

VUPEN Security – Binary Analysis & Exploits Service

In-Depth Analysis of Microsoft VBA and Office Stack Memory Corruption
Vulnerability (MS10-031 / CVE-2010-0815)

Table of Contents

Introduction .. 2

Tested Versions ... 2

Fixed Versions ... 2

Technical Details .. 2

Exploitation .. 6

Detection .. 7

References ... 10

This Binary Analysis and Exploit or Proof-of-concept codes are under the
copyrights of VUPEN Security. Copying or reproducing the document, exploit
or proof-of-concept codes is prohibited, unless such reproduction or
redistribution is permitted by the VUPEN Binary Analysis & Exploits Service
license agreement. Use of the Binary Analysis, Exploit or Proof-of-concept
codes is subject to the VUPEN Binary Analysis & Exploits Service license
terms.

Copyright VUPEN Security © Reproduction and redistribution prohibited 1

VUPEN Security - In-Depth Analysis

Introduction

A vulnerability exists in Microsoft Visual Basic for Applications (VBA) when searching for
ActiveX controls, which could potentially allow attackers to compromise a vulnerable
system.

Tested Versions

The vulnerability was analyzed on Windows XP SP3 with Microsoft Office PowerPoint XP
SP3 (VBE.dll version 6.5.10.24).

Fixed Versions

The vulnerability was fixed with the MS10-031 security update.

Technical Details

Visual Basic for Applications (VBA) is an implementation of Microsoft's event-driven
programming language Visual Basic 6, and associated integrated development
environment (IDE), which is built into most Microsoft Office applications. VBA enables
developers to build user defined functions, automate processes, and access Win32 and
other low level functionality through DLLs.

Microsoft Office documents can contain objects that link to external resources (e.g. linked
audio, linked video, embedded and linked OLE objects, and hyperlinks).

When embedding an external object into a PowerPoint document, an
“ExObjListContainer” container is created. This type of container record specifies a list of
external objects in the document.

Each child container (except for the very first one) specifies an “ExControlContainer” i.e.
an external object.

In the example that follows we used an object with a “progID” (Program ID) set to the
following string:

- MDACVer.Version

When such a document is opened, the code flow goes to the following code:

;
; In function starting at 0x30272BDA – PowerPoint.exe module
; Module Base: 0x30000000 – Module Code Base: 0x30001000
;
Address Command Comments
30272BEE MOV EAX,DWORD PTR DS:[ESI+30] ; eax = "MDACVer.Version"
30272BF1 PUSH ECX ; /Arg2 => GUID output
30272BF2 PUSH EAX ; |Arg1, progID
30272BF3 CALL 301226B4 ; \POWERPNT.301226B4

In the above code snippet, the first argument of the function is the “progID” of the
external object while the second argument is an output parameter.

When the function returns, the second parameter is filled with the GUID (class ID /
CLSID), in binary, corresponding to the “progID”.

Confirmation is brought by the inner code of the function which is merely a wrapper
around the “CLSIDFromProgID()” function in the “Ole32.dll” module:

Copyright VUPEN Security © Reproduction and redistribution prohibited 2

VUPEN Security - In-Depth Analysis

;
; In function starting at 0x301226B4 – PowerPoint.exe module
; Module Base: 0x30000000 – Module Code Base: 0x30001000
;
Address Command Comments
301226DD PUSH DWORD PTR SS:[ARG.2] ; GUID output buffer
;[…]
301226E1 PUSH DWORD PTR SS:[LOCAL.131] ; string (MDACVER.Version)
;[…]
301226E9 CALL DWORD PTR DS:[<&OLE32.CLSIDFromProgID>]

As its name implies, this function translates a “progID” to its corresponding CLSID. In
our test sample, the “MDACVer.Version” progID is translated to the following CLSID:

• 54AF9350-1923-11D3-9CA4-00C04F72C514

This is confirmed in the registry:

Hence the second parameter is filled with the following CLSID, in binary:

CPU Dump
Address Hex dump
00138A80 50 93 AF 54|23 19 D3 11|9C A4 00 C0|4F 72 C5 14|

