

Center for Internet Security Benchmark for

Apache Web Server v2.1
January 2008

Copyright 2001-2008, The Center for Internet Security (CIS)

Editor: Ryan Barnett

http://www.cisecurity.org

cis-feedback@cisecurity.org

mailto:cis-feedback@cisecurity.org

TERMS OF USE AGREEMENT
Background.

The Center for Internet Security ("CIS") provides benchmarks, scoring tools, software, data,

information, suggestions, ideas, and other services and materials from the CIS website or

elsewhere ("Products") as a public service to Internet users worldwide. Recommendations

contained in the Products ("Recommendations") result from a consensus-building process that

involves many security experts and are generally generic in nature. The Recommendations are

intended to provide helpful information to organizations attempting to evaluate or improve the

security of their networks, systems, and devices. Proper use of the Recommendations requires

careful analysis and adaptation to specific user requirements. The Recommendations are not in

any way intended to be a "quick fix" for anyone's information security needs.

No Representations, Warranties, or Covenants.

CIS makes no representations, warranties, or covenants whatsoever as to (i) the positive or

negative effect of the Products or the Recommendations on the operation or the security of any

particular network, computer system, network device, software, hardware, or any component of

any of the foregoing or (ii) the accuracy, reliability, timeliness, or completeness of the Products

or the Recommendations. CIS is providing the Products and the Recommendations "as is" and

"as available" without representations, warranties, or covenants of any kind.

User Agreements.

By using the Products and/or the Recommendations, I and/or my organization ("We") agree and

acknowledge that:

 1. No network, system, device, hardware, software, or component can be made fully

 secure;

2. We are using the Products and the Recommendations solely at our own risk;

3. We are not compensating CIS to assume any liabilities associated with our use of the

 Products or the Recommendations, even risks that result from CIS's negligence or

 failure to perform;

4. We have the sole responsibility to evaluate the risks and benefits of the Products and

 Recommendations to us and to adapt the Products and the Recommendations to our

 particular circumstances and requirements;

5. Neither CIS, nor any CIS Party (defined below) has any responsibility to make any

corrections, updates, upgrades, or bug fixes; or to notify us of the need for any such

corrections, updates, upgrades, or bug fixes; and

6. Neither CIS nor any CIS Party has or will have any liability to us whatsoever (whether

 based in contract, tort, strict liability or otherwise) for any direct, indirect, incidental,

 consequential, or special damages (including without limitation loss of profits, loss of

 sales, loss of or damage to reputation, loss of customers, loss of software, data,

 information or emails, loss of privacy, loss of use of any computer

or other equipment, business interruption, wasted management or other staff resources or claims

of any kind against us from third parties) arising out of or in any way connected with our use of

or our inability to use any of the Products or Recommendations (even if CIS has been advised of

the possibility of such damages), including without limitation any liability associated with

infringement of intellectual property, defects, bugs, errors, omissions, viruses, worms,

backdoors, Trojan horses or other harmful items.

Grant of Limited Rights.

CIS hereby grants each user the following rights, but only so long as the user complies with all

of the terms of these Agreed Terms of Use:

 1. Except to the extent that we may have received additional authorization pursuant to a

 written agreement with CIS, each user may download, install and use each of the

 Products on a single computer;

2. Each user may print one or more copies of any Product or any component of a Product

 that is in a .txt, .pdf, .doc, .mcw, or .rtf format, provided that all such copies are printed

 in full and are kept intact, including without limitation the text of this Agreed Terms of

 Use in its entirety.

Retention of Intellectual Property Rights; Limitations on Distribution.

The Products are protected by copyright and other intellectual property laws and by international

treaties. We acknowledge and agree that we are not acquiring title to any intellectual property

rights in the Products and that full title and all ownership rights to the Products will remain the

exclusive property of CIS or CIS Parties. CIS reserves all rights not expressly granted to users in

the preceding section entitled "Grant of limited rights."

Subject to the paragraph entitled "Special Rules" (which includes a waiver, granted to some

classes of CIS Members, of certain limitations in this paragraph), and except as we may have

otherwise agreed in a written agreement with CIS, we agree that we will not (i) decompile,

disassemble, reverse engineer, or otherwise attempt to derive the source code for any software

Product that is not already in the form of source code; (ii) distribute, redistribute, encumber, sell,

rent, lease, lend, sublicense, or otherwise transfer or exploit rights to any Product or any

component of a Product; (iii) post any Product or any component of a Product on any website,

bulletin board, ftp server, newsgroup, or other similar mechanism or device, without regard to

whether such mechanism or device is internal or external, (iv) remove or alter trademark, logo,

copyright or other proprietary notices, legends, symbols or labels in any Product or any

component of a Product; (v) remove these Agreed Terms of Use from, or alter these Agreed

Terms of Use as they appear in, any Product or any component of a Product; (vi) use any Product

or any component of a Product with any derivative works based directly on a Product or any

component of a Product; (vii) use any Product or any component of a Product with other

products or applications that are directly and specifically dependent on such Product or any

component for any part of their functionality, or (viii) represent or claim a particular level of

compliance with a CIS Benchmark, scoring tool or other Product. We will not facilitate or

otherwise aid other individuals or entities in any of the activities listed in this

paragraph.

We hereby agree to indemnify, defend, and hold CIS and all of its officers, directors,

members, contributors, employees, authors, developers, agents, affiliates, licensors,

information and service providers, software suppliers, hardware suppliers, and all other

persons who aided CIS in the creation, development, or maintenance of the Products or

Recommendations ("CIS Parties") harmless from and against any and all liability,

losses, costs, and expenses (including attorneys' fees and court costs) incurred by CIS or

any CIS Party in connection with any claim arising out of any violation by us of the

preceding paragraph, including without limitation CIS's right, at our expense, to assume

the exclusive defense and control of any matter subject to this indemnification, and in

such case, we agree to cooperate with CIS in its defense of such claim. We further agree

that all CIS Parties are third-party beneficiaries of our undertakings in these Agreed

Terms of Use.

Special Rules.

The distribution of the NSA Security Recommendations is subject to the terms of the

NSA Legal Notice and the terms contained in the NSA Security Recommendations

themselves (http://nsa2.www.conxion.com/cisco/notice.htm).

CIS has created and will from time to time create, special rules for its members and for

other persons and organizations with which CIS has a written contractual relationship.

Those special rules will override and supersede these Agreed Terms of Use with respect

to the users who are covered by the special rules.

CIS hereby grants each CIS Security Consulting or Software Vendor Member and each

CIS Organizational User Member, but only so long as such Member remains in good

standing with CIS and complies with all of the terms of these Agreed Terms of Use, the

right to distribute the Products and Recommendations within such Member's own

organization, whether by manual or electronic means. Each such Member acknowledges

and agrees that the foregoing grant is subject to the terms of such Member's membership

arrangement with CIS and may, therefore, be modified or terminated by CIS at any time.

Choice of Law; Jurisdiction; Venue

We acknowledge and agree that these Agreed Terms of Use will be governed by and

construed in accordance with the laws of the State of Maryland, that any action at law or

in equity arising out of or relating to these Agreed Terms of Use shall be filed only in the

courts located in the State of Maryland, that we hereby consent and submit to the

personal jurisdiction of such courts for the purposes of litigating any such action. If any

of these Agreed Terms of Use shall be determined to be unlawful, void, or for any reason

unenforceable, then such terms shall be deemed severable and shall not affect the validity

and enforceability of any remaining provisions.

Terms of Use Agreement Version 2.1 – 02/20/04

http://nsa2.www.conxion.com/cisco/notice.htm

TERMS OF USE AGREEMENT ... 2

Pre-configuration Checklist .. 6

1 Level 1 Apache Benchmark Settings ... 7
1.1 Installation .. 7
1.2 ModSecurity Overview .. 8
1.3 ModSecurity Core Rules Overview ... 9
1.4 Minimized httpd.conf file ... 12

1.5 Minimize Apache Modules .. 13
1.6 Creating the Apache User and Group Accounts .. 14

1.7 Restricting Access .. 14

1.8 Directory Functionality Control with the Options Directive 16
1.9 Enabling CGI Scripts ... 17
1.10 Limiting HTTP Request Methods .. 18
1.11 Restrict HTTP Protocol Version... 18

1.12 Restrict File Extensions .. 19
1.13 Denial of Service Prevention Tuning ... 20

1.14 Buffer Overflow Protection Tuning ... 23
1.15 Implementing Mod_SSL .. 25
1.16 Software Information Leakage Protection .. 28

1.17 Logging ... 31

1.18 Remove Default Content .. 33
1.19 Updating Ownership and Permissions .. 35
1.20 Monitor Vulnerability Lists .. 35

1.21 Apply Applicable Patches .. 36
2 Level 2 Apache Benchmark Settings ... 37

2.1 Chroot ... 38
2.2 Mod_Log_Forensic .. 40
2.3 Denial of Service and Brute Force Identification and Response 42

2.4 Buffer Overflow Protection Tuning ... 43
2.5 Syslog Logging .. 44
2.6 Virtual Patching with ModSecurity.. 46

3 References ... 50

Pre-configuration Checklist

It is important to realize that “Web Security” extends beyond the Web Server itself.

There are many different web security vulnerabilities, which do not directly involve the

web server itself. In order to truly secure a web infrastructure, many different information

technology divisions must work together. These include, but are not limited to Firewalls,

Intrusion Detection Systems, DNS, Networks Branch, etc… Take the time to build

relationships with these groups and discuss web security issues. Hopefully, you will be

able to identify deficiencies in your environment and fix them prior to exploitation

attempts.

The benchmark reader should review this sample checklist prior to applying the CIS

Apache Benchmark.

 Reviewed and implement my company's security policies as they relate to web

security.

 Implemented a secure network infrastructure by controlling access to/from your

web server by using: Firewalls, Routers and Switches.

 Implemented a Network Intrusion Detection System to monitor attacks against the

web server.

 Implemented load-balancing/failover capability in case of Denial of Service or

server shutdown.

 Implemented a disk space monitoring process and log rotation mechanism.

 The WHOIS Domain information registered for our web presence does not reveal

sensitive personnel information, which may be leveraged for Social Engineering

(Individual POC Names), War Dialing (Phone Numbers) and Brute Force Attacks

(Email addresses matching actual system usernames).

 Domain Name Service (DNS) servers have been properly secured to prevent

domain hi-jacking via cache poisoning, etc…

 Harden the Underlying Operating System of the web server. This should include

minimizing listening network services, applying proper patches and hardening the

configurations.

 Educated developers about writing secure code.

o OWASP Top Ten -

http://www.owasp.org/index.php/OWASP_Top_Ten_Project

o WASC Threat Classification - http://www.webappsec.org/projects/threat/

http://www.owasp.org/index.php/OWASP_Top_Ten_Project
http://www.webappsec.org/projects/threat/

1 Level 1 Apache Benchmark Settings
The Prudent Level of Minimum Due Care
Level-I Benchmark settings/actions meet the following criteria.

1. System administrators with any level of security knowledge and experience can

understand and perform the specified actions.

2. The action is unlikely to cause an interruption of service to the operating system

or the applications that run on the system.

3. The actions can be automatically monitored, and the configuration verified, by

Scoring Tools that are available from the Center or by CIS-certified Scoring

Tools.

Many organizations running the CIS scoring tools report that compliance with a CIS

"Level-1" benchmark produces substantial improvement in security for their systems

connected to the Internet.

1.1 Installation

Question

Are you planning to use the precompiled Apache httpd binary that is available by default

with many Unix Operating Systems or a commercial version supplied by a Vendor (such

as WebLogic or Oracle’s Application Server 9iAS/10G)?

If you answered yes, then continue with the section. If you answered no, or in the event

vendor binaries are not available or suitable, recommended instructions for downloading,

building from the source and installing are included this sample chapter from Apache

Security[1] by Ivan Ristic - http://www.apachesecurity.net/download/apachesecurity-

ch02.pdf.

Description

The CIS Apache Benchmark recommends using the Apache binary provided by your

vendor for most situations. The benefits of using the vendor supplied binaries include[2]:

 Ease of installation as it will just work, straight out of the box.

 It is customized for your OS environment.

 It will be tested and have gone though QA procedures.

 Everything you need is likely to be included, probably including some third party

modules. Many OS vendors ship Apache with mod_ssl and OpenSSL and PHP,

mod_perl and ModSecurity for example.

 Your vendor will tell you about security issues in all those bits, you have to look

in less places.

