by dag_config_read_all_counters, dag_config_read_counter and
print_univ_counters (counter_printing.c).

EDM04-25 Universal Counter API

10 ©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008

4.3.7 dag_config_latch_clear_block function

Purpose Latch and clear a specific csi block.

Declared In dag_config.h

Prototype void dag_config_latch_clear_all(dag_card_ref_t card_ref, dag_block_type_t block_type)

Parameters → card_ref
 Reference of the DAG card
→ block_type
 Type of csi block

Returns N/A

Comments

4.3.8 dag_config_read_single_block function

Purpose Return the value of all counters in a specific csi block.

Declared In dag_config.h

Prototype uint32_t dag_config_read_single_block(dag_card_ref_t card_ref, dag_block_type_t
block_type, dag_counter_value_t countersTab[], uint32_t size, int lc)

Parameters → card_ref
 Reference of the DAG card
→ block_type
 Type of csi block
→ countersTab
 Table of counter's structures
→ int size
 Size of countersTab
→ int lc
 Latch and clear option (0 = no latch and clear, 1 = latch and clear the block before
reading the values)

Returns Return the number of counters in the specific csi block

Comments

4.3.9 dag_config_read_all_counters function

Purpose Read all counters of the card and stock their parameters in a table

Declared In dag_config.h

Prototype uint32_t dag_config_read_all_counters(dag_card_ref_t card_ref, dag_counter_value_t
countersTab[], uint32_t size, int lc)

Parameters → card_ref
 Reference of the DAG card
→ countersTab
 Table of counter's structures
→ int size
 Size of countersTab
→ int lc
 Latch and clear option (0 = no latch and clear, 1 = latch and clear the block
before reading the values)

Returns Return the number of counters

Comments

 EDM04-25 Universal Counter API

©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008 11

4.3.10 dag_config_read_single_counter function

Purpose Get the value of single counters on the card

Declared In dag_config.c

Prototype uint64_t dag_config_read_single_counter(dag_card_ref_t card_ref, dag_block_type_t
block_type, dag_counter_type_t counter_type, dag_subfct_type_t subfct_type)

Parameters → card_ref
 Reference of the DAG card
→ block_type
 Type of csi block
→ counter_type
 Type ID of counter
→ subfct_type
 Type of sub-function

Returns Return the value of a specific counter

Comments

 EDM04-25 Universal Counter API

©2008 Endace Technology Ltd. Confidential - Version 2.1 - July 2008 13

Version History

Revision Data of
Change

Description of Change Revision Originator

1.0 4-Jan-07 Initial revision Patricia LERUS

2.0 11-July-08 Updated Subfunction Type. Karthik Sharma.

2.1 18 July 2008 Updated to Endace template Sarah Stubbs

	 Protection Against Harmful Interference
	Extra Components and Materials
	Disclaimer
	Published by:
	International Locations
	Copyright 2008 Endace Technology Ltd. All rights reserved.
	1. Purpose
	 2. Overview
	Goals:

	 3. Description
	3.1 Component
	3.2 Subcomponent
	Command:

	 4. Function Definitions
	4.1 Component implementation
	4.2 Printing of counters and statistic registers
	 4.3 Structures
	 4.3 Functions
	4.3.1 dag_config_get_number_block function
	4.3.2 dag_config_get_number_counters function
	4.3.3 dag_config_get_number_all_counters function
	 4.3.4 dag_config_get_counter_id_subfct function
	4.3.5 dag_config_get_all_block_id function
	4.3.6 dag_config_latch_clear_all function
	 4.3.7 dag_config_latch_clear_block function
	4.3.8 dag_config_read_single_block function
	4.3.9 dag_config_read_all_counters function
	 4.3.10 dag_config_read_single_counter function

	
	Version History