After converting the “progID” to its CLSID in binary format, the code flow reaches this
portion of code :

;
; In function starting at 0x30272BDA – PowerPoint.exe module
; Module Base: 0x30000000 – Module Code Base: 0x30001000
;
Address Command Comments
30272D29 LEA EDX,[EBP-38]
30272D31 PUSH DWORD PTR SS:[EBP-84] ; PPT Version (string)
30272D37 PUSH EDX ; CLSID (GUID) of external object (HEX)
30272D38 PUSH EAX
30272D39 CALL DWORD PTR DS:[ECX+14] ; 0x65117F64 (VBE6.dll)

The 2nd argument of the function is the CLSID that was previously obtained.

The 3rd argument is a constant string related to the application: in our example it is the
major version of PowerPoint:

- “PPT10.0”

The above call leads to the following code:

Copyright VUPEN Security © Reproduction and redistribution prohibited 3

VUPEN Security - In-Depth Analysis

;
; In function starting at 0x65117F64 – PowerPoint.exe module
; Module Base: 0x30000000 – Module Code Base: 0x30001000
;
Address Command Comments
65117FBB PUSH EAX ; /pResult => OFFSET LOCAL.50
65117FBC PUSH VBE6.65078960 ; |SubKey = "CLSID"
65117FC1 PUSH 80000000 ; |hKey = HKEY_CLASSES_ROOT
65117FC6 MOV EBX,80040150 ; |
65117FCB CALL ESI ; \ADVAPI32.RegOpenKeyA
65117FCD TEST EAX,EAX
65117FCF JNE 65118164
65117FD5 PUSH 27 ; /Arg3 = 27
65117FD7 LEA EAX,[LOCAL.11] ; |
65117FDA PUSH EAX ; |Arg2 => unicode String output
65117FDB PUSH DWORD PTR SS:[LOCAL.53] ; |Arg1 => [ARG.2], CLSID (hex)
65117FDE CALL 6508D519 ; GUIDToString->WideCharToMultiByte

The above code starts by opening the “HKEY_CLASSES_ROOT\CLSID” key. If it succeeds,
it converts the CLSID (obtained earlier) to a string, and then this string is converted to
Unicode, as shown in the memory dump below:

CPU Dump
Address Hex dump ASCII
001389D8 7B 35 34 41|46 39 33 35|30 2D 31 39|32 33 2D 31| {54AF9350-1923-1
001389E8 31 44 33 2D|39 43 41 34|2D 30 30 43|30 34 46 37| 1D3-9CA4-00C04F7
001389F8 32 43 35 31|34 7D 00 00| 2C514}..

It then opens the key that has the same name as the CLSID, and which is a sub-key of
“HKEY_CLASSES_ROOT\CLSID”:

• "HKEY_CLASSES_ROOT\CLSID\{54AF9350-1923-11D3-9CA4-00C04F72C514}"

CPU Disasm
;
; In function starting at 0x65117F64 – PowerPoint.exe module
; Module Base: 0x30000000 – Module Code Base: 0x30001000
;
Address Command Comments
65117FE3 LEA EAX,[LOCAL.49]
65117FE6 PUSH EAX ; pResult
65117FE7 LEA EAX,[LOCAL.11]
65117FEA PUSH EAX ; SubKey (CLSID)
65117FEB PUSH DWORD PTR SS:[LOCAL.50] ; hKey
65117FEE CALL ESI ; RegOpenKey => open CLSID Key
65117FF0 TEST EAX,EAX
65117FF2 JNE 6511815B
65117FF8 LEA EAX,[LOCAL.51]
65117FFB PUSH EAX ; pResult
65117FFC PUSH VBE6.65118180 ; ASCII "TypeLib"
65118001 PUSH DWORD PTR SS:[LOCAL.49] ; hKey
65118004 CALL ESI

Once the CLSID key is opened, the above code tries to open the “TypeLib” key, which is
a sub-key of the previously named CLSID key:

• Key = "HKEY_CLASSES_ROOT\CLSID\{54AF9350-1923-11D3-9CA4-00C04F72C514}"
o SubKey = “TypeLib”