 Updates to fix security issues will be easy to apply. The vendor will have already

verified the problem, checked the signature on the Apache download, worked out

the impact and so on.

 You may be able to get the updates automatically, reducing the window of risk.

http://www.apachesecurity.net/download/apachesecurity-ch02.pdf
http://www.apachesecurity.net/download/apachesecurity-ch02.pdf

There are times when compilation from source code will be necessary or advantageous,

however for most situations the vendor binaries will provide better security by ensuring

that updates are applied according to the existing update process.

Which Apache Version to use?

There are currently three different Apache forks: 1.3.x, 2.0.x and 2.2.x. At the time of

this writing, the current stable versions are 1.3.37, 2.0.59 and 2.2.4. There may be

restrictions as to which version of Apache you must use, however if it is at all possible it

is recommended that you use the 2.2.x fork. The main reasons are security related as this

is the current branch where the majority of improvements are made. Additionally, in

order to use the ModSecurity 2.x web application firewall package, you must be using

either the 2.0.x or 2.2.x version.

Action

Install the Apache Software using vendor provided binaries if available

For Red Hat/Fedora:
yum install httpd2

For Debian systems:
apt-get install apache2-mpm-prefork

1.2 ModSecurity Overview

Important Note

ModSecurity has quickly matured over the years and has become the most widely

deployed web application firewall. Due to the fact that is open source and free, coupled

with its flexible rules language and extensive logging capabilities, the CIS Apache

Benchmark highly recommends that all Apache deployments install it. We do however

realize that not all deployments will be able to use this application. It is for this reason

that many sections will be providing both an Apache and a ModSecurity setting that can

be used to mitigate the issues.

There were many previous benchmark sections that attempted to leverage Apache

modules and directives to achieve a specific security goal. Some of these settings worked

to a certain degree however some were not flexible enough to fully handle the issue.

ModSecurity, on the other hand, is able to better address these issues. It is for this

reason that most of these benchmark settings will include an analogous ModSecurity

feature or ruleset in addition to the standard Apache directive or configuration. We will

still provide the Apache directive examples, however we will include information about

its limitations and a rationale for using ModSecurity.

Description

ModSecurity is an open-source, free web application firewall module that integrates into

the Apache web server. The project website is www.modsecurity.org. It is available

under the open source GPL license, with optional commercial support and licensing

http://www.modsecurity.org/

(from Breach Security – www.breach.com). There are two versions of the module, one

for each major Apache branch, and they are almost identical in functionality. In the

Apache 2 version, mod_security uses the advanced filtering API available in that version,

making interception of the response body possible. The Apache 2 version is also more

efficient in terms of memory consumption. In short, ModSecurity does the following:

 Intercepts HTTP requests before they are fully processed by the web server

 Intercepts the request body (e.g., the POST payload)

 Intercepts, stores, and optionally validates uploaded files

 Performs optional anti-evasion actions

 Performs request analysis by processing a set of rules defined in the configuration

 Intercepts HTTP responses before they are sent back to the client (Apache 2 only)

 Performs response analysis by processing a set of rules defined in the

configuration

 Takes one of the predefined actions or executes an external script when a request

or a response fails analysis (a process called detection)

 Depending on the configuration, a failed request may be prevented from being

processed, and a failed response may be prevented from being seen by the client

(a process called prevention)

 Performs audit logging

In this section, we will cover the essentials for installation and configuration. For a

detailed reference manual, visit the project documentation area at

http://www.modsecurity.org/documentation/.

Action

In order to ensure that you are using the latest and greatest version, you should download

the ModSecurity source code from the project website -

http://www.modsecurity.org/download/index.html. As of this writing, the current version

is 2.1.2. Follow the steps outlined in the Installation section of the Reference Manual -

http://www.modsecurity.org/documentation/modsecurity-apache/2.1.2/modsecurity2-

apache-reference.html#02-installation

If you run into any issues with installation, configuration or usage, you should sign up on

the ModSecurity users mail-list here - https://lists.sourceforge.net/lists/listinfo/mod-

security-users.

1.3 ModSecurity Core Rules Overview

Description

ModSecurity is a web application firewall engine. Being the Swiss army knife of

application firewalls it can do everything but requires rules to tell it what to do. In order

to enable users to take full advantage of ModSecurity out of the box, ModSecurity

includes the Core Rule Set, an open source rule set licensed under GPLv2. ModSecurity

Core Rule Set works with ModSecurity 2.1 and above.

http://www.breach.com/
http://www.modsecurity.org/documentation/
http://www.modsecurity.org/download/index.html
http://www.modsecurity.org/documentation/modsecurity-apache/2.1.2/modsecurity2-apache-reference.html#02-installation
http://www.modsecurity.org/documentation/modsecurity-apache/2.1.2/modsecurity2-apache-reference.html#02-installation
https://lists.sourceforge.net/lists/listinfo/mod-security-users
https://lists.sourceforge.net/lists/listinfo/mod-security-users
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

Unlike intrusion detection and prevention systems, which rely on signature specific to

known vulnerabilities, the Core Rules is based on generic rules in order to provide

protection from zero day and unknown vulnerabilities often found in web applications,

which are in most cases custom coded.

As a generic negative security rule set, the Core Rule Set is only one layer in your

application protection. You can learn more about the pros and cons of a negative security

model in the presentation “The Core Rule Set: Generic detection of application layer”,

presented at OWASP Europe 2007. In addition to the Core Rule Set you may want to

harden your Apache installation, for which you can consult Ivan Ristic's book, Apache

Security. You may also consider writing custom rules for providing a positive security

envelope to your application or critical parts of it. Breach Security can provide you with

training and professional services to assist you in doing that. On additional

methodologies which complement the Core Rule Set including positive security and

virtual patching you can read in Ryan Barnett’s book, Preventing Web Attacks with

Apache

Why The Core Rule Set?

The focus of the core rule set is to be a "rule set" rather than a set of rules. What makes a

rule set different than a set of rules?

 Performance - The Core Rule Set is optimized for performance. The amount and

content of the rules used predominantly determines the performance impact of

ModSecurity, so the performance optimization of the rule set is very important.

 Quality - While there will always be false positives, a lot of effort is put into

trying to make the Core Rule Set better. Some of the things done are:

o Regression tests - a regression test is used to ensure that every new version

shipped does not break anything. Actually every report of a false positive,

once solved, gets into the regression test.

o Real traffic testing – A large amount of real world capture files have been

converted to tests and sent through ModSecurity to detect potential false

positives.

 Generic Detection - The core rule set is tuned to detect generic attacks and does

not include specific rules for known vulnerabilities. Due to this feature the core

rule set has better performance, is more "plug and play" and requires less updates.

 Event Information - Each rule in the Core Rule Set has a unique ID and a textual

message. In the future rules are also going to be classified using a new tag action

in ModSecurity, as well as longer information regarding each rule using

comments in the files themselves.

 Plug and Play – The Core Rule Set is designed to be as plug and play as possible.

Since its performance is good and it employs generic detection, and since the

number of false positives is getting lower all the time, the Core Rule Set can be

installed as is with little twisting and tweaking.

Content

In order to provide generic web applications protection, the Core Rules use the following

techniques:

http://www.modsecurity.org/documentation/ModSecurity_Core_Rules.pdf
http://www.apachesecurity.net/
http://www.apachesecurity.net/
http://www.apachesecurity.net/
http://www.informit.com/store/product.aspx?isbn=0321321286
http://www.informit.com/store/product.aspx?isbn=0321321286
http://www.informit.com/store/product.aspx?isbn=0321321286

Protocol compliance:

 HTTP request validation - This first line of protection ensures that all abnormal

HTTP requests are detected. This line of defense eliminates a large number of

automated and non targeted attacks as well as protects the web server itself.

 HTTP protocol anomalies - Common HTTP usage patterns are indicative of

attacks.

 Global constraints - Limiting the size and length of different HTTP protocol

attributes, such as the number and length of parameters and the overall length of

the request. Ensuring that these attributed are constrained can prevent many

attacks including buffer overflow and parameter manipulation.

 HTTP Usage policy – validate requests against a predefined policy, setting

limitations request properties such as methods, content types and extensions.

Attack Detection:

 Malicious client software detection - Detect requests by malicious automated

programs such as robots, crawlers and security scanners. Malicious automated

programs collect information from a web site, consume bandwidth and might also

search for vulnerabilities on the web site. Detecting malicious crawlers is

especially useful against comments spam.

 Generic Attack Detection - Detect application level attacks such as described in

the OWASP top 10. These rules employ context based patterns match over

normalized fields. Detected attacks include:

o SQL injection and Blind SQL injection.

o Cross Site Scripting (XSS).

o OS Command Injection and remote command access.

o File name injection.

o ColdFusion, PHP and ASP injection.

o E-Mail Injection

o HTTP Response Splitting.

o Universal PDF XSS.

 Trojans & Backdoors Detection - Detection of attempts to access Trojans &

backdoors already installed on the system. This feature is very important in a

hosting environment when some of this backdoors may be uploaded in a

legitimate way and used maliciously.

Other:

 Error Detection - Prevent application error messages and code snippets from

being sent to the user. This makes attacking the server much harder and is also a

last line of defense if an attack passes through.

 XML Protection – The Core Rule Set can be set to examine XML payload for

most signatures.

 Search Engine Monitoring - Log access by search engines crawlers to the web

site.

Action

The ModSecurity archive contains a version of the Core Rules that you can use right

away. There may be situations, however, where updates are made to the Core Rules and

they are released outside of the normal ModSecurity code updates. You can download

the Core Rules themselves on the download page -

http://www.modsecurity.org/download/index.html.

Quick Start

The Core Rule Set is a set of apache configuration files that should be added to your

Apache configuration. To install the Core Rule Set:

 Extract the Core Rule Set content into a directory called modsecurity under your

Apache configuration directory.

 Edit and customize modsecurity_crs_10_config.conf. This file contains comments

which explain how to set up each directive. You may also want to edit

modsecurity_crs_30_http_policy.conf which sets rules specific to your

application.

 Add the directive Include conf/modsecurity/*.conf to your httpd.conf after the line

where ModSecurity itself it loaded.

 Restart Apache.

 Check that the server works normally, and simulate an attack by browsing to the

URL http://yourhost/cmd.exe. Instead of a “page not found” error, you should get

a “Method Not Implemented” error.

We strongly recommend that you start using the Core Rule Set in monitoring only mode

by changing the directive SecRuleEngine in file modsecurity_crs_10_config.conf from

On to DetectionOnly. After operating in this mode for a period of time, analyze the alerts

recorded in your Apache error log. If there are alerts that you dim as false positives refer

to the section about handling false positives later in this document.

Only after such a process it is safe to move back to blocking by setting SecRuleEngine in

file modsecurity_crs_10_config.conf to On.

If you run into any issues with installation, configuration or usage, you should sign up on

the ModSecurity users mail-list here - https://lists.sourceforge.net/lists/listinfo/mod-

security-users.

1.4 Minimized httpd.conf file

Description

In order to ensure that you have appropriately applied the “Principle of Least Privilege”

concept to your Apache server, you should not use the default httpd.conf file. The default

file is quite large as it includes directives for all modules and also includes extensive

comments. All of this makes it difficult to read and understand what is enabled. It is for

this reason that it is recommended that you start with an empty config file and then

slowly enable features. You will most likely add in new directives and then use the

“apachectl configtest” command to identify any errors.

Note

http://www.modsecurity.org/download/index.html
https://lists.sourceforge.net/lists/listinfo/mod-security-users
https://lists.sourceforge.net/lists/listinfo/mod-security-users

If you are using the 2.2 branch of Apache, the default configuration is suitable as it has

removed much of the extra comment text and its default configuration values are more

secure then previous versions.

Action

Create an empty configuration file (/usr/local/apache2/conf/httpd.conf) and add a couple

of general-purpose directives:

location of the web server files

ServerRoot /usr/local/apache2

location of the web server tree

DocumentRoot /var/www/htdocs

path to the process ID (PID) file, which

stores the PID of the main Apache process

PidFile /var/www/logs/httpd.pid

which port to listen at

Listen 80

do not resolve client IP addresses to names

HostNameLookups Off

1.5 Minimize Apache Modules

Description

It is important to disable the Apache modules that are not needed, in order to reduce the

risk to the web server, as well as increase the performance. This is similar to the OS

security issue of running unnecessary network services; such as Telnet and FTP. By

enabling these unused modules, you are potentially providing additional avenues of

attack against your web server. You should only enable the modules that you absolutely

need for the functionality of your web site. If you are not sure a modules you need, you

may read about them at the Apache Documentation website -

http://httpd.apache.org/docs/2.2/mod/, then disable the module and test the functionality

without the module. Shown below are a few sample LoadModules directives which have

been commented out on Fedora Code 5.

