

Enhanced Packet Processing Software Guide
EDM04-26

EDM04-26v1 Enhanced Packet Processing Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

Protection Against Harmful Interference
When present on equipment this manual pertains to, the statement "This device complies with part 15 of the FCC
rules" specifies the equipment has been tested and found to comply with the limits for a Class A digital device,
pursuant to Part 15 of the Federal Communications Commission [FCC] Rules.
These limits are designed to provide reasonable protection against harmful interference when the equipment is
operated in a commercial environment.
This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in
accordance with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will
be required to correct the interference at their own expense.

Extra Components and Materials
The product that this manual pertains to may include extra components and materials that are not essential to its
basic operation, but are necessary to ensure compliance to the product standards required by the United States
Federal Communications Commission, and the European EMC Directive. Modification or removal of these
components and/or materials, is liable to cause non compliance to these standards, and in doing so invalidate the
user’s right to operate this equipment in a Class A industrial environment.

Disclaimer
Whilst every effort has been made to ensure accuracy, neither Endace Technology Limited nor any employee of
the company, shall be liable on any ground whatsoever to any party in respect of decisions or actions they may
make as a result of using this information.
Endace Technology Limited has taken great effort to verify the accuracy of this manual, but nothing herein should
be construed as a warranty and Endace shall not be liable for technical or editorial errors or omissions contained
herein.
In accordance with the Endace Technology Limited policy of continuing development, the information contained
herein is subject to change without notice.

Website

Copyright 2008 Endace Technology Ltd. All rights reserved.

http://www.endace.com

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
Endace Technology Limited.
Endace, the Endace logo, Endace Accelerated, DAG, NinjaBox and NinjaProbe are trademarks or registered
trademarks in New Zealand, or other countries, of Endace Technology Limited. Applied Watch and the Applied
Watch logo are registered trademarks of Applied Watch Technologies LLC in the USA. All other product or
service names are the property of their respective owners. Product and company names used are for identification
purposes only and such use does not imply any agreement between Endace and any named company, or any
sponsorship or endorsement by any named company.
Use of the Endace products described in this document is subject to the Endace Terms of Trade and the Endace
End User License Agreement (EULA).

 EDM04-26v1 Enhanced Packet Processing Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 i

Contents
Introduction 1

Default packet processing functions .. 1
Enhanced packet processing ... 2
Enhanced packet processing functions.. 4

Packet Receive ... 5
Packet Parsing and Header Field Extraction ... 6
Classify – Hash Load Balancing.. 8
Classify – Filtering .. 10
Colorize .. 11
Steering ... 12

Configuration Examples 15
Example 1: ... 15
Example 2: ... 15
Example 3: ... 16

Version History 17

 EDM04-26v1 Enhanced Packet Processing Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 1

Introduction

This document explains how to configure the enhanced packet processing. It covers the
capabilities of each of the enhanced processing steps (parse, extract, classify, colorize and
steer) and describes the software interface used to configure them. Then provides
programming examples to demonstrate how to combine these functions to achieve high level
functionality such as filtering, Hash Load Balancing and duplication.

This document is applicable to the following DAG cards:

• 5.0SG2A
• 5.2SXA (5.2SAA and 5.2XAA)
• 5.4GA
• 5.4SA-12
• 5.4SGA-48

For information on accelerated DAG cards with daughter board Co-Processors see EDM02-02
Co-Processor IP Filtering Software Manual.

Default packet processing functions
When performing packet capture all Endace DAG cards perform the same basic functions:

1. Receive traffic on one or more physical ports.
2. De-encapsulate and extract packets from the received bit stream. Ethernet or Packet

Over Sonet (POS) encapsulations are typical, depending on port type.
3. Wrap each received packet in an Extended Record Format (ERF) record. Insert a

timestamp into the ERF header to record the exact time the packet was received. Also
insert the port number the packet was received on, and set the ERF record type to ERF
1. TYPE_HDLC_POS or ERF 2. TYPE_ETH. For multi-port cards, merge the traffic from all
ports into a single incoming packet stream, ensuring timestamp order per port is
maintained.

4. Write the ERF record via hardware controlled direct memory access (DMA) to a
stream buffer that is shared with the application and resides on the host computer.

Steps 1-4 implement 100% capture of all packets and are documented in each DAG Card User
Guide.

EDM04-26v1 Enhanced Packet Processing Software Guide

2 ©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

Enhanced packet processing
Some DAG cards and their associated software provide enhanced packet processing
functions that can be used to simplify and accelerate packet processing software on the
server. You may need to download the latest software and firmware release from the Endace
website to access these features on your DAG card. Refer to the most recent DAG Card User
Guide to determine if Enhanced packet processing is available on your DAG card.

