VUrr=N

VUPEN Security - Private Exploits & PoC Service

In-Depth Analysis of Microsoft Office PowerPoint Viewer TextBytesAtom
Stack Overflow Vulnerability (MS10-004 / CVE-2010-0033)

Table of Contents

INTFOAUCHION ..t 2
TESIEA VEISIONS ..ot e 2
FIXEA VEISIONS ...ttt e e e s anbe e e as 2
TechniCal DELAIISeeiiiiiieee e 2
(o] (o] ¢= 11 o o PR 3
DEIECHION ... 3
REFEIENCES ..o e 4

This Binary Analysis and Exploit or Proof-of-concept codes are under the
copyrights of VUPEN Security. Copying or reproducing the document, exploit
or proof-of-concept codes is prohibited, unless such reproduction or
redistribution is permitted by the VUPEN Exploits & PoCs Service license
agreement. Use of the Binary Analysis, Exploit or Proof-of-concept codes is
subject to the VUPEN Exploits & PoCs Service license terms.

Copyright VUPEN Security © Reproduction and redistribution prohibited 1

VUrP=N

Introduction

A vulnerability exists in Microsoft PowerPoint Viewer when processing malformed PPT
files, which could lead to arbitrary code execution.

Tested Versions

The vulnerability was analysed on Windows Vista SP1 with PowerPoint Viewer 2003 SP3
(PPVIEW.exe version 11.0.8305.0).

Fixed Versions

The vulnerability was fixed with the MS10-004 security update.

Technical Details

A PowerPoint document may embed containers like Handout, MainMaster, Notes or Slides
to record data used in the different parts of the presentation. Each of these four
containers can contain several atoms, some of them being optional.

A stack overflow vulnerability exists in the PowerPoint document viewer because of an
invalid parsing of “TextBytesAtom” atoms (opcode 4008 or OFA8h). The program
incorrectly processes the length of such records which leads to a stack overflow.

This occurs in sub_300FAODA:

.text:300FAODA mov eax, offset loc 30176718
.text:300FAODF call _ EH prolog
.text:300FAOE4 sub esp, 1CCh
.text:300FAOEA mov eax, ds:dword_301DB000
.text:300FAQEF push ebx

.text:300FAOFO push esi

.text:300FAOQOF1 mov esi, ecx

.text:300FAOF3 movzx ecx, [ebp+arg_6] /lecx is the current atom
ext:300FAOF7 xor ebx, ebx

.text:300FAOF9 mov [ebp+var_10], eax

.text:300FAOFC mov eax, OFDFh

.text:300FA101 inc ebx

.text:300FA102 cmp ecx, eax //beginning of the switch case
.text:300FA104 push edi

.text:300FA105 jg loc_300FA56E

.text:300FA10B jz loc_300FA4B0O

.text:300FA111 sub ecx, OFAOh

.text:300FA117 jz loc_300FA45B

.text:300FA11D dec ecx

.text:300FA11E jz loc_300FA317

text:300FA124 dec ecx

.text:300FA125 jz loc_300FA2BD

.text:300FA12B push 6

text:300FA12D pop edi

.text:300FA12E sub ecx, edi

.text:300FA130 jz loc_300FA23A /Icase TextBytesAtom (OFA8h)

When the program encounters such atom, it first put its size in ebx and tests if it is
greater than O:

Copyright VUPEN Security © Reproduction and redistribution prohibited 2

VUrP=N

.text:300FA23A loc_300FA23A:

.text:300FA23A mov ebx, [ebp+arg_8] /lebx = size
.text:300FA23D jmp short loc_300FA29E

text:300FA29E loc_300FA29E:

.text:300FA29E test ebx, ebx

text:300FA2A0 ja shortloc_300FA23F /ljump if size > 0

It then compares this size with a signed value 7Fh, and eventually copies data from the
file to a stack buffer:

.text:300FA23F loc_300FA23F:

.text:300FA23F push 7Fh

.text:300FA241 pop edi

.text:300FA242 cmp ebx, edi

.text:300FA244 jge short loc_300FA248

.text:300FA246 mov edi, ebx /ledi = ebx if ebx < edi
text:300FA248

.text:300FA248 loc_300FA248:

text:300FA248 push edi

text:300FA249 lea eax, [ebp+var_90] [Istack buffer
text:300FA24F push eax

text:300FA250 mov ecx, esi

text:300FA252 sub ebx, edi

.text:300FA254 call sub_300F17EO /Iread and copy data in OLE32.dll

The problem lies in the previous comparison. If a TextBytesAtom has a size lower than 0,
then the program tries to read up to size bytes from the file. This leads to an exploitable
stack overflow condition.

Exploitation

Exploitation of such vulnerability is easy when ASLR is not activated as this program is
not compiled with a Safe-SEH option.

The provided exploit consists in inserting a huge "TextBytesAtom” in a document (offset
Ox3FBD in the provided file, size = 0x80000005) which then triggers the exploitable
condition.

Due to the SEH redirection, execution flow is next redirected to 0x30091DDC in
PPVIEW.EXE:

.text:30091DDC pop edi
.text:30091DDD pop esi
.text:30091DDE retn 4 /Ireturn to the stack buffer

which allows data from the file to be executed. Note that this exploits only succeeds on
Windows Vista, since the function which copies data in "OLE32.dll” behaves differently on
Windows XP. Due to a call to “IsBadHugeWritePrt()”, an error is returned which prevents
this vulnerability to be exploited on this system.

Detection

Attempts to trigger this vulnerability can be detected by inspecting “TextBytesAtom”
atoms (opcode 4008 or OFA8h) embedded in a PowerPoint document.

If at least one “TextBytesAtom” has a size larger than Ox7FFFFFFF, consider the file as
malicious.

Copyright VUPEN Security © Reproduction and redistribution prohibited 3

VURP=N

Figure 1 illustrates a malicious atom:

3FAOW: OO0 00 00 00 0o 01 00 £8 09 OF 00 oD FO 32 00 00 [....489..
3FBOR: S0 OO0 OO0 9F OF 04 00 00 00 OO0 00 00 00 00 00 A48 £..%........... h
3FCOh: OF O5 00 00 =0 0B 66 64 73 OB 00 OO0 AZ OF 06 00 P SO ol £ I

Figure 1 — Malicious TextBytesAtom

On Figure 1, a malicious TextBytesAtom (offset Ox3FBD) is embedded in an
msofbtClientTextbox container (opcode FOODh, at offset O0x3FA9).

As one can see, the TextBytesAtom has its size greater than Ox7FFFFFFF, so the
document is likely to be malicious.
References

VUPEN/ADV-2010-0337:
http://www.vupen.com/english/advisories/2010/0337

MS10-004:
http://www.microsoft.com/technet/security/bulletin/ms10-004.mspx

Changelog

2010-02-17: Initial release

Copyright VUPEN Security © Reproduction and redistribution prohibited 4

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0030
http://www.microsoft.com/technet/security/bulletin/ms10-004.mspx
http://www.vupen.com/english/advisories/2010/0337