Action

Review the Apache documentation site for module information and comment out all

LoadModule directives in the httpd.conf file for modules whose functionality you will

not need. Here are some examples:

LoadModule access_module modules/mod_access.so

LoadModule auth_module modules/mod_auth.so

LoadModule auth_anon_module modules/mod_auth_anon.so

LoadModule auth_dbm_module modules/mod_auth_dbm.so

LoadModule auth_digest_module modules/mod_auth_digest.so

LoadModule ldap_module modules/mod_ldap.so

LoadModule auth_ldap_module modules/mod_auth_ldap.so

LoadModule cern_meta_module modules/mod_cern_meta.so

LoadModule dav_module modules/mod_dav.so

1.6 Creating the Apache User and Group Accounts

Description

One of the best ways to reduce your exposure to attack when running a web server is to

create a unique, unprivileged userid and group for the server application. The “nobody”

userid & group that comes default on Unix variants should NOT be used to run the web

server, since the account is commonly used for other separate daemon services. Instead

an account used only by the apache software so as to not give unnecessary access to other

services. Also the userid used for the apache user should be a unique value between 1 and

499 as these lower values are reserved for the special system accounts not used by regular

users, such as discussed in User Accounts section of the CIS Red Hat benchmark.

Create an account with a name such as: apache, which runs the web server software. In

the entry below, we designate the web document root as the apache user's home

directory. Since this account will never be used to log into for shell access, we do not

need to create the normal user account login files.

Action

To create a new account, execute the following two commands while running as root.

groupadd apache

useradd apache -g apache -d /dev/null -s /sbin/nologin

These commands create a group and a user account, assigning the account the home

directory /dev/null and the shell /sbin/nologin (effectively disabling login for the

account).

Add the following two lines to the Apache configuration file httpd.conf:

User apache

Group apache

1.7 Restricting Access

Description

The Allow and Deny directives are straightforward. The Allow directive grants access

while the Deny denies access. The Order directive is trickier to understand. The order

does matter! Don’t confuse this with the order that items appear in the configuration file.

Consider the following example:

Order allow,deny

allow from apache.org

deny from foo.apache.org

The Order directive states that the Allow directives should be evaluated first. The Allow

directive states that everyone from apache.org can have access. Then the Deny directive

states that everyone from foo.apache.org should be denied access. Taken together these

directives instruct the server to “allow access to everyone from apache.org except for

those from foo.apache.org”.

If the Order directive in the above example were reversed to “deny,allow”, then the

server would grant access to everyone from apache.org, because the Allow directive is

evaluated after the Deny directive. In other words the server was told to “deny access to

anyone from foo.apache.org then grant access to everyone from apache.org”. Since

foo.apache.org is part of apache.org, access will be granted to its users. The order and

allow/deny parameters should be applied to any portions of your web site, which you

would like to protect. You should use IP addresses when possible, to prevent any DNS

spoofing attacks. You can use the allow/deny options in conjunction with any password-

protected methods as well.

Action: Edit/Verify the following bolded directives in the httpd.conf file

Apply Access Control for OS Root and DocumentRoot Directories

OS Root Directory Access Control

In order to prevent any form of directory traversal trying to get outside of the document

root, we will specify the directive listed below. One aspect of Apache, which is

occasionally misunderstood, is the feature of default access. That is, unless you take steps

to change it, if the server can find its way to a file through normal URL mapping rules, it

can serve it to clients.

<Directory />

Options None

AllowOverride None

deny from all

</Directory>

DocumentRoot Directory Access Control

The example listed below essentially allows anyone to access the web site:

<Directory "/var/www/html/">

Order allow,deny

allow from all

</Directory>

You can use more restrictive options to the allow/deny options such as specific

hostnames, IP addresses, domain names and IP ranges.

<Directory "/var/www/html/">

Order allow,deny

deny from all

allow from 202.54.

</Directory>

This would restrict access to only hosts who reside in the appropriate IP range

(202.54.X.X).

1.8 Directory Functionality Control with the Options Directive

Description

For increased security, only those features that are absolutely necessary should be

enabled. All other features should be disabled. As a side note, since we disabled

numerous Apache modules when we compiled the new httpd binary, many of these

Options Directives would not work anyways. This adheres to security-in-layers and

prevents the accidental enabling of an unauthorized service or feature. The Options

Directive controls what extended web server functions are applied to directories and/or

files.

 The All setting states that all features are available except for Multiviews.

 The ExecCGI setting permits the execution of CGI scripts within the directory.

This feature should only be applied to the designated cgi-bin directory. See next

section.

 The FollowSymLinks setting allows the server to follow symbolic links found in

the directory. The FollowSymlinks directive will instruct the Apache web server

on how to handle the processing of files, which are symbolic links. If you must

use symbolic links for the functionality of your web site, consider the security

risks that follow. It is possible for an attacker to gain access to areas outside the

specified document root if the web server is configured to follow symbolic links.

We will configure this parameter setting to NOT follow symbolic links. This

option is preferred over the SymLinksIfOwnerMatch due to the performance hit

when Apache verifies a symlink and its ownership.

 The SymLinksIfOwnerMatch setting instructs the server to only follow symbolic

links if the file has the same owner as the symbolic link. This directive should be

used only if the use of symbolic links is absolutely necessary for proper

functioning of you web server. This will apply an additional security check to

verify that the file the symbolic link points to is owned by the same UID that the

web server is running under. If proper ownerships and permissions are set for the

DocumentRoot, ServerRoot and the OS directories (addressed in a later section),

then the chances of exploiting a symbolic link is significantly reduced.

 The Includes setting permits the execution of server side includes. This directive

in the terminal screen below will prevent the web server from processing Server

Side Includes (SSI). These are OS commands located within the html code of a

web page. SSIs are executed by the web server before the page is sent to the

client. If you must use SSI, then it is recommended that you use the

IncludesNoExec option, which will allow the server to parse SSI enabled web

pages but it will not execute any system commands.

 The IncludesNOEXEC refines the Includes setting by disabling the exec

command.

 The Indexes setting tells the server to automatically create a page that lists all the

files within the directory if no default page exists (in other words - no index.html).

Directory listings should not be allowed, since they reveal too much information

to an attacker (such as naming conventions and directory structures). This

directive below will prevent the web server from producing any dynamic

directory listings when a default index page is not present. This httpd.conf file

directive is actually redundant, since we have already disabled the mod_autoindex

module when we compiled our httpd binary file.

 The AllowOverrride setting tells the server how to handle access control from

.htaccess files. When the server finds a .htaccess file (as specified by

AccessFileName) it needs to know which directives declared in that file can

override earlier access information. When this directive is set to None, then

.htaccess files are completely ignored. In this case, the server will not even

attempt to read .htaccess files in the filesystem. When this directive is set to All,

then any directive which has the .htaccess Context is allowed in .htaccess files.

While the functionality of htaccess files is sometimes relevant, from a security

perspective, this decentralizes the access controls out from the httpd.conf file.

This could make it much more difficult to manage the security of your web site if

rogue htaccess files are created.

 The Multiviews setting allows for multiple files to refer to the same request. It can

be used to have the same page in different languages with each language having a

different final file suffix. This setting could also be leveraged as part of an IDS

Evasion attack.

Action

Edit/Verify the following bolded directives for the DocumentRoot directory in the

httpd.conf file

The Options directives listed above will implement the security related features.

<Directory "/var/www/html">

 Order allow,deny

 Allow from all

 Options None

 AllowOverride None

</Directory>

1.9 Enabling CGI Scripts

Description

Only enable CGI scripts if and when you need them. When you do, a good practice is to

have all scripts grouped in a single folder (typically named cgi-bin). That way you will

know what is executed on the server. It is possible to enable CGI script execution based

on file extension or permission settings however this makes script control and

management almost impossible as developers may install scripts without your

knowledge. This may become a factor in a hosting environment.

Action

To allow execution of scripts in the /var/www/cgi-bin directory, include the following

<Directory> directive in the configuration file:

<Directory /var/www/cgi-bin>

 Options ExecCGI

 SetHandler cgi-script

</Directory>

1.10 Limiting HTTP Request Methods

Description

We want to restrict the functionality of our web server to only accept and process certain

HTTP Methods. For normal web server operation, you will typically need to allow the

both the GET and POST request methods (and in some cases HEAD requests). This will

allow for downloading of web pages and uploading any type of basic form submission

information.

Action

Apache Directives

If you can not use ModSecurity, then you could use the LimitExcept directive to specify

the allowed Request methods either globally or within a certain directory location.

<LimitExcept GET POST OPTIONS>

Deny from all

</LimitExcept>

There are two limitations with LimitExcept vs. using ModSecurity:

1. The HEAD method is tied to the GET method so there is no way to disallow only

HEAD requests.

2. You can not deny TRACE requests with this directive.

If you want to disable the TRACE method, you can use the TraceEnable directive and set

it to Off.

ModSecurity Alternative

Use the ModSecurity Core Rules as the modsecurity_crs_30_http_policy.conf file has the

following rule to restrict which HTTP Request Methods clients may use –

allow request methods

TODO Most applications only use GET, HEAD, and POST request

methods, if so uncomment the line below. Otherwise you are advised

to edit the line before uncommenting it.

SecRule REQUEST_METHOD "!^((?:(?:POS|GE)T|OPTIONS|HEAD))$" \

 "phase:1,log,auditlog,status:501,msg:'Method is not allowed by

policy', severity:'2',,id:'960032',"

You may update the Regular Expression to allow for other Request Methods as necessary

as some applications such as WebDAV will need others not listed.

1.11 Restrict HTTP Protocol Version

Description

Many malicious automated programs, vulnerability scanners and fingerprinting tools will

send abnormal HTTP protocol versions to see how the web server responds. These

requests are usually part of the attacker’s enumeration process and there it is important

that we respond by denying these requests.

Action

Apache Directives – Mod_Rewrite or SetEnvIf

If you can not use ModSecurity, then you could use the Mod_Rewrite directives to

specify the allowed HTTP version information.

RewriteEngine On

RewriteCond %{THE_REQUEST} !HTTP/(0\.9|1\.[01])$

RewriteRule .* - [F]

Another alternative would be use SetEnvIf to evaluate the protocol version and then set

an environmental variable that could then be controlled with the “allow” –

SetEnvIf REQUEST_PROTOCOL ^HTTP/(0\.9|1\.[01])$ valid_protocol=1

<Directory "/var/www/html">

 Order allow,deny

 Allow from env=valid_protocol

 Options None

 AllowOverride None

</Directory>

ModSecurity Alternative

Use the ModSecurity Core Rules as the modsecurity_crs_30_http_policy.conf file has the

following rule to restrict which HTTP Protocol version clients may use –

Restrict protocol versions.

TODO All modern browsers use HTTP version 1.1. For tight security,

allow only this version.

NOTE Automation programs, both malicious and non malicious many times

use other HTTP versions. If you want to allow a specific automated

program to use your site, try to create a narrower exception and not

allow any client to send HTTP requests in a version lower than 1.1

SecRule REQUEST_PROTOCOL "!^HTTP/(0\.9|1\.[01])$" \

 "t:none, deny,log,auditlog,status:505,msg:'HTTP protocol version is

not allowed by policy', severity:'2',,id:'960034',"

1.12 Restrict File Extensions

Description

There are many files that are left within the web server DocumentRoot that could provide

an attacker with sensitive information. Most often these files are left behind by mistake

after installation, trouble-shooting for backing up files before editing. Regardless of the

reason for their creation, these file can still be served by Apache even when there is no

hyperlink pointing to them. It is for this reason that files with sensitive file extensions,

such as .bak, .config, .old, etc… should be restricted from client access.

Action

Apache Directive

If you can not use ModSecurity, then you could use the FilesMatch Apache directive to

specify the file extension information to block.

