UMTS SDK

Developer’s Guide

2130143
Rev 6.0

"‘_’
SIERRA WIRELESS

ssssssssssssssssssssssssss

Important Notice

Safety and Hazards

Limitation of
Liability

Rev 6.0 Apr.08

Preface

Due to the nature of wireless communications, transmission
and reception of data can never be guaranteed. Data may be
delayed, corrupted (i.e., have errors) or be totally lost.
Although significant delays or losses of data are rare when
wireless devices such as the Sierra Wireless modem are used in
a normal manner with a well-constructed network, the Sierra
Wireless modem should not be used in situations where failure
to transmit or receive data could result in damage of any kind
to the user or any other party, including but not limited to
personal injury, death, or loss of property. Sierra Wireless
accepts no responsibility for damages of any kind resulting
from delays or errors in data transmitted or received using the
Sierra Wireless modem, or for failure of the Sierra Wireless
modem to transmit or receive such data.

Do not operate the Sierra Wireless modem in areas where
blasting is in progress, where explosive atmospheres may be
present, near medical equipment, near life support equipment,
or any equipment which may be susceptible to any form of
radio interference. In such areas, the Sierra Wireless modem
MUST BE POWERED OFF. The Sierra Wireless modem can
transmit signals that could interfere with this equipment.

Do not operate the Sierra Wireless modem in any aircraft,
whether the aircraft is on the ground or in flight. In aircraft, the
Sierra Wireless modem MUST BE POWERED OFF. When
operating, the Sierra Wireless modem can transmit signals that
could interfere with various onboard systems.

Note: Some airlines may permit the use of cellular phones while the
aircraft is on the ground and the door is open. Sierra Wireless
modems may be used at this time.

The driver or operator of any vehicle should not operate the
Sierra Wireless modem while in control of a vehicle. Doing so
will detract from the driver or operator's control and operation
of that vehicle. In some states and provinces, operating such
communications devices while in control of a vehicle is an
offence.

The information in this manual is subject to change without
notice and does not represent a commitment on the part of
Sierra Wireless. SIERRA WIRELESS AND ITS AFFILIATES
SPECIFICALLY DISCLAIM LIABILITY FOR ANY AND ALL
DIRECT, INDIRECT, SPECIAL, GENERAL, INCIDENTAL,
CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES
INCLUDING, BUT NOT LIMITED TO, LOSS OF PROFITS OR

UMTS SDK Developer’s Guide

Patents

Copyright

Trademarks

REVENUE OR ANTICIPATED PROFITS OR REVENUE
ARISING OUT OF THE USE OR INABILITY TO USE ANY
SIERRA WIRELESS PRODUCT, EVEN IF SIERRA WIRELESS
AND/OR ITS AFFILIATES HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES OR THEY ARE
FORESEEABLE OR FOR CLAIMS BY ANY THIRD PARTY.

Notwithstanding the foregoing, in no event shall Sierra
Wireless and/or its affiliates aggregate liability arising under or
in connection with the Sierra Wireless product, regardless of
the number of events, occurrences, or claims giving rise to
liability, be in excess of the price paid by the purchaser for the
Sierra Wireless product.

Portions of this product may be covered by some or all of the
following US patents:

5,515,013 5,629,960 5,845,216 5,847,553 5,878,234
5,890,057 5,929,815 6,169,884 6,191,741 6,199,168
6,339,405 6,359,591 6,400,336 6,516,204 6,561,851
6,643,501 6,663,979 6,697,030 6,785,830 6,845,249
6,847,830 6,876,697 6,879,585 6,886,049 6,968,171
6,985,757 7,023,878 7,053,843 7,106,569 7,145,267
7,200,512 7,295,171 7,287,162 D442,170 D459,303
D599,256 D560,911

and other patents pending.
This product includes

technology licensed from: QUALCOMMP® 3G

Licensed by QUALCOMM Incorporated under one or more of
the following United States patents and/or their counterparts
in other nations:

4,901,307 5,056,109 5,101,501 5,109,390 5,228,054
5,267,261 5,267,262 5,337,338 5,414,796 5,416,797
5,490,165 5,504,773 5,506,865 5,511,073 5,535,239
5,544,196 5,568,483 5,600,754 5,657,420 5,659,569
5,710,784 5,778,338

Manufactured or sold by Sierra Wireless or its licensees under
one or more patents licensed from InterDigital Group.

©2008 Sierra Wireless. All rights reserved.

AirCard® and “Heart of the Wireless Machine®” are registered
trademarks of Sierra Wireless. Watcher® is a trademark of
Sierra Wireless, registered in the European Community.

Sierra Wireless, the Sierra Wireless logo, the red wave design,
and the red-tipped antenna are trademarks of Sierra Wireless.

2130143

Contact

Information

Revision History

Preface

®

Windows"™ is a registered trademark of Microsoft Corporation.

QUALCOMM® is a registered trademark of QUALCOMM
Incorporated. Used under license.

Other trademarks are the property of the respective owners.

Sales Desk: Phone: | 1-604-232-1488

Hours: | 8:00 AM to 5:00 pm Pacific Time

E-mail: | sales@sierrawireless.com

Technical Support | Web www.sierrawireless.com/
corporate/contact.aspx

Post: | Sierra Wireless

13811 Wireless Way
Richmond, BC

Canada V6V 3A4

Fax: | 1-604-231-1109

Web: | www.sierrawireless.com

Consult our website for up-to-date product descriptions,
documentation, application notes, firmware upgrades,
troubleshooting tips, and press releases:

www.sierrawireless.com

Revision Release Changes
number date
6.0 Apr 2008 Created

Rev 6.0 Apr.08

mailto:sales@sierrawireless.com
http://sierrawireless.com
http://sierrawireless.com
http://www.sierrawireless.com/corporate/contact.aspx
http://www.sierrawireless.com/corporate/contact.aspx

UMTS SDK Developer’s Guide

6 2130143

Table of Contents

About ThisGuidecciiiiiiiiiiinne et trnnnnnnsrrnns 13
SDKintroduction ... e e 13
Scopeofthisguidec i 13
Systemrequirements 13
Development systems: i 13

Client systems: i e 13
Otherreference materialo i i i i 14

R4 API to SwiApiX APl differencesccvinatn. 15
Using the APl documentationc0in, 17
SDKInstallationand Setupoiiiiiiiii . 19
Installingthe SDK. i e e e e e e 19
Setting up yourenvironment. 19
Installing the device driver. i i 19
Distributing files i 19
Dynamic Link Library (DLL) usageo i e 20
Software architecture i il i, 21
Software architecture......... .. 21
Host application layer i i e i 21
Modem driver layer 22
Firmware layer 22

APl layer .. 22
Host-initiated requests /responses 0. 23
Modem-initiated notifications oL 23

Managing notifications i 23

Rev 6.0 Apr.08 7

UMTS SDK Developer’s Guide

Interaction between components il 24

API Initialization, Device Management, and Notifications 25

Using these APl functions i, 25
EXamples ..o e 26
Initializing the API 26
Handling a modem reset or suspend/resumecycle 28

If the driversdonotunload: 28

If the drivers unload and reload: 28

Shutting downthe APl 29
Host application APl usage. i e 30
Opening the host application i, 30
Checking that the modem s available 30
Powering the modemdownandup it 31
Handling notifications i i i 31
Enabling notifications 31
Disabling notifications i i 31
Processing notifications o i 31
Managing modemresets i 31

Using the “ready” notifications 32

Enabling network registration i, 32
Settingthe TCP window size 32
Closing the host application i i i i, 32
Application development for Windows CE-based devices............... 33
SIM AuthenticationandCodes it 35
Using these APl functions i 35
Using a MEP code to unblockthe modem 35
SIM SECUNtY o\ vt 35
Checking / setting CHV1 enabled status 36

CHV1 verification i 36

CHV2 verification i 37

8 2130143

Enabling /disabling CHV1 i i, 37

Changing CHV1orCHV2 e 38

Unblocking CHV1orCHV2 i i 38

Account Profile Managementcciiiin.. 39
Using these APl functions i i, 39
Account profile overview i e 39
Number of supported profiles 39

Profile maintenance functions i 40
Identifying account profiles 40
Reading profiles ... 40
Creating and editing profiles i i 40
Creating profiles ... 40

Setting a default profile to autoactivate 40
Activatingaprofile o i 40
Deleting profiles ... 40
Networkregistrationo it iiiiiennas 41
Using these APl functions o i, 41
Registeringonanetwork 41
Setting the frequency band(s), 42

Selecting and registeringonanetwork 42
DataConnectionsttt it i et naan s 45
Using these APl functions i, 45
Establishing a data connection, 45
SMS MeSSaginNgcvvvierrnnnernnnernnnsrnnnsrnnnsrnnnss 47
Using these APl functions i, 47

SMS message typeso i e 47
Reading SMS messages vii it e i e 47

Rev 6.0 Apr.08 9

UMTS SDK Developer’s Guide

Determining if messagesareontheSIM 48

Reading messages fromthe SIM 48

Deleting SMS messages . ..ot e 50
Sending SMS MeSSageS . ..ottt e 50
SMS status reports. . ..o e e 51
Configuring SMS parameters......... ... o i 51
Location-based servicesiiiiii it i 53
Using these APl functions i, 53
Retrieving operational settings i, 53
Get/set modem default and current operational parameters ... 53
Getsatellitedetailso i 53
GetLBSstatus 53

Get/set user-selected LBS fix settings 54

Position fix / tracking sessions i 54
Report modem’s last known location 54

Get modem'’s current location (Initiate single position fix) 54

Initiate tracking session i 55

End tracking session 56

Respond to network-initiated fix request 56
Ephemeris/almanacdata i i 56
Enabling / disabling ‘Keep Warm’ processing 56
Simulating a coldstart to force assistance data download 57
Supplementary servicesiiiiiiiiiiairiiaaaaa 59
Using these APl functions o i, 59
Basic supplementary service transaction 59
Supplementary service transaction requiring password 60
Changing a new supplementary services password 61
Stopping a supplementary service transaction 63

10 2130143

Phone Book Maintenanceciiriinrienrenreonnennss 65

Using these APl functions o i, 65
Supported phone books e 65
Using overdial numbers ... e 66

Using the phone book functions. i i 67
Application start-upo i e 67
Maintaining ADN, FDN, MSISDN phone books 67

Using the FDN phone book o i, 68
Phone book entries:o 68
Enabling/disabling FDN i i i, 68

SIM phone book statistics 68
Retrieving phone numbers i 68
Retrieving emergency numbers i 68
Phone book retrieval 69
Retrieving all entries in the ADN phone book 69

Modem and SIM characteristicscciviivnn.. 71
Errorhandling ...ttt ittt a s 73
Error codes ... 73
Handling errors 73

Rev 6.0 Apr.08 11

UMTS SDK Developer’s Guide

12 2130143

1: About This Guide
SDK introduction

The Software Development Kit (SDK) allows Windows®
software developers to create applications for Sierra Wireless’
UMTS products.

