

CNP Capitalia Vita

Debugging e stress Test per l'applicazione InVita

Allegato Tecnico

Milano

Hacking Team S.r.l.	http://www.hackingteam.it	
Via della Moscova, 13 20121 MILANO (MI) - Italy	info@hackingteam.it	
Tel. +39.02.29060603	Fax +39.02.63118946	

© 2007 Hacking Team – Proprietà Riservata Numero	pati: 0 Pagina 1 di 8
--	-----------------------

STORIA DEL DOCUMENTO			
Versione Data		Modifiche Effettuate	
1.0	09 Ottobre 2007	Prima emissione	
//	//	//	
//	//	//	

INFORMAZIONI			
Data di Emissione 09 Ottobre 2007			
Versione	1.0		
Tipologia Documento	Allegato Tecnico		
Numero Pagine	6		
Numero Allegati	0		
Redatto da	Federico Guerrini		
Approvato da	Gianluca Vadruccio		

© 2007 Hacking Team – Proprietà Riservata	Numero Allegati: 0	Pagina 2 di 8
---	--------------------	---------------

INDICE

1	Richiesta ed obiettivi del cliente	4
2	Ambiente di riferimento	4
3	Metodologia proposta	5
4	Assegnazione competenze e tempistiche	. 7

1 Richiesta ed obiettivi del cliente

CNP Capitalia Vita ha richiesto una attività di debugging per l'applicazione InVita. Attualmente l'applicazione presenta fenomeni di saturazione delle risorse che comportano la necessità di periodici riavvii dei server su cui essa viene eseguita (HTTP server di front-end, application server, database server).

L'obiettivo dell'attività consiste nell'identificazione delle cause di tali fenomeni di saturazione, analizzando il comportamento del sistema quando esso viene sottoposto a carichi elevati.

Le attività di debugging saranno condotte da un team costituito da Hacking Team, Capgemini e T-Systems, con la seguente ripartizione dei compiti:

- Hacking Team dovrà progettare ed eseguire i test di generazione del carico; raccogliere i risultati dei test "ai morsetti" (parametri misurabili osservando l'interfaccia HTTP dell'applicazione); fornire indicazioni sulle misure da effettuarsi sui componenti interni del sistema; suggerire ulteriori analisi e/o interventi correttivi;
- CapGemini dovrà fornire i dettagli sulle funzionalità, l'architettura logica e l'architettura fisica dell'applicazione necessari per l'esecuzione dei test; monitorare il comportamento dei singoli moduli dell'applicazione durante l'esecuzione dei test; implementare eventuali interventi correttivi identificati a valle dell'analisi dei risultati dei test;
- > T-Systems dovrà fornire la piattaforma hardware per l'esecuzione dei test; monitorare il comportamento, durante l'esecuzione dei test, dei componenti infrastrutturali (http server, application server, DBMS).

2 Ambiente di riferimento

Il sistema target dell'attività oggetto del presente documento è costituito dai moduli software che compongono l'applicazione InVita e dagli elementi infrastrutturali su cui essi sono eseguiti. In particolare:

- applicazione InVita: è una applicazione J2EE che utilizza pagine JSP, servlet e componenti EJB. L'applicazione prevede, oltre alla normale operatività interattiva, anche l'attivazione di processi batch;
- > HTTP server: il front-end web è costituito dal server HTTP della suite IBM WebSphere Application Server 5 (WAS5 nel seguito);
- ➤ Application server: il container J2EE per l'esecuzione di JSP, servlet, EJB è l'application server IBM WAS5.

© 2007 Hacking Team – Proprietà Riservata	Numero Allegati: 0	Pagina 4 di 8
---	--------------------	---------------

Diritti riservati. E' espressamente vietato riprodurre, distribuire, pubblicare, riutilizzare anche parzialmente articoli, testi, immagini, applicazioni, metodi di lavoro del presente documento senza il previo permesso scritto rilasciato dalla società proprietaria Hacking Team S.r.l., ferma restando la possibilità di usufruire di tale materiale per uso interno della Società nel rispetto di quanto stabilito dal contratto di fornitura sottoscritto.

- DBMS: il data tier è costituito da un DBMS IBM DB2.
- Infrastruttura hardware: l'ambiente su cui verranno effettuate le attività è costituito da un solo server su piattaforma AIX.

3 Metodologia proposta

La metodologia proposta per l'identificazione delle cause dei fenomeni di saturazione dell'applicativo InVita è descritta nel seguente diagramma di flusso.

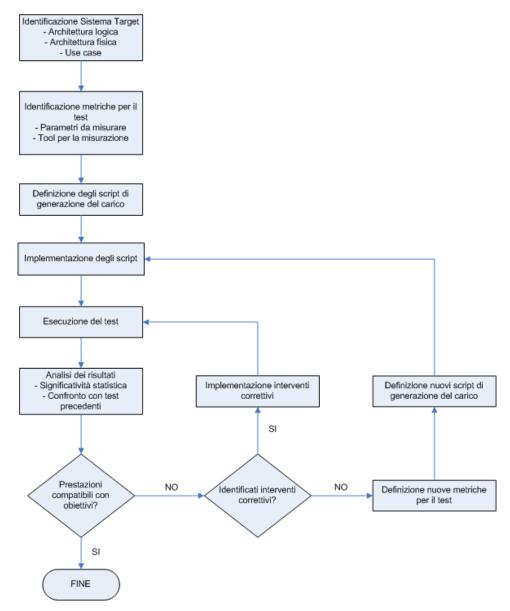


Figura 1. Strategia per il debugging

© 2007 Hacking Team – Proprietà Riservata	Numero Allegati: 0	Pagina 5 di 8	
---	--------------------	---------------	--

Diritti riservati. E ' espressamente vietato riprodurre, distribuire, pubblicare, riutilizzare anche parzialmente articoli, testi, immagini, applicazioni, metodi di lavoro del presente documento senza il previo permesso scritto rilasciato dalla società proprietaria Hacking Team S.r.l., ferma restando la possibilità di usufruire di tale materiale per uso interno della Società nel rispetto di quanto stabilito dal contratto di fornitura sottoscritto.