<FilesMatch

"\.(?:c(?:o(?:nf(?:ig)?|m)|s(?:proj|r)?|dx|er|fg|md)|p(?:rinter|ass|db|

ol|wd)|v(?:b(?:proj|s)?|sdisco)|a(?:s(?:ax?|cx)|xd)|d(?:bf?|at|ll|os)|i

(?:d[acq]|n[ci])|ba(?:[kt]|ckup)|res(?:ources|x)|s(?:h?tm|ql|ys)|l(?:ic

x|nk|og)|\w{,5}~|webinfo|ht[rw]|xs[dx]|key|mdb|old)$">

Deny from all

</FilesMatch>

ModSecurity Alternative

Use the ModSecurity Core Rules as the modsecurity_crs_30_http_policy.conf file has the

following rule to restrict common unsafe file extensions –

Restrict file extension

TODO the list of file extensions below are virtually always

considered unsafe and not in use in any valid program. If your

application uses one of these extensions, please remove it from the

list of blocked extensions.

You may need to use ModSecurity Core Rule Set Templates to do so,

otherwise comment the whole rule.

SecRule REQUEST_BASENAME

"\.(?:c(?:o(?:nf(?:ig)?|m)|s(?:proj|r)?|dx|er|fg|md)|p(?:rinter|ass|db|

ol|wd)|v(?:b(?:proj|s)?|sdisco)|a(?:s(?:ax?|cx)|xd)|d(?:bf?|at|ll|os)|i

(?:d[acq]|n[ci])|ba(?:[kt]|ckup)|res(?:ources|x)|s(?:h?tm|ql|ys)|l(?:ic

x|nk|og)|\w{,5}~|webinfo|ht[rw]|xs[dx]|key|mdb|old)$" \

 "t:urlDecodeUni, t:lowercase, deny,log,auditlog,status:500,msg:'URL

file extension is restricted by policy', severity:'2',,id:'960035',"

1.13 Denial of Service Prevention Tuning

Description

Denial of Service (DoS) is an attack technique with the intent of preventing a web site

from serving normal user activity. DoS attacks, which are easily normally applied to the

network layer, are also possible at the application layer. These malicious attacks can

succeed by starving a system of critical resources, vulnerability exploit, or abuse of

functionality.

Many times DoS attacks will attempt to consume all of a web site's available system

resources such as: CPU, memory, disk space etc. When any one of these critical

resources reach full utilization, the web site will normally be inaccessible.

As today's web application environments include a web server, database server and an

authentication server, DoS at the application layer may target each of these independent

components. Unlike DoS at the network layer, where a large number of connection

attempts are required, DoS at the application layer is a much simpler task to perform. We

will be verifying/updating the following Apache directives:

 Timeout

One way of attacking systems on the Internet is to try to prevent the target system

from operating correctly by overloading it. This is called a 'denial of service'

attack. One method of doing this is to open multiple connections to a server and

never close them. The more connections the server has open at once, the more

resources are tied up holding details of those connections, which can lead to

increased load and eventually to the server running out of resources. The Timeout

directive tells the server how long to wait to receive a GET request, the amount of

time between receipt of TCP packets on a POST or PUT request, or the amount of

time between ACKs on transmissions of TCP packets in responses. In order to

prevent a denial of service attack from shutting down our web server, we need to

change the default setting of 300 (which is 5 minutes) to 10 (which is 10 seconds).

Note:

For apache 2.0 it has been noted, that this Timeout affects the connection timeout

to a backend server in a Reverse Proxy setup as well. This is done regardless of

the ProxyTimeout directive. This behavior limits the use of very low Timeout

values. This problem is solved for apache 2.2.

 KeepAlive

In order to make our web server more efficient, and therefore more resistant to

DoS attacks, we want to allow TCP KeepAlives generally. This setting will allow

for multiple HTTP requests to be serviced across one connection. Without this

setting, a new Apache server would have to be assigned or even spawned for

every subsequent HTTP request for gifs, etc. Recommended value is thus On.

However, KeepAlive trades Ram for CPU. The Apache servers have to do less

handshakes, which is very important in a SSL-Setup. But the servers are assigned

to a particular client for a longer period of time. The effect will be, that you will

need more servers and thus more Ram, but that the servers have less work to do,

thus freeing your CPU. While "KeepAlive On" is generally a good setting, it can

mean a DoS problem in itself, when an attacker tries to consume your Ram. It

helps to know your particular traffic pattern and your hardware limits very well,

when setting the KeepAlive option.

 KeepAliveTimeout

This directive will limit the time the Apache web server will wait in seconds for a

KeepAlive request to be completed. Setting KeepAliveTimeout to a high value

may cause performance problems as pointed out above. Recommend value is 15

which is also the default value.

Note:

mod_qos has an option to stop serving KeepAlive requests when the load becomes

too high.

 AcceptFilter

This directive helps to prevent DoS types of attacks where a malicious client

initiates a connection that opens a socket, however they do not send any data.

This directive will limit the impacts of this type of attack by not sending the

socket to the Apache process unless data is received. This directive, however, is

not supported on all OS platforms.

 Other Performance and DoS Related Modules and Directives

Taking together the directives StartServers, MinSpareServers, MaxSpareServers

and MaxClients, along with the MPM (MultiProcessing Module) work to

establish a reasonable yet dynamic number of child processes and/or threads.

Starting with Apache 1.3 the process creation process was dramatically improved

so that tweaking the StartServers, StartServers, MaxSpareServers and MaxClients

settings is unnecessary for most situations. Therefore the default settings are fine

for most usages. For very high traffic servers, and optimal performance consult

the Apache performance recommendations at

http://httpd.apache.org/docs/2.2/misc/perf-tuning.html.

http://httpd.apache.org/docs/2.2/misc/perf-tuning.html

Action

Edit/Verify the following bolded directives in the httpd.conf file.

Timeout 10

KeepAlive On

KeepAliveTimeout 15

AcceptFilter http data

AcceptFilter https data

1.14 Buffer Overflow Protection Tuning

Description

Buffer Overflow exploits are attacks that alter the flow of an application by overwriting

parts of memory. Buffer Overflow is a common software flaw that results in an error

condition. This error condition occurs when data written to memory exceed the allocated

size of the buffer. As the buffer is overflowed, adjacent memory addresses are

overwritten causing the software to fault or crash. When unrestricted, properly-crafted

input can be used to overflow the buffer resulting in a number of security issues.

A Buffer Overflow can be used as a Denial of Service attack when memory is corrupted,

resulting in software failure. Even more critical is the ability of a Buffer Overflow attack

to alter application flow and force unintended actions. This scenario can occur in several

ways. Buffer Overflow vulnerabilities have been used to overwrite stack pointers and

redirect the program to execute malicious instructions. Buffer Overflows have also been

used to change program variables.

Buffer Overflow vulnerabilities have become quite common in the information security

industry and have often plagued web servers. However, they have not been commonly

seen or exploited at the web application layer itself. The primary reason is that an attacker

needs to analyze the application source code or the software binaries. Since the attacker

must exploit custom code on a remote system, they would have to perform the attack

blind, making success very difficult.

Buffer Overflows vulnerabilities most commonly occur in programming languages such

as C and C++. A Buffer Overflow can occur in a CGI program or when a web page

accesses a C program.[3]

In addition to OS network stack tuning, the Apache directives listed below limit the size

of the various HTTP header "strings" being copied. Implementing these directives greatly

reduces the chance of a successful buffer overflow.

 LimitRequestBody
Limits the total size of the HTTP request body that is sent to the Apache web server.

These parameters usually come into effect during HTTP PUT and POST requests

where the client is sending data back the web server from a form, or sending data into

a CGI script. The setting below will restrict the request body size to be no more than

10K. You will need to increase this size if you have any forms that require larger

input from clients.

 LimitRequestFields
Limits the number of additional headers that can be sent by a client in an HTTP

request, and defaults to 100. In real life, the number of headers a client might

reasonably be expected to send is around 20, although this value can creep up if

content negotiation is being used. A large number of headers may be an indication of

a client making abnormal or hostile requests of the server. A lower limit of 40 headers

can be set with the setting below.

 LimitRequestFieldsize
Limits the maximum length of an individual HTTP header sent by the client,

including the initial header name. The default (and maximum) value is 8190

characters. We can set this to limit headers to a maximum length of 100 characters

with the setting below.

 LimitRequestlLine
Limits the maximum length of the HTTP request itself, including the HTTP method,

URL, and protocol. The default limit is 8190 characters; we can reduce this to 500

characters with the line below. The effect of this directive is to effectively limit the

size of the URL that a client can request, so it must be set large enough for clients to

access all the valid URLs on the server, including the query string sent by GET

requests. Setting this value too low can prevent clients from sending the results of

HTML forms to the server when the form method is set to GET.

Caution

You should test these setting extensively prior to deploying into production. You should

verify that all CGI scripts and uploading scripts work appropriately with these settings,

otherwise, you can effectively cause a Denial of Service attack against yourself!

Action

Apache Directive

You can use the following Apache Limit directives to help restrict some general request

characteristics.

Maximum size of the request body.

LimitRequestBody 64000

Maximum number of request headers in a request.

LimitRequestFields 32

Maximum size of request header lines.

LimitRequestFieldSize 8000

Maximum size of the request line.

LimitRequestLine 4000

ModSecurity Alternative

The ModSecurity rule file modsecurity_crs_23_request_limits.conf has additional

example limit directives that can be enabled to restrict sizes on other aspects of a request.

These settings may need to be tweaked for your environment.

-- Arguments limits --

Limit argument name length

#SecRule ARGS_NAMES "^.{100}"

"phase:2,t:none,deny,log,auditlog,status:403,msg:'Argument name too

long',id:'960209',severity:'4'"

Limit value name length

#SecRule ARGS "^.{400}"

"phase:2,t:none,deny,log,auditlog,status:403,msg:'Argument value too

long',id:'960208',severity:'4'"

Maximum number of arguments in request limited

SecRule &ARGS "@gt 255"

"phase:2,t:none,deny,log,auditlog,status:403,msg:'Too many arguments in

request',id:'960335',severity:'4'"

Limit arguments total length

#SecRule ARGS_COMBINED_SIZE "@gt 64000"

"phase:2,t:none,deny,log,auditlog,status:403,msg:'Total arguments size

exceeded',id:'960341',severity:'4'"

1.15 Implementing Mod_SSL

Description

Digital certificates encrypt data using Secure Sockets Layer (SSL) technology, the

industry-standard method for protecting web communications developed by Netscape

Communications Corporation. The SSL security protocol provides data encryption,

server authentication, message integrity, and optional client authentication for a TCP/IP

connection. Because SSL is built into all major browsers and web servers, simply

installing a digital certificate turns on their SSL capabilities. Server certificates are

designed to protect you and visitors to your site. Installing a digital certificate on your

server lets you:

 Authenticate your site.

A digital certificate on your server automatically communicates your site's

authenticity to visitors' web browsers. If a trusted authority signs your certificate, it

confirms for the visitor they are actually communicating with you, and not with a

fraudulent site stealing credit card numbers or personal information.

 Keep private communications private.

Digital certificates encrypt the data visitors that exchange with your site to keep it

safe from interception or tampering using SSL (Secure Sockets Layer) technology.

Important

Implementing SSL does NOT directly make your web server more secure! SSL is used to

encrypt traffic and therefore does provide confidentiality of the users credentials when

access your web server. Just because you have encrypted the data in transit does not mean

that the data provided by the client is secure while it is on your server. Also, attackers

will target SSL-Enabled web servers, since the encrypted channel will hide their activities

from Network Based Intrusion Detection Systems. (See the Level II mod_security section

for IDS functionality over SSL).

Action

For most systems it should be a simple matter of getting the mod_ssl and openssl rpms.

For Fedora Core the simple command below will install mod_ssl if it is not already

installed.

rpm -q mod_ssl || yum install mod_ssl

If you have built from source code, starting with Apache 2 the mod_ssl is bundled in and

you simply need to openssl and openssl-devel rpm's installed and add the '--enable-ssl'

option to the configure script, before compiling, then configure mod_ssl as explained

below. If you have built Apache 1.3 from source code, follow the instructions found at

the mod_ssl website http://www.modssl.org/example/

The mod_ssl will automatically generate a dummy certificate which will not allow

visitors to authenticate your server, but will provide encrypted communications. To get a

trusted SSL certificate, follow the instructions below substituting example.com etc. with

your organizations information. If the web server is only for lab use, a trusted certificate

is not required, and you can skip this step. There are 3 requirements for the certificate to

be trusted:

1. The common name (CN) on the certificate must match the URL host name which

the user typed into the browser or received in an html link.

2. The certificate must be signed by a certificate authority trusted by the users

browser (or by the web service / application).

