

© 2008 Hacking Team – All Rights Reserved Attachments: 0 Page 1 of 10�

Diritti riservati. E ’ espressamente vietato riprodurre, distribuire, pubblicare, riutilizzare anche parzialmente articoli, testi, immagini, applicazioni, metodi di
lavoro del presente documento senza il previo permesso scritto rilasciato dalla società proprietaria Hacking Team S.r.l., ferma restando la possibilità di
usufruire di tale materiale per uso interno della Società nel rispetto di quanto stabilito dal contratto di fornitura sottoscritto.

HT Application Methodology

HT S.r.l. http://www.hackingteam.it

Via della Moscova, 13
20121 MILANO (MI) - Italy info@hackingteam.it

Tel. +39.02.29060603 Fax +39.02.63118946

© 2008 Hacking Team – All Rights Reserved Attachments: 0 Page 2 of 10�

Diritti riservati. E ’ espressamente vietato riprodurre, distribuire, pubblicare, riutilizzare anche parzialmente articoli, testi, immagini, applicazioni, metodi di
lavoro del presente documento senza il previo permesso scritto rilasciato dalla società proprietaria Hacking Team S.r.l., ferma restando la possibilità di
usufruire di tale materiale per uso interno della Società nel rispetto di quanto stabilito dal contratto di fornitura sottoscritto.

INDEX

EXECUTIVE SUMMARY .. 3

1 INTRODUCTION ... 3

2 SECURITY EVALUATION .. 4

2.1 HACKING TOOLS EMPLOYED... 4
2.2 HACKING TESTS PERFORMED ... 5

2.2.1 Brute Force Attacks to the Authentication System .. 5
2.2.2 Other Attacks to the Authentication System.. 5
2.2.3 Session/Credential Prediction ... 6
2.2.4 Insufficient Authorization ... 7
2.2.5 Weak Password Recovery Validation ... 7
2.2.6 Insufficient Session Expiration .. 7
2.2.7 Content Spoofing / Cross-Site Scripting.. 7
2.2.8 Command Execution & Low-level Coding Vulnerabilities Exploitation 8
2.2.9 SSI Injection .. 8
2.2.10 Directory Listing... 8
2.2.11 Information Leakage.. 8
2.2.12 Path Traversal ... 9
2.2.13 Abuse of Functionality ... 9
2.2.14 Denial of Service ... 9
2.2.15 Forcefull Browsing... 9
2.2.16 HTTP Request Smuggling... 9

© 2008 Hacking Team – All Rights Reserved Attachments: 0 Page 3 of 10�

Diritti riservati. E ’ espressamente vietato riprodurre, distribuire, pubblicare, riutilizzare anche parzialmente articoli, testi, immagini, applicazioni, metodi di
lavoro del presente documento senza il previo permesso scritto rilasciato dalla società proprietaria Hacking Team S.r.l., ferma restando la possibilità di
usufruire di tale materiale per uso interno della Società nel rispetto di quanto stabilito dal contratto di fornitura sottoscritto.

Executive Summary

This document describes a vulnerability assessment activity carried out by HT on the web

application of XXXXX. The goal of such an activity has been to assess the actual security of the

aforementioned application in front of external and internal attack attempts for the purpose of

identifying possible vulnerabilities which could allow an attacker to perform a fraud or other criminal

abuses.

1 Introduction
Security attacks against web applications providing various kinds of financial on line services

represent nowadays a serious threat to the business of financial institutions and their clients.

Hacking Team carried out a vulnerability assessment of the on line application of XXXX for the

purpose of identifying possible vulnerabilities before crackers and other criminals find and exploit

them to perform financial frauds. During this assessment we considered many realistic scenarios

which envolve attacks varying from those originating from an external user with little information

about the application to attacks originating from a legitimate user with considerable information

about the application.

We acted in two operational modes, namely in a black box mode and in a white box mode. In black

box mode we were granted no access to the application and were given no information about the

application code, its software components and its administration. In white box mode we were

granted two categories of an account for the same user which we used as an internal profile. We

tried a rich set of attacks and evasion against the application, which demonstrated to be equipped

with a good coding and administration defense. For most of the attacks we carried out a selective

code auditing, i.e. analyzed only the code strictly related to the functionality we were testing for

vulnerabilities.

This document provides a description of the main attacks tried against the application, the affects

on the application deriving from the execution of each attack, a description of some weaknesses

identified in the application, and the corresponding countermeasures.