With the enhanced packet processing capability the following types of enhanced capabilities
can be achieved:

• Filtering: The goal is to save bus bandwidth and reduce the amount of traffic the
application must process by filtering out unneeded traffic before it is written into the
application's stream buffer. Filtering requires identifying the desired fields in the
packet's protocol headers, performing a comparison function against these fields to
identify (i.e. classify) traffic streams, and dropping the unneeded traffic while letting
the desired streams pass through to the stream buffer.

• Hash Load Balancing (HLB): The goal of Hash Load Balancing is to receive a mixed
stream of packets and spread the traffic evenly across several stream buffers. This is
typically used to optimize the parallel processing done by multi-core servers since
each core will only see a subset of the full traffic load. You normally want to
distributing traffic equally (or roughly equally) across the stream buffers while
preserving "flow coherence", meaning, all packets associated with a single TCP/IP
session must always go to the same stream buffer. Hashing is the tool used to classify
the flow coherent streams and mathematically assign a "bin number" to each packet.
Bin numbers are then associated with specific stream buffers to achieve the desired
load balancing. A full discussion of how hash functions work is beyond the scope of
this document, but in essence the Hash Load Balancing performs packet classification
and steering similar to filtering and steering.

• Classify and Colorize: The goal is to have the hardware perform the first level of
traffic classification and then write the classification result (commonly called the
packet's colour) into a field in the extended ERF record. Later, when processing the
packet, the application can accelerate its processing by doing a simple lookup on the
packet's colour and jump directly to the appropriate processing function.

• Classify and Steer: Similar to filtering, but the goal is not to eliminate (i.e. drop)
traffic but rather spread traffic across multiple stream buffers in order to take better
advantage of multi-core processors. For example, all traffic to and from a specific IP
address could be sent to one stream buffer, while all other traffic sent to another.

• Duplication: For this document, packet duplication is defined as writing a single
packet into more than one stream buffer. It does not mean writing the packet twice
into the same stream buffer. Packet duplication can simplify software architectures
where different types of processing needs to be done on the same packet. For
example, all traffic can be sent to stream buffer 0 for use by a capture to disk
applications, while only a subset of traffic is sent to stream buffer 2 for handling by a
traffic analysis application.

When properly configured by the application software, the following processing steps work
together to implement the enhanced packet processing functions. Refer to the following
diagram for a graphical representation of these steps.

 EDM04-26v1 Enhanced Packet Processing Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 3

EDM04-26v1 Enhanced Packet Processing Software Guide

4 ©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

Enhanced packet processing functions
1. Receive traffic on one or more physical ports. For further details, see Packet Receive

5

(page).
2. De-encapsulate and extract packets from the received bit stream. Ethernet or Packet

Over SONET (POS) encapsulations are assumed, depending on port type.
3. Wrap each received packet in an Extended Record Format (ERF) record. Insert the

timestamp, port number and set the ERF record type to ERF 1. TYPE_HDLC_POS or ERF 2.
TYPE_ETH. For multi-port cards, merge the traffic from all ports into a single incoming
packet stream.

4. Extract the EtherType field or PPP protocol field, and a subset of the TCP/IP packet
header fields. These are called the extracted fields and are used by the packet
classification function below. For further details, see Packet Parsing and Header Field
Extraction 6 (page).

5. Classify the packet using the extracted fields. Two types of classification can be
performed simultaneously: Hash Load Balancing and field matching.
• Hash Load Balancing – runs a configurable subset of the extracted fields through

a standard CRC32 algorithm. The output from the algorithm is 10 bits, which are
given to a configurable look up table to yield 4 bits that identify which of 16 "hash
bins" the packet belongs to. For further details, see Classify – Hash Load
Balancing 8 (page).

• Field matching (also called filtering) – using user defined Tertiary Content
Addressable Memory (TCAM), simultaneously compares each bit of the packet's
extracted fields against a number of bit masks (comprised of 0/1/don't care). It
then returns the location of the highest priority (lowest numbered) memory
location that matches the extracted fields. This location is then used to address
into a colour lookup table, which returns the 16-bit value that has been defined by
the application for that memory location. For further details, see Classify –
Filtering 10 (page).