The SDK includes:

e This document (the SDK Developer’s Guide)

e Application Programming Interface (API) with supporting
online documentation describing API modules, classes,
and files

e Sample programs showing how to use several API calls

e End User License Agreement (EULA) — You are required
to accept the terms of this EULA before distributing any
products developed using this SDK.

Scope of this guide

This guide describes system requirements for installing and
using the SDK, and performing typical tasks from the modem’s
feature set. It is current with the SDK it is bundled with.

It does not describe the use of the AT, USB, or other interfaces.
Refer to the appropriate product-specific references available
at www.sierrawireless.com.

System requirements

Development systems:

* O/S: Microsoft Windows® XP (SP1 or later), Vista®, or
Vista (SP1)

e Languages: Any that can load a.dll file and call exported
functions.
Client systems:

*+ O/S: Microsoft Windows® XP (SP1 or later) or Vista. For
assistance with Windows CE, contact Sierra Wireless
Technical Support. (See “Contact Information” on page 5.)

Rev 6.0 Apr.08 13

UMTS SDK Developer’s Guide

Other reference material

The following are some sources for additional references that
may help you use the SDK to develop your applications:

e Sierra Wireless (www.sierrawireless.com) — Product speci-
fications for your products, interface references (AT, CnS),
glossary of terms and acronyms, etc.

* Microsoft Developer’s Network (MSDN) library —
Information explaining data types and syntax used in this
guide.

¢ GSM Association (www.gsmworld.com)

e Palowireless Resource Control (www.palowireless.com) —
Links to sources for GPRS/EDGE/UMTS articles, white
papers, definitions, etc.

14 2130143

2: R4 API to SwiApiX API differ-

ences

Applications written using the R4 API will require modifica-
tions to work with the SwiApiX API These modifications are
the result of the following API changes:
e APl initialization functions
* Multiple applications can now access multiple modems
simultaneously
+ Improved device detection and connection during appli-
cation startup, modem resets, and system suspend/
resume cycles
e Standardization of API component names and content
- Functions, data structures, and enumerations

Refer to Table 2-1, Table 2-2, and for lists of enumerations, data
structures, and functions that have been replaced, updated, or
added in the SwiApiX APL

Table 2-1: Enumerations

R4 enumeration

SwiApiX enumeration

Comments

SWI_TYPE_Device

SWI_TYPE_Device

Includes new device types, and obsolete device
types have been removed.

SWI_TYPE_Notify

SWI_TYPE_Notify

Includes new notifications, and obsolete
notifications have been removed.

SWI_TYPE_CallError

SWI_TYPE_GSM_CallError

SWI_TYPE_CallType

SWI_TYPE_GSM_CallType

SWI_TYPE_CallState

SWI_TYPE_GSM_CallState

No content changes. Name changed for
standardization.

n/a

SWI_TYPE_WirelessTech

SWI_TYPE_ProductClass

New enumerations related to improved device
detection.

SWI_TYPE_LockServ

New enumeration related to multiple application
support.

Table 2-2: Data structures

R4 structure

SwiApiX structure

Comments

SwiNotifyVariant

SwiNotifyVariant

Includes new definitions,
and obsolete definitions
have been removed.

Rev 6.0 Apr.08

15

UMTS SDK Developer’s Guide

Table 2-2: Data structures (Continued)

R4 structure SwiApiX structure Comments

SWI_STRUCT_SMS_SendStatus | SWI_STRUCT_GSM_SMS_SendStatus | No content changes. Name
changed for
SWI_STRUCT_SpeakerVolume SWI_STRUCT_GSM_SpeakerVolume standardization.

SWI_STRUCT_SpeakerMute SWI_STRUCT_GSM_SpeakerMute

SWI_STRUCT_NetworkStatus SWI_STRUCT_GSM_NetworkStatus

n/a SWI_STRUCT_AirServer New structure related to
improved device detection.

SWI_STRUCT_AirServerChange

SWI_STRUCT_AirServerExtended

SWI_STRUCT_AirServerList

SWI_STRUCT_ApiStartup New structure related to
multiple application
SWI_STRUCT_LockAirServer support.
Table 2-3: Functions
R4 function SwiApiX function Comments

SwiApiOpen SwiApiStartup Replaced for multiple application support

SwiApiClose SwiApiShutdown

SwiGetIMSI SwiGetGsmIMSI No content changes. Name changed for

standardization.

SwiSetSpeakerVolume SwiSetGsmSpeakerVolume

SwiGetSpeakerVolume SwiGetGsmSpeakerVolume

SwiSetSpeakerMute SwiSetGsmSpeakerMute

SwiGetSpeakerMute SwiGetGsmSpeakerMute

n/a SwiGetAvailAirServers New function related to improved device

detection.

SwiSelectAirServer

SwiGetAirServerinfo

16 2130143

3: Using the APl documentation

The SDK includes on-line API documentation that details the
different API modules, data constructs, function calls, etc.

Table 3-4 provides a quick reference to locating information in
the API documentation, and Table 3-5 is a listing of available
API modules (groups of related commands).

Table 3-4: Locations of information in APl documentation

To find this ... Look in this area of the documentation
APl modules Modules
Data structures Classes > Class List
‘class members’ Classes > Class Members
Header files Files > File List
Functions Files > File Members > Functions
Typedefs Files > File Members > Typedefs
Enumerations Files > File Members > Enumerations
Enumerators Files > File Members > Enumerator
Defines Files > File Members > Defines

Table 3-5: APl Modules

Module

APl Management and Device Selection

Notifications

Modem Information and Management

Error Handling

Network Management and Status

Audio Profiles

Radio Power and Status

Location Based Services

Driver

Connection Profiles

Call Management and Voice Features

Rev 6.0 Apr.08 17

UMTS SDK Developer’s Guide

Table 3-5: API Modules (Continued)

Module

Phonebook

SIM

Supplementary Services

SMS

18 2130143

4: SDK Installation and Setup

Note: Installing the SDK over an
older version is not recom-
mended.

If you are upgrading from a
previous version of the SDK,
uninstall and delete all the files in
the SDK folder
($INSTALL_FOLDER from

Step 2), then install the later
version.

Rev 6.0 Apr.08

The SDK is delivered as a .zip file by Sierra Wireless Technical
Support. (See “Contact Information” on page 5.)

Installing the SDK

To install the SDK:
1. Open the file in WinZip.

2. Extract the contents to a destination folder (any folder you
choose. For example, \Program Files\Sierra Wireless Inc). This
is referred to as $INSTALL_FOLDER through the
remainder of this chapter.

All SDK components (header files, documentation, libraries,
drivers, etc.) install under the $INSTALL_FOLDER in
meaningfully-named folders.

Setting up your environment

Set your development environment to locate the files required
for your host application’s platform and operating system.
These files (.dl], .lib, .h) are found in folders below the
$INSTALL_FOLDER.

Installing the device driver

To install the Sierra Wireless device driver for the modem:

1. Download the driver installer (an .exe or .msi installable
package) from www.sierrawireless.com/developers/
downloads.asp.

2. Run the installer package.

Distributing files

When you distribute your host application to a user, include:

¢ The following files in the same folder as your application:
SwiApilnterface.dll, SwiCardDirect.dll, SwiApiMux.exe,
and devices.xml

e The Sierra Wireless driver installer package.

19

https://www.sierrawireless.com/developers/downloads.asp
https://www.sierrawireless.com/developers/downloads.asp

UMTS SDK Developer’s Guide

Dynamic Link Library (DLL)
usage

To use the .dll supplied with the SDK:

e Include the header files in your host applications when
compiling.
e The APl returns strings in UNICODE format.

20 2130143

5: Software architecture

This chapter describes how the API interfaces with the host
application and modem, and how the modem driver interfaces
with Windows.

Software architecture

Figure 5-1: Software layers

Modem l Host Device
| (PC, Handheld, etc.)
| Control and Control and Function calls,
Status Status Responses,
I messages messages Notifications Hpst
| application
| API
Firmware DIfErS
| TCP/IP
Windows
I Data application
| ap traffic) (i.e. Internet
!)) Data (P traffic) | Exploren)
Al l L4 Al L4

The API facilitates the exchange of control and status messages
between your ‘host application” and the modem. These
messages pass through the four software layers described
below.

Host application layer

This is the client application that you develop to control the
modem and present a user interface. Your application commu-
nicates with the modem using the functions and data struc-
tures of the APL

Note: You can also use other interfaces (AT, CnS, NMEA, etc.) over
serial COM ports, USB ports, etc., to communicate directly with the
modem. See the appropriate product-specific references available at
www.sierrawireless.com.

Rev 6.0 Apr.08 21

UMTS SDK Developer’s Guide

Note: Data traffic is not handled
by the API. All data traffic is
handled by a Windows appli-
cation (like Internet Explorer)
communicating directly with

Modem driver layer

Modem driver software is installed on the host PC to provide
the interface between the modem and the Windows operating
system.

Firmware layer

The firmware manages data traffic between the modem and
the cellular network. It can be upgraded as new releases
become available. (Firmware releases are posted on the
Sierra Wireless web site, www.sierrawireless.com as part of
new software downloads.)

APl layer

The API layer includes several types of files (.dll, .xml, .exe,
etc.) on the host system. These files provide functions and data
structures that your host application uses to communicate with
the modem. This communication takes the form of:

e Host-initiated requests/responses (symmetric notifica-

Winsock libraries or the TCP tions)
stack. cr . P
¢ Modem-initiated notifications (asymmetric notifications)
Figure 5-2 illustrates the data flow patterns of a function that
receives only a return code, and a function that receives a
return code and a symmetric notification.
Figure 5-2: Request - response patterns
Function call with return code as response Function call with return code followed by
notification
Host Host
Application API Modem Application API Modem
k Function call K Function call
Y
j‘ / " Return Code M
Return Code
.) /
Notification
22 2130143

http://www.sierrawireless.com

Note: Where possible, use
available notifications
(asymmetric) to monitor modem
status, rather than polling with
function calls.