© 2008 Hacking Team – All Rights Reserved Attachments: 0 Page 4 of 10�

Diritti riservati. E ’ espressamente vietato riprodurre, distribuire, pubblicare, riutilizzare anche parzialmente articoli, testi, immagini, applicazioni, metodi di
lavoro del presente documento senza il previo permesso scritto rilasciato dalla società proprietaria Hacking Team S.r.l., ferma restando la possibilità di
usufruire di tale materiale per uso interno della Società nel rispetto di quanto stabilito dal contratto di fornitura sottoscritto.

2 Security Evaluation

2.1 Hacking Tools Employed

During the security assessment on the on line application of XXXXX in addition to a manual

analysis we performed a quantitative automatic analysis through various hacking tools and hacking

support tools. The main tools we utilized for the vulnerability assessment activity are the following:

 Application Vulnerability Scanners: these tools automatically crawl every possible

resource of the target application and try to identify possible vulnerabilities by using a data

base of signatures of known vulnerabilities. Furthermore, some of these tools scan the web

server hosting the target application as well.

 Web proxies: these tools place themselves in the middle of a browser and a target web

server and allow for interception and modification on the fly of all HTTP requests and

responses.

 HTTP Editors: these tools enable an attacker to manually build HTTP requests, send them

to a target web server and view the possible corresponding response.

 Encoding/Decoding tools: these tools are used for encoding some defined bytes from a

plain form into URL representation, base64, overlong UTF-8, etc., and vice versa, i.e.

decoding some defined bytes from a URL representation, base64, overlong UTF-8, etc.,

into a plain form.

 Cookie Analysis Tools: these tools allow an attacker to gather all cookies used by a target

application and perform several kinds of analysis on them for the purpose of evaluating the

possibility of corrupting their value and damage the functionality of the target application.

 Site mapping tools: these tools perform an automatic download of all possible files from a

defined site. They are usually used for constructing the structure of a target application and

gathering material to be used in offline analysis.

© 2008 Hacking Team – All Rights Reserved Attachments: 0 Page 5 of 10�

Diritti riservati. E ’ espressamente vietato riprodurre, distribuire, pubblicare, riutilizzare anche parzialmente articoli, testi, immagini, applicazioni, metodi di
lavoro del presente documento senza il previo permesso scritto rilasciato dalla società proprietaria Hacking Team S.r.l., ferma restando la possibilità di
usufruire di tale materiale per uso interno della Società nel rispetto di quanto stabilito dal contratto di fornitura sottoscritto.

 Database Scanning tool: these tools scan a target network looking for database servers

reachable directly from the network. These tools also assist an attacker in attacking

possible database servers found on a network.

 Injection Tools : these tools allow for automatically performing various kinds of injection on

resources specified by an attacker.

2.2 Hacking Tests Performed

In this section we describe the attacks we implemented against the on line application of XXXXX.

For each attack we specify whether it was performed in a black or white box mode, and whether it

was successful or not.

2.2.1 Brute Force Attacks to the Authentication System

The on line application of XXXXX uses a form based authentication to authenticate users. The

authentication system authenticates them through a combination of user name and password they

should provide. Operating in a black box mode we tried a dictionary attack against the application.

Assuming we do not know how a user name is structured we used common user names and a

dictionary of italian words for such attack. This attack was unsuccessful. Passing into a white box

mode we noticed that the user name is composed of the first four letters of the user's first name,

the first four letters of the user's last name, and two digits like 18 or 21. We also tried to perform

the attack in a pure brute force style, i.e. trying with randomly generated passwords. We replayed

the attack in both forms, and it was again unsuccessful.

2.2.2 Other Attacks to the Authentication System

Operating in a black box mode we tried a SQL injection attack against the authentication form,

assuming that the target application executes a query on a database to determine whether a user

provided a valid combination of user name and password. We also considered the possibility that

the application authenticates a user by connecting to an LDAP server and performing a query on it.

Consequently we tried an LDAP injection attack against the authentication form. While trying to

carry out these attacks it was clear that HTTP requests passed through an application firewall

before reaching the web server hosting the target application.

© 2008 Hacking Team – All Rights Reserved Attachments: 0 Page 6 of 10�

Diritti riservati. E ’ espressamente vietato riprodurre, distribuire, pubblicare, riutilizzare anche parzialmente articoli, testi, immagini, applicazioni, metodi di
lavoro del presente documento senza il previo permesso scritto rilasciato dalla società proprietaria Hacking Team S.r.l., ferma restando la possibilità di
usufruire di tale materiale per uso interno della Società nel rispetto di quanto stabilito dal contratto di fornitura sottoscritto.

As a matter of fact while feeding to the authentication form certain particular attack characters in

various encoding we were redirected to the authentication page. These attack characters are

fundamental for extending a possible SQL query or LDAP query for the purpose of forcing the

condition to be true and return a positive result, and consequently grant access to the application.