6. Merge the hash result with the filtering return value to define the packet's "color". The
packet's color is the key output of the packet classification process. The packet's
colour is inserted in the extended header of the ERF record. It is often used by
application software to accelerate packet processing since the packet classification
process has been performed efficiently in hardware. Note that only a subset of the
colour value is used to guide packet steering below. For further details, see Colorize

11

(page).
7. Using the packet's color (and optionally the port ID) index into a configurable lookup

table and determine whether to DMA the packet to one or more stream buffers in the
host, or drop (i.e. filter out) the packet. The number of stream buffers supported by
each DAG card depends on type of card. Sending a packet to more than one stream
buffer is valid and results packet duplication to multiple stream buffers. For further
details, see Steering 12 (page).

 EDM04-26v1 Enhanced Packet Processing Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 5

Packet Receive

Functional description

Steps 1-3 above describe the Packet Receive function. Traffic is received on one or more
physical ports, packets are de-encapsulate and extracted from the received bit stream, each
packet is wrapped in an Extended Record Format (ERF) record and the time-stamp and
receive port are written into the ERF header. Traffic from all ports is merged into a single
datapath.

How to program

Configuration of the Packet Receive function is fully described in your DAG Card User
Guide, which describes how to load and initialize the DAG card and prepare the packet
receive function for basic packet capture. For the remainder of this document, it is assumed
that:

• the DAG card drivers have been installed,
• the appropriate firmware has been loaded on the card, and,
• for DAG cards that support multiple protocols, the DAG card has been configured to

receive the desired protocol.

EDM04-26v1 Enhanced Packet Processing Software Guide

6 ©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

Packet Parsing and Header Field Extraction
After the packet receive process is complete, the DAG card extracts a subset of the packet's
headers for later use by the Hash Load Balancing and classification functions. This extraction
process differs slightly depending on whether the interface is Ethernet or SONET/SDH.

Functional description - Ethernet

The TCP/IP header's location is determined dynamically (i.e. on a packet by packet basis)
because the TCP/IP header's offset from the beginning of the packet depends on the layer 2
encapsulation used, as defined by the EtherType field. Supported IP encapsulation options
allow 0, 1, or 2 VLAN tags. Although the VLAN tags cannot be used in the hashing or
filtering steps, the presence of VLAN tags does not interfere with IP and TCP/UDP header
field extraction. VLAN tags are simply skipped over.

Header field extraction proceeds until the protocol parser has extracted all the desired fields
or until the parser can proceed no further because the protocol is not supported. The parser
assigns zeros to any fields it could not extract from the packet. The following are the
maximum number of fields that can be extracted:

EtherType or PPP protocol (16 bits)
IPv4 Source IP Address (32 bits)
IPv4 Destination IP Address (32 bits)
IP Protocol field (8 bits)
Source TCP or UDP port (16 bits)
Destination TCP or UDP port (16 bits)
TCP Flags field (6 bits)
Receive port ID (1 bit)

For Ethernet, the parsing of these fields proceeds as follows:

1. Set the receive port ID based on which port the packet arrived on, and initialize all
extracted fields to zero.

2. Look at the 16 bit EtherType value. If the EtherType value is VLAN 802.1Q (0x8100)
then skip over theVLAN tag, and look at the EtherType value just after the VLAN tag.
If the EtherType is again 0x8100 then skip over the second VLAN tag.

3. After VLAN tag skipping, extract the EtherType field. If the EtherType is not IP
(0x0800) then stop parsing. Note: for the application to classify these these types of
packets the filter rule should only look at receive port and EtherType, all other fields
in the filter rule should be set to "don't care."
(note: if the parser gets to this step then we know the extracted EtherType value is IP
= 0x0800) Extract the IP source address, the IP destination address, and the IP
Protocol field.

4. Examine the IP protocol field. If it is neither TCP (6) nor UDP (17) then stop parsing.
In this case filtering can be performed on receive port, EtherType, IP protocol and IP
src/dst. All other fields in the filter rule should be set to "don't care."

5. If the IP protocol field is UDP then extract the UDP source and destination addresses
and then stop parsing. Filtering can be performed on receive port, EtherType, IP
Protocol, IP src/dst, and UDP src/dst. The TCP flags field should be set to "don't
care."

6. If the IP protocol field is TCP then extract the TCP source and destination addresses,
and the lower 6 bits from the TCP flags field (also called the TCP control field). The
bits extracted are URG, ACK, PSH, RST, SYN, and FIN. Then stop parsing. All fields
are available for filtering.

The extracted fields are concatenated together and form a contiguous 127-bit word that is
passed to the TCAM for filter lookup.