For example, register to receive
the notification
SWI_NOTIFY_NetworkStatus
rather than frequently calling the

function SwiGetServiceStatusEx.

Note: Notifications are the
preferred method for managing
the modem. This lets the modem
operate at optimum power
savings by not continually polling
the modem for responses.

Note: When the host registers a
specific notification type, a notifi-
cation is generated when the
current state information first
becomes available.

Rev 6.0 Apr.08

Software architecture

Host-initiated requests / responses

API function calls have the following characteristics:

Requests — Host-to-modem function calls passed to the
modem via the modem driver. Each function call returns a
standard return code (see SwiRcodes.h in the API
documentation).

Responses (symmetric notifications) — Some function calls
receive a response (modem-to-host message) containing
additional information after the return code is sent. The
API documentation for each call indicates if such notifica-
tions will be received.

The API indicates if you have to wait for the notification
(or for it to time out) before calling related functions. For
example, the host may have to wait for a SIM notification
before calling additional SIM functions, but can call other
functions (such as LBS) while it waits.

Timeouts — Each call requires a non-zero timeout value. If
the modem doesn’t respond to the request in time, the API
returns a timeout error code to your application; if the
modem responds after the function times out, the API
ignores the response. (Make sure that you set your timeout
values appropriately — 3000 ms is recommended as an
initial setting, which you can adjust during development.)

Modeme-initiated notifications

Asymmetric notifications have the following characteristics:

The host application must explicitly register to receive
most desired notifications, otherwise the messages are
ignored. The only ones that do not have to be registered
are API-driven notifications (such as AirServerChange).
Refer to the API documentation for details of all available
notifications.

These notifications occur when specific system state
changes occur (for example, available networks, modem
temperature, etc.).

Managing notifications

To manage notifications from the API, your application must:

Register a callback function(s): Use SwiRegisterCallback to
register a function that takes action on all event types that
your application enables for notification. The API calls this
function through a separate thread created in the API
layer.

Use appropriate notification API calls to enable the notifi-
cations required by your application. (You can also disable

23

UMTS SDK Developer’s Guide

Software

Hardware

["1 Provided by Sierra Wireless

Other Dial-up
Application | | Networking

> o 4

<4
or”

COM
Serial Port
Fy

v

notifications if necessary.) See “Handling notifications” on
page 31 for details.

Note: If the modem resets unexpectedly, notifications are disabled. The
host applications must detect this condition and explicitly re-enable the
notifications.

Interaction between components

The figure below shows the interaction between the API and
other software and hardware components.

Figure 5-3: API, software, and hardware interaction

- Windows Application
Host Application (i.e. Internet Explorer or
QOutlook)
A

Fy
Y _ h 4
) Windows
Sierra Wireless API Network
Stack
A A
v
Windows NDIS
A

Hardware Interface (PCMCIA / USB)

A

A4

Modem Firmware

I A custom-developed application or provided by Sierra Wireless

24

2130143

6: API Initialization, Device

Management, and Notifications

This chapter describes how to use API functions to perform the
following tasks:

Note: ‘Air servers”, in the
context of this document, are IP
tunnels used by the modem to
communicate with remote
networks.

Rev 6.0 Apr.08

Initialize or shut down the API sub-system

Identify available air servers, get information on them, and
connect to a specific server

Handle modem suspend/resume, and resets

Prepare the host application to work with the AP,
including handling notifications

The API supports simultaneous access to multiple modems by
multiple applications developed using this API.

Using these API functions

The following are key usage notes for functions described in
this chapter (see the API documentation for additional details):

SwiApiStartup: Call this function first to initialize the API

sub-system before using any other API calls.

* Once initialized, you can use control and status API
calls.

* You do not have to call it again when a device is
removed.

+ Do not call it again unless it fails or you receive a
shutdown notification. If this happens, call
SwiApiShutdown, and then call SwiApiStartup to start again.

SwiGetAvailAirServers: This can successfully return an
empty list when there are no available air servers.

SwiSelectAirServer: If you call this while you are connected
to an air server, all pending requests are cancelled and the
modem binds to the new air server.

SwiRegisterCallback: Always call this function immediately
after you register (or re-register) with an air server.

SwiNotify: Enable each notification that the callback should
handle (see SwiStructs.h in the API documentation for the
list of available notifications). If the modem resets, you
must re-enable the notifications after you re-register the
callback function.

SwiApiShutdown: Always call when finished. This stops the
API sub-system, drops communication links with servers,
and cleans up resources.

25

UMTS SDK Developer’s Guide

Examples

The following flow diagrams illustrate common situations
addressed using these modules.

Initializing the API

When air servers are available Initialize the API and bind
the modem to a specific air server.

1. Call SwiApiStartup to initialize the API (enabling device
detection).

2. Call SwiGetAvailAirServers to get a list of all available air
servers.

Call SwiSelectAirServers to choose the server to bind to.
Call SwiRegisterCallback to register a callback function to
receive API notifications.

Figure 6-4: APl initialization when air servers are available

Host
Application API

\ SwiApiStartup(...)

<
.

y APl subsystem initializes
without errors. Sends the
‘OK’ return code.

K SwiGetAvailAirServers(...) A list of one o more air
dl

< servers is retrieved.
Sends the ‘OK’ return
code.

/

K SwiSelectAirServers(...)

d
-

y Modem connects to the
air server. Sends the ‘OK’
return code.

K SwiRegisterCallback(...)
P ~ Callback function registers
successfully. Sends the
‘OK’ return code.

The host application can now use the
API control and status calls.
(First task should be to enable

notifications.)

When no air servers are available Initialize the API and
wait for notification that a server has become available. Then
bind the modem to that specific air server.

26 2130143

Rev 6.0 Apr.08

API Initialization, Device Management, and Notifications

Call SwiApiStartup to initialize the API (enabling device
detection).

Call SwiRegisterCallback to register a callback function to
receive API notifications.

Call SwiGetAvailAirServers to get a list of all available air
servers, and wait for notification that a server is available
(SWI_NOTIFY_AirServerChange). If no air servers are
available, the modem returns an empty list.

Call SwiSelectAirServers to bind to the server.

Call SwiRegisterCallback again to re-register the callback
function.

Figure 6-5: APl initialization when no air servers are available.

Host
Application API

k SwiApiStartup(...) o

P y API subsystem initializes

- without errors. Sends the
‘OK’ return code.

\ SwiRegisterCallback(...) Callback function registers

<) successfully. Sends the
‘OK’ return code.

\ SwiGetAvailAirServers(...) No air servers are

P N available (empty list).

~

Sends the ‘OK’ return
code.

Wait for notification that an air server is
available. (Host cannot make any control

or status API calls until one is.)

) Sends notification via
SWI_NOTIFY_AirServerChange / callback function when air

server becomes available.

SwiSelectAirServers(...)

-

Modem connects to the

/

air server and sends the
‘OK’ return code.

SwiRegisterCallback(...)

A/

Callback function registers

/

successfully. Sends the

The host application can now use the
API control and status calls.

(First task: enable notifications.)

‘OK’ return code.

27

UMTS SDK Developer’s Guide

28

Handling a modem reset or suspend/

resume cycle

When the modem is reset, or after it is suspended and then
resumes, the modem drivers may be unloaded and reloaded,
depending on the modem’s factory configuration.

If the drivers do not unload:

1. The host receives SWI_NOTIFY_Reset when the modem
resets. The modem drivers have remained loaded, and the

callback function remains registered.

2. Re-enable the API notifications that are handled by the

callback function.

Figure 6-6: Handling a modem reset or suspend/resume cycle when drivers

do not unload

API

/

Host
Application
API has been initialized and control and
status calls are working.
P SWI_NOTIFY_Reset
-

The host application now must re-
enable the notifications that are

handled by the callback function..

If the drivers unload and reload:

1. The host receives a SWI_NOTIFY_AirServerChange notifi-
cation indicating the drivers have unloaded.

2. The host must wait for another
SWI_NOTIFY_AirServerChange notification indicating the

drivers have reloaded.

Sends notification via
callback function when the
modem is reset, or
resumes after being
suspended.

(Note: the drivers have
not unloaded.)

Call SwiSelectAirServers to bind to a server.

4. Call SwiRegisterCallback to re-register the callback function

to receive API notifications.

5. Re-enable the API notifications that are handled by the

callback function.

2130143

API Initialization, Device Management, and Notifications

Figure 6-7: Handling modem reset or suspend/resume cycle when drivers
reload

Host
Application API

API has been initialized and control and
status calls are working.

Sends notification via
callback function
indicating that the air
/ server is unavailable
(drivers have unloaded).

SWI_NOTIFY_AirServerChange

A

SWI_NOTIFY_AirServerChange _/ Sends notification via

callback function when air
server resumes and
becomes available
(drivers have reloaded).

Modem connects to the
air server and sends the
‘OK’ return code.

\ SwiSelectAirServers(...)

/

SwiRegisterCallback(...)

A/

Callback function registers
successfully. Sends the
‘OK’ return code.

(O

The host application now must re-
enable the notifications that are

handled by the callback function.

The host application can now use
control and status API calls.

Shutting down the API

When ready to shut down the API, disable notifications, dereg-
ister the callback function, and then shutdown the APIL

1. Call SwiStopAlINotif to disable all notifications.

2. Call SwiDeRegisterCallback so the API will stop using the
callback function.

3. Call SwiApiShutdown to clean up resources, drop communi-
cation links, and stop the API.

Rev 6.0 Apr.08 29

UMTS SDK Developer’s Guide

30

A/

Figure 6-8: Shutting down the API

Host
Application API

API has been initialized and control and
status calls are working.

SwiStopAlINotif(...)

S Notifications are disabled;

API sends the ‘OK’ return
code.

SwiDeregisterCallback(...)
Callback function is

A/

A/

deregistered; API sends
the ‘OK’ return code.

SwiApiShutdown(...)

y API terminates

successfully and sends
the ‘OK’ return code.

The host application now cannot use
any APl commands other than

SwiApiStartup(...).

Host application APl usage

Opening the host application

Typically, on start-up, the host application should:

1. Initialize the API and register with an air server as shown
in Figure 6-4 on page 26.

2. Call SwiSetHostStartup to ensure the modem is able to
register on a network.

Checking that the modem is available

To check if the modem is available (driver has been loaded),
call GetAvailAirServers.

To make sure the modem is ready to use (not in boot and hold
mode, for example), call any API function that returns a
modem parameter. If the function fails to return a value within
a reasonable number of attempts, the modem is not available.

2130143

Note: Refer to the API
documentation to determine
whether your host application
should use
SwiSetModemDisable or
SwiSetHostStartup.