The application firewall was efficient in blocking the aforementioned attacks as it rejected the

attack characters.

Operating in white box and auditing the code which performs the authentication of a user we found

out that in reality the target application performs an LDAP query for the purpose of authenticating a

user. We crafted the LDAP injection attack and retried it. Nevertheless, besides being blocked by

the application firewall, the LDPA injection attack did not succeed against the authentication

system because the later uses the user name and password for connecting to the LDAP server.

This is a smart decision and eliminates any kind of injection attack since if the user name and

password are not valid the authentication will fail. Under these circumstances the application will

not be able to connect to the LDAP server.

A common security error consists in connecting to the LDAP server usually as an administrator and

then performing queries which authenticate a user. In that case an LDAP injection could be

feasible as the application already provides the connection to the LDAP server, and what is left to

the attacker is to maliciously extend an LDAP query. Nevertheless, the application does not suffer

from such a vulnerability.

2.2.3 Session/Credential Prediction

These attacks were performed in white box mode. We gathered several cookie values and

analyzed them. We focused on critical elements such as the length of the cookie values, the set of

characters used to generate cookie values, the presence of sensitive information in cookie values,

the entropy of cookie values, i.e. the number of characters which change when the application

generates a new cookie value for a given cookie, and ended up with no vulnerabilities. The

application generates robust cookie values.

With regard to the prediction of credentials we noticed that the user name is partially predictable

since the attacker should only guess the last two digits in a user name. Furthermore, the initial

password assigned to a user is formed of 8 digits. The search space in this case is suitable for a

brute force attack and is applicable from the moment the account of a new user is registered till the

legitimate user accesses the application for the first time and changes the initial password.

© 2008 Hacking Team – All Rights Reserved Attachments: 0 Page 7 of 10�

Diritti riservati. E ’ espressamente vietato riprodurre, distribuire, pubblicare, riutilizzare anche parzialmente articoli, testi, immagini, applicazioni, metodi di
lavoro del presente documento senza il previo permesso scritto rilasciato dalla società proprietaria Hacking Team S.r.l., ferma restando la possibilità di
usufruire di tale materiale per uso interno della Società nel rispetto di quanto stabilito dal contratto di fornitura sottoscritto.

2.2.4 Insufficient Authorization

Operating in a black box mode we stressed the application to see if it is possible to access certain

resources which should be accessed only after providing a valid credential. The application does

not allow access to protected resources if the request does not include valid cookies and valid

cookie values, which in turn are provided only if the user authenticates with success. The

application handles correctly the cookies, therefore it has not been possible to bypass the

authorization scheme. From a white box mode we tried to access certain application resources as

another user, and these attempts were not successful as the application makes a proper use of

sessions. Nonetheless, we found out that the application allows simultaneous access from different

terminals. Generally it is a common security practice not to allow such a simultaneous access to an

application to be protected.

2.2.5 Weak Password Recovery Validation

In a black box mode we tried several SQL and LDAP injection attacks against the password

recovery procedure. These attacks were blocked from their very first step by the application

firewall. We tried to identify functional weaknesses in the aforementioned procedure. We deem that

an attacker who personally knows a legitimate user could bypass the first phase of the password

recovery procedure since he could easily construct the first 8 characters of the user name and

brute force the last two digits. Furthermore, an attacker defined as above could obtain personal

data of such a legitimate user, for example the complete date of birth. Nevertheless, we believe the

attacker cannot reach the combination of a secret question and the related response, thus an

attacker would be blocked at the second phase of the password recovery procedure.

2.2.6 Insufficient Session Expiration

After authenticating to the application we logged out and verified that our previous session was

invalidated by the application. In this sense the application behaves correctly. We did another test

on the session expiration issue. We authenticated to the application and did nothing on it for

around 30 minutes. Although there was a relatively long period of inactivity, the application did not

invalidate the current session like it should

2.2.7 Content Spoofing / Cross-Site Scripting

Operating in a white box mode we searched for a possibility to insert malicious data and latter have

other users view it. This is a common scenario for a cross site scripting attack, and the malicious

data in this case would be code written in a client side language such as JavaScript. The

application is protected from these attacks. There are some points in which an attacker could try to

© 2008 Hacking Team – All Rights Reserved Attachments: 0 Page 8 of 10�

Diritti riservati. E ’ espressamente vietato riprodurre, distribuire, pubblicare, riutilizzare anche parzialmente articoli, testi, immagini, applicazioni, metodi di
lavoro del presente documento senza il previo permesso scritto rilasciato dalla società proprietaria Hacking Team S.r.l., ferma restando la possibilità di
usufruire di tale materiale per uso interno della Società nel rispetto di quanto stabilito dal contratto di fornitura sottoscritto.

insert malicious data, but the application does not allow viewing it at all. Furthermore, it has not

been possible to even insert malicious data as they are rejected by the application firewall.