3. The current date must not be beyond the certificate expiration date.

cd /etc/pki/tls/certs

make www.example.com.key

umask 77 ; \

/usr/bin/openssl genrsa -des3 1024 > example.com.key

Generating RSA private key, 1024 bit long modulus

.........++++++

..................................++++++

e is 65537 (0x10001)

Enter pass phrase:

Verifying - Enter pass phrase: # chown root www.example.com.key

chmod 600 www.example.com.key

mv www.example.com.key /etc/pki/tls/private/

make www.example.com.csr

umask 77 ; \

/usr/bin/openssl req -utf8 -new -key example.com.key -out

example.com.csr

Enter pass phrase for example.com.key:

You are about to be asked to enter information that will be

incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a

DN.

There are quite a few fields but you can leave some blank

http://www.modssl.org/example/

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [GB]:US

State or Province Name (full name) [Berkshire]:New York

Locality Name (eg, city) [Newbury]:Lima

Organization Name (eg, company) [My Company Ltd]:Durkee Consulting

Organizational Unit Name (eg, section) []:

Common Name (eg, your name or your server's hostname)

[]:www.example.com

Email Address []:webadmin@example.com

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

more example.com.csr

-----BEGIN CERTIFICATE REQUEST-----

MIIByzCCATQCAQAwgYoxCzAJBgNVBAYTAlVTMREwDwYDVQQIEwhOZXcgWW9yazEN

MAsGA1UEBxMETGltYTEaMBgGA1UEChMRRHVya2VlIENvbnN1bHRpbmcxGDAWBgNV

. . CUT . . .

Next send the text content of example.com.csr to your certificate authority to be signed. It

should be sent via a means that ensure that it arrives at the proper destination and is

protected it from being modified in transit. Typically the certificate signing requests are

submitted, not surprisingly, to a web site with an SSL connection. The resulting signed

certificate we will name example.com.crt and placed in /etc/pki/tls/certs/. Please note that

the certificate authority does not need the private key (example.com.key) and this file

must be carefully protected. With a decrypted copy of the private key, it would be

possible to decrypt all conversations with the server.

Do not forget the pass phrase used to encrypt the private key. It will be required every

time the server is started in https mode. To avoid requiring an administrator having to

type the passphrase every time the httpd service is started, the private key may be stored

in clear text. Storing the private key in clear text increases the convenience while

increasing the risk of disclosure of the key, but may be appropriate if the risks are well

managed. To decrypt the private the key and store it in clear text file the following

openssl command may be used. You can tell by the private key headers whether it is

encrypted or clear text.

openssl rsa -in example.com.key -out example.com.key.clear

chmod 600 example.com.key.clear

chown root example.com.key.clear

more example.com.key

-----BEGIN RSA PRIVATE KEY-----

Proc-Type: 4,ENCRYPTED

DEK-Info: DES-EDE3-CBC,2329D7D488CCA032

fdvTGcfVDJR9wteGVkqUgAe5lHYUmKcaW20IupDRcVxjWH7ieKs1ETgIVmrpJ9T3

5nJEp4d9Sulcv6NSNGptmEPpEiWuoLEzl5wTGKzGxdF+l2Nw/2Wl6AXtGAnlTrN4

. . CUT

more example.com.key.clear

-----BEGIN RSA PRIVATE KEY-----

MIICWwIBAAKBgQDw7TZBR83WEoG40Podbe4ruvaCAMuGVtXpvC+8NSK8JOrREMA7

lDoJNEkxKhgGqrc9TqNHIcQiuM0ZZv4hiNDw9I2w46r3iRPnAJUwhlwHeU4SVvxW

. . . CUT . . .

To view the information details in a certificate, use:

openssl x509 -in www.example.com.crt -text | more

Now we need to update the SSL entries in the the ssl.conf located in /etc/httpd/conf.d or

in the httpd.conf file, or possibly the httpd-ssl.conf file located in the conf/extra directory.

ErrorLog logs/ssl_error_log

TransferLog logs/ssl_access_log

LogLevel info

SSLEngine on

Allow SSLv3 and TLSv1 but not SSLv2

SSLProtocol all -SSLv2

Disallow ciphers that are weak (obsolete or

known to be flawed in some way). The use of

an exclamation mark in front of a cipher code

tells Apache never to use it. EXP refers to 40-bit

and 56-bit ciphers, NULL ciphers offer no encryption.

ADH refers to Anonymous Diffie-Hellman key exchange

which effectively disables server certificate validation,

and LOW refers to other low strength ciphers.

SSLCipherSuite ALL:!EXP:!NULL:!ADH:!LOW

SSLCertificateFile /etc/pki/tls/certs/www.example.com.crt

SSLCertificateKeyFile /etc/pki/tls/certs/www.example.com.key

Default CA file, can be replaced with your CA's certificate.

SSLCACertificateFile /etc/pki/tls/certs/ca-bundle.crt

SSLVerifyClient none

The SSLProtocol line disables the weak SSLv2 protocol, which is important. In addition,

the SSLCipherSuite selects which ciphers are allowed. The openssl command can be very

useful in debugging and testing the SSL configurations. See

http://www.openssl.org/docs/apps/ciphers.html as well as OWASP testing tips

http://www.owasp.org/index.php/SSL/TLS_Testing:_support_of_weak_ciphers

The CA file can be replaced by your own CA, or the self signed certificate if you did not

setup a trusted certificate. If you did use an accepted Certificate Authority, you can use

the certificate of the CA instead of the CA bundle, to speed up the initial SSL connection.

Lastly, you can start or restart the httpd service verify correct functioning with your

favorite browser:

service httpd start

1.16 Software Information Leakage Protection

Description

Information is power, and identifying web server details greatly increases the efficiency

of any attack, as security vulnerabilities are extremely dependent upon specific software

versions and configurations. Excessive probing and requests may cause too much "noise"

being generated and may tip off an administrator. If an attacker can accurately target their

exploits, the chances of successful compromise prior to detection increase dramatically.

Script Kiddies are constantly scanning the Internet and documenting the version

information openly provided by web servers. The purpose of this scanning is to

accumulate a database of software installed on those hosts, which can then be used when

new vulnerabilities are released. There are a few Apache configuration directives, which

will aid in protecting the discloser of some of this information.

One way to protect the Apache server is to make it limit the information provided to a

potential attacker about the web server version. There are several ways that the server can

leak identifying information. We will be verifying/updating the following Apache

directives:

 ServerTokens
This configuration setting aids in hiding the web server software version and module

versions. We do not want to give away any more information about our web server

than is absolutely necessary. We will only give out the minimum server token

information, therefore the recommended setting is Prod or ProductOnly which does

not provide any information on versions or modules loaded, but only provides the

"Apache" in the server HTTP response header.

 ServerTokens Prod[uctOnly]

Server sends (e.g.): Server: Apache

 ServerTokens Major

Server sends (e.g.): Server: Apache /2

 ServerTokens Minor

Server sends (e.g.): Server: Apache /2.0

 ServerTokens Min[imal]

Server sends (e.g.): Server: Apache/2.0.41

 ServerTokens OS

Server sends (e.g.): Server: Apache/2.0.41 (Unix)

 ServerTokens Full (or not specified)

Server sends (e.g.): Server: Apache/2.0.41 (Unix) PHP/4.0 MyMod/1.2

Important

If you want to change the Server token data entirely, you can do this with the

ModSecurity SecServerSignature directive. With this directive, you can alter the data

returned by the "Server:" HTTP response header. This option allows you to change

this data from within the httpd.conf file, without the need to edit source code and

recompile. Apache modules are not allowed to change the name of the server

completely, but ModSecurity works by finding where the name is kept in memory

and overwriting the text directly. The ServerTokens directive must therefore be set to

Full to ensure the web server allocates a large enough space for the name, giving

ModSecurity enough space to make its changes later.

 ServerSignature

In order to protect which web server software we are using, we should not disclose

this information in any of our system generated Error pages. The ServerSignature

directive instructs Apache to append certain footer information to the bottom of error

pages. Here is an example response with a signature:

The requested URL /nosuch was not found on this server.

Apache Server at 10.1.1.12 Port 80

If we do not disable the ServerSignature setting, we may be reducing the security

benefit gained by changing the ServerTokens. While it is true that the

ServerSignature would show only the "Apache" server token setting we specified in

the ServerTokens directive, this signature feature is still in the Apache style and may

be an additional identifier. By removing the ServerSignature, we can take another

step towards protecting our web server software information.

Technically, the ServerSignature issue becomes moot if you follow the next section

and configure Apache NOT to utilize the default error pages for all HTTP Status

Codes.

 ErrorDocument (Custom Error Pages)

Each type of web server has its own distinct style of error pages. The server sends

these pages when an error, such as "404 - Not found," has occurred. By issuing a

request for a file that is not present on a web server, an attacker may determine the

web server software by simply identifying the 404 – Not Found error pages displayed.

To avoid this software disclosure, the default error pages presented by the web server

must be changed. There are two possible choices:

 Edit the default error pages to a style that is consistent with the website's

template. This may include changing color schemes and altering the text

message displayed.

 For deception purposes, edit the error pages to the exact style of a different

web server. For example, if a web server is currently running Apache, change

the error pages to resemble a different web server version.

Action

Apache Directive

Edit/Verify the following directives in the httpd.conf file:

Reveal full identity (standard Apache directive)

ServerTokens Prod

ServerSignature Off

ErrorDocument 400 /custom400.html

ErrorDocument 401 /custom401.html

ErrorDocument 403 /custom403.html

ErrorDocument 404 /custom404.html

ErrorDocument 405 /custom405.html

ErrorDocument 500 /custom500.html

-- CUT --

ModSecurity Alternative

If you can use ModSecurity, then you should set the ServerTokens to Full and set the

spoofed Banner with the SecServerSignature directive.

ServerTokens Full

SecServerSignature "Microsoft-IIS/6.0”

Note – the ModSecurity Core Rules modsecurity_crs_10_config.conf file already has a

SecServerSignature directive that can be used.

1.17 Logging

Description

The server logs are invaluable for a variety of reasons. They can be used to determine

what resources are being used most. They can also be used to spot any potential problems

before they become serious. Most importantly, they can be used to watch for anomalous

behavior that may be an indication that an attack is pending or has occurred. If there are

multiple web sites, or with large websites with multiple people responsible for portions of

the web site, each responsible individual or organization needs access to their own web

logs, and needs the skills/training/tools for monitor the logs. We will be covering the

following logging directives:

 LogLevel
This directive controls the verbosity of information that is logged in the error log file.

This style of level warning is similar to that of the syslog facility (emerg, alert, crit,

error, warn, notice, info and debug). The parameter in the recommendation below

specifies that all information which is at a level of "notice" or higher will be logged.

 ErrorLog
This directive sets the name of the file to which the server will log any errors it

encounters. Make sure that there is adequate disk space on the partition that will hold

the all log files, and that log rotation is configured. Do not hold any Apache log files

on the Root partition of the OS. This could result in a denial of service against your

web server host by filling up the root partition and causing the system to crash.

 LogFormat
The LogFormat directive allows for the definition of log entries that have exactly the

information desired. The basic structure of the directive is LogFormat

format_specification format_name. The format specification is compromised of a

series of variable replacements. A named LogFormat directive does nothing, but is

used in other directives such as the CustomLog entry.

 CustomLog
This directive specifies both which file to log access attempts to and what type of

format the file should use. The directive above says that the "access_log" file will be

combined and will contain both "referrer" and "user_agent" information. This

information will be use in a later section when we receive alerts for malicious http

requests. The CustomLog directive is used to log requests to the server. Its structure

is CustomLog logfile_name format_specification. The entry below uses the format

specification name “combined”. The CustomLog directive is also valid in a virtual

host context which means that different user requests can be logged by virtual host.

The CustomLog directive can also pipe its output to a command, but this can

represent a severe security risk. This is because the command will be executed as the

user that started the Apache server. Remember - in order to listen on port 80, Apache

must be started with root. That means that when the log output is piped to a command

the command will be running with root privileges. If that command can be

compromised, then the attacker has gained root access to the server.

Make sure that there is adequate disk space on the partition that will hold the all log

files. Do not hold any Apache log files on the Root partition of the OS. This could

result in a denial of service against your web server host by filling up the root

partition and causing the system to crash.