Rev 6.0 Apr.08

API Initialization, Device Management, and Notifications

Powering the modem down and up

Use the following functions to power the modem down and

up:

* SwiGetModemDisable — Indicates the current modem state
(in low power mode or not).

e SwiSetModemDisable — Enables or disables the modem. If
you disable the modem with this function, you must also
use the function to re-enable it — resetting the modem does
not re-enable it. (Modem disable setting is persistent across
modem power cycles.)

* SwiSetHostStartup — Enables or disables the modem.
(Powered-down state is not-persistent across modem
power cycles.)

Handling notifications

Enabling notifications

Call SwiEnableNotif, specifying the notifications required for
your application.

You must have a registered callback function before you can
receive any of these notifications.

Disabling notifications

Call function SwiStopNotify to disable individual notifications,
or SwiStopAlINotif to disable all notifications.

Processing notifications

When an enabled event notification occurs:

1. API calls the registered callback function, passing the
event data in the proper structure to the host application.

Note: When you receive a notification, cache the information passed
by the notification and release the thread as soon as possible.
Processing the notification in the context of the API notification thread
will cause unspecified behavior in the API.

Managing modem resets

The notification SWI_NOTIFY_Reset is received when a modem
reset occurs.

This notification always remains enabled.

31

UMTS SDK Developer’s Guide

32

Using the “ready” notifications

The following notifications are received when services become

available:

* SWI_NOTIFY_PImnReady —Modem can switch modes
between automatic and manual PLMN selection. (See
“Registering on a network” on page 41.)

* SWI_NOTIFY_PhonebookReady—Phone book services
are available. (See Chapter 14.)

* SWI_NOTIFY_SmsReady —SMS messaging services are
available. (See Chapter 11.)

* SWI_NOTIFY_SimStatusExp— Application must wait for

this notification before using SIM functions. (See Chapter
7.)

The host application should wait to receive these notifications
before calling related functions.

Enabling network registration

Each time the host application starts, call SwiSetHostStartup to
ensure the modem is able to register on a network.

Setting the TCP window size

The TCP window size controls how much data an application
can send before receiving an acknowledgement from the
recipient.

See the Microsoft Developer Network article “TCP Receive
Window Size and Window Scaling” for details on setting the
window size appropriately for your modem and operating
system. Call SwiOptimizeTcp to modify Windows registry
values as appropriate.

Closing the host application
When the host application closes, it should also shut down the
modem and API:

1. Call SwiApiShutdown to shut down control and status
messages between the modem and the API. (This does not
affect data traffic over other interfaces).

2130143

http://msdn2.microsoft.com/en-us/library/ms819736.aspx
http://msdn2.microsoft.com/en-us/library/ms819736.aspx

Rev 6.0 Apr.08

API Initialization, Device Management, and Notifications

Application development for
Windows CE-based devices

For information on developing applications for Windows CE-
based devices, please contact Sierra Wireless Technical
Support. (See “Contact Information” on page 5.)

33

UMTS SDK Developer’s Guide

34 2130143

7: SIM Authentication and Codes

Note: The functions in this
section are found in the S/M API
module. For additional SIM-
related functions, refer to the API
documentation.

Note: In a typical host appli-
cation interface, the user should
have to enter the code twice to
make sure it is entered correctly.

Rev 6.0 Apr.08

This chapter describes how to use API functions to perform the
following SIM-related tasks on GSM modules:

¢ Unblocking the MEP feature
* Managing SIM security (CHV1 and CHV2)
e Unblocking CHV1 and CHV2

Using these API functions

The following are key usage notes for functions described in

this chapter (see the API documentation for additional details):

* Host must enable notifications before they can be received.
(See “Managing notifications” on page 23.)

* Host must receive the SWI_NOTIFY_SimStatusExp notifi-
cation indicating that the SIM is ready before issuing any
calls. It is issued after every SIM function call to report the
function call result and the SIM’s status.

e If a call requires a SWI_NOTIFY_SimStatusExp notification,
do not repeat the call until you receive it or it times out.

Using a MEP code to unblock the modem

A MEP (Mobile Equipment Personalization) code is used to
deactivate the GSM MEP feature, which restricts user
equipment to a specific service provider’s SIMs.

To deactivate the GSM MEP feature on the modem:

1. Call SwiSetMEPUnlock with the correct MEP unlocking
code.

2. Wait for the SWI_NOTIFY_SimStatusExp notification
indicating if the modem was unlocked successfully.

3. If the unlock attempt failed, verify that you are using the
correct code and repeat this procedure.

SIM security

The SIM is protected by two levels of security (if enabled) to
prevent unauthorized access of the SIM and its features:

* CHV1—When enabled, a voice-enabled modem can only
call emergency numbers unless the correct unlocking code
(CHV1) is used.

¢ CHV2— Always enabled. The correct unlocking code
(CHV?2) is required to use special features such as the FDN
phonebook.

35

UMTS SDK Developer’s Guide

36

Checking / setting CHV1 enabled status

To determine if CHV1 is enabled, check the
SWI_NOTIFY_SimStatusExp notification, or call SwiGetSimLock.

To enable or disable CHV1, call SwiSetSimLock.

CHV1 verification
If CHV1 security is enabled, the CHV1 code must be entered:

1.

Note: Do not hard code the 3.
number of allowed attempts—

use the information in the notifi-

cation. (The number of allowed

attempts is network-dependent.)

When the modem is restarted or reset, the
SWI_NOTIFY_SimStatusExp notification is sent to the host.

The host gets the CHV1 PIN and calls SwiSetSimVerify to
compare the entered PIN with the CHV1 code on the SIM.

The modem sends the SWI_NOTIFY_SimStatusExp notifi-
cation to the host, indicating success (correct PIN) or
failure (incorrect PIN). If the PIN was wrong, the notifi-
cation also indicates that the PIN has to be re-entered, and
reports the number of retries remaining before the SIM
will be blocked. (See “Unblocking CHV1 or CHV2” on
page 38 for details.)

Figure 7-9: CHV1 verification process

Host

User Application

API

The modem powers up with CHV1
verification enabled.

SWI_NOTIFY_SimStatusExp
[SWI_SIMSTATUSEXP_Locked

SWI_REQUIREDOPERATION_EnterPIN] /

CHV1 entered by user
N in the host application

A

SwiSetSimVerify(...) Modem sends the ‘OK’

-

) return code, and initiates

Correct CHV1
Host was entered

SWI_NOTIFY_SimStatusExp
[SWI_PREVIOUSOPERATION_VerifyPIN

SWI_PREVIOUSOPERATIONRESULT_Succeeded
SWI_REQUIREDOPERATION_NoOperation]

verification.

Incorrect CHV1
API Host was entered API

SWI_NOTIFY_SimStatusExp
[SWI_PREVIOUSOPERATION_VerifyPIN
SWI_PREVIOUSOPERATIONRESULT_Failed
SWI_REQUIREDOPERATION_EnterPIN

/ SWI_TYPE_RETRYINFORMATION_PIN

NumberRetries=2] /

A

A

Modem features can be used.

Host application repeats process from
point where CHV1 is obtained from the

user.

2130143

Note: Only CHV1 can be
disabled—CHV?2 is always

SIM Authentication and Codes

CHV?2 verification

CHV2 is always enabled — the CHV2 code must be sent to the
modem to access special features such as the FDN phonebook
and the ACM (Accumulated Call charge Meter) feature.

1.

Call SwiChv2StatusKick to tell modem to request CHV2
verification is required.

Receive SWI_NOTIFY_SimStatusExp.
Call SwiSetSimVerify with the CHV2 code.
Receive SWI_NOTIFY_SimStatusExp indicating success.

Note: Just like CHV1, if an incorrect CHV2 code is entered
repeatedly, CHV2-restricted functionality becomes blocked. See
“Unblocking CHV1 or CHV2” on page 38 for details on unblocking
CHV2.

Enabling / disabling CHV1

To enable or disable CHV1:

After getting the CHV1 code from the user, call
SwiSetSimLock, passing the CHV1 code and setting the
Enable flag to enable or disable.

Wait for the modem to send the SWI_NOTIFY_SimStatusExp
notification indicating success or failure (likely because the
wrong code was entered).

Figure 7-10: Changing CHV1 verification state

1.
enabled.
2.
Host
User S
Application
User chooses to
enable / disable CHV1
checking, then enters
and confirms the new
CHV1 code.
N
<

Rev 6.0 Apr.08

API
SwiSetSimLock(...)
[Enable=1 Modem sends the ‘OK’
Password=**] return code, and attempts

) to change the state of

SWI_PREVIOUSOPERATIONRESULT_Succeeded

CHV1 checking, as

requested.
SWI_NOTIFY_SimStatusExp
[SWI_PREVIOUSOPERATION_EnablePIN

SWI_REQUIREDOPERATION_NoOperation] /

A

37

UMTS SDK Developer’s Guide

38

Note: You cannot use an
emergency number as the CHV1
code (or as the beginning of the
CHV1 code).

Note: If CHV1 is permanently
blocked, voice-enabled modems
can only dial emergency
numbers.

Changing CHV1 or CHV2

To change the CHV1 code:
1. Calls SwiSetSimPassword with the new CHV1 code.

To change the CHV2 code:

2. Call SwiChv2StatusKick with the parameter
SWI_TYPE_CHV2KICKTYPE_Change. This triggers the
SWI_NOTIFY_SimStatusExp notification.

Receive the SWI_NOTIFY_SimStatusExp notification.
4. Call SwiSetSimPassword with the new CHV?2 code.

Unblocking CHV1 or CHV2

When either CHV1 or CHV?2 is blocked because the wrong
code was entered too many times in a row, a PUK (Pin
Unblocking Code) can be used to unblock it. (PUK1 is used for
CHV1, and PUK2 is used for CHV2.)

PUK codes are obtained from the service provider. If an
incorrect PUK code is used too many times in a row, CHV1 (for
PUK1) or CHV2 (for PUK2) becomes permanently blocked.

To unblock either CHV code, use the process described for
CHV1 verification, replacing the CHV code with the appro-
priate PUK code.

2130143

8: Account Profile Management

Note: The functions in this
section are found in the

Connection Profiles AP module.

For additional profile-related
functions, refer to the API
documentation.

Rev 6.0 Apr.08

This chapter describes how to use API functions to perform the
following profile-related tasks:

* Read, create, edit, and delete profiles
e Assign a default profile
e Activate profiles

Using these API functions

The following are key usage notes for functions described in
this chapter (see the API documentation for additional details):

* Host must enable notifications before they can be received.
(See “Managing notifications” on page 23.)

