
 

 

 
 
 
 
 
 
 

IXP Filtering Guide 
EDM04-11 

 

 
 

 
 



EDM04-11 IXP Filtering Guide  
 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

Protection Against Harmful Interference 
When present on equipment this manual pertains to, the statement "This device complies with part 15 of the FCC 
rules" specifies the equipment has been tested and found to comply with the limits for a Class A digital device, 
pursuant to Part 15 of the Federal Communications Commission [FCC] Rules. 
These limits are designed to provide reasonable protection against harmful interference when the equipment is 
operated in a commercial environment. 
This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in 
accordance with the instruction manual, may cause harmful interference to radio communications. 
Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will 
be required to correct the interference at their own expense. 

 

Extra Components and Materials 
The product that this manual pertains to may include extra components and materials that are not essential to its 
basic operation, but are necessary to ensure compliance to the product standards required by the United States 
Federal Communications Commission, and the European EMC Directive. Modification or removal of these 
components and/or materials, is liable to cause non compliance to these standards, and in doing so invalidate the 
user’s right to operate this equipment in a Class A industrial environment. 

 

Disclaimer 
Whilst every effort has been made to ensure accuracy, neither Endace Technology Limited nor any employee of 
the company, shall be liable on any ground whatsoever to any party in respect of decisions or actions they may 
make as a result of using this information. 
Endace Technology Limited has taken great effort to verify the accuracy of this manual, but nothing herein 
should be construed as a warranty and Endace shall not be liable for technical or editorial errors or omissions 
contained herein. 
In accordance with the Endace Technology Limited policy of continuing development, the information contained 
herein is subject to change without notice. 

 

Website 

Copyright 2008 Endace Technology Ltd. All rights reserved. 

http://www.endace.com 
 

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any 
means electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the 
Endace Technology Limited. 
Endace, the Endace logo, Endace Accelerated, DAG, NinjaBox and NinjaProbe are trademarks or registered 
trademarks in New Zealand, or other countries, of Endace Technology Limited.  Applied Watch and the Applied 
Watch logo are registered trademarks of Applied Watch Technologies LLC in the USA. All other product or 
service names are the property of their respective owners. Product and company names used are for 
identification purposes only and such use does not imply any agreement between Endace and any named 
company, or any sponsorship or endorsement by any named company.  
Use of the Endace products described in this document is subject to the Endace Terms of Trade and the Endace 
End User License Agreement (EULA). 

 

 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 i 

Contents 
IXP Filtering Introduction 1 

IXP Filtering Overview .............................................................................................................................................. 1 
DAG 7.1S Card Overview ......................................................................................................................................... 1 
IXP Filter Software Overview ................................................................................................................................... 2 
Coloured Packet Records .......................................................................................................................................... 2 
IXP Filter Rulesets ...................................................................................................................................................... 3 

Rulesets .................................................................................................................................................................. 3 
Internet Protocol Version 4 Rules ....................................................................................................................... 3 
Internet Protocol Version 6 Rules ....................................................................................................................... 3 
TCP, UDP and SCTP Port Filtering .................................................................................................................... 4 
ICMP Type Filtering ............................................................................................................................................. 4 
PoS Frame Header Formats................................................................................................................................. 5 
Multi-Protocol Label Switching (MPLS) Support ............................................................................................ 5 

Modes of Operation ................................................................................................................................................... 5 
Loopback Mode .................................................................................................................................................... 5 

IXP Filtering API Overview ...................................................................................................................................... 6 
IXP Filtering API Dependencies ......................................................................................................................... 6 
IXP Filtering API Structure ................................................................................................................................. 6 
IXP Filtering API and the Embedded Messaging API ..................................................................................... 7 
IXP Filtering API and Packet Routing ............................................................................................................... 8 
IXP Filtering API Typical Usage ......................................................................................................................... 9 
IXP Filtering API and Multiple Threads............................................................................................................ 9 

Function Definitions 11 
Startup and Shutdown ............................................................................................................................................ 11 

dagixp_filter_startup Function ......................................................................................................................... 11 
dagixp_filter_shutdown Function .................................................................................................................... 11 

Filter Rule Construction .......................................................................................................................................... 12 
dagixp_filter_create_ruleset Function ............................................................................................................. 12 
dagixp_filter_delete_ruleset Function ............................................................................................................. 12 
dagixp_filter_empty_ruleset Function ............................................................................................................ 13 
dagixp_filter_ruleset_rule_count Function ..................................................................................................... 13 
dagixp_filter_ruleset_get_rule_at Function .................................................................................................... 14 
dagixp_filter_remove_rule Function ............................................................................................................... 14 
dagixp_filter_create_ipv4_rule Function ........................................................................................................ 15 
dagixp_filter_create_ipv6_rule Function ........................................................................................................ 17 
dagixp_filter_set_ipv4_source_field Function ................................................................................................ 18 
dagixp_filter_get_ipv4_source_field Function ............................................................................................... 18 
dagixp_filter_set_ipv4_dest_field Function .................................................................................................... 19 
dagixp_filter_get_ipv4_dest_field Function ................................................................................................... 19 
dagixp_filter_set_ipv6_source_field Function ................................................................................................ 20 
dagixp_filter_get_ipv6_source_field Function ............................................................................................... 20 
dagixp_filter_set_ipv6_dest_field Function .................................................................................................... 21 
dagixp_filter_get_ipv6_dest_field Function ................................................................................................... 21 
dagixp_filter_set_ipv6_flow_label_field Function ......................................................................................... 22 
dagixp_filter_get_ipv6_flow_label_field Function ........................................................................................ 22 
dagixp_filter_set_protocol_field Function ...................................................................................................... 23 
dagixp_filter_get_protocol_field Function ...................................................................................................... 23 
dagixp_filter_add_source_port_bitmask Function ........................................................................................ 24 
dagixp_filter_add_dest_port_bitmask Function ............................................................................................ 25 
dagixp_filter_add_source_port_range Function ............................................................................................ 25 
dagixp_filter_add_dest_port_range Function ................................................................................................ 26 
dagixp_filter_get_port_list_count Function .................................................................................................... 26 



EDM04-11 IXP Filtering Guide  

ii ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

dagixp_filter_get_port_list_entry Function ..................................................................................................... 27 
dagixp_filter_add_icmp_type_bitmask Function ........................................................................................... 28 
dagixp_filter_add_icmp_type_range Function ............................................................................................... 29 
dagixp_filter_get_icmp_type_list_count Function ......................................................................................... 29 
dagixp_filter_get_icmp_type_list_entry Function .......................................................................................... 30 
port_entry_t Structure ........................................................................................................................................ 30 
icmp_entry_t Structure ....................................................................................................................................... 31 

Filter Rule Attributes ................................................................................................................................................ 32 
dagixp_filter_set_rule_tag Function ................................................................................................................. 32 
dagixp_filter_get_rule_tag Function ................................................................................................................ 32 
dagixp_filter_set_rule_priority Function ......................................................................................................... 33 
dagixp_filter_get_rule_priority Function ........................................................................................................ 33 
dagixp_filter_set_rule_action Function ............................................................................................................ 34 
dagixp_filter_get_rule_action Function ........................................................................................................... 34 
dagixp_filter_set_rule_snap_length Function ................................................................................................. 35 
dagixp_filter_get_rule_snap_length Function ................................................................................................ 35 
dagixp_filter_set_rule_steering Function ........................................................................................................ 36 
dagixp_filter_get_rule_steering Function ........................................................................................................ 36 

Ruleset Loading ........................................................................................................................................................ 37 
dagixp_filter_download_ruleset Function ...................................................................................................... 37 
dagixp_filter_activate_ruleset Function ........................................................................................................... 38 
dagixp_filter_remove_ruleset Function ........................................................................................................... 39 
dagixp_filter_clear_iface_rulesets Function .................................................................................................... 39 

Statistics ...................................................................................................................................................................... 40 
statistic_t Type ..................................................................................................................................................... 40 
dagixp_filter_hw_reset_filter_stat Function .................................................................................................... 42 
dagixp_filter_hw_get_filter_stat Function ....................................................................................................... 42 

Utilities ....................................................................................................................................................................... 43 
dagixp_filter_set_last_error Function ............................................................................................................... 43 

Version History 45 
  



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 1 

IXP Filtering Introduction 

IXP Filtering Overview 
The IXP Filter is a collection of host and embedded software that performs Internet Protocol 
(IPv4/IPv6) and layer 3 filtering on PoS packets. The IXP Filtering is specific to DAG 7.1S 
cards, all the filtering is done internally on the card. A host API library is supplied to 
configure and initiate the filtering, however no host process is required to maintain the 
filtering once configured and running. 

DAG 7.1S Card Overview 
The Endace DAG 7.1S is a four port SONET/STM capture card that can support data rates of 
4 × oc3 or 2 × oc12. To provide the extra functionality supported by the card (in this case IP 
filtering) a Intel IXP network processor has been added. The diagram below illustrates the 
main components of a DAG 7.1S card. 

 
 

By default when a DAG 7.1S card is reset (or powered up) the main FPGA is configured to 
route packets from the line to the host and from the host to the line, this is standard DAG 
card behavior. In this way the DAG 7.1S can be used as a standard Endace network capture 
card without IP filtering, however when IP filtering is required, packets should be routed to 
and from the IXP.  

Packet routing within the card is configurable, allowing packets to be routed from anyone of 
the three sources (line, host or IXP) to any other, including back to themselves. This routing 
is fully user configurable. See the IXP Filtering API and Packet Routing (page 8) for more 
information on how to achieve the correct routing. 