 EDM04-26v1 Enhanced Packet Processing Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 7

Functional description – SONET/SDH

For SONET/SDH ports the encapsulations supported are PPP in HDLC like framing
(RFC1661) and Cisco HDLC (POS in this document).

The parsing proceeds as follows:

1. Set the receive port ID based on which port the packet arrived on, and initialize all
extracted fields to zero.

2. Examine the 16 bit HDLC protocol field. If the value is POS (0x0F00) or PPP (0xFF03)
then the 16 bits after the protocol field are extracted as the EtherType or the PPP
protocol field respectively.

3. For all other HDLC protocol field values, stop parsing. In this case filtering can only
be performed on the receive port bit. All other fields should be set to "don't care."

4. If POS and the extracted EtherType value is not IP (0x0800) then stop parsing. If PPP
and the protocol type is not IP (0x0021) then stop parsing. In either case filtering can
only be performed on receive port and EtherType/PPP protocol. All other fields
should be set to "don't care."

5. If POS and the extracted EtherType value is IP, or if PPP and the protocol type is IP,
then extract the IP source address, the IP destination address, and the IP Protocol
field.

6. Examine the IP protocol field. If it is not TCP (6) or UDP (17) then stop parsing. In
this case filtering can be performed on receive port, EtherType, and IP src/dst. All
other fields should be set to "don't care."

7. If the IP protocol field is UDP then extract the UDP source and destination addresses
and then stop parsing. Filtering can be performed on receive port, EtherType, IP
src/dst, and UDP src/dst. The TCP flags field should be set to "don't care."

8. If the IP protocol field is TCP then extract the TCP source and destination addresses,
and the lower 6 bits from the TCP flags field (also called the TCP control field). The
bits extracted are URG, ACK, PSH, RST, SYN, and FIN. Then stop parsing. All fields
are available for filtering.

The extracted fields are concatenated together and form a contiguous 127-bit word that is
passed to the TCAM for filter lookup.

How to configure

There is no configuration required for the packet parsing function. As described above is the
default behaviour.

EDM04-26v1 Enhanced Packet Processing Software Guide

8 ©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

Classify – Hash Load Balancing

Functional description

Hash Load Balancing occurs on a configurable subset of the extracted header fields described
above. The same subset applies to all packets received on all ports. Each extracted field is
padded out to 32 bits, XOR'd together to form a single 32 bit word, which is then passed
through a standard CRC32 algorithm. The 10 bit output of the CRC algorithm is sent to a
user configurable lookup table called the Hash Association Table (HAT). The output of the
HAT is a 4 bit value, which is known as the packet's hash-bin.

Hash Load Balancing in this way maintains flow coherence, meaning, all packets from a
single TCP/IP session produce the same 10-bit hash result so that the bi-directional stream of
packets forming the TCP/IP session are always kept together for processing by a single
application. Hash Load Balancing is, in some ways, the inverse of filter-based classifying.
Filters are typically used to classify packets by identifying specific TCP/IP flows. With Hash
Load Balancing, the TCP/IP headers are used to generate what is essentially a random value
(the 10 bit hash result). It is up to the application to determine how to sort these randomized
flows into 16 groups (the 16 hash bins). Typically the goal is load balancing – the process of
assign a well defined subset of flows to each core of a multi-core server.

For example, if there are 4 processor cores available to handle packet flows, the application
could configure the HAT to sort all traffic into four bins, leaving the remaining 8 bins empty.
Those four bins would then be steered to four stream buffers (see Steering 12 (page)), and
each processor core would be given a single buffer to handle. Alternatively, the HAT could
be configured to use all 16 bins, with steering used to assign four bins per stream buffer.

The obvious question is why use a HAT at all? Why not just produce 4 bits directly from the
CRC32 algorithm? The purpose of the HAT is to allow applications to "tweak" the
assignment of flows to bins. For example, if the application finds that one flow is generating
25% of the traffic, it could use the HAT to map the 10-bit hash result for that flow to its own
hash bin.

Note: The HAT can be modified "on-the-fly" while packet capture is occurring. However,
changing the HAT during packet capture may result in a temporary splitting of a
single TCP/IP flow across two bins.

