
        
         

VUPEN Security – Private Exploits & PoC Service

In-Depth Analysis of OpenOffice.org Word Document sprmTDelete 
Buffer Overflow Vulnerability (CVE-2009-0201)

Table of Contents

Introduction ................................................................................................................. 2

Tested Versions .......................................................................................................... 2

Fixed Versions ............................................................................................................ 2

Technical Details ........................................................................................................ 2

Exploitation ................................................................................................................. 4

Detection .................................................................................................................... 6  

References ................................................................................................................. 6

This  Binary  Analysis  and Exploit  or  Proof-of-concept  codes  are  under  the 
copyrights of VUPEN Security. Copying or reproducing the document, exploit 
or  proof-of-concept  codes  is  prohibited,  unless  such  reproduction  or 
redistribution  is  permitted  by  the  VUPEN  Exploits  &  PoCs  Service  license 
agreement. Use of the Binary Analysis, Exploit or Proof-of-concept codes is 
subject to the VUPEN Exploits & PoCs Service license terms.

Copyright VUPEN Security © Reproduction and redistribution prohibited 1



VUPEN Security - In-Depth Analysis

 

Introduction

A vulnerability exists in OpenOffice.org (OOo) when processing specially crafted Word 
documents, which could be exploited to execute arbitrary code.

Tested Versions

The  vulnerability  was  analysed  on  Windows  XP  SP2  with  OpenOffice.org  3.1.0 
(mswordmi.dll version 3.0.500.0). 

Fixed Versions

The vulnerability was fixed in OpenOffice.org version 3.1.1.

Technical Details

While parsing Word97 documents, it is possible to trigger a buffer overflow due to a lack 
of checks of the  sprmTDelete record (opcode 0x5622). The program trusts two values 
from the parameters of this record and uses them to write data on a static heap buffer. 

This problem takes place in “WW8TabBandDesc::ProcessSprmTDelete()” (sub_59894548 
in assembly):

 void WW8TabBandDesc::ProcessSprmTDelete(const BYTE* pParamsTDelete)
 {
   if( nWwCols && pParamsTDelete )
   {
        BYTE nitcFirst= pParamsTDelete[0];         //get first parameter
        BYTE nitcLim  = pParamsTDelete[1];        //get second parameter

        int nShlCnt  = nWwCols - nitcLim;             //evaluate a loop counter

        if (nShlCnt)
        {
            WW8_TCell* pAktTC  = pTCs + nitcFirst;
            int i = 0;
            while( i < nShlCnt )                                 //loop here
            {
                nCenter[nitcFirst + i] = nCenter[nitcLim + i];  //write
                                                                          //operation here
                *pAktTC = pTCs[ nitcLim + i];
                ++i;                                                   //increment loop counter
                ++pAktTC;
            }
            nCenter[nitcFirst + i] = nCenter[nitcLim + i];
        }

Given that nCenter is a static heap array defined in WW8TabBandDesc:

 struct WW8TabBandDesc
 {
    WW8TabBandDesc* pNextBand;
    ...
    short nCenter[MAX_COL + 1];
    short nWidth[MAX_COL + 1];
    short nWwCols;
    ...
    WW8_TCell* pTCs;

Copyright VUPEN Security © Reproduction and redistribution prohibited 2



VUPEN Security - In-Depth Analysis

 

This loop may be used to write data past  nCenter and overflow the  WW8TabBandDesc 
structure. Note also that pAktTC has the following type and takes 20 bytes in memory:

 struct WWS_TCell
{
     BOOL bFirstMerged;
     BOOL bMerged;
     BOOL bVertical;
     BOOL bBackward;
     BOOL bRotateFont;
     BOOL bVertMerge;
     BOOL bVertRestart;
     BYTE nVertAlign;
     UINT16 fUnused;
     WW8_BRC rgbrc[4];
}

In assembly “ProcessSprmTDelete()” is:
 

.text:59894569                 mov     dl, [ecx]                                     //get nitcFirst

.text:5989456B                 and     [ebp+var_14], 0

.text:5989456F                 push    ebx

.text:59894570                 mov     bl, [ecx+1]                                //get nitcLim

.text:59894573                 mov     cl, [eax+19Ah]                          //get nWwCols

.text:59894579                 push    esi

.text:5989457A                 movzx   esi, dl

.text:5989457D                 mov     [ebp+var_1], dl

.text:59894580                 mov     edx, esi

.text:59894582                 imul    edx, 14h

.text:59894585                 add     edx, [eax+1A4h]                       //get pTCs + nitcFirst