Copyright VUPEN Security © Reproduction and redistribution prohibited 4

VUPEN Security - In-Depth Analysis

Once the “TypeLib” key is opened, the code tries to get the value attributed to the key:

;
; In function starting at 0x65117F64 – PowerPoint.exe module
; Module Base: 0x30000000 – Module Code Base: 0x30001000
;
Address Command Comments
6511800E LEA EAX,[LOCAL.48]
65118011 PUSH EAX ; /pValueLen => (output length)
65118012 LEA EAX,[LOCAL.11]
65118015 PUSH EAX ; |Value => (output)
65118016 PUSH 0 ; |SubKey = NULL
65118018 PUSH DWORD PTR SS:[LOCAL.51] ; |hKey => (TypeLib)
;[…]
65118022 CALL DWORD PTR DS:[<&ADVAPI32.RegQueryValueA>]

In our example, the output buffer is filled with the following string:

CPU Dump
Address Hex dump ASCII
001389D8 7B 35 34 41|46 39 33 34|33 2D 31 39|32 33 2D 31| {54AF9343-1923-1
001389E8 31 44 33 2D|39 43 41 34|2D 30 30 43|30 34 46 37| 1D3-9CA4-00C04F7
001389F8 32 43 35 31|34 7D 00 00| 2C514}..

If the “TypeLib” value has been successfully retrieved, the code converts the “TypeLib”
string value to Unicode and then obtains the CLSID from the string (i.e. it converts the
“TypeLib” string value to bin/hex):

CPU Disasm
;
; In function starting at 0x65117F64 – PowerPoint.exe module
; Module Base: 0x30000000 – Module Code Base: 0x30001000
;
Address Command Comments
65118055 LEA ECX,[LOCAL.11]
65118058 PUSH ECX ; /Arg2 => TypeLib ASCII string
65118059 PUSH EAX ; |Arg1, output buffer Unicode TypeLib
6511805A CALL Mbcs2Unicode ; \convert ASCII to Unicode
6511805F LEA ECX,[LOCAL.47]
65118062 PUSH ECX ; (output) Binary TypeLib GUID
65118063 PUSH EAX ; (input) Unicode string TypeLib GUID
65118064 CALL DWORD PTR DS:[<&ole32.CLSIDFromString>]

Once done, the code opens the “Version” sub-key of the current CLSID:

CPU Disasm
;
; In function starting at 0x65117F64 – PowerPoint.exe module
; Module Base: 0x30000000 – Module Code Base: 0x30001000
;
Address Command Comments
6511806A LEA EAX,[LOCAL.52]
6511806D PUSH EAX ; pResult
6511806E PUSH VBE6.650D8CF4 ; ASCII "Version"
65118073 PUSH DWORD PTR SS:[LOCAL.49] ; hKey
65118076 CALL ESI ; RegOpenKey (version subkey)

It then gets the value if this Version key:

Copyright VUPEN Security © Reproduction and redistribution prohibited 5

VUPEN Security - In-Depth Analysis

;
; In function starting at 0x65117F64 – PowerPoint.exe module
; Module Base: 0x30000000 – Module Code Base: 0x30001000
;
Address Command Comments
65118080 LEA EAX,[LOCAL.48]
65118083 PUSH EAX ; /pValueLen => OFFSET LOCAL.48
65118084 LEA EAX,[LOCAL.43] ; |
65118087 PUSH EAX ; |Value => OFFSET LOCAL.43
65118088 PUSH 0 ; |SubKey = NULL
6511808A PUSH DWORD PTR SS:[LOCAL.52] ; |hKey => [LOCAL.52]
;[…]
65118094 CALL DWORD PTR DS:[<&ADVAPI32.RegQueryValueA>]

Once the version string has been retrieved, the code checks the string by doing the
following:

• [0x651180A2] Checks if the very first character is a dot (“.”). If it is not a dot, it
continues:

• [0x651180AB / 0x651180AC] Searches for a dot (“.”) in the bytes following the first
character without taking care of the size of string

• [0x651180B5] Once a dot is found, the code replaces it by a NULL character.