Action

Apache Directives

Edit/Verify the following bolded directives in the httpd.conf file

LogLevel notice

ErrorLog logs/error_log

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Accept}i\" \"%{Referer}i\"

\"%{User-Agent}i\"" combined

CustomLog logs/access_log combined

Edit/Verify the log rotation configuration, such as /etc/logrotate.d/httpd is in place to

rotate the logs.

/var/log/httpd/*log {

missingok

notifempty

sharedscripts

postrotate

/bin/kill –USR1 `cat /var/run/httpd.pid 2>/dev/null` 2> /dev/null ||

true

endscript

}

ModSecurity Alternative

ModSecurity has outstanding logging capabilities. The directive SecAuditEngine works

independently of the SecRuleEngine, so you can log data without applying any filters.

This is sometimes useful when gathering logging data prior to creating filters. There are

four main directives that work together for auditing:

SecAuditEngine RelevantOnly

SecAuditLogRelevantStatus "^[45]"

SecAuditLogType Serial

SecAuditLog logs/modsec_audit.log

After these directives are set, ModSecurity will log all requests to the modsec_audit.log

file in the logs directory. An example audit log entry looks like this –

--7b781024-A--

[15/Apr/2007:03:53:57 --0400] Cfjlm38AAAEAAHkzZRIAAAFS 211.39.116.16

39116 192.168.100.133 80

--7b781024-B--

GET /index.php?pagina=http://www.lifesciencessociety.org/surveyor/

lang/xpl/pro18.txt?&cmd=id;ls%20/;w HTTP/1.1

TE: deflate,gzip;q=0.3

Connection: TE, close

Host: www.example.com

User-Agent: libwww-perl/5.805

--7b781024-F--

HTTP/1.1 404 Not Found

Content-Length: 1635

Content-Type: text/html

Connection: close

--7b781024-E--

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<HTML><HEAD><TITLE>The page cannot be found</TITLE>

--CUT--

</TD></TR></TABLE></BODY></HTML>

--7b781024-H--

Message: Warning. Pattern match

"(?:\\b(?:(?:n(?:et(?:\\b\\W+?\\blocalgroup|\\.exe)|(?:map|c)\\.exe)|t(

?:racer(?:oute|t)|elnet\\.exe|clsh8?|ftp)|(?:w(?:guest|sh)|rcmd|ftp)\\.

exe|echo\\b\\W*?\\by+)\\b|c(?:md(?:(?:32)?\\.exe\\b|\\b\\W*?\\/c)|d(?:\

\b\\W*?[\\\\/]|\\W*?\\.\\.)|hmod.{0,40}? ..." at ARGS:cmd. [id

"950006"] [msg "System Command Injection. Matched signature <;ls>"]

[severity "CRITICAL"]

Apache-Handler: proxy-server

Stopwatch: 1176623637915035 7832 (446 1921 7507)

Response-Body-Transformed: Dechunked

Producer: ModSecurity v2.1.0-4 (Apache 2.x)

Server: ModSecurity HTTP Proxy/1.1.0 (Unix) mod_ssl/1.1.0

OpenSSL/0.9.7f

--7b781024-Z--

1.18 Remove Default Content

Description

Most web server applications come with sample applications or features that can be

remotely exploited and which can provide different levels of access to the server. In the

Microsoft arena, Code Red exploited a problem with the index service provided by the

Internet Information Service. Usually these routines are not written for production use

and consequently little thought was given to security in their development. The primary

function for these sample routines is to demonstrate the capabilities of the web server.

Sometimes they only exist to prove that the system is capable of executing a CGI script.

We will be removing the following files:

 Default HTML Files
By default, Apache will install a number of files within the document root directory.

These files are meant to be of assistance to the Web Admin after successfully

installing Apache. Included in these files is the famous "Seeing this instead of the

web site you expected?" page. This is the page that will be displayed if you have not

created any new html index pages. Also included in these files is the entire Apache

documentation library. While all of these files are helpful, they do not conform to our

security goal of hiding which type of web server software we are running. It would be

foolish to go through all of our previous steps to protect our web server software

version, only to loudly announce with these web pages that we are running Apache.

By the way, all of the Apache documentation is available at the Apache web site.

 Sample CGI Scripts
Attackers will often try to exploit CGI programs on the web server. They will either

use these programs for reconnaissance purposes or to try and exploit the web

server/OS directly. CGI programs have a long history of security bugs and problems

associated with improperly accepting user-input. Since these programs are often

targets of attackers, we need to make sure that there are no stray CGI programs that

could potentially be used for malicious purposes. By default, Apache 1.3.27 comes

with two stock CGI scripts. These are called - printenv and test-cgi. Both of these

programs should be either renamed or removed entirely from the web server. This is

due to the sensitive information, which an attacker could gain if they are able to

successfully access these files. In addition to removing the stock CGIs, care should be

taken to review the functionality and code of any new CGIs which are created. The

topic of safe CGI scripting is beyond the scope if this document, however, it should

not be overlooked. The Web Developers should follow safe coding practices, such as,

those outlined in the WWW Security FAQ -

http://www.w3.org/Security/Faq/wwwsf4.html

 Apache Manual Files

Make sure to remove the Apache manual directory and files that are present in the

ServerRoot. This virtual directory will not be accessible by clients if you removed

the default httpd.conf file directives during the minimization steps.

 Apache Source Code

In order to keep our compiled installations of Apache secure, we will not keep the

Apache source code on the production server. This will prevent any unauthorized

users from re-compiling/compiling a new version of Apache.

Action

Execute the following commands. Remove Any Default Apache HTML Files, if any:

rm -rf /usr/local/apache2/htdocs/*

Remove Default Apache CGI Scripts, if any:

rm –rf /usr/local/apache2/cgi-bin/*

Remove the Apache Manual directory and files:

rm –rf /usr/local/apache2/manual

Remove Apache Source Code if built from source:

rm -rf /path/to/httpd-2.2.4*

1.19 Updating Ownership and Permissions

Description

Setting the appropriate ownership and permissions of the Apache files and directories can

help to prevent/mitigate exploitation severity and information disclosure. These changes

should be made just before deployment into production to correct any insecure settings

during your testing phase. It is also advisable to check/update these settings on a

continued basis through a Cron job.

Action

Update the permissions to make sure only root has write access:

chown -R root:root /usr/local/apache2

find /usr/local/apache2 -type d | xargs chmod 755

find /usr/local/apache2 -type f | xargs chmod 644

It is generally a best practice to limit administrator access to your webserver and restrict

the read permissions on the configuration and log files to the root account. This may not

be applicable in enterprise setups. You should put those users who need to read these files

into a special group to conform with the least privilege policy.

chmod -R go-r /usr/local/apache/conf

chmod -R go-r /usr/local/apache/logs

1.20 Monitor Vulnerability Lists

Description
One of the most frustrating aspects of web attacks is that most can be prevented if the

appropriate patches are applied. Both OS and web server vendors are constantly issuing

patches in response to flaws found within their application’s code. Keeping abreast of

new patches can be a daunting task to say the least. To keep abreast of Issues specific to

Apache software and the operating system platform the individuals responsible for

security and/or administration of the server should subscribe to a notification service such

as those listed below that will alert them to newly discovered security issues.

Action

Subscribe to the appropriate Security Advisory List[2]

 Apache httpd mailing list

http://httpd.apache.org/lists.html

The main announcement mailing list is going to tell you whenever a new release of

Apache comes out and about security fixes but doesn’t usually contain much

information about the actual issues. Serious vulnerabilities tend to get their own

advisories written up which also get posted to the announce list.

Other lists such as the httpd developer list are also available but are generally high

volume. The httpd developer list rarely contains any details or analysis of security

issues anyway.

 Apache Web site

http://httpd.apache.org/

The web site doesn’t contain any more information than the mailing list. It’s hard to

keep track of a site anyway, it’s not like you’d check it on a daily basis.

 CERT CC

http://www.cert.org/

The Computer Emergency Response Team Co-ordination Centre monitors security

incidents – mostly focused on those that have a significant impact. CERT advisories

are well researched and a good source of information, especially when CERT was

notified of an issue in advance. Not all issues are notified to CERT so it cannot be

relied upon as a sole source of information, and since CERT deal with issues across

all products and operating systems they are not always able to give immediate

updates. Even so, it is well worth subscribing to their alert lists.

 Bugtraq

http://online.securityfocus.com/archive/1

Bugtraq is a moderated security list that covers vulnerabilities in everything from

Windows through Apache to hardware routers. Hence there is quite a bit of traffic on

the list, expect 10+ posts a day. The information on Bugtraq isn’t always accurate or

first-hand information and since it’s a moderated list there is often a delay.

1.21 Apply Applicable Patches

Description

Obviously knowing about newly discovered vulnerabilities is only part of the solution;

there needs to be a process in place where patches are tested and installed on the systems.

These patches fix diverse problems, including security issues, and are created from both

in-house testing and user-community feedback.

Possible update and patch steps listed below for selected platforms will ensure that your

Apache software is up to date with the most current fixes available. If kernel updates are

included, it will be necessary reboot the server, and when the apache software or other

services are updated you should verify that services have been properly restarted after

being updated.

Action

Follow the patch/update process for your organization to update your OS and Apache

software at least every 1 per month.

Fedora Core Manual Update:
yum update

Fedora Core Automated Nightly Update:
chkconfig yum on

chkconfig --list yum

yum 0:off 1:off 2:on 3:on 4:on 5:on 6:off

Patch for Source Code:

If you built from Apache source code:

 Check the following web site for the latest patches for the version of Apache you

downloaded: http://www.apache.org/dist/httpd/patches/

 Look for a directory called “apply_to_2.2.XX/” which matches your source version.

 If this directory exists, read the description to verify if the patch is applicable to your

OS and then download the file.

 Also verify the integrity of the patch by importing the Apache PGP keys and

checking the PGP signature. The apache PGP key's are available on the same web site

http://www.apache.org/dist/httpd/KEYS however it's best to retrieve them from a

different source, such as the MIT PGP key servers, or any of the PGP key mirrors.

Place this file in the new Apache source build directory, which is created once you have

unzipped and untarred the Apache archive in the section below. Once this patch file is in

this directory, issue the following commands (this is an example and shows how to apply

the patch called "no_zombies.patch". You may not need to apply any patches):

pwd

/apache/build/directory

gpg --verify httpd-2.2.XX.tar.gz.asc

tar xzf httpd-2.2.XX.tar.gz

cd httpd-2.2.XX

patch -s < /apache/build/directory/name_of_path.patch

2 Level 2 Apache Benchmark Settings
Prudent Security Beyond the Minimum Level
Level 2 security configurations vary depending on network architecture and server

function. These are of greatest value to system administrators who have sufficient

security knowledge to apply them with consideration to the operating systems and

applications running in their particular environments.

Important – Level II Benchmark settings also differ from Level I settings in that you do

NOT have to apply all of the Level II settings to address each security issue. There are

settings, which are an either/or option. The reader should review all Level 2 settings

before determining which sections to implement. Level 2 settings expects the reader to

have sufficient knowledge of the security issues involved to determine the best option for

their environment.

2.1 Chroot

Description

This part focuses on preventing Apache from being used as a point of break-in to the

system hosting it. Apache by default runs as a non-root user, which will limit any damage

to what can be done as a normal user with a local shell. Of course, allowing what

amounts to an anonymous guest account falls rather short of the security requirements for

most Apache servers, so an additional step can be taken - that is, running Apache in a

chroot jail.

The main benefit of a chroot jail is that it will limit the portion of the file system the

daemon can see to the root directory of the jail. Additionally, since the jail only needs to

support Apache, the programs available in the jail can be extremely limited. Most

importantly, there is no need for setuid-root programs, which can be used to gain root

access and break out of the jail.

Pros and Cons of Chroot

 If apache is ever compromised, the attacker will not have access to the entire file

system.

 Poorly written CGI scripts that may allow someone to access your server will not

work.

 There are extra libraries you'll need to have in the chroot jail for Apache to work.

 If you use any Perl/CGI features with Apache, you will need to copy the needed

binaries, Perl libraries and files to the appropriate spot within the chroot space.

This includes /bin/mail, /bin/ls, etc…

 The same applies for SSL, PHP, LDAP, PostgresSQL and other third-party

programs.

 Chroot usually requires extensive testing to ensure proper functionality/security

are working properly.