.text:5989458B                 sub     cl, bl                                          //nWwCols - nitcLim

.text:5989458D                 push    edi

.text:5989458E                 movzx   edi, cl                                     //edi = nShlCnt

.text:59894591                 mov     byte ptr [ebp+arg_0+3], bl

.text:59894594                 mov     [ebp+var_18], esi

.text:59894597                 test    edi, edi                                      //check nShlCnt >= 0

.text:59894599                 jle     short loc_598945F1

.text:5989459B                 movzx   ecx, bl

.text:5989459E                 mov     ebx, ecx

.text:598945A0                 lea     esi, [eax+esi*2+96h]                //esi = pTCs[ nitcLim ]

.text:598945A7                 imul    ebx, 14h

.text:598945AA                 lea     ecx, [eax+ecx*2+96h]

.text:598945B1                 mov     [ebp+var_C], esi

.text:598945B4                 mov     [ebp+var_8], ecx

.text:598945B7                 mov     [ebp+var_10], edi                   //var_10 = i

.text:598945BA                 mov     [ebp+var_14], edi

.text:598945BD

.text:598945BD loc_598945BD:

.text:598945BD                 mov     ecx, [ebp+var_8]

.text:598945C0                 mov     cx, [ecx]                                //get nCenter[nitcLim + i]

.text:598945C3                 mov     esi, [ebp+var_C]

.text:598945C6                 add     [ebp+var_8], 2

.text:598945CA                 add     [ebp+var_C], 2

.text:598945CE                 mov     [esi], cx                                //write to nCenter[nitcFirst + i]

.text:598945D1                 mov     esi, [eax+1A4h]

.text:598945D7                 add     esi, ebx                                 //get pTCs[ nitcLim + i]

.text:598945D9                 push    5

.text:598945DB                 mov     edi, edx

.text:598945DD                 pop     ecx

Copyright VUPEN Security © Reproduction and redistribution prohibited 3



VUPEN Security - In-Depth Analysis

 

.text:598945DE                 add     ebx, 14h                               //increment *pAktTC and pTCs[nitcLim+i] 

.text:598945E1                 add     edx, 14h

.text:598945E4                 dec     [ebp+var_10]                        //loop while i > 0

.text:598945E7                 rep movsd                                       //*pAktTC = pTCs[ nitcLim + i]

.text:598945E9                 jnz     short loc_598945BD
…
.text:598945F1                 mov     ecx, [ebp+var_14]
.text:598945F4                 movzx   edx, bl
.text:598945F7                 add     edx, ecx
.text:598945F9                 add     esi, ecx
.text:598945FB                 mov     cx, [eax+edx*2+96h]          //get nCenter[nitcLim + i]
.text:59894603                 movzx   dx, [ebp+var_1]
.text:59894608                 mov     [eax+esi*2+96h], cx            //last write to nCenter[nitcFirst + i]

Successful exploitation of this bug allows execution of arbitrary code. 

Exploitation

pTCs is defined after nCenter in struct WW8TabBandDesc, this means that this variable 
can be overflowed. By performing a few steps, an attacker can gain full control of this 
variable.  The idea of this  exploit  is  to fully  overwrite  this  variable  so that  when the 
program encounters a new sprmTDelete record, it will be possible to control the source 
and destination pointers used in “rep movsd”:

.text:59894585                 add     edx, [eax+1A4h]                  //control of edi
…
.text:598945D1                 mov     esi, [eax+1A4h]                 //control of esi
…
.text:598945E7                 rep movsd                                     //memcpy controlled

Note first that this pointer is located at nCenter + 2*87h bytes which can be reached by 
two ways.  It is first possible to overwrite the lowest bytes of this pointer by 0xXXYY 
thanks to:

 .text:598945CE                 mov     [esi], cx

Assuming  pTCs = 0xAABBCCDD, this method however requires that 0xAABBXXYY still 
points to a valid location because it is used a few lines later in “rep movsd”. Most of our 
tests  tended to  show that  this  was not  fully  reliable  as about  50% of  the test  files 
triggered an access violation while reading the source in memcpy.

The other way to overwrite this pointer is to use the ending write:

 .text:59894608                 mov     [eax+esi*2+96h], cx

The provided exploit actually uses these two methods to get a reliable exploit. It first 
overwrites  the  most  significant  bytes  of  pTCs with  0xXXYY  in  such  a  way  that 
0xXXYYabcd always points to a valid location whatever the value of (a,b,c,d).