 



EDM04-11 IXP Filtering Guide 

2 ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

IXP Filter Software Overview 
The IXP filter software consists of a host library that interfaces with a DAG 7.1S card, an 
embedded software management application that executes on the card and a collection of 
targeted packet processing programs. The diagram below illustrates the logical layout of the 
different software components. 

 
 

The dagixp_filter Host Library provides an API by which filter rules can be constructed 
and compiled into user defined ruleset. The host library also provides the functionality to 
load ruleset into the card and query the current filtering status. The dagixp_filter_loader 
application uses this library to load the rulesets contained in a configuration file to the card. 

The Filtering Management Application is an embedded program that runs inside the IXP 
network processor and manages the Filtering microcode (µCode) programmes. It is also the 
program that the host library communicates with when loading the filter rulesets and 
querying the filtering status. 

The Filter Microcode (µCode) performs the packet filtering. It accepts the packet records 
from the main FPGA and applies the filtering rules. Packets may be dropped by the 
microcode or routed back out the line or to the host depending on the rules installed. 

All configuration of the IXP filter is done via the dagixp_filter Host Library, rom image files 
are provided that contain the embedded software for both the Filtering Management 
Application and the Filter MicroCode. 

Coloured Packet Records 
As packets pass through the filtering software the packet record is modified to change it's 
ERF type and to add a color field in the ERF record header (the length of the record might 
also be altered based on the snap length of the rules). The color field is a 14-bit wide value 
that will match the user defined tag of the rule that the packet hits, refer to EDM11-01 ERF 
types for more information. 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 3 

IXP Filter Rulesets 
The IXP filter can filter on Internet Protocol (IP) version 4 and version 6 packets encapsulated 
in PoS frames. 

Rulesets 
The IXP filter accepts a collection of rules packaged up within a logical ruleset, multiple 
rulesets can be loaded into the card but only one can be active at a time. A rule contains a set 
of fields that is compared with the packet, if all the fields of the rule match then the rule is 
said to hit, if one of more of the fields don't match the rule is said to miss. If the rule hits the 
action and steering attributes of the rule determines whether the packet is dropped or routed 
to the host/line. If none of the rules produce a hit then the packet is dropped. 

Rules are priority ordered within a ruleset, rules with the highest priority are compared with 
the packet first, if a rule hits the rest of the rules are ignored. A rule can target either IPv4 or 
IPv6 packets though it is not possible to have a rule that targets both.  If no ruleset has been 
activated the filtering software goes into loopback mode. See the Modes of Operation section 
on page 5 for more information on filtering modes. 

Internet Protocol Version 4 Rules 
An IPv4 rule will match only if the layer 2 type of the packet being compared is IPv4, any 
other sort of layer 2 type (for example IPv6, ARP or IPX) will result in an automatic rule 
miss. The following table lists IPv4 header fields that a rule can apply a bit masked filter to, 
multiple fields may be defined in a single rule. 

 IPv4 Header Field Description 

IP Source Address A 32-bit bit-masked filter may be applied to the IP source address , if the 
filter doesn't match the rule misses. 

IP Destination Address A 32-bit bit-masked filter may be applied to the IP destination address , 
if the filter doesn't match the rule misses. 

 
A rule can also filter on the IP protocol field of a packet however this is not a bit masked type 
filter, instead a direct value match is performed on the field. If the IP protocol field is set to 
filter on TCP, UDP or SCTP type packets, up to 254 additional source and destination port 
filters can be added to the rule. See the TCP, UDP and SCTP Port Filtering section on page 4 
for more information. ICMP packets can also be filtered in a similar way, with up to 254 
ICMP type filters. See the ICMP Type Filtering section on page 4 for more information. 

IP options are automatically skipped by the filtering process, however filter rules cannot 
target fields within the IP options. 

Internet Protocol Version 6 Rules 
IPv6 rules target packets with an IPv6 layer 2 type only, any other packet types automatically 
result in a rule miss. The following list IPv6 header fields that a rule can apply a bit masked 
filter to, multiple fields may be defined in a single rule. 

IPv6 Header Field Description 

IP Source Address A 128-bit bit-masked filter may be applied to the IP source address , if the filter 
doesn't match the rule misses. 

IP Destination Address A 128-bit bit-masked filter may be applied to the IP destination address , if the 
filter doesn't match the rule misses. 

Flow Label A 20-bit bit-masked filter may be applied to the flow label field of an IPv6 header, 
if the filter doesn't match the rule misses. 



EDM04-11 IXP Filtering Guide 

4 ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

As with an IPv4 rule, layer 3 protocols (TCP, UDP, SCTP or ICMP) can be filtered on. See the 
TCP, UDP and SCTP Port Filtering section and the ICMP Type Filtering section on page 4 for 
more information. 

IPv6 extension headers are automatically skipped by the filtering process, the following table 
illustrates which extension headers are supported, if an unknown extension header is found, 
the packet is dropped and a statistics counter is incremented. Currently filter rules can't 
target fields within extension headers. 

Name Supported Description 

Hop-by-Hop Options Header yes Contains options for hop-by-hop processing. 

Routing Header yes Contains routing information for the packet. 

Fragment Header yes Contains information for fragmenting and 
reassembling the packet. 

Authentication Header yes Used for packet authentication. 

Encapsulated Security Payload Header no Provides fields for packet encryption and security. 

Destination Options Header yes Contains optional information for the destination node 
of the packet. 

 

TCP, UDP and SCTP Port Filtering 
As well as IP header filtering, a rule can filter on TCP, UDP or SCTP source and destination 
port numbers. Two types of port filters can be added to a rule; bit-masked or port range, bit-
masked filters take a value and mask pair to compare against the packet, a port range filter 
takes a maximum and minimum port value to compare with the packet. Up to 254 source 
and destination port ranges filters can be added to a rule or a single bit-masked filter. If no 
port filters are added to the rule the port value in the packet is ignored by the rule. If 
multiple port filters are added to the rule, each is compared with the packet value and OR'ed 
together to produce the result, for example if a rule has two source port ranges 0-25 and 80-
90 as well as two destination port ranges 25-50 and 110-120, then only packets with a source 
port value of between 0 and 25 or 80 and 90 and with a destination port value of between 25-
50 or 110-120 will result in a rule hit.  

The maximum and minimum values of a port range are inclusive values. If wanting to filter 
on a single port value, a range can be added to the rule with both the minimum and 
maximum values set to the same value. 

ICMP Type Filtering 
ICMP packets can be filtered on their type fields in much the same way as ports can be 
filtered on for TCP, UDP and SCTP packets. The only differences between port filter and 
ICMP type filtering is that the type values are only 8-bit rather than the 16-bit for port values 
and there is a single ICMP type filter list rather than the two source and destination port 
filter lists. 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 5 

PoS Frame Header Formats 
Both PPP with HDLC (RFC 1662) and Cisco type PoS encapsulation is supported, 16 or 32 bit 
CRCs are also supported. The following table lists the PoS header formats supported by the 
filtering software. 

PoS Header Values Format Layer 2 Type 

0xFF030021 RFC 1662 IPv4  

0x0F000800 Cisco IPv4  

0xFF030057 RFC 1662 IPv6 

0x0F0086DD Cisco IPv6 

0xFF030281 RFC 1662 IP with Unicast MPLS shims 

0xFF030283 RFC 1662 IP with Multicast MPLS shims 

0x0F008847 Cisco IP with Unicast MPLS shims 

0x0F008848 Cisco IIP with Multicast MPLS shims 

 

Multi-Protocol Label Switching (MPLS) Support 
The filtering microcode can handle packets with up to 10 MPLS shim headers inserted 
between the HDLC and IP headers. If more than 10 shims are present, the packet is 
automatically dropped and a statistic counter updated. Currently filter rules cannot target 
fields within MPLS shims. 

Modes of Operation 
The filtering software has two possible modes of operation, the first is filter mode, where 
packets that are presented to the IXP network processor are filtered based on the activated 
ruleset, this is what is described above.  

Loopback Mode 
The second mode of operation is loopback mode, where incoming packets are looped back 
out of the IXP without being filtered. In loopback mode the ERF type of the packet record is 
still modified to have a color field, however the value in the color field is always 0x3FFF, this 
is used to distinguish loopback packets from packets that have been filtered. 

Loopback mode is not directly controllable by the user, instead it is automatically entered 
when the filtering software 

• is initially started and no rulesets have been activated. 
• is activating a new ruleset (the process of deactivating the old ruleset and activating 

the new ruleset is not instantaneous, during this time the software is put in looopback 
mode so packets are not lost).  



EDM04-11 IXP Filtering Guide 

6 ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

IXP Filtering API Overview 

IXP Filtering API Dependencies 
Because the IXP Filtering API reads and writes configuration information to from the IXP 
network processor on board the DAG card, it requires the DAG driver to be running and it 
expects both the DAG API and Embedded Messaging API (dagema) libraries to be present. 
The following figure illustrates the logical layering of the various libraries required by the 
IXP Filtering API. 

 

 

 

 

 

 

 

 

 

IXP Filtering API Structure 
The DSM API is divided into six logical sections which all are contained within a single 
library file. 

Name Description 

Initialisation and Termination Provides two functions to initialise the library prior to use and clean up when 
finished with the library. 

Rule Construction Provides the functionality to create and modify rulesets as well as individual 
IPv4 and IPv6 rules. 

Rule Attributes Contains functions to modify the non-filtering attributes of a particular rule. 

Ruleset Loading Contains the necessary functionality to load a ruleset into a DAG 7.1S card and 
activate it. 

Statistics Provides the functionality to retrieve the current statistics associated with the 
filtering process from the DAG card. 