2.2.8 Command Execution & Low-level Coding Vulnerabilities Exploitation

Server side code in various applications happens to call operating system commands through

functions such as system(). By injecting malicious characters it is possible to extend the string

which represents the command to be executed and make it contain the original command and

other attacker defined commands. We tried such an attack both in black box and in white box and

observed that the application firewall rejects the characters needed for carrying out a command

injection attack. From the selective code auditing did not result the existence of a function which

could be abused with for the purpose of implementing a command injection attack.

With regard to a possible exploitation of low-level coding vulnerabilities such as buffer overflows,

well, this attack is not applicable in Java code. In fact Java does not suffer from buffer overflows. A

potential target for this kind of exploitation could be the web server hosting the target application,

but it has not been possible to identify a way to carry out this kind of exploit with the Teros

application firewall in the middle.

2.2.9 SSI Injection

Server side include (SSI) attacks exploit the fact that a web server may execute several commands

by following preliminarily defined directives to generate dynamic content. The commands that may

be executed through these directives vary from including a certain file to a direct execution of an

operating system command. We injected server side include directives to the application but the

application firewall rejects them. The server side include attack attempt has been performed both

in black box mode and in white box mode.

2.2.10 Directory Listing

The web server hosting the on line application of XXXXX does not allow a listing of any directory

within its root directory.

2.2.11 Information Leakage

There have not been found in the on line application of XXXXX any ways of leaking information

other than the information which may be easily deduced by observing the general client side

architecture of such an application.

© 2008 Hacking Team – All Rights Reserved Attachments: 0 Page 9 of 10�

Diritti riservati. E ’ espressamente vietato riprodurre, distribuire, pubblicare, riutilizzare anche parzialmente articoli, testi, immagini, applicazioni, metodi di
lavoro del presente documento senza il previo permesso scritto rilasciato dalla società proprietaria Hacking Team S.r.l., ferma restando la possibilità di
usufruire di tale materiale per uso interno della Società nel rispetto di quanto stabilito dal contratto di fornitura sottoscritto.

2.2.12 Path Traversal

These attacks consist in sending HTTP requests for resources which are not part of the web

server's root directory. It has not been possible to access resources other than those explicitly

allowed by the application.

2.2.13 Abuse of Functionality

In a white box mode we tried various attempts to abuse with the application, especially for

assessing the possibility of a financial fraud. The application is well programmed, therefore there

have not been identified any functional weaknesses which could enable an attacker to carry out a

financial fraud.

2.2.14 Denial of Service

In black box mode we tried several script injection attacks against the application. These attacks

consist in injecting code written in the language of the server side code and if successful could lead

to the processing of the injected script code. We operated on the fields of the authentication form

and on several cookies. In front of code injection attacks the web server hosting the application fell

into internal error.

2.2.15 Forcefull Browsing

This attack consists in a direct request for a resource without following the execution path defined

by the application programmer. In white box mode it has been possible to access the source code

of certain scripts. According to the application logic these files should never be requested directly

by a user. In fact they are to be included in other script files and execute as an integral part of

those other script files. By requesting the aforementioned script files directly the web server

returned their source code as they had an extension which does not recognize them as server side

scripts, therefore the web server considers them as simple text files and returns their content.

2.2.16 HTTP Request Smuggling

The HTTP request smuggling attack takes advantage of the lack of standardization in parsing

HTTP traffic when one or more HTTP entities like a cache server, proxy server, or application

firewall are in the data flow between a client and the target web server. An HTTP request

© 2008 Hacking Team – All Rights Reserved Attachments: 0 Page 10 of 10�

Diritti riservati. E ’ espressamente vietato riprodurre, distribuire, pubblicare, riutilizzare anche parzialmente articoli, testi, immagini, applicazioni, metodi di
lavoro del presente documento senza il previo permesso scritto rilasciato dalla società proprietaria Hacking Team S.r.l., ferma restando la possibilità di
usufruire di tale materiale per uso interno della Società nel rispetto di quanto stabilito dal contratto di fornitura sottoscritto.

smuggling attack consists in sending multiple HTTP requests that cause the two attacked entities

to see different sets of requests enabling an attacker to smuggle a request to one device without

the other device noticing it. We analyzed the way the Teros application firewall and apache web

server parse HTTP traffic and ended up with the result that there are no parsing discrepancies in

these two entities.