As mentioned above, a subset of the extracted header fields can be used for hashing. The
subset to use must be configured before packet capture is enabled, and it cannot be changed
without halting packet capture. The subsets supported are as follows:

• 2-tuple (IP src + IP dst)
• 3-tuple (2-tuple + IP Protocol)
• 4-tuple (3-tuple + Interface)
• 5-tuple (3-tuple + TCP/UDP src + TCP/UDP dst)
• 6-tuple (5-tuple + Interface)

The DAG card's Hash Load Balancing function is optional, and is enabled using the
dagconfig tool provided by Endace. Hash Load Balancing can be turned on and off without
reprogramming the HAT (see below) but data capture must be halted in order to disable or
enable Hash Load Balancing. If Hash Load Balancing is enabled, the ERF Type of captured
packets is changed to ERF 19. TYPE_COLOR_HASH_POS record with Hash Load Balancing or ERF
20. TYPE_COLOR_HASH_ETH variable length record with Hash Load Balancing. See EDM11-01
ERF types for details. The 4-bit hash result can be used to define the lower 4 bits of the
packet's colour field in the ERF header.

 EDM04-26v1 Enhanced Packet Processing Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 9

How to program

Enable hashing:
dagconfig -d0 -S hash_encoding_from_ipf=on

Turn off the backward compatible use of filter result (see Colorize 11 (page)):
dagconfig -d0 -S shift_colour=on

Configure the fields to be used for CRC32 algorithm by specifying the number of tuples to
use (see definition of tuples on previous page). In this example, the 4-tuple fields are used:

dagconfig -d0 -S n_tuple_select=4
Load the HAT to map the 10-bit hash value to the 4-bit bin value. The syntax is to specify the
percent range of hash values to assign to each bin, specified as a range of integers (0-999).
The following example evenly spreads the hash values across the lower 4 bins, leaving the
upper 12 bins empty:

dagconfig -d0 -S hat_range=0-249:250-499:500-750:750:999
The next example spreads the hash values unevenly across bins 1,4, 10, and 12 , leaving the
rest empty. There is no practical application for this example, but it shows the syntax.

dagconfig -d0 -S hat_range= :0-1: : : 2-499 : : : : : : 500-800 : :801-999 :
: :

dagconfig attributes - HAT

The following dagconfig attributes are applicable to the HAT (Hash Association Table) part
of Enhanced Packet Processing. Using the dagconfig -S and -G options you can set and get
values of the listed attributes.

Option Description

hash_encoding_from_ipf Enables (on) or disables (off) hash encoding in the DAG card.

n_tuple_select Sets the hashing tuple value (2, 3, 4, 5 or 6).
hat_range Sets the HAT ranges for the DAG card. This determines how the

hash output are distributed over to the 16 banks. The ranges is 0 to
1000. Note: You may need to tune these ranges to ensure even
distribution.
For example :
dagconfig -d0 -S hat_range=0-90:90-160:160-200:200-
250:250-310:310-370:370-430:430-500:500-560:560-
620:620-680:680-750:750-810:810-870:870-940:940-
1000

shift_colour Enables (on) the higher 2 bits of color for the hash value. If not set,
the user tag's lower two bits are overwritten by the hash value.

For more details about dagconfig, see you DAG Card User Guide.

EDM04-26v1 Enhanced Packet Processing Software Guide

10 ©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

Classify – Filtering

Functional description

After the packet header fields are extracted the next step (optionally done in parallel with
Hash Load Balancing below) is to classify the packet via protocol header matching (also
called filtering).

A user configurable Ternary Content Addressable Memory (TCAM) is used to
simultaneously compare each bit of the packet's extracted fields against a series of bit masks
(comprised of 0/1/don't care) that have been loaded into the TCAM by the application.
These bit masks are typically called the "filter rules" against which the packet header is
compared. The size of the TCAM determines the number of rules that can be stored by the
TCAM. The size is product specific and is documented in your DAG Card User Guide.

When classifying each packet, the extracted header fields are presented to the TCAM, which
simultaneously compares the extracted fields against each rule in the TCAM. Depending on
the filter rules loaded into the TCAM, more than one match is possible per packet. No
indication of multiple matches is provided – only the lowest numbered address that matches
is returned. If no match is found the TCAM returns the highest address supported by that
TCAM. Typically a "match everything" rule is included at the end of the filter record file
loaded into the TCAM in order to ensure a rule match always occurs at a configured location.

Associated with the TCAM is a standard memory the same size as the TCAM. The match
location returned by the TCAM is used as the address for reading this memory, which
contains 16 bit values. This memory must be initialized by the application in order to
associate each rule with the desired 16-bit classification result. The classification result is
used, optionally with the Hash Load Balancing result, to determine the packet's colour as
described below.