* SWI_NOTIFY_GsmProfileChange reports any changes made
to profiles.

Account profile overview

Account profiles contain information used by the network to
verify access to network services. The profile information is
obtained from the service provider (usually with the SIM) and
may contain:

* A username
e A password
* An APN (Access Point Name)

e AnIP address (if not automatically assigned by the
network)

e Indication as to whether IP header compression is used
* DNS address(es)

Number of supported profiles

UMTS modules support several profiles (labeled 1, 2, ...). Refer
to your modem’s Product Specification Document for the
actual number supported.

39

UMTS SDK Developer’s Guide

40

Note: After each call, the
modem sends the
SWI_NOTIFY_GsmProfileChang
e natification. You do not have to
wait for this notification to arrive
before calling the next function.

Profile maintenance functions

Identifying account profiles

To get a list of all account profiles, call
SwiGetGsmProfileSummary. The modem returns a profile list,
which includes the status of each profile, and identifies the
default profile and active profile.

Reading profiles

To read the full details for a specific profile:
1. Call SwiGetGsmProfileBasic to read basic details.
2. Call SwiGetGsmProfileDns to read DNS details.

Creating and editing profiles

Creating profiles

To create a new profile, call the following functions (and pass
the new profile’s index number in each call):

1. Call SwiSetGsmProfileBasic to set basic details.
2. Call SwiSetGsmProfileDns to set DNS details.

Setting a default profile to autoactivate

If the profile designated as the default profile is set to autoac-
tivate, the modem initiates a connection using it as soon as the
modem is reset.

To set the default profile, call SwiSetDefaultProfile using the
profile’s index number.

Activating a profile

Activating a profile initiates a packet data connection. To
activate a profile, call SwiActivateProfile. (See “Establishing a
data connection” on page 45 for details.)

Deleting profiles

To delete a profile and set it back to factory default values, call
SwiEraseProfile.

2130143

9: Network registration

Note: The functions in this
section are found in the Modem
Information and Management
and Network Management and
Status APl modules. For
additional network registration-
related functions, refer to the API
documentation.

Rev 6.0 Apr.08

This chapter describes how to use API functions to perform the
following tasks:

e Register on a network
e Select frequency bands

* Manually select a network

Using these API functions

The following are key usage notes for functions described in
this chapter (see the API documentation for additional details):

* Host must enable notifications before they can be received.
(See “Managing notifications” on page 23.)

e To register, an unlocked SIM with a valid account (with no
restrictions affecting registration) must be in the modem,
the modem must be configured to work on appropriate
bands/networks, and it must be in range of a network with
adequate signal strength.

Registering on a network

The modem must be registered on a network before data,
voice, sms, or other connections can be established.

To register the modem on a network:

1. Make sure the modem is powered up. Call one of the
following functions (see the API to determine which is
appropriate for your application):

- SwiSetHostStartup with Startup = True.
- SwiSetModemDisable with ModemDisable = False

2. Set the frequency band(s), if necessary, on which the
modem will operate. (See your modem'’s Product Specifi-

cation Document for a list of supported bands.). See
Setting the frequency band(s) below.

3. Select the network on which to register the modem, if
necessary.

4. Once the network has been selected, the modem registers
automatically.

5. If you want to change the network manually, see Selecting
and registering on a network below.

41

UMTS SDK Developer’s Guide

42

Setting the frequency band(s)

To get a list of supported bands for your modem:

1. Call SwiGetBandinfo.

To set the bands that the modem should use (or to “autoband’):
1. Call SwiSetBandInfo.

2. Wait for the SWI_NOTIFY_BandWrite notification, which
indicates if the band change is successful.

Note: SWI_NOTIFY _Bandreports the new frequency band. It is
received whenever the modem switches between bands (after a
function call, if the modem is set to ‘autoband’, or after a non-API
action such as an AT command).

Selecting and registering on a network

The modem can be set to select a network automatically or
manually by calling SwiSetPLMNMode. To see what the current
setting is, call SwiGetPLMNMode.

To manually select a network on which to register:

1. Wait for the SWI_NOTIFY_PImnReady. notification. This
indicates that manual selection is available and can begin.

Call SwiStartPLMNSearch to identify available PLMNss.

Wait for the SWI_NOTIFY_PImnAvailable notification,
indicating that a list of PLMNs can be read from the
modem.

4, Call SwiGetPLMNSelection to read a PLMN from the
modem. Repeat until all PLMNs are read. (The PLMN data
structure sets the flag MorePImn = 1 if there are more
PLMNSs to read.)

5. Call SwiSetPLMNMode, set the mode to “‘manual’, and
identify the PLMN on which to register.

6. Wait for the SWI_NOTIFY_PImnMode notification indicating
if the registration attempt succeeded.

2130143

Network registration

Figure 9-11: Manual PLMN selection

Host
Application API

Host application waits until manual
PLMN selection is available before
calling any PLMN functions.

SWI_NOTIFY_PImnReady Y

SwiStartPlmnSearch(...)

Modem begins scan and sends the

A/ A

) ‘OK’ return code.
« SWI_NOTIFY_PImnAvailable /]
\ SwiGetPImnSelection(...) Modem sets MorePImn flag
< D =1 if there are more PLMNSs, or

=0 if this is the last one

Repeat call if MorePImn=1.

SwiGetPImnSelection(...)

A/

SwiSetPImnMode(...)
<mode = manual> Modem begins registration and
) sends the ‘OK’ return code.

A/

SWI_NOTIFY_PImnMode)

A

Rev 6.0 Apr.08 43

UMTS SDK Developer’s Guide

44

2130143

10: Data Connections

This chapter describes how to use API functions to perform the
following task:

* Establish a data connection

Using these API functions

Note: The functions in this The following are key usage notes for functions described in
section are found in the this chapter (see the API documentation for additional details):
Connection Profiles and Network * Host must enable notifications before they can be received.
Management and Status AP (See “Managing notifications” on page 23.)

modules. For additional
connection-related functions,
refer to the APl documentation.

e The modem must be registered on a network before you
try to establish a data (GPRS / EDGE / UMTS) connection.
See Chapter 9 for details.

* A data connection cannot be initiated if a voice call is in
progress.

e (Voice-enabled modems only) If a voice call occurs during
a data connection, the data connection is maintained, but
suspended (the IP address is not lost). The data connection
resumes when the voice call completes. (Note that your
host application may have timed out by this point.)

Establishing a data connection

The modem can establish packet-switched connections on
GPRS, EDGE, and UMTS networks. See the modem’s PSD for
maximum data rates.

To establish a data connection with a modem that is already
registered on a network:

1. If not already enabled, enable notifications that are
received when conditions that can affect the connection
occur. Some of these notifications include:

- SWI_NOTIFY_RegistrationExp — Modem is registered on a
network (and identifies the PLMN and/or SPN)

+ SWI_NOTIFY_Band — Modem switched bands (due to
function call or autoband)

+ SWI_NOTIFY_SimStatusExp — SIM status changes.

+ SWI_NOTIFY_NetworkStatus — Network status changes.

+ SWI_NOTIFY_Servicelcon — Available services change
(GPRS, EDGE, UMTS).

+ SWI_NOTIFY_Rssi — RSSI value changes.

+ SWI_NOTIFY_Temperature —Modem is overheating. Data
transmission is suspended until the temperature drops.

- SWI_NOTIFY_TransmitAlert — Problem with the antenna.

Rev 6.0 Apr.08 45

UMTS SDK Developer’s Guide

46

Note: If the default profile is set
to auto-activate, a data
connection is initiated as soon as
the modem is reset.

Call SwiActivateProfile to establish the fastest available
connection using a valid profile.

Wait for a SWI_NOTIFY_PktSessionCall notification, which
indicates if the connection was successful.

An IP address is assigned to the modem when the
connection is established. To get the IP address of an active
profile, call SwiGetlPAddress.

2130143

11: SMS Messaging

Note: The functions in this
section are found in the SMS
APl module. For additional SMS-
related functions, refer to the API
documentation.

Rev 6.0 Apr.08

This chapter describes how to use API functions to perform the
following SMS-related tasks:

* Read and delete incoming messages from the SIM
e Store and send outgoing messages from the SIM

e Enable / disable SMS status reports

e Configure SMS parameters

Using these API functions

The following are key usage notes for functions described in
this chapter (see the API documentation for additional details):

* Host must enable notifications before they can be received.
(See “Managing notifications” on page 23.)

* When the host application starts up, it must receive
SWI_NOTIFY_SmsReady before calling SMS functions, and
receive SWI_NOTIFY_PhonebookReady before calling and
phonebook-related SMS functions.

¢ The host must explicitly remove Mobile-terminated (MT)
SMS messages from the SIM.

SMS message types

The API supports the following SMS message types:

* MO-SMS (Mobile-Originated SMS) —Outgoing messages
stored on the host until sent to the modem, then deleted
from the modem after being sent to the network.

* Message sent from modem to network service center
(see SMS parameters for center number)

+ Message remains at service center until downloaded by
the recipient or the validity period expires (see sms

parameters for period). If period expires, messages are
deleted.

* MT-SMS (Mobile-Terminated SMS) — Incoming messages
stored on the SIM until deleted by the host.

Reading SMS messages

SMS messages are stored on the SIM in a circular list. Use the
procedure below to read all messages from the SIM. The

messages remain on the SIM (marked as ‘read’) until they are
explicitly deleted (see “Deleting SMS messages” on page 50).

47

UMTS SDK Developer’s Guide

48

Note: The
SWI_NOTIFY_SmsSimFull
notification is sent when the SIM
is full. If the SIM is full,
messages will queue at the
service center.

Note: Don't rely on the number
of messages returned from
SwiGetSMSMessageStatus—
new messages could be
received while you are reading

existing messages from the SIM.

Determining if messages are on the SIM

1. Wait for SMS service to become available — the modem
sends the SWI_NOTIFY_SmsReady notification.

2. Call SwiGetSMSMessageStatus to get the number of unread
and previously read messages on the SIM, and the number
of messages waiting at the service center. (You can then
wait for SWI_NOTIFY_SmsStatus notifications that indicate
when new messages are received.)

Reading messages from the SIM

To read all of the messages from the SIM, read all of the previ-
ously read messages first, then all of the unread messages:

1. Call SwiRetrieveSMSmessage with UnreadSMS=0 to get the
next available read message.

2. The modem returns the message.
Note: Make a note of the message ID of the first message
received.

3. Repeat steps 1-2 (do not change UnreadSMS) until all
messages have been read (you will know this has
happened when the message ID of the latest message
matches the ID from the first message received).