Utilities Provides miscellaneous utilities for the IXP Filtering API. 

 

ADT 
Library 

DAG Driver 

IXP Filtering API 

Embedded  
Messaging API 

DAG API 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 7 

IXP Filtering API and the Embedded Messaging API 
The IXP Filtering API relies on the Embedded Messaging API (EMA) to provide a connection 
to the IXP network processor on the DAG card. Therefore an open EMA connection should 
be established prior to loading/activating a ruleset on the card, the following code snippet 
demonstrates typical usage.  
Note: that error checking has been removed for brevity. 

/* create a ruleset */ 

ruleset_h = dagixp_filter_create_ruleset(); 

 

/* populate the ruleset with rules */ 

... 

/* open the dag card at location 0 */ 

dag_parse_name (“dag0”,  dagname, DAGNAME_BUFSIZE, &stream); 

dagfd = dag_open (dagname); 

 

/* reset the IXP network processor on the card to put it in a known state */ 

/* (this is not necessary but recommended if configuring for the first time) */ 

dagema_reset_processor (dagfd, 0); 

 

/* open a connection to the processor */ 

dagema_open_conn (dagfd); 

 

/* download the ruleset to the card */ 

dagixp_filter_download_ruleset (dagfd, kAllInterfaces, ruleset_h); 

 

/* activate the ruleset */ 

dagixp_filter_activate_ruleset (dagfd, kAllInterfaces, ruleset_h); 

 

/* delete the ruleset */ 

dagixp_filter_delete_ruleset (ruleset_h); 

 

/* close the connection */ 

dagema_close_conn (dagfd, 0); 

 

/* close the dag card */ 

dag_close (dagfd); 

 

Refer to EDM04-15 Embedded Messaging API document for more information on opening and 
closing connections as well as resetting the IXP network processor. 

Note: After resetting the IXP, connections should be added or removed one at a time 
(repeat as many times as required for multiple connections).  Do not 'reset' the IXP 
each time as this will likely result in failure to receive some packets. 



EDM04-11 IXP Filtering Guide 

8 ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

IXP Filtering API and Packet Routing 
For the IP filtering to work, it requires packet records to be past to the IXP network 
processor, by default packets received from the line are routed directly to the host bypassing 
the IXP, and vise versa for packets received from the host. 

The DAG Configuration and Status API library has a set of functions that control the routing 
of packet records within DAG 7.1S cards, the following code snippet shows how the packet 
steering would typically be setup. 

char            dagname[DAGNAME_BUFSIZE]; 

int             dagstream; 

dag_card_ref_t  card_ref; 

dag_component_t root_component; 

dag_component_t erfmux; 

attr_uuid_t     line_steering_attr; 

attr_uuid_t     ixp_steering_attr; 

attr_uuid_t     host_steering_attr; 

 

/* open the dag card at location 0 */ 

dag_parse_name (“dag0”, dagname, DAGNAME_BUFSIZE, &stream); 

/* open a reference to the card and get the root component */ 

card_ref = dag_config_init (dagname); 

root_component = dag_config_get_root_component (card_ref); 

 

/* get the ERF MUS component */ 

erfmux = dag_component_get_subcomponent (root_component, kComponentErfMux, 0); 

 

/* get the three steering attributes */ 

line_steering_attr  

       = dag_component_get_attribute_uuid (erfmux, 
kUint32AttributeLineSteeringMode); 

ixp_steering_attr   

       = dag_component_get_attribute_uuid (erfmux, 
kUint32AttributeIXPSteeringMode); 

host_steering_attr  

       = dag_component_get_attribute_uuid (erfmux, 
kUint32AttributeHostSteeringMode); 

 

/* steer the packets from the line to the IXP */ 

dag_config_set_uint32_attribute (card_ref, line_steering_attr, kSteerIXP); 

/* use the direction bits in the packet record header to determine the steering 
*/ 

 

dag_config_set_uint32_attribute (card_ref, ixp_steering_attr, 
kSteerDirectionBit); 

 

/* steer packets from the host to the IXP */ 

dag_config_set_uint32_attribute (card_ref, host_steering_attr, kSteerIXP); 

/* clean up */ 

dag_config_dispose (card_ref); 

 

In the above example, packets are routed from the line to the IXP, from the host to the IXP 
and from the IXP to either the host or the line depending on the direction bit in the packet 
record header. The direction bit is modified when IP filtering is enabled and the value of the 
bit is user configurable per rule. For more information on how to configure the packet 
routing refer to the EDM04-08 DAG Configuration and Status APIP Programming Guide. 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 9 

IXP Filtering API Typical Usage 
The following steps are usually taken to configure the card: 

1. Configure the card for receiving traffic using the DAG Configuration and Status API 
or the command line dagconfig program. 

2. Create a new ruleset and populate it with filtering rules using the IXP filtering API. 
3. Open an EMA connection to the IXP network processor on the DAG card, if this is the 

first time a connection is opened the IXP processor should be reset first. 
4.  Configure the packet routing module on the card using the Configuration and Status 

API, to route packets from the line to the IXP. 
5. Clean any left over ruleset from the card and then load the new ruleset into the card 

and activate it. 
6. Clean up the ruleset and close the connection to the EMA and DAG card. 

IXP Filtering API and Multiple Threads 
The IXP Filtering API library is not thread safe, users are required to wrap function calls, 
were appropriate, with their own thread safe mechanism (for example semaphores or 
mutexes). 





 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 11 

Function Definitions 

Startup and Shutdown 
The two functions contained in this section are required to initialize and tear down the IXP 
filtering library. The startup function must be called prior to using the library, failure to do 
so will result in unpredictable behavior. 

dagixp_filter_startup Function 

Purpose Initialises the use of the DAG IXP Filter library. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_startup (void) 

Parameters This function has no parameters. 

Returns 0 if the library was initialised and -1 if an error occurred. Call 
dagixp_filter_get_last_error to retrieve the error code. 
EALREADYOPEN (this function has been called previously) 
ENOMEM (not enough free memory available) 

Comments This dagixp_filter_startup function must be the first IXP filter API function called 
by an application or library. The application or library can only issue further IXP filtering 
API function calls after successfully calling dagixp_filter_startup. 
The dagixp_filter_startup function can be called multiple times, but on 
subsequent calls -1 will be returned and dagixp_filter_get_last_error will 
return EALREADYOPEN. 
When it has finished using the services of the IXP filtering library, the application must 
call dagixp_filter_shutdown to allow the DAG IXP Filter library to free any 
resources allocated for the filtering process. 

dagixp_filter_shutdown Function 

Purpose Terminates use of the DAG IXP Filter library. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_shutdown (void) 

Parameters This function has no parameters. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (library not initialised) 

Comments An application is required to perform a successful dagixp_filter_startup call 
before it can use the IXP filtering API library services. When it has completed the use of 
the IXP filtering library, the application must call dagixp_filter_shutdown to free 
any resources allocated by the IXP filtering library on behalf of the application. 
There is no internal reference count for dagixp_filter_startup and 
dagixp_filter_shutdown functions, therefore dagixp_filter_shutdown will free 
all resources regardless of the number of calls made to dagixp_filter_startup. 
The dagixp_filter_shutdown function doesn't delete any rulesets that have been 
created by the application, it is the callers responsibility to delete the any rulesets prior to 
calling dagixp_filter_shutdown. 



EDM04-11 IXP Filtering Guide 

12 ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

Filter Rule Construction 
Functions contained in this section provide the functionality to create a set of filters rules that 
can be loaded into a DAG 7.1S card.  

dagixp_filter_create_ruleset Function 

Purpose Creates a new empty ruleset. 

Declared In dagixp_filter.h 

Prototype RulesetH dagixp_filter_create_ruleset (void) 

Parameters This function has no parameters. 

Returns A handle to a new ruleset is returned if successful. Otherwise, a NULL value is returned 
to indicate an error, and a specific error number can be retrieved by calling 
dagdsm_get_last_error. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
ENOMEM (memory allocation error) 

Comments The dagixp_filter_create_ruleset function creates a new ruleset and returns a 
handle that can be used in subsequent IXP filtering library calls that require a ruleset 
handle. 
When finished with the ruleset, dagixp_filter_delete_ruleset must be called to 
free resources allocated to the ruleset. Rulesets are not automatically deleted when a the 
IXP filtering library is shutdown (by calling dagixp_filter_shutdown), it is the 
callers responsibility to ensure all rulesets are deleted, prior to the application 
terminating, otherwise memory leaks will occur. 
Rulesets are created empty, no filter rules are defined within the ruleset, an empty ruleset 
cannot be loaded into a DAG 7.1S card. 

dagixp_filter_delete_ruleset Function 

Purpose Deletes an existing ruleset. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_delete_ruleset (RulesetH ruleset_h) 

Parameters → ruleset_h 
A handle to the ruleset to delete. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (library not initialised) 
EINVAL (invalid parameter) 

Comments dagixp_filter_delete_ruleset invalidates the specific ruleset handle, frees the 
resources allocated and deletes all the filter rules contained in the ruleset.  
If the dagixp_filter_delete_ruleset call was successful, the ruleset_h handle 
should be discarded, unpredictable behaviour will result if the ruleset handle is 
continued to be used. 
There is no need to free all the individual rules of a ruleset prior to deleting it, this 
function will clean up any rules that remain in the ruleset. For this reason individual rule 
handles associated with a deleted ruleset should be discarded, unpredictable behaviour 
will result if the rule handle is continued to be used. 