;
; In function starting at 0x65117F64 – PowerPoint.exe module
; Module Base: 0x30000000 – Module Code Base: 0x30001000
;
Address Command Comments
651180A2 CMP BYTE PTR SS:[LOCAL.43],2E ; first character == '.' ?
651180A6 LEA ESI,[LOCAL.43]
651180A9 JE SHORT 651180B1 ; skip loop if true
651180AB /INC ESI ; search for '.'
651180AC |CMP BYTE PTR DS:[ESI],2E
651180AF \JNE SHORT 651180AB
;[…]
651180B5 MOV BYTE PTR DS:[ESI],0 ; put '\0' if '.' found

The vulnerability lies in the code above, precisely in the loop
(0x651180AB/0x651180AC).

As the stop condition of this loop is the presence of a dot, if there is no dot in the version
string, the loop will go past the normal end of the string simply because there is no check
for a NULL byte in the loop.

As soon as a 0x2E byte present on the stack is found, this byte will be overwritten with a
NULL byte, potentially leading to arbitrary code execution.

Exploitation

Exploitation of this vulnerability to execute arbitrary code is unlikely to be achieved
although it remains theoretically possible if, for any reason, the following conditions are
met:

• The external object used in the Office document has a valid ‘progID’ on the target
machine.

o The progID must match a valid CLSID.
• The CLSID string has a “TypeLib” sub-key.

o the “TypeLib” sub-key must have a value

Copyright VUPEN Security © Reproduction and redistribution prohibited 6

VUPEN Security - In-Depth Analysis

• The CLSID key has a “Version” sub-key.
o The “Version” key must have a value.
o This value string must not contain any dot.

If the all above conditions are met, the first 0x2E byte encountered on the stack (located
in and after the stack frame where the vulnerability is triggered) will be replaced by a
NULL byte.

Under these conditions, it is unlikely that an attacker can control a pointer that has a
0x2E byte, or a return address with this particular byte.

Although the attacker might not control anything directly, the overwriting of a byte is still
a risk.

In our example with the ‘MDACVer.Version’ object the version string of this CLSID is
“2,81,1117,0” (note that the delimiters are commas and not dots). The parsing of the
string to replace the first dot by a NULL byte starts here:

CPU Stack
Address Value ASCII Comments
00138958 31382C32 2,81 ; start searching for a ‘.’
0013895C 3131312C ,111
00138960 00302C37 7,0.
00138964 00310031 1.1.
00138968 002C0037 7.,.
0013896C 00000030 0...
;[…]
001389D8 4134357B {54A ; MDACVer.Version Typelib value string
001389DC 34333946 F934
001389E0 39312D33 3-19
001389E4 312D3332 23-1
001389E8 2D334431 1D3-
001389EC 34414339 9CA4
001389F0 4330302D -00C
001389F4 37463430 04F7
001389F8 31354332 2C51
001389FC 00007D34 4}..
00138A00 2A9D24EE $*
00138A04 00138AB8 .
00138A08 30272D3C <-'0 ;RETURN to POWERPNT.30272D3C
;[…]
00138A40 00500050 P.P. ; “PPT10.0” string
00138A44 00310054 T.1.
00138A48 002E0030 0... ; 0x2E = ‘.’ => first dot encountered in the stack
00138A4C 00000030 0...

In the above example, the first 0x2E character found on the stack is the one from the
“PPT10.0” string, which is far from the start of the version string. In this example, this
dot character is not even in the same stack frame (see return address at 0x00138A08).

Note that, although the vulnerability is triggered, the overwriting of the first 0x2E byte
found in the stack, in our tests, always overwrites the ‘.’ of the “PPT10.0” string which
will NOT cause PowerPoint to crash (silent trigger).

Detection

It is not possible to reliably detect attempts to exploit this vulnerability without reading
the registry hive of the target computer where the document is opened.

Copyright VUPEN Security © Reproduction and redistribution prohibited 7

VUPEN Security - In-Depth Analysis

PowerPoint document

Parse binary PowerPoint documents using the official specifications [MS-PPT].

 Common:

This is the common detection base for the ‘Base Detection’ and the ‘Full Detection’

• Look for a record named RT_Document (Type: 0x03E8 - Specifies a
DocumentContainer record).