How to program

The classifier TCAM and associated memory are enabled and programmed via the
filter_loader tool provided by Endace as part of the standard DAG software. Please refer
to the EDM04-28 filter_loader Software Guide for details on how the use filter_loader. Filters
are normally defined in a filter file, which consists of a series of (rule number, filter-value)
pairs. The rule number is the classification result that will be returned if this rule is matched
(i.e. the rule number sets the packet colour). More than one filter can be associated with the
same rule number, so any number of filter rules can produce the same colour.

Filtering implementations on older Endace cards are slightly different than described here.
Cards with Enhance Packet Processing default to a "backwards compatibility mode" that
allows the filter rule files from older Endace cards to be used with the newer Endace cards.
Because of this, when using the filter_loader tool, the lower two bits of the filter colour are
denoted as RED and BLUE. In older DAG cards these bits directly determined how packets
are steered or dropped. Setting the colour's RED bit steered the packet to stream buffer 0.
Setting the BLUE bit steered the packet to stream buffer 2. Setting neither caused the packet
to be dropped at the classification stage, and setting both caused the packet to be duplicated
to both stream buffers. By retaining this functionality in cards with enhanced packet
processing as being discussed here, existing filter rule files work as expected.

Note: The enhanced packet classifier documented here retains backward compatibility
with older cards by dropping packets immediately if neither the RED nor the BLUE
bit is set during classification. This should be taken into account when setting up
the filter rules using filter_loader.

 EDM04-26v1 Enhanced Packet Processing Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 11

Colorize

Functional description

A packet's colour is a numeric value corresponding to the overall classification result. To
colorizing a packet is simply to record this numeric value into the packet's ERF record for
later use by the application. The DAG card colorizes each packet in one of two ways
depending on whether hash load balancing has been enabled:

If hashing has not been enabled the ERF record type is set to ERF 10. TYPE_COLOR_HDLC_POS or
ERF 11. TYPE_COLOR_ETH. The bits in the colour field of the ERF record are set as follows:

bits [0] RED bit as set by the filter_loader
bits [1] BLUE bit as set by the filter_loader
bits [15:2] Bits [13:0] of the filter-rule number (also called user tag) of the

matching classification rule as defined by the filter file loaded by
filter_loader.

If hashing is enabled, the ERF record type is set to ERF 19. TYPE_COLOR_HASH_POS or ERF 20.
TYPE_COLOR_HASH_ETH. See the EDM11-01 ERF types for details.

When hashing is enabled and shift_colour is off (default) the ERF record colour field is set as
follows:

bits [3:0] Hash result
bits [15:4] Bits [13:2] of the filter-rule number (also called user tag) of the

matching classification rule as defined by the filter file loaded by
filter_loader.

Note that this truncates the lower 2 bits of the filter-rule number and makes filter rule
configuration unnecessarily confusing when backward compatibility is not required. It is
recommended that the colorizer be configured to use the lower bits of the filter-rule number.
The command to achieve this is:

dagconfig -d0 -S shift_colour=on
When colour shift is on and hashing enabled the packet's colour is set as follows:

Colour bits [3:0] Hash result
Colour bits [15:4] Bits [11:0] of the filter-rule number.

How to program

The DAG card changes the ERF record type and colorizes each packet whenever filtering or
hashing is enabled. As discussed above, using the following command is recommended
when hashing is enabled:

dagconfig -d0 -S shift_colour=on
There is no option to turn packet colorization off, so the packet colour is always written into
the ERF header if either hashing or filtering is enabled.

dagconfig attributes - CAT

The following dagconfig attributes are applicable to the CAT (Color Association Table) part
of Enhanced packet processing. Using the dagconfig -S and -G options you can set and get
values of the listed attributes.

Option Description

bank_select Activates a CAT bank without loading a new configuration.

by_pass Enables (off) or disables (on) the CAT.
interface_overwrite_enable Enables (on) or disables (off) the use of Port ID.
deliberate_drop_count Read only. Use with dagconfig -G only.

Displays the number of packets dropped at the CAT.
For more details about dagconfig, see you DAG Card User Guide.

EDM04-26v1 Enhanced Packet Processing Software Guide

12 ©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

Steering

Functional description

The DAG card hardware performs packet steering per-packet, per stream-buffer. Each
stream buffer's steering logic uses a subset of the packet's colour (and optionally the port ID)
to address into a lookup table and determine whether to DMA the packet to the stream
buffer, or to drop (i.e. filter out) the packet. Each stream buffer functions independently of
the others, but caution should be used when allowing packets to be duplicated across
multiple stream buffer since this can drastically increase the bus bandwidth and cause packet
loss. The number of stream buffers supported by each DAG card depends on the type of
card.