 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 13 

dagixp_filter_empty_ruleset Function 

Purpose Removes all the filter rules from a ruleset. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_empty_ruleset (RulesetH ruleset_h) 

Parameters → ruleset_h 

A handle to the ruleset to remove all the rules from. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (library not initialised) 
EINVAL (invalid parameter) 

Comments This function removes all the rules from a ruleset and frees all the resources allocated for 
them. Any rule handles created for the ruleset should be discarded, continuing to use 
them will result in unpredictable behaviour. 

dagixp_filter_ruleset_rule_count Function 

Purpose Returns the number of rules in a ruleset. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_ruleset_rule_count (RulesetH ruleset_h) 

Parameters → ruleset_h 

A handle to the ruleset to get the rule count for. 

Returns The return value is a positive number indicating the number of rules in the ruleset if the 
operation was successful. Otherwise a negative value is returned and 
dagixp_filter_get_last_error will return one of the following error codes. 
ENOTOPEN (library not initialised) 
EINVAL (invalid parameter) 

 



EDM04-11 IXP Filtering Guide 

14 ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

dagixp_filter_ruleset_get_rule_at Function 

Purpose Returns a handle to a rule at a given index inside a ruleset. 

Declared In dagixp_filter.h 

Prototype RuleH dagixp_filter_ruleset_get_rule_at (RulesetH ruleset_h, 
uint32_t index) 

Parameters → ruleset_h 
A handle to the ruleset to get the rule from. 
→ index 

Zero based index of the rule to retrieve. 

Returns A handle to the rule at the given index is returned if successful. Otherwise, a NULL value 
is returned to indicate an error, and a specific error number can be retrieved by calling 
dagdsm_get_last_error. 

ENOTOPEN (library not initialised) 
EINVAL (invalid parameter) 

Comments Rules are stored inside the ruleset in priority order, this is the same order that is used by 
the filtering module to determine the best filter hit. Rules with higher priority appear 
earlier in the ruleset and therefore have a lower index number. Because of this, when 
rules are added to a ruleset the index number of the rules may be rearranged based on 
the priority of the new rule. It should not be assumed that the last rule that has been 
added is at the last index, unless it is guaranteed that the rule has the lowest priority. 
Calling dagixp_filter_set_rule_priority will also change the ordering of the 
rules inside the ruleset and therefore the indices of the rules. Use 
dagixp_filter_set_rule_priority with caution when iterating through rules 
inside a ruleset.  

dagixp_filter_remove_rule Function 

Purpose Deletes a rule from a ruleset. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_remove_rule (RulesetH ruleset_h, RuleH rule_h) 

Parameters → ruleset_h 

A handle to the ruleset to remove the rule from. 
→ rule_h 

Handle to the rule to remove from the ruleset. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (library not initialised) 
EINVAL (invalid parameter) 
ENOMEM (memory error) 

Comments When a rule is removed from a ruleset, the memory allocated for it is freed and the 
ruleset is updated. If dagixp_filter_remove_rule is successful the rule handle 
should be discarded, continuing to use the handle will result in unpredictable behaviour. 
The rule being removed must belong to the given ruleset, this function will fail with an 
error code of EINVAL if the rule doesn't belong to the ruleset.   

 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 15 

dagixp_filter_create_ipv4_rule Function 

Purpose Creates a new rule targeted at Internet Protocol version 4 packets and adds it to the given 
ruleset. 

Declared In dagixp_filter.h 

Prototype RuleH dagixp_filter_create_ipv4_rule (RulesetH ruleset_h, action_t 
action, uint16_t rule_tag, uint16_t priority) 

Parameters → ruleset_h 
A handle to the ruleset to add the new rule to. 
→ action 
The action to assign to the rule, this can be one of the following constants. 
kReject: If the rule hits the packet is rejected (dropped).  
kAccept: If the rule hits the packet is accepted, and routed to either the host or the line 
based on the rule steering attribute and card configuration. 
→ rule_tag 
User defined decimal number that is inserted into the packet record if the rule hits and 
the action is kAccept. The upper two bits of this value are ignored, the range of possible 
values are 0-4095. Multiple rules can have the same tag number. 
→ priority 
Decimal number that defines the priority of the rule, the lower the number the higher the 
priority, a zero value indicates the rule has the highest priority. 

Returns A handle to a new rule is returned if successful. Otherwise, a NULL value is returned to 
indicate an error, and a specific error number can be retrieved by calling 
dagdsm_get_last_error. 

Possible error codes: 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
ENOMEM (memory allocation error) 
EINVAL (invalid parameter) 



EDM04-11 IXP Filtering Guide 

16 ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

 
Comments A successful call to dagixp_filter_create_ipv4_rule will create a blank filter and 

add it to the given ruleset. The new rule will only target IPv4 packets, any other packets 
types will automatically be skipped by the rule. 
The following table illustrates the default values for the rule parameters. 
 

Rule Filter Fields Default Value 

 

Comparand Mask 

Source Address 0.0.0.0 0.0.0.0 
Destination Address 0.0.0.0 0.0.0.0 
IP Protocol 0 0 
Source Port(s) 0 0 
Desination Port(s) 0 0 
IMCP Type(s) 0 0 

Rule Attributes Default Value 

Rule Priority Value set by priority argument 
Rule Action Value set by action argument 
Rule Snap Length 65528 
Rule Steering Steer packets to the host 
Rule Tag Value set by rule_tag argument 

 
Note: The Source Port(s) and Destiantion Port(s) fields are only used if the IP Protocol field is set to 
6 (TCP), 17 (UDP) or 132 (SCTP). The IMCP Type(s) field is only used if the IP Protocol field is set to 
1 (ICMP). 
 
As shown in the above table the newly created rule will always hit IPv4 packets, because 
all the rule parameters are zero. 
If a rule hits on a packet, the action parameter determines what should be done with it, 
the only two possible values are kReject or kAccept. 
The lower the priority number the higher the priority of the rule, zero has the highest 
priority and 65534 has the lowest priority. Although multiple rules may be defined with 
the same priority, it is not recommended, because rules with the same priority are 
compared with the packet in random order, it is not possible to determine the exact order 
of these rules. 
The rule_tag is a user defined 14-bit value that is copied into the lctr/color field of the 
ERF packet record when a rule hits and the rule action is set to accept the packet. Refer to 
EDM11-01 Endace Extensible Record Format for the format of a filtered packet record. 

 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 17 

dagixp_filter_create_ipv6_rule Function 

Purpose Creates a new rule targeted at Internet Protocol version 6 packets and adds it to the given 
ruleset. 

Declared In dagixp_filter.h 

Prototype RuleH dagixp_filter_create_ipv6_rule (RulesetH ruleset_h, action_t 
action, uint16_t rule_tag, uint16_t priority) 

Parameters → ruleset_h 
A handle to the ruleset to add the new rule to. 
→ action 
The action to assign to the rule, this can be one of the following constants. 
kReject: If the rule hits the packet is rejected (dropped).  
kAccept: If the rule hits the packet is accepted, and routed to either the host or the line 
based on the rule steering attribute and card configuration. 
→ rule_tag 
User defined decimal number that is inserted into the packet record if the rule hits and 
the action is kAccept. The upper two bits of this value are ignored, the range of possible 
values are 0-4095. Multiple rules can have the same tag number. 
→ priority 
Decimal number that defines the priority of the rule, the lower the number the higher the 
priority, a zero value indicates the rule has the highest priority. 

Returns A handle to a new rule is returned if successful. Otherwise, a NULL value is returned to 
indicate an error, and a specific error number can be retrieved by calling 
dagdsm_get_last_error. 
Possible error codes:  
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
ENOMEM (memory allocation error) 
EINVAL (invalid parameter) 

Comments A successful call to dagixp_filter_create_ipv6_rule will create a blank filter and 
add it to the given ruleset. The new rule will only target IPv6 packets, any other packets 
types will automatically be skipped by the rule. 
The following table illustrates the default values for the rule parameters. 
 

Rule Filter Fields Default Value 

Comparand Mask 

Source Address 0:0:0:0:0:0:0:0 0:0:0:0:0:0:0:0 
Destination Address 0:0:0:0:0:0:0:0 0:0:0:0:0:0:0:0 
IP Protocol 0 0 
Flow Label 0 0 
Source Port(s) 0 0 
Destination Port(s) 0 0 
ICMP Type(s) 0 0 

Rule Meta Data Default Value 

Rule Priority Value set by priority argument 
Rule Action Value set by action argument 
Rule Snap Length 65528 
Rule Steering Steer the packet to the host 
Rule Tag Value set by rule_tag argument 

Note: The Source Port(s) and Destiantion Port(s) fields are only used if the IP Protocol field is set to 
6 (TCP), 17 (UDP) or 132 (SCTP). The IMCP Type(s) field is only used if the IP Protocol field is set to 
1 (ICMP). See the comments in the dagixp_filter_create_ipv4_rule Function section on 
page 15 for more information on creating a new rule. 