• Look in the children of the above record for a record named
RT_ExternalObjectList (Type: 0x0409 - Specifies an ExObjListContainer.).

• The above record may have one or more records named
RT_ExternalOleControl (Type: 0x0FEE - Specifies an ExControlContainer.).

 Base Detection:

The base detection detects a document that would try to exploit the flaw. It cannot
detect if the flaw will be effectively triggered.

• One of the children of the RT_ExternalOleControl should be a record named
RT_ExternalOleObjectAtom (Type: 0x0FC3 - Specifies an ExOleObjAtom).

• If you find a RT_ExternalOleControl record, look for the value of its
‘persistIdRef’ field.

• If the value of the ‘persistIdRef’ field is set to 0, mark the document as
malicious.

 Full Detection (local):

The full detection can be applied only to the local computer that received a potentially
dangerous PowerPoint document.

To apply the full detection, first you must apply the base detection. If the base detection
has marked the document as malicious, you may continue:

• Parse the RT_ExternalOleControl to find all of its children. For each child which is a
RT_CString (Type: 0x0FBA), you should:

• Use the string as a ‘ProgID’ or an ‘AppID’.
• Check the corresponding class ID (CLSID) in the registry, using the

CLSIDFromProgID() function available in the OLE32 library.
• Open the corresponding key under the “HKEY_CLASSES_ROOT\CLSID” key in the

registry.
• If the key has a “Version” sub key.

• Get the value of the “Version” key. If the “Version” string value has no dot,
the document is malicious.

Example 1 (Base Detection)

In our example, the PowerPoint document has a RT_Document record (circled in red).

This record has 8 children form which a RT_ExternalObjectList (circled in yellow). The
previous record has 3 children. The child at index 2 is a RT_ExternalOleControl (circled
in green). The previous container has 6 children from which (at index 1) is a
RT_ExternalOleObjectAtom (circled in blue).

The ‘persistIdRef’ field, circled in pink, is set to 0. Therefore, this document can be
marked as malicious.

Copyright VUPEN Security © Reproduction and redistribution prohibited 8

VUPEN Security - In-Depth Analysis

Example 2 (Full Detection)

From the base detection,
we parse all children of the
RT_ExternalOleControl
record, searching for
RT_CString records. In the
capture shown here, two
RT_CString records can be
seen.

The second one (index 3)
has a Data field at offset
0x1B34 in the file (row
highlighted in blue):

Copyright VUPEN Security © Reproduction and redistribution prohibited 9

VUPEN Security - In-Depth Analysis

The data at 0x1B34 in the PowerPoint file reads “MDACVer.Version” as shown in the
capture below:

Open the local registry and use the CLSIDFromProgID() from OLE32 library (or parse
all the keys). This returns the following CLSID:

• 54AF9350-1923-11D3-9CA4-00C04F72C514

Open the following key by prefixing the CLSID with “HKEY_CLASSES_ROOT\CLSID\”
(don’t forget brackets around the CLSID):

• HKEY_CLASSES_ROOT\CLSID\{54AF9350-1923-11D3-9CA4-00C04F72C514}

The CLSID has a “Version” sub key. The sub key value is “2,81,1117,0” which does not
contain any dot:

The PowerPoint document can be marked as malicious.

References

VUPEN/ADV-2010-1121:
http://www.vupen.com/english/advisories/20 10/1121

Ms10-031:
http://www.microsoft.com/technet/security/bulletin/ms10-031.mspx

[MS-PPT]: PowerPoint Binary File Format (.ppt) Structure
http://msdn.microsoft.com/en-us/library/cc313106.aspx

[MSDN1] CLSIDFromProgID Function
http://msdn.microsoft.com/en-us/library/ms688386(v=VS.85).aspx

Changelog

2010-05-17: Initial release

Copyright VUPEN Security © Reproduction and redistribution prohibited 10

http://www.microsoft.com/technet/security/bulletin/ms10-031.mspx
http://msdn.microsoft.com/en-us/library/ms688386(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/cc313106.aspx
http://www.vupen.com/english/advisories/2010/1121