4. Set UnreadSMS=1 to get unread messages, and repeat
steps 1-3 until the function call returns
SWI_RCODE_FAILED, which indicates there are no more
unread messages on the SIM.

2130143

Rev 6.0 Apr.08

SMS Messaging

Figure 11-12: Read messages from the SIM

Host
Application API

Host begins retrieving
‘read’ messages

Host recognizes all ‘read’
messages are done, now
beings retrieving ‘unread’
messages.

Host recognizes all
‘unread’ messages are
done. Now only needs to
wait for notification that
new messages have
arrived.

SMS is available.
The SIM has 2 previously read

messages and 3 unread messages.

N

SwiGetSMSMessageStatus(...)
[pass: SWI_STRUCT_SMS_Status]

Modem returns:
SWI_STRUCT_SMS_Status:

ol

- CntUsedRec=2

\/

<«

SwiRetrieveSMSMessageStatus(...

[SWI_STRUCT_SMS_RetrieveSms:
- UnreadSMS=0]

- CntUnreadRec=3

Modem returns:

(O

A/

SwiRetrieveSMSMessageStatus(...

[SWI_STRUCT_SMS_RetrieveSms:
- UnreadSMS=0]

- SMSld=1

Modem returns:

A/

SwiRetrieveSMSMessageStatus(...

[SWI_STRUCT_SMS_RetrieveSms:
- UnreadSMS=0]

- SMSId=2

Modem returns:

A/

SwiRetrieveSMSMessageStatus(...

[SWI_STRUCT_SMS_RetrieveSms:
- UnreadSMS=1]

- SMSId=0

Modem returns:

A/

SwiRetrieveSMSMessageStatus(...

[SWI_STRUCT_SMS_RetrieveSms:
- UnreadSMS=1]

- SMSld=1

Modem returns:

(O

A/

SwiRetrieveSMSMessageStatus(...

[SWI_STRUCT_SMS_RetrieveSms:
- UnreadSMS=1]

- SMSld=2

Modem returns:

A/

SwiRetrieveSMSMessageStatus(...

[SWI_STRUCT_SMS_RetrieveSms:
- UnreadSMS=1]

- SMSId=3

Modem returns:

A/

SWI_STRUCT_SMS_RetrieveSMS:

y SWI_STRUCT_SMS_RetrieveSMS:

y SWI_STRUCT_SMS_RetrieveSMS:

y SWI_STRUCT_SMS_RetrieveSMS:

SWI_STRUCT_SMS_RetrieveSMS:

3 SWI_STRUCT_SMS_RetrieveSMS:

D) Return code = SWI_RCODE_FAILED

49

UMTS SDK Developer’s Guide

Deleting SMS messages

Incoming SMS messages on the SIM must be explicitly
deleted — they are not removed by reading them.

To delete an incoming SMS message from the SIM:

1. Call SwiDeleteSms using the message ID (Smsld) returned
from the SwiRetrieveSMSMessage function.

Sending SMS messages

To send SMS messages, each message must be stored on the
modem, and then all queued messages can be sent from the
modem to the network.

Host

1. Call SwiStoreSMSMessageExp with the first (or only) part of
the SMS message begin sent (message lengths are
network-dependent).

2. Wait until the modem sends SWI_NOTIFY_SmsStoreExp
before trying to send another message/message portion.

Repeat until all messages have been stored.

Call SwiSendSMSExp to send *all* the messages from the
modem to the network. (When a message is sent, it is

deleted from the modem.)

5. Wait until the modem sends SWI_NOTIFY_SmsSendExp
before trying to store or send any additional messages.

Figure 11-13: Send SMS messages

Application

_

SwiStoreSMSMessageExp(...)

API

d

|

SWI_NOTIFY_SmsStoreExp

N

A

Repeat until all messages are stored on

the modem.

SwiSendSmsExp(...)

-

SWI_NOTIFY_SmsSendExp

/

A

50

Modem sends the ‘OK’ return code
and begins storing the message.

Modem sends verification when
message is stored.

Modem sends the ‘OK’ return code
and begins sending messages
(and deletes each message that is
sent).

Modem sends verification when all

messages have been sent and
deleted.

2130143

Rev 6.0 Apr.08

SMS Messaging

SMS status reports

To determine if SMS status reports are enabled or disabled,
and if the user can change the status, call
SwiGetSmsStatusReportCfg.

To change the status report settings, or to enable or disable
status reports, call SwiSetSmsStatusReportCfg.

Configuring SMS parameters

Several SMS parameters can be customized (for a complete list,
see the API documentation).

To get the current parameters, call SwiGetSmsParam.
To customize parameters, call SwiSetSmsParam.
The following customizations are the only ones that should

normally be exposed for the user to change:

* Default Destination Address—allows the user to specify
an SMS address to be used as the default recipient of
messages.

* Service Center—The service provider likely pre-
configured the SIM with a service center number but the
interface should allow this to be changed should the
service provider change the number.

e Validity Period —This is typically user-defined.

* Routing Option—This specifies which service is used to
send SMS messages.

51

UMTS SDK Developer’s Guide

52 2130143

12: Location-based services

Note: The functions in this
section are found in the Location
Based Services AP module. For
additional LBS-related functions,
refer to the APl documen-
tation.Managing LBS component
settings (modem/base station/
satellite/user options)

Rev 6.0 Apr.08

This chapter describes how to use API functions to perform the
following tasks:

* Get and set modem parameters and statuses
e Perform single location fixes
* Manage a tracking session

e Keep almanac / ephemeris data up to date

Using these API functions

The following are key usage notes for functions described in
this chapter (see the API documentation for additional details):

* Host must enable notifications before they can be received.
(See “Managing notifications” on page 23.)

Retrieving operational settings

Get/set modem default and current operational
parameters

To report the modem’s default operational parameters, and to
get and set the current values of these parameters, call the
following functions:

e SwiGetLbsPaParam — Get the modem’s default operational
parameters.

* SwiGetLbsPaPortld/SwiSetLbsPaPortld — Get and set the
SUPL Server port ID

* SwiGeilLbsPalpAddr/SwiSetLbsPalpAddr-- Get and set the
SUPL Server IP address

Get satellite details

To read satellite information for all satellites in view (azimuth,
elevation, SNR, etc.):

1. Call SwiGetLbsSatInfo.

Get LBS status

To determine the status of the most recent fix session:
1. Call SwiGetLbsPdStatus.

53

UMTS SDK Developer’s Guide

54

Get/set user-selected LBS fix settings

To get or set LBS fix settings (fix type, performance, accuracy,
etc.):

1. Call SwiGetlLbsFixSettings or SwiSetLbsFixSettings.

Position fix / tracking sessions

You can use LBS functions to initiate single position fixes and
tracking sessions (multiple position fixes).

Report modem’s last known location

To get the result of the modem’s most recent position fix:
1. Call SwiGetLbsPdData.

Get modem’s current location (Initiate single position fix)

To get the modem’s current location:

1. Call SwiSetlLbsPdGetPos to initiate a position fix. The return
code indicates if the fix is initiated or if an error occurred.
2. Wait for notifications reporting the progress of the fix:

The following notifications are received when a fix is suc-

cessful:

+ SWI_NOTIFY_LbsPdBegin.

+ SWI_NOTIFY_LbsPdData (data is available).

+ SWI_NOTIFY_LbsSatInfo (data is avaialble).

- SWI_NOTIFY_LbsPdDone (fix is complete).

The fix may not complete successfully, in which case other

notifications are received:

- If the fix fails due to an error, or if it is stopped via the
API or another interface (AT, CnS, etc.), receive
SWI_NOTIFY_LbsPdUpdateFailure.

+ If the fix times out, receive SWI_NOTIFY_LbsPdEnd

3. If the fix was successful, call SwiGetLbsPdData to get the fix
results.

2130143

Rev 6.0 Apr.08

Location-based services

Figure 12-14: Initiating a single position fix

Host

Application

-

SwiSetLbsPdGetPos(...)

API

<

/

«

SWI_NOTIFY_LbsPdBegin

A

A

SWI_NOTIFY_LbsPdData

A

SWI_NOTIFY_LbsSatInfo

SWI_NOTIFY_LbsPdDone

NN

SWI_NOTIFY_LbsPdUpdateFailure

SWI_NOTIFY_LbsPdEnd

NN

SwiSetLbsPdData(...)

-

Initiate tracking session

Modem returns OK or an
error if the location fix
session fails to initialize.

Modem returns these
notifications as the
location fix session
progresses without
problems.

If a problem occurs or the
session times out, modem
returns one of one of
these notifications.

If the fix completes
successfully
(SWI_NOTIFY_LbsPdDone
was received), retrieve the
data from the modem.

A tracking session consists of a number of individual position
fixes repeated a number of times (the fix count) at a specific
rate (the fix rate). If the fix count is 1000, the session keeps
running until it is explicitly stopped (see “End tracking
session” on page 56).

To initiate and process a tracking session:

Call SwiSetLbsPdTrack to initiate the session. The return
code indicates if the session is initiated or if an error

1.

occurred.

Wait for notifications reporting the progress of each
location fix. (See “Get modem'’s current location (Initiate
single position fix)” on page 54 — note that the
SWI_NOTIFY_LbsPdDone notification is only sent after

the final fix).

When the final fix is finished (based on the fix count), the
host receives the SWI_NOTIFY_LbsPdDone notification.

55

UMTS SDK Developer’s Guide

56

End tracking session

To end the tracking session prematurely (before it reaches the
fix count):

1. Call SwiSetLbsPdEndSession.

2. Receive the SWI_NOTIFY_LbsPdEnd notification (indicating
why the session ended) and the SWI_NOTIFY_LbsPdDone
notification (indicating the session is finished).

Respond to network-initiated fix request

If the network requests the modem’s location (using the
SWI_NOTIFY_LbsNiReq notification):

1. The host receives the SWI_NOTIFY_LbsNiReq notification. If
the notification’s NotifType value is
LBSNIREQNOTIF_UserRespReq, the host must respond,
otherwise the modem’s location is returned to the network
automatically.

2. If the host must respond, it calls SwiSetLbsNiReq indicating
if the request is accepted or rejected.

3. If the request is accepted, the modem’s location is returned
to the network.

Ephemeris / almanac data

The API includes commands that affect the downloading of
assistance data.