EDM04-11 IXP Filtering Guide 

18 ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

dagixp_filter_set_ipv4_source_field Function 

Purpose Sets the IPv4 source address to filter on. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_set_ipv4_source_field (RuleH rule_h, struct 
in_addr *src, struct in_addr *mask) 

Parameters → rule_h 

Handle to an IPv4 rule. The rule should have been created by the 
dagixp_filter_create_ipv4_rule function. 
→ src 
Pointer to an in_addr structure that represents the source address to use as the 
comparand. 
→ mask 
Pointer to an in_addr structure that represents the source address mask to use for the 
filter. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

dagixp_filter_get_ipv4_source_field Function 

Purpose Gets the IPv4 source address used by the rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_get_ipv4_source_field (RuleH rule_h, struct 
in_addr *src, struct in_addr *mask) 

Parameters → rule_h 
Handle to an IPv4 rule. The rule should have been created by the 
dagixp_filter_create_ipv4_rule function. 
← src 
Pointer to an in_addr structure that receives the comparand part of the source address 
field. 
← mask 
Pointer to an in_addr structure that receives the mask part of the source address field. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 19 

dagixp_filter_set_ipv4_dest_field Function 

Purpose Sets the IPv4 destination address to filter on. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_set_ipv4_dest_field (RuleH rule_h, struct 
in_addr *dst, struct in_addr *mask) 

Parameters → rule_h 
Handle to an IPv4 rule. The rule should have been created by the 
dagixp_filter_create_ipv4_rule function. 
→ dst 
Pointer to an in_addr structure that contains the destination address to use as the 
comparand of the filter field. 
→ mask 
Pointer to an in_addr structure that contains the destination address mask to use for the 
filter field. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

dagixp_filter_get_ipv4_dest_field Function 

Purpose Gets the IPv4 destination address used by the rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_get_ipv4_dest_field (RuleH rule_h, struct 
in_addr *dst, struct in_addr *mask) 

Parameters → rule_h 
Handle to an IPv4 rule. The rule should have been created by the 
dagixp_filter_create_ipv4_rule function. 
← dst 

Pointer to an in_addr structure that receives the comparand part of the destination 
address field. 
← mask 
Pointer to an in_addr structure that receives the mask part of the destination address 
field. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

 



EDM04-11 IXP Filtering Guide 

20 ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

dagixp_filter_set_ipv6_source_field Function 

Purpose Sets the IPv6 source address to filter on. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_set_ipv6_source_field (RuleH rule_h, struct 
in6_addr *src, struct in6_addr *mask) 

Parameters → rule_h 
Handle to an IPv6 rule. The rule should have been created by the 
dagixp_filter_create_ipv6_rule function. 
→ src 

Pointer to an in6_addr structure that contains the source address to use as the 
comparand of the filter field. 
→ mask 
Pointer to an in6_addr structure that contains the source address mask to use for the 
filter field. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

dagixp_filter_get_ipv6_source_field Function 

Purpose Gets the IPv6 source address used by the rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_get_ipv6_source_field (RuleH rule_h, struct 
in6_addr *src, struct in6_addr *mask) 

Parameters → rule_h 
Handle to an IPv6 rule. The rule should have been created by the 
dagixp_filter_create_ipv6_rule function. 
← src 

Pointer to an in6_addr structure that receives the comparand part of the source 
address field. 
← mask 
Pointer to an in6_addr structure that receives the mask part of the source address field. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 21 

dagixp_filter_set_ipv6_dest_field Function 

Purpose Sets the IPv6 destination address to filter on. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_set_ipv6_dest_field (RuleH rule_h, struct 
in6_addr *dst, struct in6_addr *mask) 

Parameters → rule_h 

Handle to an IPv6 rule. The rule should have been created by the 
dagixp_filter_create_ipv6_rule function. 
→ dst 
Pointer to an in6_addr structure that contains the destination address to use as the 
comparand of the filter field. 
→ mask 
Pointer to an in6_addr structure that contains the destination address mask to use for 
the filter field. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

dagixp_filter_get_ipv6_dest_field Function 

Purpose Gets the IPv6 destination address used by the rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_get_ipv6_dest_field (RuleH rule_h, struct 
in6_addr *dst, struct in6_addr *mask) 

Parameters → rule_h 
Handle to an IPv6 rule. The rule should have been created by the 
dagixp_filter_create_ipv6_rule function. 
← dst 
Pointer to an in6_addr structure that receives the comparand part of the destination 
address field. 
← mask 
Pointer to an in6_addr structure that receives the mask part of the destination address 
field. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

 



EDM04-11 IXP Filtering Guide 

22 ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

dagixp_filter_set_ipv6_flow_label_field Function 

Purpose Sets the IPv6 flow label to filter on for a given rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_set_ipv6_flow_label_field (RuleH rule_h, 
uint32_t flow, uint32_t mask) 

Parameters → rule_h 
Handle to an IPv6 rule. The rule should have been created by the 
dagixp_filter_create_ipv6_rule function. 
→ flow 

The value to use as the comparand of the flow label filter field. Only the lower 20 bits of 
this value is used, the upper 12 bits are ignored. 
→ mask 
The value to use as the mask of the flow label filter field. Only the lower 20 bits of this 
value is used, the upper 12 bits are ignored. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

dagixp_filter_get_ipv6_flow_label_field Function 

Purpose Gets the IPv6 flow label filter field used by the rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_get_ipv6_flow_label_field (RuleH rule_h, 
uint32_t *flow, uint32_t *mask) 

Parameters → rule_h 
Handle to an IPv6 rule. The rule should have been created by the 
dagixp_filter_create_ipv6_rule function. 
← flow 
Pointer to a 32-bit value that receives the comparand of the flow label filter field. Only the 
lower 20 bits of the returned value are valid the upper 12 bits will always be zero. 
← mask 
Pointer to a 32-bit value that receives the mask of the flow label filter field. Only the 
lower 20 bits of the returned value are valid the upper 12 bits will always be zero. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 23 

dagixp_filter_set_protocol_field Function 

Purpose Sets the IP protocol field to filter on for a given rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_set_protocol_field (RuleH rule_h, uint8_t 
protocol) 

Parameters → rule_h 
Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 
→ protocol 
The 8-bit IP protocol number to filter on. Setting this value to either TCP(6), UDP(17), 
SCTP(132) or ICMP(1) protocol numbers, will allow addition port or ICMP type filter 
fields to be added to the rule, see to the comments below for more information. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

Comments If the protocol value is set to a TCP(6), UDP(17) or SCTP(132) protocol number, then 
additional source and destination port filters can be added to the rule, this allows for 
additional layer 3 level filtering. See the sections on page 24 - 27 for more information on 
adding port filters to the rule. 
If the protocol value is set to the ICMP (1) protocol number, additional ICMP type filters 
can be added to the rule. See the sections on pages 28 - 30 for more information on adding 
ICMP type filters to the rule. 
There is no mask value associated with the protocol filter field, therefore a direct protocol 
match must occur for a rule hit. 

dagixp_filter_get_protocol_field Function 

Purpose Gets the IP protocol filter field used by the rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_get_protocol_field (RuleH rule_h, uint8_t 
*protocol) 

Parameters → rule_h 
Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 
← protocol 
Pointer to an 8-bit value that receives the protocol filter field. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

 



EDM04-11 IXP Filtering Guide 

24 ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

dagixp_filter_add_source_port_bitmask Function 

Purpose Adds a source port bit-masked filter field to the rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_add_source_port_bitmask (RuleH rule_h, uint16_t 
src, uint16_t mask) 

Parameters → rule_h 
Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 
→ src 
The 16-bit value to use as the comparand of the source port filter field. 
→ mask 
The 16-bit value to use as the mask of the source port filter field. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

Comments This function adds a new bit-masked source port filter to the list of source port filters 
associated with the rule. Up to 254 source port filter entries (of both bit-masked and 
range types) are allowed per rule.  
The list of source port filters is only loaded into the card and activated (by using the 
dagixp_filter_download_ruleset and dagixp_filter_activate_ruleset 
functions) when the rule's protocol field is set to either TCP, UDP or SCTP values. 
Although it is possible to add multiple bit-masked filters to a rule, it is generally not 
recommended, because when the ruleset is loaded into the card only one bit-masked port 
filter is allowed per rule. The API compensates for this limitation by duplicating rules 
that have multiple bit-masked port filters and then allocating one bit-masked port filter 
per duplicated rule. The situation is worsened if both source and destination port filter 
lists have bit-masked filter entries, because duplicate rules are generated for every 
possible combination of source and destination filters.  
The more rules that are loaded into the card the worse the filter performance. Generally 
rules should have either a single bit-masked port filter entry or up to 254 port range 
filters.  

 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 25 

dagixp_filter_add_dest_port_bitmask Function 

Purpose Adds a destination port bit-masked filter field to the rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_add_dest_port_bitmask (RuleH rule_h, uint16_t 
dst, uint16_t mask) 

Parameters → rule_h 

Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 
→ dst 
The 16-bit value to use as the comparand of the destination port filter field. 
→ mask 
The 16-bit value to use as the mask of the destination port filter field. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

Comments This function is equivalent to dagixp_filter_add_sorce_port_bitmask except it 
adds a destination rather than a source port filter entry. See the comments in the 
dagixp_filter_add_source_port_bitmask Function section on page 24 for more 
information. 

dagixp_filter_add_source_port_range Function 

Purpose Adds a source port range filter field to the rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_add_source_port_range (RuleH rule_h, uint16_t 
min_port, uint16_t max_port) 

Parameters → rule_h 
Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 
→ min_port 
The 16-bit value to use as the minimum port value of the source port range. 
→ max_port 
The 16-bit value to use as the maximum port value of the source port range. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

Comments The port range bounded by the min_port and max_port parameters is inclusive, 
therefore if you want to filter on a single port value rather than a range, set both the 
max_port and min_port parameters to the same value. 
Up to 254 source and destination port range filters can be added per rule. Port range 
filters are not limited to one per rule when loaded into the DAG card like bit-masked port 
filters are, therefore a number of port range filters can be added to a single rule with a 
minimal reduction in overall filtering performance. 
Bit-masked and range port filters can be mixed within a single rule, however as 
commented in the dagixp_filter_add_source_port_bitmask Function section on page 24, 
this is generally not a good idea. 



