VUr=N

VUPEN Security - Binary Analysis & Exploits Service

In-Depth Analysis of Apple Safari ColorSync Profile Handling
Integer Overflow Vulnerability (CVE-2010-0040)

Table of Contents

INTFOAUCHION ..t 2
TESIEA VEISIONS ..ot e 2
FIXEA VEISIONS ...ttt e e e s anbe e e as 2
TechniCal DELAIISc.eeeiiiiieee e 2
[T 0] (o] ¢= 11 o o SO 5
DEIECHION . 7
REFEIENCES ..o 8

This Binary Analysis and Exploit or Proof-of-concept codes are under the
copyrights of VUPEN Security. Copying or reproducing the document, exploit
or proof-of-concept codes is prohibited, unless such reproduction or
redistribution is permitted by the VUPEN Binary Analysis & Exploits Service
license agreement. Use of the Binary Analysis, Exploit or Proof-of-concept
codes is subject to the VUPEN Binary Analysis & Exploits Service license
terms.

Copyright VUPEN Security © Reproduction and redistribution prohibited

VUrP=N

Introduction

A vulnerability exists on Apple Safari for Windows when handling and displaying images
with an embedded color profile, which may lead to arbitrary code execution.

This vulnerability was discovered by VUPEN Security.
Tested Versions

The vulnerability was analyzed on Windows XP SP3 with Apple Safari for Windows version
4.0.3.

Fixed Versions

The vulnerability was fixed in Apple Safari for Windows 4.0.5.

Technical Details

In color management, an ICC profile is a set of data that characterizes a color input or
output device, or a color space, according to standards promulgated by the International
Color Consortium (ICC).

Profiles describe the color attributes of a particular device or viewing requirement by
defining a mapping between the device source or target color space and a profile

connection space (PCS), that is, an independent and normalized color space.

Embedding of ICC profiles can be done within PICT, EPS, TIFF, JFIF (JPEG), and GIF
image files.

Other file formats, such as ISO 15444-2 and proprietary file formats such as PSD, specify
a “proprietary” (that is, not documented in ICC specification but rather in the file format
itself) embedding of ICC profiles.

When loading an image with an embedded ICC profile, the Safari web-browser parses the
ICC profile according to the ICC specification.

At some point it tries to parse and read the profile description from the related and
relevant tag:

; In function starting at 0x11A05A0, CoreGraphics.dll module [codebase: 0x1011000]

Address Command Comments
011A05E5 PUSH ECX ; /Arg2 => OFFSET LOCAL.0
011A05E6 PUSH EAX ; |Argl

011A05E7 CALL CMCopyProfileDescriptionString

In the “CMCopyProfileDescriptionString()” function, there is a call to a sub-function
located at 0x1067790. Note that the first parameter is the ‘desc’ tag:

; In CMCopyProfileDescriptionString function, starting at 0x1067E10
; CoreGraphics.dll module [codebase: 0x1011000]

Address Command Comments

01067EC6 XOR ESI,ESI .

01067EC8 MOV EDI, 64657363 ; | EDI = ‘desc’
01067ECD CALL 01067790 ; \CoreGraphics.01067790

Copyright VUPEN Security © Reproduction and redistribution prohibited 2

VUrPE=N

The ‘desc’ tag (i.e. the “profileDescriptionTag”) is one of the tags that can be found in the
Tag Table (see the "“Tag Table” structure in the "“Detection” chapter of this
documentation).

Below is an excerpt of an ICC profile from a JPEG file. These bytes represent the ‘desc’
tag structure in the tag table:

File template.jpeg
Address Hex dump ASCII
0000610B 64 65 73 63|00 00 02 7C|00 00 00 29| desc..|...)

Tag Signature ; offset to data ; length of data

Inside the aforementioned function, we find the following code:

; In function starting at 0x1067790 - CoreGraphics.dll module [codebase: 0x1011000]

Address Command Comments

01067387 PUSH EDX ; |Arg3 => pointer for return value
01067388 PUSH ESI ; |Arg2 => ARG.EAX, 'desc'
01067389 PUSH EDI ; |Argl => pointer to tags

H
0106738F

CALL CMGetProfileElement

This returns the length of data for the ‘desc’ tag (in our example : 0x29).