The internal mechanism that matches a packet's colour to the action to be taken by each
stream buffer manager is determined by a lookup table called the Colour Association Table,
or CAT. The CAT is addressed using a 14-bit address created in one of two ways depending
on whether use of the port ID has been enabled:

port ID disabled: Bits [13:0] = Bits [13:0] from the packet's colour
port ID enabled: Bits [13:12] = The interface number the packet was captured on

Bits [11:0] = Bits [11:0] from the packet's colour
Each of the 16K rows in the CAT has a bit corresponding to each stream buffer supported by
the DAG card. The number of stream buffers is DAG card specific, and is specified in the
DAG Card User Guide. When the bit corresponding to the stream buffer is set to '1' the
packet is steered to that stream. Packet duplication occurs when more than one bit is set,
meaning, the same packet is written to more than one stream buffer. If all the bits are set to
'0' the packet will be dropped.

For example, assume a packet arrives for steering with its colour set to 128. For a 4 stream
buffer DAG card, the following examples describe the steering result based on different CAT
table values:

Location 128 = 0000 drop the packet
Location 128 = 0001 copy the packet to stream buffer 0
Location 128 = 0101 copy the packet to stream buffers 0 and 4 (note: receive buffers are numbered 0, 2,

4,...)
The CAT is arranged in two banks – active and standby. To change the CAT modify the
standby bank and then flip active and standby.

Each stream buffer has an optional snap-length. The packet stored in the ERF record will be
shortened (snapped) to the snap length. The snap length must be a multiple of 8 bytes. The
actual packet length is recorded in the ERF record header, in the wlen field. If the packet is
shorter than the snap length, the ERF record is lengthened (using padding) to the nearest 8-
byte boundary. The length field in the ERF record records the actual packet size.

 EDM04-26v1 Enhanced Packet Processing Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 13

The steering function maintains a counter of all packet that are intentionally dropped
because no stream buffer is configured to receive it. Under specific conditions the controller
for each stream buffer may need to drop packets that are intended to be captured. This only
occurs in two scenarios:

1. The application is not keeping up, the stream buffer is full, and the on-card FIFO used
for that stream buffer has overflowed.

2. There is, in aggregate, more traffic being received than can be sent over the computer
bus due to the inherent bandwidth limit of the bus. Performing a lot of packet
duplication can create this scenario. If the bus becomes too busy then typically all
stream buffers begin to experience some packet loss until the bus bandwidth is free
again.

Note: If neither hashing nor filter based classification are enabled all traffic is steered to
stream buffer 0. To maintain backwards compatibility, for these ERF record types
(ERF type is 1 or 2) the colour field within the ERF header is used as a drop counter
field. The steering hardware updates the drop counter field on every packet to
reflect the number of dropped packets since the last packet sent.

How to program

The following examples demonstrate how to initialize and configure the steering function.

This example displays which CAT bank is currently active.
dagconfig -d0 -G bank_select

This example activates a bank without loading new configuration (0/1 are valid).
dagconfig -d0 -S bank_select=1

This example disables the CAT.
dagconfig -d0 -S by_pass=on

This example enables the CAT
dagconfig -d0 -S by_pass=off

This example enables use of port ID
dagconfig -d0 -S interface_overwrite_enable=on

This example disables use of port ID
dagconfig -d0 -S interface_overwrite_enable=off
Tip: For further details, see dagconfig attributes - CAT 11 (page).

Configure the CAT by loading a user defined rules file
dagcat-setup -d1 -f cat_1.rule

Configure hash load balancing evenly across eight stream buffers :
dagcat-setup -d1 -m z8

A rule file consists of one-line rules that define the mapping between colour/interface/hash-
bin and the stream buffers. The following table shows the keywords used to define the rules.
Refer to EDM04-27 dagcat-setup Software Guide for a full description.

EDM04-26v1 Enhanced Packet Processing Software Guide

14 ©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

dagcat-setup filter keywords

keywords Description

(not)color [<from>-<to>] Specifies the color range for the rule. The use of "not" would mean that any values
outside the specified range

(not)color
<colour_value>

Specifies the color value for the rule (only single value). The use of "not" means
that any value other than the given value.

(not)hash [<from>-<to>] Specifies the hash range for the rule. The use of "not" means that any values
outside the specified range

(not)hash <hash_value> Specifies the hash_value for the rule (only single value). The use of "not" means
that any value other than the given value.