EDM04-11 IXP Filtering Guide 

26 ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

dagixp_filter_add_dest_port_range Function 

Purpose Adds a destination port range filter field to the rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_add_dest_port_range (RuleH rule_h, uint16_t 
min_port, uint16_t max_port) 

Parameters → rule_h 
Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 
→ min_port 
The 16-bit value to use as the minimum port value of the source port range. 
→ max_port 
The 16-bit value to use as the maximum port value of the source port range. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

Comments This function is equivalent to dagixp_filter_add_source_port_range except it 
adds a destination rather than a source port filter entry. See the comments in the 
dagixp_filter_add_source_port_range Function section on page25 for more information. 

dagixp_filter_get_port_list_count Function 

Purpose Returns the number of port filter fields that have been added to the rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_get_port_list_count (RuleH rule_h) 

Parameters → rule_h 
Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 

Returns The return value is a positive number, indicating how many port filters have been added 
to the rule, if the operation was successful. Otherwise a negative value is returned and 
dagixp_filter_get_last_error will return one of the following error codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

Comments This function returns the total number of port filters added to the rule, including both 
source & destination, bit-masked and range type filters. The returned value is typically 
used to iterate over all the port filters per rule. 

 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 27 

dagixp_filter_get_port_list_entry Function 

Purpose Returns the details of a port filter at a given index within a rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_get_port_list_entry (RuleH rule_h, uint32_t 
index, port_entry_t * entry) 

Parameters → rule_h 
Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 
→ index 

The index of the port rule to retrieve. 
← entry 

Pointer to a port_entry_t structure that is populated by this function. See the 
port_entry_t Structure section page 31 for more information. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

Comments This function retrieves the details of a port filter that has been added to a rule, the entry 
parameter should contain a pointer to a port_entry_t structure that will be populated 
with the details of the rule.  
Details for source & destination as well as bit-masked and ranged port filters can be 
retrieved using this function. 

 



EDM04-11 IXP Filtering Guide 

28 ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

dagixp_filter_add_icmp_type_bitmask Function 

Purpose Adds an ICMP type bit-masked filter field to the rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_add_icmp_type_bitmask (RuleH rule_h, uint8_t 
type, uint8_t mask) 

Parameters → rule_h 
Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 
→ type 
The 8-bit value to use as the comparand for the ICMP type filter field. 
→ mask 
The 8-bit value to use as the mask of the ICMP type filter field. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

Comments This function adds a new bit-masked ICMP type filter to the list of ICMP type filters 
associated with the rule. Up to 254 ICMP type filter entries (of both bit-masked and range 
types) are allowed per rule.  
ICMP type filters, target the type field of ICMP headers. IPv6-ICMP (protocol number 58) 
type packets are not supported by these filters. 
The list of ICMP type filters is only loaded into the card and activated (by using the 
dagixp_filter_download_ruleset and dagixp_filter_activate_ruleset 
functions) when the rule's protocol field is set to the ICMP protocol number. 
As with port filter lists, it is not recommended to add multiple bit-masked ICMP type 
rules to a single rule. See the dagixp_filter_add_dest_port_bitmask Function section on 
page 25 for more information. 

 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 29 

dagixp_filter_add_icmp_type_range Function 

Purpose Adds an ICMP type range filter field to the rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_add_icmp_type_range (RuleH rule_h, uint8_t 
min_type, uint8_t max_type) 

Parameters → rule_h 
Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 
→ min_type 
The 8-bit value to use as the minimum ICMP type value of the range. 
→ max_type 
The 8-bit value to use as the maximum ICMP type value of the range. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

Comments The ICMP type range bounded by the min_type and max_type parameters is inclusive, 
therefore if you want to filter on a single ICMP type value rather than a range, set both 
the max_type and min_type parameters to the same value. 
Up to 254 ICMP type range filters can be added per rule. ICMP type range filters are not 
limited to one per rule when loaded into the DAG card like bit-masked ICMP type filters 
are, therefore a number of ICMP type range filters can be added to a single rule with a 
minimal reduction in overall filtering performance. 
Bit-masked and range ICMP type filters can be mixed within a single rule, however as 
commented in the dagixp_filter_add_source_port_bitmask Function section on page 24, 
this is generally not a good idea. 

dagixp_filter_get_icmp_type_list_count Function 

Purpose Returns the number of ICMP type filter entries that have been added to the rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_get_icmp_type_list_count (RuleH rule_h) 

Parameters → rule_h 

Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 

Returns The return value is a positive number, indicating how many ICMP type filters have been 
added to the rule, if the operation was successful. Otherwise a negative value is returned 
and dagixp_filter_get_last_error will return one of the following error codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

 



EDM04-11 IXP Filtering Guide 

30 ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

dagixp_filter_get_icmp_type_list_entry Function 

Purpose Returns the details of a ICMP type filter entry at a given index within a rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_get_icmp_type_list_entry (RuleH rule_h, uint32_t 
index, icmp_entry_t * entry) 

Parameters → rule_h 
Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 
→ index 

The index of the port rule to retrieve. 
← entry 

Pointer to a icmp_entry_t structure that is populated by this function. See the 
icmp_entry_t Structure section on page 31 for more information. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

Comments This function retrieves the details of a ICMP type filter that has been added to a rule, the 
entry parameter should contain a pointer to a icmp_entry_t structure that will be 
populated with the details of the rule.  

port_entry_t Structure 

Purpose Used to retrieve the details of a port filter entry within a rule. 

Declared In dagixp_filter.h 

Prototype typedef struct { 
 uint32_t port_type; 
 uint32_t rule_type; 
 union { 
  struct { 
   uint16_t min_port; 
   uint16_t max_port; 
  } bitmask; 
  struct { 
   uint16_t value; 
   uint16_t mask; 
  } range; 
 } data; 
} port_entry_t; 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 31 

 
 Field Descriptions 
port_type : The port type of the filter, this can have one of two possible values; 
kSourcePort or kDestinationPort. 
rule_type : the rule type of the filter, this can have one of two possible values; 
kBitmask or kRange. 
min_port : the minimum value of a port range filter, only valid if the rule_type data 
field is  kRange. 
max_port : the maximum value of a port range filter, only valid if the rule_type data 
field is  kRange. 
Value : the comparand value of a port bit-mask filter, only valid if the rule_type data 
field is  kBitmask. 
Mask : the mask value of a port bit-mask filter, only valid if the rule_type data field is  
kBitmask. 
 

icmp_entry_t Structure 

Purpose Used to retrieve the details of a ICMP type filter entry within a rule. 

Declared In dagixp_filter.h 

Prototype typedef struct { 
 uint32_t rule_type; 
 union { 
  struct { 
   uint8_t min_type; 
   uint8_t max_type; 
  } bitmask; 
  struct { 
   uint8_t value; 
   uint8_t mask; 
  } range; 
 } data; 
} icmp_entry_t; 

 Field Descriptions 
rule_type : the rule type of the filter, this can have one of two possible values; 
kBitmask or kRange. 
min_type : the minimum value of a ICMP type range filter, only valid if the 
rule_type data field is  kRange. 
max_type : the maximum value of a ICMP type range filter, only valid if the rule_type 
data field is  kRange. 
Value : the comparand value of a ICMP type bit-mask filter, only valid if the rule_type 
data field is  kBitmask. 
Mask : the mask value of a ICMP type bit-mask filter, only valid if the rule_type data 
field is  kBitmask. 
 



EDM04-11 IXP Filtering Guide 

32 ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

Filter Rule Attributes 

dagixp_filter_set_rule_tag Function 

Purpose Sets the tag value associated with the rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_set_rule_tag (RuleH rule_h, uint16_t rule_tag) 

Parameters → rule_h 

Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 
→ rule_tag 
The new tag value to assign to the rule, only the lower 14 bits of this value are used, the 
upper 2 bits are always ignored. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

Comments The rule tag is a user defined 14-bit value, which is copied into the color field of the ERF 
packet record header if the rule produces a hit. Multiple rules can have the same tag 
value, there is no limitation on the tag value except it must fit within 14-bits. 
Although it is allowed, users should avoid setting a rule tag to 0x3FFF, as that is the value 
defined for the color of packets processed when in loopback mode. 

dagixp_filter_get_rule_tag Function 

Purpose Retrieves the tag value associated with a rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_get_rule_tag (RuleH rule_h, uint16_t *rule_tag) 

Parameters → rule_h 

Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 
← rule_tag 
Pointer to a variable that receives the 14-bit rule tag associated with the rule. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 33 

dagixp_filter_set_rule_priority Function 

Purpose Sets the priority value associated with a rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_set_rule_priority (RuleH rule_h, uint16_t 
priority) 

Parameters → rule_h 

Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 
→  priority 
The 16-bit value to use as the priority for the rule, the lower the priority value the higher 
the priority of the rule. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

Comments This function sets the priority of a rule within a ruleset, the lower the priority parameter 
value the higher the rule priority. Rules that have higher priority are compared with 
incoming packets first. 
Care should be taken when iterating over the rules in a ruleset whilst changing the 
priority of the rule, because rules are priority ordered within a ruleset, changing the 
priority of a rule will move it's position within a ruleset.  

dagixp_filter_get_rule_priority Function 

Purpose Retrieves the priority value associated with a rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_get_rule_priority (RuleH rule_h, uint16_t 
*priority) 

Parameters → rule_h 
Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 
←  priority 
Pointer to a variable that receives the 16-bit priority associated with the rule. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

 



EDM04-11 IXP Filtering Guide 

34 ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

dagixp_filter_set_rule_action Function 

Purpose Sets the action associated with a rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_set_rule_action (RuleH rule_h, action_t action) 

Parameters → rule_h 

Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 
→ action 
The action to assign to the rule, this can be one of the following constants. 
kReject: If the rule hits the packet is rejected (dropped).  
kAccept: If the rule hits the packet is accepted, and routed to either the host or the line 
based on the rule steering attribute and card configuration. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

Comments The action of the rule determines the course of action to take if the rule produces a hit for 
a given packet. 

dagixp_filter_get_rule_action Function 

Purpose Retrieves the action associated with a rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_get_rule_action (RuleH rule_h, action_t *action) 

Parameters → rule_h 
Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 
← action 
Pointer to an action_t variable that receives the action associated with the rule. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 35 

dagixp_filter_set_rule_snap_length Function 

Purpose Sets the snap length value associated with a rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_set_rule_snap_length (RuleH rule_h, uint16_t 
snap_len) 

Parameters → rule_h 
Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 
→  snap_len 
A 16-bit value that contains the number of bytes to snap the packet length to.  