E' importante sottolineare che le attività sintetizzate nel grafico sono relative alle operazioni di debugging e che con il blocco "fine" si intende la terminazione delle stesse e l'inizio della successiva e finale attività di stress test.

Come mostra la figura 1, la metodologia di debugging proposta prevede le seguenti fasi:

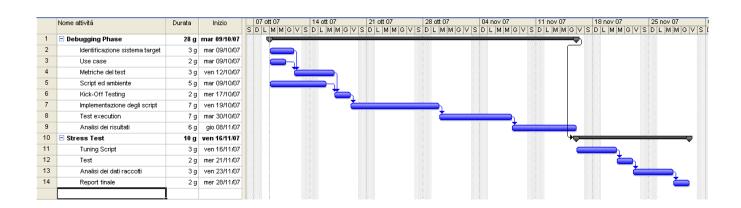
- ➤ Identificazione del sistema target: in questa fase vengono raccolte informazioni su architettura logica e fisica del sistema da testare e sui principali use case.
- ➤ Identificazione delle metriche: in questa fase vengono definiti i parametri che devono essere misurati allo scopo di rilevare l'insorgere, ed osservare l'evoluzione, delle anomalie di cui si vuole identificare la causa.
- ➤ Definizione degli script di generazione del carico: in questa fase viene definito l'insieme di richieste da sottoporre all'applicazione per simulare le condizioni d carico a cui compaiono le anomalie.
- ➤ Implementazione degli script: in questa fase si implementano, utilizzando opportuni tool, gli script che permettono la generazione delle sequenze di richieste definite nella fase precedente.
- ➤ Esecuzione del test: in questa fase si eseguono gli script implementati nella fase precedente, e si raccolgono i dati di misura secondo quanto stabilito nella faes di "Identificazione dei parametri"
- Analisi dei risultati: in questa fase si verifica la significatività statistica delle misure effettuate e si cercano modalità di aggregazione dei dati (tempo medio per l'esecuzione di uno use case; tempo medio di risposta di singole richieste http; ecc.).

Per la natura dell'attività, finalizzata all'identificazione delle cause di un malfunzionamento, sarà necessario applicare la questa metodologia in modo iterativo. In particolare:

- > se in seguito all'analisi dei risultati di una iterazione non vengono identificati elementi utili per il debugging, si procederà alla modifica delle metriche e dei test da effettuare;
- > se in seguito all'analisi dei risultati di una iterazione si identificano possibili cause del problema, si procederà all'implementazione di azioni correttive sull'applicativo, i cui effetti saranno valutati ripetendo i test.

4 Assegnazione competenze e tempistiche

Seguendo l'approccio proposto in figura, si sintetizzano di seguito i dati di ogni attività, fornendo per ognuna una stima dei tempi di esecuzione.


Debugging di INVITA				
Attività	Descrizione sintetica	Owner	Tempistica	
Identificazione sistema target	Preparazione HW e SW ambiente di test	T-Systems CapGemini	Sattimana dal 9	
Use case	Identificazione flussi critici e percorsi applicativi da seguire nei test	CapGemini	Settimana del 8 Ottobre 2007	
Metriche del test	Identificazione dei parametri da misurare e predisposizione degli eventuali tools di supporto	T-Systems CapGemini	Settimana del 8 Ottobre 2007	
Script ed ambiente	Predispozione ambiente di testing e di scripting	HT	Settimana del 8 Ottobre 2007	
Kick-Off Testing	Incontro di controllo e predisposizione finale	T-Systems CapGemini HT	Un giorno della settimana del 15 Ottobre 2007 a conclusione di tutte le attività precedenti	
Implementazione degli script	Rifinitura degli script in base all'ambiente predisposto	НТ		
Test execution	Esecuzione dei test e monitoring dei parametri stabiliti	T-Systems CapGemini HT	Giornate a consumo previste fino	
Analisi dei risultati	Raccolta, analisi dei risultati ed eventuale rischedulazione dei test (dopo l'esecuzione degli interventi correttivi o la definizione dei nuovi script di generazione del carico)		all'orizzonte massimo del 15 Novembre 2007	
Stress Test di INVITA				
Attività	Descrizione sintetica	Owner	Tempistica	

© 2007 Hacking Team – Proprietà Riservata	Numero Allegati: 0	Pagina 7 di 8
---	--------------------	---------------

Stress Test	 Tuning degli script esistenti e tarati durante la fase di debugging Stress test fuori orario lavorativo Analisi dei dati raccolti Report finale di capacity 	HT	Consegna entro la prima settimana di Dicembre 2007
-------------	--	----	--