It then replaces 0xXXYYabcd with a pointer to the stack so that “rep movsd” eventually 
behaves like a memmove on the stack. This is enough to replace a return address on the 
stack and execute arbitrary code.

To achieve this combination, the provided files first contain two  sprmTDxaCol records 
(0x7623) to set  nCenter[0]  and nCenter[1] to a valid address on the stack. Basically, 
nCenter[j] = nCenter[j] + ndxaCol so given that nCenter if first initialized with 0, a first 
sprmTDxaCol is used to initialize nCenter[1] with 0x2E7E and a second one initializes

Copyright VUPEN Security © Reproduction and redistribution prohibited 4



VUPEN Security - In-Depth Analysis

 

nCenter[0] with  0xD2CC.  This  gives  nCenter[1]  =  nCenter[1]  +  0x2E7E  =  0x014A. 
Actually 0x014AD2CC will be used at the end to overwrite pTCs.

Once done, a  sprmTInsert record (opcode 0x7621) is  used to set  nCenter[33h] with 
0x61BD. sprmTInsert has the following parameters:
nitcInsert, 1 byte
nctc, 1 byte
ndxaCol, 2 bytes

The result is given by setting ndxaCol to 0xCB3F and nctc with 3. The program stores ctc 
*  ndxaCol to  nCenter[nitcInsert] witch  here  gives  0x61BD.  This  value  was  chosen 
because  0x61BDabcd  is  mapped  for  each  combination  of  (a,b,c,d).  This  points  to 
“localedata_euro.dll” which is loaded by OpenOffice when the program starts.

Figure 1a shows nCenter after these modifications:

Figure 1a – Memory state after a few modifications

On Figure1a,  nCenter[0] and  nCenter[1] are represented in blue,  nCenter[33h] in red, 
and pTCs in purple.

Eventually, three  sprmTDelete are used. The first one has  nitcLim set to 36h so that 
nitcLim  =  nWwCols, and nitcFirst = 88h which leads to overwrite the most significant 
bytes of pTCs by 0x61BD.

A second sprmTDelete is used to fully overwrite pTCs. It has nitcLim = 2 and nitcFirst = 
87h. This leads the program to overwrite pTCs with nCenter[0] and nCenter[1].

The  third  one  has  nitcLim  =  D2h and  nitcFirst  =  D4h which  leads  “rep  movsd”  to 
overwrite a critical part of the stack, as shown on Figure 1b and Figure 1c:

Figure 1b – rep movsd

Figure 1c – State of the stack before copying data

Copyright VUPEN Security © Reproduction and redistribution prohibited 5



VUPEN Security - In-Depth Analysis

 

The program copies 5 dwords starting at 0x014AE348 to 0x014AE370. The point is that, 
at  this  moment,  0x07DAD152 points  to  data  issued  from the  file.  As  a  result,  “rep 
movsd”  overwrites  the  return  address  of  the  current  function  with  a  pointer  to  the 
parameter of  sprmTDelete. Note that here 0x014AE370 = 0x014AD2CC + 14h*D4h + 
14h and that D4 D2 is translated in assembly to AAM D2h witch is equivalent to a NOP 
instruction. When the function returns, the payload is directly executed.

The provided exploit  generates two files.  The first  one (“drag_and_drop”)  requires a 
victim to drag and drop the file in soffice.exe to successfully execute the payload. In the 
second one (“double_click”), the victim just needs to double click on the file to make the 
payload run. This file uses the return address:

0x014AEA1C + 14h*D4h + 14h = 0x014AFB80

Detection

Attempts  to  exploit  this  vulnerability  can  be  detected  by  tracking  Word  documents 
containing specially crafted sprmTDelete records (opcode 0x5622). This record basically 
takes two parameters on 1 byte, nitcfirst and nitcLim. If any of them is greater than 40h, 
consider the file suspicious.

Figure 2 – Malicious Document

Figure 2 for example shows the three  sprmTDelete as they are used in the exploit. As 
one can see, all of them should be considered suspicious.

References

VUPEN/ADV-2009-2490:
http://www.vupen.com/english/advisories/2009/2490

CVE-2009-0201:
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0201

Changelog

2009-09-08: Initial release

Copyright VUPEN Security © Reproduction and redistribution prohibited 6

http://www.vupen.com/english/advisories/2009/2490
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-0201