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

Comments This function defines the snap length applied to the packet if the rule hits and the rule 
action is set to kAccept. The snap length only applies if the snap_len value is less than the 
size of the packet record that produced the rule hit.  
The snap length should be a multiple of 8 (this ensures 64-bit alignment of packet 
records), if not then the snap length is rounded down to the nearest multiple. The 
minimum snap length allowed is 24 bytes. 
The snap length defined for a rule is independent of the snap length specified when 
configuring the DAG card for packet reception. The snap length that can be configured 
via the DAG Configuration and Status API (or the dagconfig program) is applied to the 
packet records prior to being present to the IXP filtering software. 

dagixp_filter_get_rule_snap_length Function 

Purpose Retrieves the snap length associated with a rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_get_rule_snap_length (RuleH rule_h, uint16_t 
*snap_len) 

Parameters → rule_h 
Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 
← snap_len 
Pointer to a 16-bit variable that receives the snap length associated with the rule. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

 



EDM04-11 IXP Filtering Guide 

36 ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

dagixp_filter_set_rule_steering Function 

Purpose Sets the steering attribute associated with a rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_set_rule_steering (RuleH rule_h, steering_t 
steering) 

Parameters → rule_h 

Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 
→  steering 
The steering to assign to the rule, this can be one of the following constants. 
kHost: The packet record is routed to the host if the rule hits and action attribute is set 
kAccept.  
kLine: The packet record is routed back out the line if the rule hits and action attribute 
is set kAccept.  

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 

Comments This function defines the target of a packet record if the rule hits and the rule action is set 
to kAccept.  
For this option to work successfully the settings for packet routing within the DAG 7.1S 
card should be set to kSteerDirectionBit. See the IXP Filtering API Typical Usage 
section on page 9 for more information. If the packet routing configuration is set to route 
packet from the IXP to the host (kSteerHost) or line (kSteerLine) directly then the 
steering rule attribute is effectively ignored. 

dagixp_filter_get_rule_steering Function 

Purpose Retrieves the steering mode associated with a rule. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_get_rule_steering (RuleH rule_h, steering_t 
*steering) 

Parameters → rule_h 
Handle to either an IPv4 or IPv6 rule. The rule should have been created by either the 
dagixp_filter_create_ipv4_rule or dagixp_filter_create_ipv6_rule 
functions. 
← steering 
Pointer to a steering_t variable that receives the steering mode associated with the 
rule. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 37 

Ruleset Loading 
The four functions contained within this section will fail unless an open EMA (Embedded 
Messaging API) connection has been established prior to calling the functions. See the IXP 
Filtering API and the Embedded Messaging API section on page 7 for more information. 

dagixp_filter_download_ruleset Function 

Purpose Loads a ruleset into a DAG card. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_download_ruleset (int dagfd, uint8_t iface, 
RulesetH ruleset_h) 

Parameters → dagfd 
DAG file descriptor provided by dag_open. 
→ iface 

This parameter should always contain the kAllInterfaces constant. 
→ ruleset_h 
Handle to the ruleset to load into the card. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 
EBADF (bad file descriptor, usually caused by a missing EMA connection) 
ERESP (corrupt message received from the IXP) 
EUNSUPPORTDEV (the dagfd parameter refers to a non-DAG 7.1S card) 

Comments Once a ruleset is loaded into a card, it remains in the card until either 
dagixp_filter_remove_ruleset or dagixp_filter_clear_iface_rulesets is 
called, at any time in the future it can be activated by calling 
dagixp_filter_activate_ruleset. The amount of memory available for storing 
the rulesets on the card is limited, so avoid maintaining a number of rulesets on the card, 
and remove rulesets from the card when they are no longer needed. 
Internally the IXP filtering library maintains a list of ruleset that have been loaded into 
the card, this list is lost when the library is shutdown. Therefore rulesets that have been 
downloaded be a previous process can't be reactivated by a new process, similarly it is 
also recommended to clear all the rulesets on the card when starting a new filter session, 
this will remove all redundant rulesets left over from a previous process. 

 



EDM04-11 IXP Filtering Guide 

38 ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

dagixp_filter_activate_ruleset Function 

Purpose Activates a ruleset on a DAG card. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_activate_ruleset (int dagfd, uint8_t iface, 
RulesetH ruleset_h) 

Parameters → dagfd 
DAG file descriptor provided by dag_open. 
→ iface 
This parameter should always contain the kAllInterfaces constant. 
→ ruleset_h 

Handle to the ruleset to activate. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 
EBADF (bad file descriptor, usually caused by a missing EMA connection) 
ERESP (corrupt message received from the IXP) 
EUNSUPPORTDEV (the dagfd parameter refers to a non-DAG 7.1S card) 

Comments To activate a ruleset on the DAG card, it should have previously been loaded into the 
card by a successful call to dagixp_filter_download_ruleset.  
When a ruleset is activated, the rules contained within the ruleset are copied into 
microcode (packet processing) memory space and the packet processing programs are 
started. From now onwards packets are processed based on the rules contained in the 
ruleset. The filtering process is now running independent of the host, for example the 
ruleset can be deleted and the library closed and the filtering will continue. 
It is possible to download a ruleset to the DAG card while it is active, however any 
changes in the ruleset won't be effective until dagixp_filter_activate_ruleset is 
called on the ruleset again. If a different ruleset is currently activated, this function will 
deactivate the current one and activate the new one. 
The process of activating a filter is not an instantaneous one, during the time it takes, the 
filtering software is put in loop back mode. See the Modes of Operation section on page 5 
for more information. 

 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 39 

dagixp_filter_remove_ruleset Function 

Purpose Removes a ruleset from the card. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_remove_ruleset (int dagfd, uint8_t iface, 
RulesetH ruleset_h) 

Parameters → dagfd 
DAG file descriptor provided by dag_open. 
→ iface 
This parameter should always contain the kAllInterfaces constant. 
→ ruleset_h 
Handle to the ruleset to remove. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 
EBADF (bad file descriptor, usually caused by a missing EMA connection) 
ERESP (corrupt message received from the IXP) 
EUNSUPPORTDEV (the dagfd parameter refers to a non-DAG 7.1S card) 

Comments This function removes a ruleset from the DAG card and frees the memory allocated for it 
within the card. This function doesn't destroy the ruleset handle maintained by the API; it 
just removes it from the card. 
Any downloaded ruleset can be removed from the card, including the current active one. 
If the active ruleset is removed the filtering will continue as before, this function only 
removes the memory associated with the ruleset on the card, not the actual rules 
currently used by the packet processing microcode. 

dagixp_filter_clear_iface_rulesets Function 

Purpose Removes all the rulesets from a DAG card and puts it loop back mode. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_clear_iface_rulesets (int dagfd, uint8_t iface) 

Parameters → dagfd 
DAG file descriptor provided by dag_open. 
→ iface 

This parameter should always contain the kAllInterfaces constant. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 
EBADF (bad file descriptor, usually caused by a missing EMA connection) 
ERESP (corrupt message received from the IXP) 
EUNSUPPORTDEV (the dagfd parameter refers to a non-DAG 7.1S card) 

Comments This function removes all the ruleset from the DAG card and frees the memory allocated 
within the card then puts it in loopback mode. This function is typically called when the 
library is first opened to remove any stale rulesets present in the card. 



EDM04-11 IXP Filtering Guide 

40 ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

Statistics 
The two functions contained within this section will fail unless an open EMA (Embedded 
Messaging API) connection has been established prior to calling them. See the IXP Filtering 
API and the Embedded Messaging API section on page 7 for more information. 

statistic_t Type 

Purpose Contains the filtering statistic identifiers. 