Enabling / disabling ‘Keep Warm’ processing

While GPS is required by the host, the GPS assistance data can
be kept current by enabling ‘Keep Warm’ processing. When
enabled, the modem periodically downloads GPS assistance
data.

To enable Keep Warm processing;:
1. Call SwiSetLbsPaKeepWarmStart. The modem determines
how often to download assistance data.

2. The host receives the SWI_NOTIFY_LbsPaWarmBegin notifi-
cation indicating that Keep Warm has begun. The host also
receives (periodically) the SWI_NOTIFY_LbsPaWarmStatus
notification indicating the current status of Keep Warm
processing.

To disable Keep Warm processing:
1. Call SwiSetlbsPaKeepWarmStop.

2. The host receives the SWI_NOTIFY_LbsPaWarmDone notifi-
cation indicating that Keep Warm is finished.

2130143

Location-based services

To check the status of Keep Warm processing (enabled/
disabled):

1. Call SwiGetLbsPaWarmStatus.

Simulating a coldstart to force assistance data download
To simulate a coldstart:

1. Call SetLbsClearAssistance to clear the location parameters.

Rev 6.0 Apr.08 57

UMTS SDK Developer’s Guide

58 2130143

13: Supplementary services

Note: The functions in this
section are found in the
Supplementary Services AP
module. For additional supple-
mentary service-related
functions, refer to the API
documentation.

Rev 6.0 Apr.08

Supplementary services are voice services such as call
forwarding, call waiting, call barring, etc.

This chapter describes how to use API functions to perform
four common supplementary service transactions on voice-
enabled GSM modules. These examples illustrate the patterns
of expected function calls and notifications for these and other
supplementary service transactions:

* Basic supplementary service transaction

Using these API functions

The following are key usage notes for functions described in
this chapter (see the API documentation for additional details):

* Host must enable notifications before they can be received.
(See “Managing notifications” on page 23.)

* Any time the host submits a supplementary service trans-
action request, it can receive any of a number of notifica-
tions for different transaction types. Each supplementary
service request has a unique handle that is referred to in
associated notifications.

Basic supplementary service transaction

Five general request types can be used to initiate a supple-
mentary service operation — activate, deactivate, interrogate
(get details), register, or erase.

To process one of these requests:

1. Call SwiSetSSRequest. A unique handle is returned to
identify the requested operation.

2. The host waits for notifications for this (and other) supple-
mentary service requests. Each notification includes the
handle of the request it refers to.

59

UMTS SDK Developer’s Guide

Figure 13-15: Basic supplementary services transaction

Host
Application API
SwiSetSSRequest(...)
\ <activate call waiting> Modem assigns and
<) returns a handle
identifying the transaction.
Notification linked to a specific

P transaction handle
.

SWI_NOTIFY_SSRespOK or
SWI_NOTIFY_SSRespFwdinfo or
SWI_NOTIFY_SSRespCallBar or
SWI_NOTIFY_SSResplInfoData or

SWI_NOTIFY_SSRespStatus or
SWI_NOTIFY_SSRespFwdNum or
SWI_NOTIFY_SSRespBSList or
SWI_NOTIFY_SSRespFwdList or
SWI_NOTIFY_SSRespRaw or
SWI_NOTIFY_SSRespPassword or
SWI_NOTIFY_SSRespClir or
SWI_NOTIFY_SSRespError or
SWI_NOTIFY_SSRespReject or
SWI_NOTIFY_SSRespCancel or
SWI_NOTIFY_SSRespRelease

Supplementary service transaction
requiring password

Certain supplementary services require a password (call
barring, or general supplementary services password). This
example uses Call Barring. The basic supplementary service
transaction is extended with a modem-initiated password
request and submission of the password by the host.

To process one of these requests:

Note: Process begins as for a 1. Call SwiSetSSRequest. A unique handle is returned to
basic transaction. identify the requested operation.

2. Host receives a SWI_NOTIFY_SSPasswordStatus notifi-
cation, which indicates the password type required.

Call SwiSetSSPassword, passing the required password.

4. Host receives one of the following notifications:

- SWI_NOTIFY_SSRespPassword, if the password was
verified.

- SWI_NOTIFY_SSPasswordStatus, if the password was
incorrect or invalid.

60 2130143

Rev 6.0 Apr.08

Supplementary services

5. The host waits for notifications for this (and other) supple-
mentary service requests. Each notification includes the
handle of the request it refers to.

Figure 13-16: Supplementary service transaction requiring password

Host
Application API
SwiSetSSRequest(...)
K <activate call waiting> Modem assigns and
< D returns a handle

identifying the transaction.

SWI_NOTIFY_SSPasswordStatus /

SwiSetSSPassword(...)
<password>

A/ A

SWI_NOTIFY_SSRespPassword, or
SWI_NOTIFY_SSPasswordStatus /

A

Notification linked to a specific
transaction handle N
d

SWI_NOTIFY_SSRespOK or
SWI_NOTIFY_SSRespFwdInfo or
SWI_NOTIFY_SSRespCallBar or
SWI_NOTIFY_SSRespinfoData or

SWI_NOTIFY_SSRespStatus or
SWI_NOTIFY_SSRespFwdNum or
SWI_NOTIFY_SSRespBSList or
SWI_NOTIFY_SSRespFwdList or
SWI_NOTIFY_SSRespRaw or
SWI_NOTIFY_SSRespPassword or
SWI_NOTIFY_SSRespClir or
SWI_NOTIFY_SSRespError or
SWI_NOTIFY_SSRespReject or
SWI_NOTIFY_SSRespCancel or
SWI_NOTIFY_SSRespRelease

Changing a new supplementary services
password

To change a supplementary services password:

1. Call SwiStartSSPassReg and indicate the password type to
change.

2. Host receives a SWI_NOTIFY_SSPasswordStatus notifi-
cation, requesting the current password.

3. Call SwiSetSSPassword, passing the current password.

61

UMTS SDK Developer’s Guide

62

Note: This example assumes
the correct password is entered.

4. Host receives a SWI_NOTIFY_SSRespPassword notification.
(Password was verified.)

5. Host receives another SWI_NOTIFY_SSPasswordStatus
notification, requesting the new password.

6. Call SwiSetSSPassword, passing the new password.
Host receives a SWI_NOTIFY_SSRespPassword notification.

8. Host receives another SWI_NOTIFY_SSPasswordStatus
notification, requesting the new password again for
validation.

9. Call SwiSetSSPassword, passing the new password again.
10. Host receives SWI_NOTIFY_SSRespPassword.

Figure 13-17: Changing supplementary services password

Host
Application API
SwiStartSSPassReg(...)
\ <password type to change> Modem assigns and

d

D returns a handle

|

identifying the transaction.

SWI_NOTIFY_SSPasswordStatus / Modem requests current

A/ A

password.

SwiSetSSPassword(...)
<current password>

A

SWI_NOTIFY_SSRespPassword /

Modem requests new

\

SWI_NOTIFY_SSPasswordStatus

< password.
SwiSetSSPassword(...)
K <new password>
<)
P SWI_NOTIFY_SSRespPassword /
Modem requests new
P SWI_NOTIFY_SSPasswordStatus / password again, for
- verification.
SwiSetSSPassword(...)
K <new password for verification>
< D
P SWI_NOTIFY_SSRespPassword /
-

2130143

Rev 6.0 Apr.08

Supplementary services

Stopping a supplementary service
transaction

An outstanding supplementary service transaction can be
aborted before completion by submitting an abort request.
To stop a transaction:

1. Call SwiAbortRequest, passing the handle of the transaction
to stop.

2. Host receives a SWI_NOTIFY_SSRespCancel notification.

Figure 13-18: Stopping a supplementary service transaction

Host
Application API

SwiAbortRequest(...)
k <handle of transaction to stop>
<)

|

SWI_NOTIFY_SSrespCancel /

A

63

UMTS SDK Developer’s Guide

64 2130143

14: Phone Book Maintenance

This chapter describes how to use API functions to perform the
following tasks:

e Use overdial numbers

* Maintain phone books (add, edit, delete entries)
e Use the FDN phone book

* Retrieve emergency phone numbers

e Retrieve phone numbers from any phone book

Using these API functions

Note: The functions in this The following are key usage notes for functions described in
section are found in the this chapter (see the API documentation for additional details):
Phonebook API module. For .

Host must enable notifications before they can be received.
(See “Managing notifications” on page 23.)

* Host must receive the SWI_NOTIFY_PhonebookReady notifi-
cation before calling any phone book-related functions.

* Host must receive the SWI_NOTIFY_SimStatusExp notifi-
cation before forcing the modem to request CHV?2 verifi-
cation.

additional network registration-
related functions, refer to the API
documentation.

Supported phone books

The API supports the phone books listed in Table 14-6. (Avail-
ability of phone books is carrier-dependent.)

Table 14-6: Supported phone books

Abbreviation Name Description Storage Actions
ADN Abbreviated * Stores names / numbers for sending SIM Add
Dialing Numbers phone calls or SMS messages Edit
e Number of entries: carrier-dependent, Delete

typically 255 max.

* Supports overdial numbers. See “Using
overdial numbers” on page 66.

CPHS CPHS Mailing * Stores up to four voice mailbox SIM Edit
(Voice modems | Numbers numbers; carrier-dependent
only) e Example: Could be used to call a voice
mailbox if messages are waiting.
* Read-only

Rev 6.0 Apr.08 65

UMTS SDK Developer’s Guide

66

Table 14-6: Supported phone books (Continued)

Abbreviation Name Description Storage Actions

FDN Fixed Dialing ¢ Stores numbers that user is restricted to | SIM Add

Numbers using for dialing / SMS messages Edit

(when FDN is enabled). Delete

* Number of entries: carrier depend,
typically 100 max.

* Supports overdial numbers. See “Using
overdial numbers” on page 66.

See “Using the FDN phone book” on

page 68 for additional details.

LND Last Numbers * Stores most recent numbers dialed SIM Add
(Voice modems | Dialed (typically 10). Edit
only) e Example: Could be used to implement Delete

a redial feature, or be added to ADN
* Read-only phone book

LNM Last Numbers e Stores numbers of most recent missed | Modem Delete
(Voice modems | Missed incoming calls (typically 10). (NVRAM) | (entire
only) e Example: Could be used to implement book)

a call-back feature, or be added to
ADN.
* Read-only phone book

LNR Last Numbers * Stores numbers of most recent Modem Delete
(Voice modems | Received answered incoming calls (typically 10). (NVRAM) (entire
only) e Example: Could be used to implement book)

a call-back feature, or be added to
ADN.
* Read-only phone book
MSISDN Mobile Subscriber | ® Stores the account’'s phone number(s) | SIM Edit
International * SIM may be pre-configured by carrier
Subscriber Identity
Number
SDN Service Dialing * Carrier-provisioned numbers SIM View only
Numbers ¢ Examples: billing enquiries, emergency
numbers, technical support, etc.
* Read-only phone book

Note: The ADN and FDN phone
books support overdial numbers.