Then it allocates a buffer with the retrieved length:

; In function starting at 0x1067790 - CoreGraphics.dll module [codebase: 0x1011000]

Address Command Comments

010673A1 MOV EAX,DWORD PTR SS:[LOCAL.4] ; size of element
010673A5 PUSH EAX
010673A6 PUSH 1 ; number of elements

010673A8 CALL DWORD PTR DS:[<&MSVCR80.calloc>]
H
010673B5

MOV DWORD PTR SS:[ESP+28],EBX ; save pointer to allocation

After that, the code issues once again a call to the "CMGetProfileElement()” function, but
this time it gets back the whole structure pointed by the “offset” member in the tag
structure:

; In function starting at 0x1067790 - CoreGraphics.dll module [codebase: 0x1011000]

Address Command Comments

010673C8 PUSH EBX ; /Arg4: allocated buffer
010673C9 LEA ECX,[ESP+20] H

010673CD PUSH ECX ; |Arg3: ‘desc’ string
010673CE PUSH ESI ; |Arg2

010673CF PUSH EDI ; |Argl

010673D0 CALL CMGetProfileElement

In our tests, the returned structure looks like this:

Copyright VUPEN Security © Reproduction and redistribution prohibited 3

VUrP=N

CPU Dump

Address Hex dump ASCII
034461F0 64 65 73 63|00 00 00 00|00 00 00 11|54 65 73 74| desc....... Test
03446200 20 52 47 42@ 50 72 6F|66 69 6C 65|00 00M00M08| RGB Profile....

03446210 (00 FEIEFIO0 06 @@@@&0o1jo00 @ @

‘desc’ type tag
ASCII count
ASCII strin

This structure is of type ‘desc’ (warning: do not confound the ‘desc’ tag, with the ‘desc’
type) which explains how to structure the data. See the ‘desc’ type structure in the
“Detection” chapter.

The code then gets the size of the ASCII string in the right field (highlighted in green
above) and then converts this size from big to little endian:

; In function starting at 0x1097260 - CoreGraphics.dll module [codebase: 0x1011000]

Address Command Comments

01097304 MOV EAX,DWORD PTR DS:[EBX+8] ; eax = size of ASCII string
01097307 MOV EDX,DWORD PTR SS:[ESP+1C] ; edx = size of 'desc' type
0109730B LEA EDI,[EBX+EDX] ; ebx = pointer to desc type

edi = end of desc type
0109730E MOV EBP,EAX change endianness (start)
01097310 MOV ECX,EAX
01097312 MOV EDX,EAX
01097314 AND EBP,00FF0000
0109731A SHL EDX,10
0109731D SHR ECX,10
01097320 AND EAX,0000FF00
01097325 OR EBP,ECX
01097327 OR EDX,EAX
01097329 SHR EBP,8
0109732C SHL EDX,8

0109732F OR EBP,EDX ; EBP=ASCII string length (Big E)

Next, the code gets a pointer to the ASCII string and adds the length of the string to this
pointer:

; In function starting at 0x1097260 - CoreGraphics.dll module [codebase: 0x1011000]

Address Command Comments

01097331 LEA ESI,[EBX+0C] ; esi = points on ASCII string
HIEH

0109733E LEA EAX,[EBP+ESI]
01097341 CMP EAX,EDI
01097343 1B SHORT 0109734C
01097345 XOR EBP,EBP
01097347 IMP 01097468

EAX = start of string + length
if not > end

continue if eax < edi
otherwise EBP = 0

go to exit

NE N= N= N= N

The code compares if the end of the string is located before the end of the ‘desc’ type.

Copyright VUPEN Security © Reproduction and redistribution prohibited 4

VUrP=N

The code then gets the length of the Unicode string (which is in a big-endian format in
the file) and changes it to little endian. The code finally checks if the value is not 0.

Each time the code manipulates data, it tries to ensure that it is not out of bounds of the
‘desc’ type structure.

; In function starting at 0x1097260 - CoreGraphics.dll module [codebase: 0x1011000]

Address

Command Comments
0109736D ADD ESI,EBP ; add string length
0109736F CMP ESI,EDI ; end of 'desc' type ?
01097371 INB 01097468
01097377 ADD ESI 4 ; points on Unicode string Length
0109737A CMP ESI,EDI ; check if not out of bounds

0109737C INB 01097468

01097382 MOV ECX,DWORD PTR DS:[ESI] ; get value from Unicode Length
01097384 PUSH ECX ; /Argl

01097385 CALL ChangeEndianness ; \CoreGraphics.ChangeEndianness
0109738A ADD ESI,4 ; next DWORD

0109738D ADD ESP,4

010973A9

01097390 CMP ESI,EDI ; check if not outside type structure
01097392 MOV EDX,EAX ; EDX = Unicode length

01097394 MOV DWORD PTR SS:[ESP+18],EDX

01097398 1B SHORT 010973A7

0109739A MOV DWORD PTR SS:[ESP+18],0

010973A2 JIMP 01097468

010973A7 TEST EDX,EDX ; check if length is not O

JE 01097441

Then the code tries to add the length of the Unicode string (EDX * 2) to the pointer in
EDI (which points to the start of a Unicode string, if any):