Declared In dagixp_filter.h 

Prototype typedef enum { 
 kPacketsRecv                 = 0, 
 kPacketsAccepted             = 1, 
 kPacketsInPlay               = 1000, 
 kPacketsDroppedErfType       = 1001, 
 kPacketsDroppedHdlc          = 1002, 
 kPacketsDroppedErfSize       = 1003, 
 kPacketsDroppedNoFree        = 1004, 
 kPacketsDroppedRxFull        = 1005, 
 kPacketsDroppedTxFull        = 1006, 
 kPacketsDroppedIPv6ExtHeader = 1007, 
 kPacketsDroppedSeqBuffer     = 1008, 
 kPacketsDroppedTooBig        = 1009, 
 kPacketsDroppedMplsOverflow  = 1010, 
 kMsfErrUnexpectedSOP         = 1011, 
 kMsfErrUnexpectedEOP         = 1012, 
 kMsfErrUnexpectedBOP         = 1013, 
 kMsfErrNullMPacket           = 1014, 
 kMsfErrStatusWord            = 1015, 
 kAllStatistics               = 65534, 
} port_entry_t; 

 Field Descriptions 
kPacketsRecv 

The number of packets that have been received by the IXP, this is a 64-bit number that 
will roll over to 0 (after 18446744073709551615 packets have been received). 
kPacketsAccepted 

The number of packets that have been accepted and sent back out  the IXP chip, this 
statistic doesn't cover the number of packets that have been accepted but were dropped 
because of buffer overflows or transmit errors. 
kPacketsInPlay 

Contains the number of packets that are being filtered at that instant, this statistic will 
contain a value between 0 and 8192. When the number of packets in play reaches 8192 
packets will be dropped, if this statistic is regularly up around 4000 you may want to 
consider reducing the number of filter rules to avoid packets being dropped due to buffer 
overrun. 
kPacketsDroppedErfType 

Number of packets dropped because the ERF type received from the FPGA was not a PoS 
type record (type 1 or 5). 
kPacketsDroppedHdlc 

Number of packets dropped because the HDLC header of the PoS frame was not 
recognised, the filtering software only accepts a small number of standard HDLC 
headers. 
kPacketsDroppedErfSize 

Number of packets dropped because of a mismatch in the record length field of the ERF 
header and the length of the actual record. 
 
 
kPacketsDroppedNoFree 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 41 

Number of packets dropped due to the internal packet buffers reaching their limit, the 
filtering software can buffer up to 8192 packets internally when this limit is reached 
packets are dropped. 
This statistic will increase if the host machine can't process the packets fast enough, in 
such cases reverse flow control will be asserted back to the filtering software and packets 
will be dropped. 
kPacketsDroppedRxFull 

This statistic is reserved for future use and is currently not implemented. 
kPacketsDroppedTxFull 

This statistic is reserved for future use and is currently not implemented. 
kPacketsDroppedIPv6ExtHeader 

Number of IPv6 packets dropped because an unknown extension header was found in 
the packet, see to the table on page 3 for a list of supported IPv6 extension headers. 
kPacketsDroppedSeqBuffer 

Number of packets dropped because more than 10 MPLS shim headers were found in the 
packet, the IP filtering software supports a maximum of 10 MPLS shims. 
kPacketsDroppedTooBig 

Indicates the number of packets dropped because the filtering process delayed the packet 
to long, this is caused by complex filter rules that lead to varied packet latencies within 
the filtering software. 
kPacketsDroppedMplsOverflow 

Number of packets dropped because they are too large to be processed, the maximum 
packet size supported is 4096 bytes including the ERF header. 
kMsfErrUnexpectedSOP 

Number of packets dropped because of an MSF bus error. 
kMsfErrUnexpectedEOP 

Number of packets dropped because of an MSF bus error. 
kMsfErrUnexpectedBOP 

Number of packets dropped because of an MSF bus error. 
kMsfErrNullMPacket 

Number of packets dropped because of an MSF bus error. 
kMsfErrStatusWord 

Number of packets dropped because of an MSF bus error. 
kAllStatistics 

Constant that allows for all the statistics to be cleared with a single function call. 

Comments The kPacketsRecv and kPacketsAccepted statistics are 64-bit counters that roll over 
when they reach their limit, the rest of the statistics are 32-bit counts that don't roll over. 

 



EDM04-11 IXP Filtering Guide 

42 ©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 

dagixp_filter_hw_reset_filter_stat Function 

Purpose Resets a filtering statistic on a DAG card. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_hw_reset_filter_stat (int dagfd, statistic_t 
stat) 

Parameters → dagfd 
DAG file descriptor provided by dag_open. 
→ stat 
The identifier of a statistic. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 
EBADF (bad file descriptor, usually caused by a missing EMA connection) 
ERESP (corrupt message received from the IXP) 
EUNSUPPORTDEV (the dagfd parameter refers to a non-DAG 7.1S card) 

Comments The kAllStatistics constant can be past to this function to reset all the statistics in 
one go, however internally the API resets one statistic at a time and therefore cannot 
guarantee that the statistics will all be cleared atomically. 

dagixp_filter_hw_get_filter_stat Function 

Purpose Gets the contents of a filter statistic from a DAG card. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_hw_get_filter_stat (int dagfd, statistic_t stat, 
uint32_t *stat_low, uint32_t *stat_high) 

Parameters → dagfd 
DAG file descriptor provided by dag_open. 
→ stat 
The identifier of a statistic. 
← stat_low 
Pointer to a 32-bit variable that receives the lower 32-bits of the statistic. 
← stat_high 
Pointer to a 32-bit variable that receives the upper 32-bits of the statistic. This parameter 
can be NULL if getting a 32-bit statistic counter. 

Returns The return value is zero if the operation was successful. Otherwise a negative value is 
returned and dagixp_filter_get_last_error will return one of the following error 
codes. 
ENOTOPEN (the library hasn't been initialised, call dagixp_filter_startup) 
EINVAL (invalid parameter) 
EBADF (bad file descriptor, usually caused by a missing EMA connection) 
ERESP (corrupt message received from the IXP) 
EUNSUPPORTDEV (the dagfd parameter refers to a non-DAG 7.1S card) 



 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 43 

Utilities 

dagixp_filter_set_last_error Function 

Purpose Gets the value of the last error code generated by an IXP filtering API function. 

Declared In dagixp_filter.h 

Prototype int dagixp_filter_get_last_error (void) 

Parameters This function takes no parameters 

Returns The returned value is the last generated error code or 0 if no error was generated. 

Comments When any of the dagixp_filter_functions are called, they internally reset the last 
error value to 0; therefore the last error code will not persist across multiple IXP filtering 
function calls. 





 EDM04-11 IXP Filtering Guide 

©2006-2008 Endace Technology Ltd. Confidential - Version 3: November 2008 45 

Version History 

Version Date Reason 

1 March 2006 Old Version 
2 October 2007 New template and revision 
3 November 2008 Corrections and added information about IXP reset. 
   

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 


	Protection Against Harmful Interference
	Extra Components and Materials
	Disclaimer
	Website
	Copyright 2008 Endace Technology Ltd. All rights reserved.
	IXP Filtering Introduction
	IXP Filtering Overview
	DAG 7.1S Card Overview
	IXP Filter Software Overview
	Coloured Packet Records
	IXP Filter Rulesets
	Rulesets
	Internet Protocol Version 4 Rules
	Internet Protocol Version 6 Rules
	TCP, UDP and SCTP Port Filtering
	ICMP Type Filtering
	PoS Frame Header Formats
	Multi-Protocol Label Switching (MPLS) Support

	Modes of Operation
	Loopback Mode

	IXP Filtering API Overview
	IXP Filtering API Dependencies
	IXP Filtering API Structure
	IXP Filtering API and the Embedded Messaging API
	IXP Filtering API and Packet Routing
	IXP Filtering API Typical Usage
	IXP Filtering API and Multiple Threads


	Function Definitions
	Startup and Shutdown
	dagixp_filter_startup Function
	dagixp_filter_shutdown Function

	Filter Rule Construction
	dagixp_filter_create_ruleset Function
	dagixp_filter_delete_ruleset Function
	dagixp_filter_empty_ruleset Function
	dagixp_filter_ruleset_rule_count Function
	dagixp_filter_ruleset_get_rule_at Function
	dagixp_filter_remove_rule Function
	dagixp_filter_create_ipv4_rule Function
	dagixp_filter_create_ipv6_rule Function
	dagixp_filter_set_ipv4_source_field Function
	dagixp_filter_get_ipv4_source_field Function
	dagixp_filter_set_ipv4_dest_field Function
	dagixp_filter_get_ipv4_dest_field Function
	dagixp_filter_set_ipv6_source_field Function
	dagixp_filter_get_ipv6_source_field Function
	dagixp_filter_set_ipv6_dest_field Function
	dagixp_filter_get_ipv6_dest_field Function
	dagixp_filter_set_ipv6_flow_label_field Function
	dagixp_filter_get_ipv6_flow_label_field Function
	dagixp_filter_set_protocol_field Function
	dagixp_filter_get_protocol_field Function
	dagixp_filter_add_source_port_bitmask Function
	dagixp_filter_add_dest_port_bitmask Function
	dagixp_filter_add_source_port_range Function
	dagixp_filter_add_dest_port_range Function
	dagixp_filter_get_port_list_count Function
	dagixp_filter_get_port_list_entry Function
	dagixp_filter_add_icmp_type_bitmask Function
	dagixp_filter_add_icmp_type_range Function
	dagixp_filter_get_icmp_type_list_count Function
	dagixp_filter_get_icmp_type_list_entry Function
	port_entry_t Structure
	icmp_entry_t Structure

	Filter Rule Attributes
	dagixp_filter_set_rule_tag Function
	dagixp_filter_get_rule_tag Function
	dagixp_filter_set_rule_priority Function
	dagixp_filter_get_rule_priority Function
	dagixp_filter_set_rule_action Function
	dagixp_filter_get_rule_action Function
	dagixp_filter_set_rule_snap_length Function
	dagixp_filter_get_rule_snap_length Function
	dagixp_filter_set_rule_steering Function
	dagixp_filter_get_rule_steering Function

	Ruleset Loading
	dagixp_filter_download_ruleset Function
	dagixp_filter_activate_ruleset Function
	dagixp_filter_remove_ruleset Function
	dagixp_filter_clear_iface_rulesets Function

	Statistics
	statistic_t Type
	dagixp_filter_hw_reset_filter_stat Function
	dagixp_filter_hw_get_filter_stat Function

	Utilities
	dagixp_filter_set_last_error Function


	Version History