Using overdial numbers

Overdial numbers are numbers and symbols dialed after estab-
lishing a connection. They are part of the stored phone

number, and begin with a comma.

2130143

Note: CHV2 must be verified
before adding or editing FDN
phone book numbers as shown
in “Using the FDN phone book”
on page 68.

Rev 6.0 Apr.08

Phone Book Maintenance

Valid numbers and symbols include:

° /0/_/9/
° Iy
° I#/

e ‘) (first occurrence in phone number)
Indicates the beginning of the overdial phone number, and
forces a three-second pause.

e ‘) (subsequent appearances in phone number)
Three-second pause.

o« 1
Wildcard character. Indicates a missing digit that the user
needs to enter.

For example, if the phone book number is 6045551212,,112,4:
e 6045551212. is dialed.

e Six-second pause after the connection is established

e 112is dialed

e Three-second pause

* 4isdialed

Using the phone book functions

Application start-up

When the host application starts up, it should:

1. Wait for SWI_NOTIFY_PhonebookReady before calling any
phone book functions.

2. Call SwiGetPhonebookAvailable to see which phone books
can be used.

Maintaining ADN, FDN, MSISDN phone
books

Entries in the ADN, FDN, and MSISDN phone books can be
updated using API functions.

To add a phone book entry:
1. Call SwiAddPhonebookEntry.

To edit a phone book entry:
1. Call SwiEditPhonebookEntry.

To delete a phone book entry:
1. Call SwiDeletePhonebookEntry.

67

UMTS SDK Developer’s Guide

68

Note: For information about
CHV2 codes, see “CHV2 verifi-
cation” on page 37.

Note: Duplicate numbers are
returned if a number is stored on
both the SIM and the modem.

Using the FDN phone book

Phone book entries:

When enabled, users can only call numbers that match the
format of the entries in the phone book, as shown in the
following examples of FDN phone book numbers.

e 60” — User can call any number beginning with “604” (for
example, 6045551234)

* 2505558989 — User can only call 2505558989.

Enabling/disabling FDN

To check if FDN is enabled or disabled:

1. Call SwiGetFdnMode.

To enable or disable the FDN phone book:

2. Wait for the SWI_NOTIFY_SimStatusExp notification
indicating that the SIM phone books are available.

3. Call SwiChv2StatusKick to tell the modem that CHV2 verifi-
cation is required. This will trigger a notification to enter
the CHV2 code.

4. Wait for the SWI_NOTIFY_SimStatusExp requesting the
code.

5. Call SwiSetFdnMode, passing inthe CHV2 code.

SIM phone book statistics

To get the current sizes and remaining space for all SIM-based
phone books:

1. Call SwiGetPhonebookSize.

Retrieving phone numbers

Retrieving emergency numbers

Emergency phone numbers are stored on both the modem and
the SIM.

To obtain all of these numbers:

1. Call SwiGetEmergencyEntry to retrieve a single phone
number.

2. Repeat until the MoreEntries flag in the returned data
structure is 0 (no more entries remain).

2130143

Phone Book Maintenance

Phone book retrieval

To read the first entry from any phone book:

1. Call SwiGetPhonebookEntry with ReadFromStart = true.

To read the next entry from any phone book (based on the
most recent entry read):

1. Call SwiGetPhonebookEntry with ReadFromStart = false.

To read all entries from a phone book:

1. Call SwiGetPhonebookEntry with ReadFromStart = true.

2. Repeat (with ReadFromStart = false) until MoreEntries = false

(no more entries remain).

Figure 14-19: Retrieving an entire phone book

Host
Application API

Retrieve an entire phone book. This
example retrieves the FDN phone book
(which has three entries).

SwiGetPhonebookEntry(...)
<PhoneBookType=SWI|_PHONEBK_Fdn;
ReadFromStart=1> Modem returns first entry in
) SWI_STRUCT_PHONEBK_Entry
structure with MoreEntries = 1

A/

SwiGetPhonebookEntry(...)
<PhoneBookType=SWI_PHONEBK_Fdn;

ReadFromStart=0> Modem returns next entry with
D MoreEntries = 1

A/

SwiGetPhonebookEntry(...)
<PhoneBookType=SWI_PHONEBK_Fdn;

ReadFromStart=0> Modem returns last entry with

) MoreEntries = 0

A/

Retrieving all entries in the ADN phone book

As soon as phone book service is available, the modem begins
returning every entry in the ADN phone book if:

¢ The ADN phone book is available

e FDN is disabled (If FDN is enabled, only FDN entries can
be used. This effectively disables the ADN phone book.)

* The SWI_NOTIFY_PhonebookEntry notification is enabled.

One entry is returned with each SWI_NOTIFY_PhonebookEntry
notification, and the last entry returns with MoreEntries = false.

Rev 6.0 Apr.08 69

UMTS SDK Developer’s Guide

If there are no entries in the ADN phone book, a single
SWI_NOTIFY_PhonebookEntry notification is returned with
MoreEntries = false and Valid = false.

70 2130143

15: Modem and SIM character-

istics

This chapter details several functions that allow the host appli-
cation to identify account parameters, modem component
details, and SIM details.

The following table provides an overview of these elements —
for detailed explanations, refer to the API documentation.

Table 15-7: Component characteristics functions

Function

Module

Description

Firmware details

SwiGetBootVersion

Modem Information
and Management

SwiGetBootloaderBuildDate

SwiGetFirmwareVersion

SwiGetFirmwareBuildDate

SwiGetFlashimglinfo

Returns the version of the bootloader (a
component of the firmware)

Returns the date the bootloader was built

Returns the version of the modem firmware

Returns the date the firmware was built

Returns firmware flash image details

Modem details

SwiGetHardwareVersion

Modem Information

SwiGetUsbdInfo

and Management

SwiGetDevicelD

SwiGetPrilnfo

Returns the version of the modem hardware

Returns USB descriptor build details.

Returns the device’s unique identify number
(the ESN or EID)

Returns the device’s PRI details

SwiGetIMEI

SwiGetSerialNumber

SwiGetDriverVersion Driver Returns the version of the NDIS driver

SwiGetFPGAVersion GSM Modem Returns the version of the FPGA (Field
Information and Programmable Gate Array), a programmable
Management logic chip in the modem

Returns the International Mobile Equipment
Identity (a number that uniquely identifies
every GSM device) from the modem

Returns the factory serial number (FSN) of
the modem

Rev 6.0 Apr.08

71

UMTS SDK Developer’s Guide

72

Table 15-7: Component characteristics functions

Function

Module

Description

Modem features

SwiGetAvailableFeatures

SwiGetFeatureCustomizations

Modem Information
and Management

Returns the modem’s available features,
including the PDP context type, and support
for voice, tri-band

Returns the modem’s customizable features.

SIM identification numbers

SwiGetGsmIMSI

SwiGetlccld

GSM SIM

Returns the International Mobile Subscriber
Identity (a number used to identify the
account holder) from the SIM

Returns the Integrated Circuit Card ID (a
unique number used to identify the SIM) from
the SIM

Available air servers

SwiGetAvailAirServers

SwiSelectAirServer

API and Device
Management

Returns a list of available air servers

Binds the modem to a specific air server

2130143

16: Error handling

This chapter describes how to handle error codes returned
from API function calls.

Error codes

Refer to the API documentation (SW|_RCODE enumeration) for
a complete list of possible error codes returned from API
function calls.

Handling errors

To retrieve information about the last error returned from a
control and status API function, call SwiGetLastErmor, passing a
buffer to hold the transaction error.

If your application encounters errors that cannot be resolved,
you can contact Sierra Wireless Technical Support for assis-
tance. (See “Contact Information” on page 5.)

Rev 6.0 Apr.08 73

UMTS SDK Developer’s Guide

74 2130143

i P
SIERRA WIRELESS

HEART OF THE WIRELESS MACHINE®

	1: About This Guide
	SDK introduction
	Scope of this guide
	System requirements
	Other reference material

	2: R4 API to SwiApiX API differences
	3: Using the API documentation
	4: SDK Installation and Setup
	Installing the SDK
	Setting up your environment
	Installing the device driver
	Distributing files
	Dynamic Link Library (DLL) usage

	5: Software architecture
	Software architecture
	Host application layer
	Modem driver layer
	Firmware layer
	API layer
	Interaction between components

	6: API Initialization, Device Management, and Notifications
	Using these API functions
	Examples
	Initializing the API
	Handling a modem reset or suspend/ resume cycle
	Shutting down the API

	Host application API usage
	Opening the host application
	Checking that the modem is available
	Powering the modem down and up
	Handling notifications
	Enabling network registration
	Setting the TCP window size
	Closing the host application

	Application development for Windows CE-based devices

	7: SIM Authentication and Codes
	Using these API functions
	Using a MEP code to unblock the modem
	SIM security

	8: Account Profile Management
	Using these API functions
	Account profile overview
	Profile maintenance functions
	Identifying account profiles
	Reading profiles
	Creating and editing profiles
	Setting a default profile to autoactivate
	Activating a profile
	Deleting profiles

	9: Network registration
	Using these API functions
	Registering on a network

	10: Data Connections
	Using these API functions
	Establishing a data connection

	11: SMS Messaging
	Using these API functions
	SMS message types
	Reading SMS messages
	Deleting SMS messages
	Sending SMS messages
	SMS status reports
	Configuring SMS parameters

	12: Location-based services
	Using these API functions
	Retrieving operational settings
	Position fix / tracking sessions
	Ephemeris / almanac data

	13: Supplementary services
	Using these API functions
	Basic supplementary service transaction
	Supplementary service transaction requiring password
	Changing a new supplementary services password
	Stopping a supplementary service transaction

	14: Phone Book Maintenance
	Using these API functions
	Supported phone books
	Using overdial numbers
	Using the phone book functions
	Application start-up
	Maintaining ADN, FDN, MSISDN phone books
	Using the FDN phone book
	SIM phone book statistics

	Retrieving phone numbers
	Retrieving emergency numbers
	Phone book retrieval

	15: Modem and SIM characteristics
	16: Error handling
	Error codes
	Handling errors