ModSecurity’s Chroot Approach[4]

Properly implementing and testing a traditional chroot setup for a dynamic web

application can be quite challenging. Fortunately, ModSecurity includes support for

Apache file system isolation, or chrooting. Chrooting is a process of confining an

application into a special part of the file system, sometimes called a "jail". Once the

chroot (short for “change root”) operation is performed, the application can no longer

access what lies outside the jail. Only the root user can escape the jail (in most cases,

there are some circumstances when even non-root users can escape too, but only on an

improperly configured jail). A vital part of the chrooting process is not allowing anything

root related (root processes or root suid binaries) inside the jail. The idea is that if an

attacker manages to break in through the web server he won't have much to do because

he, too, will be in jail, with no means to escape.

Notes

What follows is a list of facts about the ModSecurity internal chroot functionality for you

to consider:

1. Unlike external chrooting (mentioned previously) ModSecurity chrooting requires

no additional files to exist in jail. The chroot call is made after web server

initialization but before forking. Because of this, all shared libraries are already

loaded, all web server modules are initialized, and log files are opened. You only

need your data files in the jail.

2. To create new processes from within jail your either need to use statically-

compiled binaries or place shared libraries in the jail too.

3. With Apache 2.x, the default value for the AcceptMutex directive is pthread.

Sometimes this setting prevents Apache from working when the chroot

functionality is used. Set AcceptMutex to any other setting to overcome this

problem (e.g. posixsem). If you configure chroot to leave log files outside the jail,

Apache will have file descriptors pointing to files outside the jail. The chroot

mechanism was not initially designed for security and some people feel uneasy

about this.

4. If your Apache installation uses mod_ssl you will find that it is not possible to

leave the logs directory outside the jail when a file-based SSL mutex is used. This

is because mod_ssl creates a lock file in the logs directory immediately upon

startup, but fails when it cannot find it later. This problem can be avoided by

using some other mutex type, for example SSLMutex sem, or by telling mod_ssl

to place its file-based mutex in a directory that is inside the jail (using SSLMutex

file://path/to/file).

5. If you are trying to use the chroot feature with a multithreaded Apache installation

you may get the following message "libgcc_s.so.1 must be installed for

pthread_cancel to work". Add LoadFile /lib/libgcc_s.so.1 to your Apache

configuration to fix this problem.

6. The files used by Apache for authentication must be inside the jail since these

files are opened on every request.

7. Certain modules (e.g. mod_fastcgi, mod_fcgi, mod_cgid) fork in the module

initialisation phase. If they fork before chroot takes place they create a process

that lives outside jail. In this case ModSecurity must be configured to initialize

after most modules but before the modules that fork. This is a manual process

with Apache 1.3.x. It is an automated process with Apache 2.x since ModSecurity

1.9.3.

Action
Assuming Apache was installed into /usr/local/apache2 and you want the jail will be

placed at /chroot/apache, execute these commands:

mkdir -p /chroot/apache/usr/local

cd /usr/local

mv apache /chroot/apache/usr/local

ln -s /chroot/apache/usr/local/apache

Now instruct ModSecurity to perform chroot upon startup by adding the following line to

your ModSecurity configuration file:

SecChrootDir /chroot/apache

And start Apache:

/usr/local/apache/bin/apachectl startssl

2.2 Mod_Log_Forensic

Description

What Apache child process segmentation faulted? This is a common question asked when

reviewing error_log entries and seeing a message similar to this:

[Sun Apr 24 09:11:02 2005] [notice] child pid 5500 exit signal

Segmentation fault (11)

Generally speaking, a segmentation fault is not good; either there is a problem with the

application code and it is exiting abnormally, or worse, someone is attempting to exploit

your web server and causing it to crash. Either way, these types of messages need to be

looked into. The biggest problem in tracking down these types of messages is associating

the segfault error message with the actual client request that generated it. This is what

mod_log_forensic aims to fix.[5]

Action

First, we must check that the mod_log_forensic and mod_unique_id DSO modules are

enabled in the httpd.conf file:

egrep 'log_forensic|unique_id' /usr/local/apache/conf/httpd.conf

LoadModule log_forensic_module modules/mod_log_forensic.so

LoadModule unique_id_module modules/mod_unique_id.so

ForensicLog Directive

There is only one directive for this module due to its focused goal. The directive is the

output log file. This directive tells Apache where to log the output of the

mod_log_forensic data. The file can either be a regular file or the output can be sent to a

program. Here is the basic directive entry:

ForensicLog /usr/local/apache/logs/forensic.log

The concept of this module is pretty simple; mod_log_forensic will generate a log file

containing two entries for all requests. The first entry is the client request, which is

prepended with a unique id number and a plus (+) sign. The second entry is the

corresponding server response entry after successfully servicing the request, which is

identified by a negative (-) sign and also has the same unique id number. Here is an

example log entry of a successful request/response transaction:

tail -2 /usr/local/apache/logs/forensic.log

+cDkrlsCoAWUAAC4xChEAAAAA|GET / HTTP/1.1|Accept:image/gif, image/x-

xbitmap,

image/jpeg, image/pjpeg,application/vnd.ms-powerpoint,

application/vnd.ms-excel,

application/msword, application/x-shockwave-flash, */*|Accept-

Language:en-us|Accept-

Encoding:gzip, deflate|User-Agent:Mozilla/4.0 (compatible; MSIE 5.5;

Windows NT

5.0)|Host:192.168.1.101|Connection:Keep-Alive

-cDkrlsCoAWUAAC4xChEAAAAA

If a request has segfaulted, then the corresponding negative entry from the server

response will be missing. The Apache source code actually comes with a shell script

called, appropriately enough, check_forensic, which will help to automate the process of

parsing the error_log file and identifying any processes that segfaulted. Here is an

example of running the tool:

/tools/httpd-2.0.52/support/check_forensic

/usr/local/apache2/logs/forensic.log

+Ll@PbH8AAAEAAFYcFXkAAAAE|GET / HTTP/1.1|Accept:**|Accept-Language:en-

us|Accept-

Encoding:gzip, deflate|If-Modified-Since:Sat, 19 Feb 2005 16%3a06%3a07

GMT;

length=1833|User-Agent:Mozilla/4.0 (compatible; MSIE 6.0; Windows NT

5.1; SV1; .NET

CLR 1.1.4322)|Host:192.168.26.134|Connection:Keep-Alive|Transfer-

Encoding:Chunked

+NKqZ6X8AAAEAAFYhFuwAAAAF|GET / HTTP/1.1|Accept:*/*|Accept-Language:en-

us|Accept-

Encoding:gzip, deflate|If-Modified-Since:Sat, 19 Feb 2005 16%3a06%3a07

GMT;

length=1833|User-Agent:Mozilla/4.0 (compatible; MSIE 6.0; Windows NT

5.1; SV1; .NET

CLR 1.1.4322)|Host:192.168.26.134|Connection:Keep-Alive|Transfer-

Encoding:Chunked

This output shows that two requests exited abnormally. By looking at the client headers,

it seems that this client may be attempting to exploit the Chunked-Encoding vulnerability

identified in earlier versions of Apache (www.cert.org/advisories/CA-2002-17.html).

This is indicated by the use of the Transfer-Encoding: Chunked client request header.

http://www.cert.org/advisories/CA-2002-17.html

2.3 Denial of Service and Brute Force Identification and
Response

Description

In the Level 1 section, we highlighted some basic tuning that could be performed to help

Apache child process performance. In this section, we will present a method to

specifically help identify Denial of Service and Brute Force attacks. There are two main

issues to deal with when considering these types of attacks at the HTTP layer:

 Any mechanism used must be able to be stateful so that it can track and correlate

from request to request, and

 It must be able to implement protections at lower network levels to truly help mitigate

the effects.

The multi-process nature of the Apache prefork execution model is usually an advantage

(one process can go down while leaving the remaining processes unaffected; the

controlling parent process simply creates another child). But there is a drawback: it is

very difficult to share information between processes. Without information sharing, it is

impossible to detect several classes of attack (for example, denial-of-service attacks).[6]

Note

The previous versions of the Apache benchmark recommended the use of the

mod_evasive tool (http://www.zdziarski.com/projects/mod_evasive/) and it works

relatively well for small to medium sized brute force or HTTP level DoS attacks. There

is, however, an important limitation. The mod_evasive module is not as good as it could

be because it does not use shared memory in Apache to keep information about previous

requests persistent. Instead, the information is kept with each child process or thread.

Other Apache children that are then spawned know nothing about abuse against one of

them. When a child serves the maximum number of requests and dies, the DoS

information goes with it. So, what does this mean? This means that if an attacker sends

their HTTP DoS requests and they do not use HTTP Keep-Alives, then Apache will spawn

a new child process for every request and it will never trigger the mod_evasive

thresholds. This is not good…

Fortunately, you can use the piped logging mechanism, already well-supported in

Apache, to export the relevant information out of ModSecurity to an external process that

shared among all Apache processes. The ModSecurity facility is named the Guardian

log. The Guardian log mechanism is coupled together with a perl script tool called httpd-

guardian, whose goal is to defend against denial-of-service attacks.

Action

Download the Apache Security tools archive from the Apachesecurity.net website -

http://www.apachesecurity.net/tools/index.html. Edit the httpd-guardian file to point to

the proper perl binary on your system. Also make sure that the script has execute

permissions. Then add the following directive to your ModSecurity configuration file:

http://www.zdziarski.com/projects/mod_evasive/
http://www.apachesecurity.net/tools/index.html

SecGuardianLog "|/path/to/httpd-guardian"

The next time you start (or restart) Apache you will find the httpd-guardian process

running alongside it. This process will monitor the requests coming, watching for DoS

attacks. The script keeps two counters for every IP address it sees: one counter for the

most recent one-minute interval and another for the most recent five-minute interval. If

an IP address sends too many requests in a measured period, httpd-guardian will take an

action against it. By default, the action is a mere warning, but you can configure httpd-

guardian to talk to your firewall to add the offending IP address to the blacklist (using

iptables, pf, or SnortSam).

If you have to restart Apache on regular basis, you will be happy to know that httpd-

guardian saves the counter values to a file on regular basis and reloads them the next time

Apache starts.

Note

mod_qos is another module that be very helpful for identifying and responding to these

types of attacks - http://mod-qos.sourceforge.net/.

2.4 Buffer Overflow Protection Tuning

Description

In the Level 1 section, we highlighted some basic Apache directives that may help to

prevent some Buffer Overflow attacks. This will certainly help with placing adequate

restrictions on the size of these portions of the client's request; however, these

LimitRequest directives listed previously are a bit too broad to handle individual buffer

overflow vulnerabilities in application parameters. We can, however, leverage

ModSecurity's granularity capabilities to place proper restrictions on specific application

parameters.

In Level 2, we will now present a few more protection mechanisms that ModSecurity can

provide. Often, a Buffer Overflow attack will include random binary data in order to fill

up the buffer and then to execute the desired shell code. ModSecurity has a few different

operators that will help to identify and prevent this data from executing.

It is important to note, however, that while these settings will provide protection, they

will need to be tested extensively and may also need to be re-evaluated when the

application it is protecting is changed.

Action

The ModSecurity Core Rules file modsecurity_crs_20_protocol_violations.conf file has

numerous rules that handle possible buffer overflow attacks.

The following two rules use the @validateUrlEncoding and @validateUtf8Encoding

operators to validate the encodings used in requests:

Check decodings

http://www.snortsam.net/
http://mod-qos.sourceforge.net/

SecRule

REQUEST_FILENAME|ARGS|ARGS_NAMES|REQUEST_HEADERS|!REQUEST_HEADERS:Refer

er "@validateUrlEncoding" \

 "chain, deny,log,auditlog,status:400,msg:'URL Encoding Abuse

Attack Attempt',,id:'950107',severity:'4'"

SecRule

REQUEST_FILENAME|ARGS|ARGS_NAMES|REQUEST_HEADERS|!REQUEST_HEADERS:Refer

er "\%(?![0-9a-fA-F]{2}|u[0-9a-fA-F]{4})"

SecRule

REQUEST_FILENAME|ARGS|ARGS_NAMES|REQUEST_HEADERS|!REQUEST_HEADERS:Refer

er "@validateUtf8Encoding" "deny,log,auditlog,status:400,msg:'UTF8

Encoding Abuse Attack Attempt',,id:'950801',severity:'4'"

The following two rules use the @validateByteRange operator to restrict the characters

accepted. By default, it only disallows the null byte character as it is often used in

evasions. You can optionally restrict this down to 32-126 to only allow printable ASCII

characters.

Restrict type of characters sent

NOTE In order to be broad and support localized applications this

rule only validates that NULL Is not used.