(not)iface [<from>-<to>] Specifies the iface range for the rule. The use of "not" means that any values
outside the specified range

(not)iface <iface_value> Specify the iface for the rule. (only single value). The use of "not" means that any
value other than the given value.

stream <list> Specify the destination streams for the rule. Specified as a comma separated list, for
example: stream 0,2,4

 EDM04-26v1 Enhanced Packet Processing Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 15

Configuration Examples

Example 1:
You want to load balance all non-HTTP traffic across 4 stream buffers, and drop all HTTP
traffic (TCP port 0x80).

The classifier will be set (using RED/BLUE) to drop all packets with destination TCP port of
0x80. The rest of the packets will be captured. Hashing will be enabled and 4 capture bins,
each carrying 25% of the traffic, will be defined and mapped to the four stream buffers.

The rule file for the filter_loader is called reject_port80.rule and contains the following lines:
100 reject tcp dst-port {0000000010000000}
200 accept red all

Load the filter rules using filter_loader
dagconfig -d0 -S shift_colour=on
filter_loader -d0 --initialize --drop --iface 0 -l ethernet -m colour -i
reject_port80.rule

Enable hashing
 dagconfig -d0 -S hash_encoding_from_ipf=on

Specify the number of fields to be used for CRC
dagconfig -d0 -S n_tuple_select=2

Configure the traffic in 4 hash bins (25% each)
dagconfig -d0 -S hat_range=0-249 : 250-499 : 500-749 : 750-999

The CAT will be configured so packets marked as hash bin 0 will be set to Stream 0, packets
with hash bin 1 will be set to Stream 2 and so on.

The Rule file for the dagcat-setup is called cat_config.rule and contains the following lines
hash 0 stream 0
hash 1 stream 2
hash 2 stream 4
hash 3 stream 6

Load the rule to the CAT
dagcat-setup -d0 -f cat_config.rule

Example 2:
You want to run 3 different applications and they all must receive the same data.

Classification should be enabled to pass all the packets. Hashing need not be enabled since
all the packets are routed to the same stream(s). All CAT entries will have bits 0, 1 and 2 set,
causing the packets to be duplicated to streams 0, 2 and 4.

Enable pass-all filter
0 accept red all src-ip

The Rule file for the dagcat-setup is called cat_config.rule and contains the following line to
route all the packets to 3 streams.

stream 0,2, 4
Load the rule to the CAT

dagcat-setup -d0 -f cat_config.rule

EDM04-26v1 Enhanced Packet Processing Software Guide

16 ©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008

Example 3:
You want to run 2 applications. Assume application #1 wants to receive all traffic (on stream
0), while application #2 wants to receive just the header portion of all traffic to/from IP
address 192:100:100:* (on stream 2). The snap length for application #2 will be set to 128 to
shorten the packets it receives.

Set the snap length on Stream 2 to 128 Bytes, the rest of the streams will have the default
snap-length of 10240 Bytes. Stream 2 means 1st receive stream, so use stream_snaplength1.

dagconfig -d0 -S stream_snaplength1=128
The rule file for the filter_loader is called two_app_filter.rule and contains the following
lines, which classifies the packets with the given IP address with color 100 or 101.

100 accept red tcp src-ip {1100000011001001100100--------}
101 accept red tcp dst-ip {1100000011001001100100--------}
200 accept red all

Load the filter rules using filter_loader
filter_loader -d0 --initialize --drop --iface 0 -l ethernet -m colour -i
two_app_filter.rule

The Rule file for the dagcat-setup is called cat_config.rule and contains the following lines.
Any packet with color 100 or 101 should be directed to stream 0 and stream 2 and the other
packets (color 200) should go to stream 0 only.

color [100-101] stream 0,2
color 200 stream 0

Load the rule to the CAT
dagcat-setup -d0 -f cat_config.rule

 EDM04-26v1 Enhanced Packet Processing Software Guide

©2008 Endace Technology Ltd. Confidential - Version 1 - November 2008 17

Version History

Version Date Reason

1 November 2008 First release.

	Introduction
	Default packet processing functions
	Enhanced packet processing
	Enhanced packet processing functions
	Packet Receive
	Functional description
	How to program

	Packet Parsing and Header Field Extraction
	Functional description - Ethernet
	Functional description – SONET/SDH
	How to configure

	Classify – Hash Load Balancing
	Functional description
	How to program
	dagconfig attributes - HAT

	Classify – Filtering
	Functional description
	How to program

	Colorize
	Functional description
	How to program
	dagconfig attributes - CAT

	Steering
	Functional description
	How to program
	dagcat-setup filter keywords

	Configuration Examples
	Example 1:
	Example 2:
	Example 3:

	Version History