The strict policy version also validates that protocol and

application generated fields are limited to printable ASCII.

TODO If your application use the range 32-126 for parameters.

SecRule

REQUEST_FILENAME|REQUEST_HEADERS_NAMES|REQUEST_HEADERS|!REQUEST_HEADERS

:Referer \

 "@validateByteRange 1-255" \

 "deny,log,auditlog,status:400,msg:'Invalid character in

request',,id:'960018',severity:'4',t:urlDecodeUni,phase:1"

SecRule ARGS|ARGS_NAMES|REQUEST_HEADERS:Referer "@validateByteRange 1-

255" \

 "deny,log,auditlog,status:400,msg:'Invalid character in

request',,id:'960901',severity:'4',t:urlDecodeUni,phase:2"

Note

These examples use Regular Expressions to create rules for size restrictions. In the

ModSecurity 2.5.0 development release, there is a new transformation function called

“t:length” that provides better performance over using RegExs.

2.5 Syslog Logging

Description

Apache has the capability to send its error log output to the local Syslog daemon process

by setting the ErrorLog directive to “ErrorLog syslog”. This directive specifies that all of

the error messages get sent through the syslog facility. We want to ensure the integrity of

your error logs in case the web server ever gets compromised. After a compromise, the

log files on the host cannot be trusted, since the attacker could have easily altered them.

In the steps below, we have configured the syslog facility to log all of the errors locally to

the normal /usr/local/apache/logs/error_log file, as well as, log remotely to the syslog

facility on a secure, remote host. This ensures that the error logs have not been altered if

we are investigating a break-in.

Note

Using syslog to centrally log Apache messages is also useful when a SIM application is

used to correlate messages from across the enterprise. This data can be critical for 24x7

SOC Incident Response teams.

Action

Edit the httpd.conf file and update the ErrorLog directive:

ErrorLog: The location of the error log file. If you do

not specify an ErrorLog directive within a <VirtualHost>

container, error messages relating to that virtual host

will be logged here. If you *do* define an error

logfile for a <VirtualHost> container, that host's

errors will be logged there and not here.

ErrorLog syslog:local7

This configuration will send all error log entries to syslog and be logged with the “local7”

facility. You can specify other syslog facility levels if you wish to segregate your Apache

syslog data from your other system messages. Keep these issues in mind when using

syslog for Apache logging:

 The syslog daemon will not create files. If you are logging to a file (as specified

in the syslog.conf configuration file) that file must already exist and have

permissions that allow the syslog daemon to write to it.

 You must restart the syslog daemon for it to recognize changes to its syslog.conf

configuration file.

 The syslog daemon must be active prior to starting Apache.

 Apache will default the facility to "local7" if you omit the facility name from the

ErrorLog directive (that is "ErrorLog syslog").

 The syslog facility name must be one that is recognized by both Apache and the

syslog.h header file. The facility names "local0" through "local7" are explicitly set

aside for your use.

 Although "local0" through "local7" are recommended user facility names, here is

the complete list of names recognized by both Apache and TPF's syslog.h: auth,

cron, daemon, kern, local0, local1, local2, local3, local4, local5, local6, local7,

lpr, mail, news, syslog, user, and uucp.

 You won't see the normal Apache startup/shutdown messages when you use

syslog with your Apache error log.

Verify that the Apache error messages are being sent to syslog.
apachectl start

tail –2 /var/log/messages

Aug 8 15:39:18 netwk8 httpd[3345]: [notice] Digest: done

Aug 8 15:39:19 netwk8 httpd[3345]: [notice] Apache configured --

resuming normal operations

Edit the /etc/syslog.conf file to log locally and to add in the ability to send the Apache

error data off to a remote syslog host.

vi /etc/syslog.conf

grep local7 /etc/syslog.conf

Local7.* /usr/local/apache2/logs/error_log

Local7.* @IP_of_Remote_Host

killall -v -HUP syslogd

Verify that the syslog data is being captured correctly on the remote syslog host.

hostname

remote_sysloghost

echo "SYSLOGD_OPTIONS="-m 0 -r" >> /etc/sysconfig/syslog

service syslog restart

tail –f /var/log/messages

Aug 8 15:44:19 netwk8 httpd[3417]: [error] [client 10.1.2.16] File does

not exist: /var/www/html/foo

2.6 Virtual Patching with ModSecurity

Description

Fixing identified vulnerabilities in Apache or web applications always requires time.

Organizations often do not have access to a commercial application's source code and are

at the vendor's mercy while waiting for a patch. Even if they have access to the code,

implementing a patch in development takes time. This leaves a window of opportunity

for the attacker to exploit. Virtual patching is one of the biggest advantages of using

ModSecurity a custom ruleset can be created to quickly fix this problem externally. A fix

for a specific vulnerability is usually very easy to design and in most cases it can be done

in less than 15 minutes.

Imagine that you have received the following vulnerability alert email:

Name: Oracle iSQL*Plus buffer overflow

Systems: Oracle Database 9i R1,2 on all operating systems

Severity: High Risk

Vendor URL: http://www.oracle.com/

Author: David Litchfield (david@ngssoftware.com)

Advisory URL: http://www.ngssoftware.com/advisories/ora-isqlplus.txt

Details

The iSQL*Plus web application requires users to log in. After accessing

the default url, "/isqlplus," a user is presented with a login screen.

By sending the web server an overly long user ID parameter, an internal

buffer is overflowed on the stack and the saved return address is

overwritten. This can allow an attacker to run arbitrary code in the

security context of the web server. On most systems, this will be the

"oracle" user and on Windows the "SYSTEM" user. Once the web server has

been compromised, attackers may then use it as a staging platform to

launch attacks against the database server itself.

Action

We will now outline the steps needed to conduct analysis on the vulnerability and create

a custom virtual patch with ModSecurity.

1) Verify Software Version

The first step would be to determine if the version of software that you are

running is vulnerable. You can verify your Apache (in this case, it would be the

Oracle Application Server) version by executing the httpd binary with the

appropriate flag.
./httpd -V

Server version: Oracle-Application-Server-10g/9.0.4.1.0 Oracle-

HTTP-Server

Server built: Dec 2 2004 18:39:07

Server's Module Magic Number: 19990320:15

Server compiled with....

--CUT--

Let's assume that the version you are running matches one listed within the

vulnerability advisory. Now that you have confirmed that your web server is

vulnerable, you must now figure out if the patch is available.

2) Check Patch Availability

Normally, the vulnerability alert notice will provide a patch status. If a patch is

available, then it will have downloading instructions. More often than not, the

alert emails will refer you to the specific vendor's web site. Even if a patch is

available, you still have a problem. What is your organization's patch

management process? How quickly are you able to follow your policy and

procedure for the patch engineering and test phases? Remember, you are racing

against the clock to apply these patches on your systems. Sometimes, patches are

not yet available from the vendor. This is most often the case when a new 0-day

vulnerability is made public. In this case, you are in a similar predicament as the

time period before you successfully apply a patch. What can you do in the

meantime? Luckily, we have the capability to create some custom security filters

with ModSecurity to protect our Oracle application from this attack.

3) Identify Vulnerability Details

The following two websites usually provide vulnerability and exploit details:

 SecurityFocus Web site

SecurityFocus' vulnerability database

(www.securityfocus.com/vulnerabilities) is an excellent resource for

identifying vulnerability details such as exploit information and mitigation

strategies. If exploit code has been released, odds are that it will be listed

on the SecurityFocus web site.

http://www.securityfocus.com/vulnerabilities

 Snort Web site

The combination of Snort user contribution and the folks at Sourcefire (the

commercial face of Snort development) are incredibly responsive to

generating attack signatures for newly released vulnerabilities. It is not

uncommon to have some new Snort signatures available for download

within hours of a vulnerability announcement. This allows us to let the

experts, who get paid to analyze these vulnerabilities, develop signatures.

Keep in mind that these signatures were created for a Network IDS and

may not be directly translatable to ModSecurity. Some amount of analysis

will be required to use the signature details.

The actual Snort signature is shown in the following:

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS

(msg:"WEB-MISC Oracle

iSQLPlus login.uix username overflow attempt";

flow:to_server,established;

uricontent:"/login.uix"; nocase;

pcre:"/username=[^&\x3b\r\n]{250}/smi";

reference:bugtraq,10871;

reference:url,www.nextgenss.com/advisories/ora-

isqlplus.txt;

classtype:web-application-attack; sid:2703; rev:1;)

The bolded information is relevant to create a ModSecurity virtual patch.

This data will help us to create a comparable ModSecurity filter to block

this vulnerability. We are interested in both the uricontent and pcre

keyword values. The uricontent keyword specifies that this rule should

match if the text string /login.uix exists in the uri field of the request. This

prevents Snort from attempting to match the text string in other locations

of the request, such as in one of the other request headers. The pcre

keyword stands for perl compatible regular expression. If we interpret the

pcre value specified in the signature into plain English, it says to look for a

text string that starts with username=. If this is found, then look at the data

that follows. Only match if the following character is not either an &

(ampersand), \x3b (semicolon represented in byte form), \r (return), or \n

(newline) and there 250 or more characters.

4) Creating a Negative Security Virtual Patch

With the pcre data taken from the Snort signature, we can now create a custom

filter to identify and block a request that is attempting to exploit this vulnerability.

The first part that we need to define is the URI location.

We can use the Apache Location directive to define a context in which to place

our ModSecurity filters. Here is an example:

<Location /isqlplus/login.uix>

</Location>

The next step is to create a ModSecurity filter to identify the username variable

overflow. We already have the regular expression from the Snort signature, so we

only need to choose which ModSecurity filter location to use. The example login

data showed that the username data is sent within the POST payload. We should

therefore use the SecRule directive and specify the username argument as the

location. Here is the updated signature inside the location directive:

<Location /isqlplus/login.uix>

SecRule ARGS:username “^[^&\x3b\r\n]{250}$” phase:2,msg:’Oracle

iSQLPlus login.uix username overflow attempt’”

</Location>

5) Creating a Positive Security Virtual Patch

While the previous example would be able to block attempts to exploit that

specific vulnerability, a more comprehensive security approach would be to

implement a virtual patch that enforces a positive security policy for this

particular portion of the application. The following ruleset also enforces rules to

only allow the POST request method, ensures that there is only one parameter

named “username” (as to avoid possible evasions) and finally it enforces a more

strict character set for the username parameter value only allowing alpha-numeric

characters between zero and thirty-two in length.

<Location /isqlplus/login.uix>

SecRule REQUEST_METHOD “!^post$”

SecRule &ARGS:username “!@eq 1”

SecRule ARGS:username “!^\w{0,32}$”

</Location>

For more information on Virtual Patching with ModSecurity, please refer to the archived

webcast on this topic on the Breach website -

http://www.breach.com/resources/webinars.html.

http://www.breach.com/resources/webinars.html

3 References
1. Ristic, Ivan. “Apache Security” Oreilly, ISBN: 0596007248, Published: March 2005

- http://www.apachesecurity.net/index.html

2. Cox, Mark J. “Apache Security Secrets: Revealed” ApacheCon 2002, Las Vegas -

http://www.cgisecurity.com/webservers/apache/tu04-handout.pdf

3. Web Application Security Consortium (WASC) Web Security Threat Classification -

http://www.webappsec.org/projects/threat/

4. ModSecurity Reference Manual v 1.9.3 -

http://www.modsecurity.org/documentation/modsecurity-apache/1.9.3/modsecurity-

manual.html

5. Barnett, Ryan C. “Preventing Web Attacks with Apache” Addison-Wesley

Publishing, ISBN: 0321321286, Published January 2006 -

http://www.amazon.com/Preventing-Attacks-Apache-Ryan-Barnett/dp/0321321286

6. Ristic, Ivan. “What’s new in ModSecurity?” SecurityFocus Article, January 12,

2005 - http://www.onlamp.com/lpt/a/6350

http://www.apachesecurity.net/index.html
http://www.cgisecurity.com/webservers/apache/tu04-handout.pdf
http://www.webappsec.org/projects/threat/
http://www.modsecurity.org/documentation/modsecurity-apache/1.9.3/modsecurity-manual.html
http://www.modsecurity.org/documentation/modsecurity-apache/1.9.3/modsecurity-manual.html
http://www.amazon.com/Preventing-Attacks-Apache-Ryan-Barnett/dp/0321321286
http://www.onlamp.com/lpt/a/6350