; In function starting at 0x1097260 - CoreGraphics.dll module [codebase: 0x1011000]

Address

010973B6

Command Comments
010973AF LEA EBX,[EDX*2+ESI] ; get end of string /!\ Integer overflow /!\
010973B2 CMP EBX,EDI ; check bounds
010973B4 MOV CL,1 ; pick _swab() by default

JB SHORT 010973C9

Then it tries to check if the pointer is beyond the ‘desc’ structure. The problem is that the
LEA instruction at 0x10973AF is prone to an integer overflow if the value in EDX is big
enough.

Exploitation

Continuing in the same function, we find the following code:

; In function starting at 0x1097260 - CoreGraphics.dll module [codebase: 0x1011000]

Comments
; script code (OXFFFE / OXFEFF)

Address Command
010973C9 MOV AL,BYTE PTR DS:[ESI]
010973CB CMP AL,OFE

Copyright VUPEN Security © Reproduction and redistribution prohibited 5

VUrPE=N

010973CD INE SHORT 010973D5

010973CF CMP BYTE PTR DS:[ESI+1],0FF

010973D3 JE SHORT 010973DF

010973D5 CMP AL,OFF

010973D7 INE SHORT 010973EF

010973D9 CMP BYTE PTR DS:[ESI+1],0FE

010973DD JNE SHORT 010973EF

010973DF CMP AL,OFF

010973E1 INE SHORT 010973E5

010973E3 XOR CL,CL ; CL = 0 => choose memcpy() function
010973E5 ADD ESI,2 ; skip script code

010973E8 SUB EDX,1 ; decrement Unicode length value
010973EB MOV DWORD PTR SS:[ESP+18],EDX

This code checks if the WORD pointed by the crafted pointer is OXFFFE or OXFEFF. If it is
one of these values, the code sets CL to O (which will later pick for the memcpy()
function), increments the crafted pointer by 2 and decrements the Unicode string length
value picked previously at 0x01097382.

Then, we go to these lines of code (either directly from the last line of the previous

snippet or from 0x010674B7, if the WORD was not OxFFFE or OXFEFF):

; In function starting at 0x1097260 - CoreGraphics.dll module [codebase: 0x1011000]
Address Command Comments

010973EF CMP WORD PTR DS:[EDX*2+4+ESI-2],0 ; (crafted_value * 2) + (pointer - 2) == 0 ?
010973F5 JE SHORT 010973FE

010973F7 ADD EDX,1

010973FA MOV DWORD PTR SS:[ESP+18],EDX

010973FE CMP DWORD PTR SS:[ESP+40],0

01097403 JE SHORT 0109743B

01097405 MOV EAX,DWORD PTR SS:[ESP+24] ; 0x200 (const)

01097409 CMP EDX,EAX ; check crafted value against 0x200
0109740B INB SHORT 0109740F

0109740D MOV EAX,EDX ; crafted value set as copy size
0109740F TEST CL,CL ; check for which function to use
01097411 MOV EDX,DWORD PTR SS:[ESP+40]

01097415 LEA EAX,[EAX+EAX-2] ; (EAX*2) - 2

01097419 MOV WORD PTR DS:[EDX+EAX],0

0109741F PUSH EAX ; Copy size parameter

01097420 JE SHORT 0109742C ; selector between _swab() and memcpy()

The check against 0x200 is achieved to set a value for the copy size passed to “_swab()”
or “memcpy()”.

If the value is below 0x200, then the value is used. If the value is above 0x200, then the
copy size is set to a maximum of 0x200. It is possible to reach the “_swab()” function
[which is merely a memcpy() + byte swapping] which an overly large value (e.g.
OxFFFFFFFF).

; In function starting at 0x1097260 - CoreGraphics.dll module [codebase: 0x1011000]
01097422 PUSH EDX

01097423 PUSH ESI

01097424 CALL DWORD PTR DS:[<&MSVCR80._swab>]

0109742A IJMP SHORT 01097433

0109742C PUSH ESI

0109742D PUSH EDX

0109742E CALL <JMP.&MSVCR80.memcpy>

Copyright VUPEN Security © Reproduction and redistribution prohibited 6

VUrPE=N

Detection

Parse the Image to find any embedded ICC profile according to the ICC specification (see
[ICC-SPEC] in the “"References” chapter) or the file format specification if the embedding
is proprietary.

Skip the “Profile Header” - which is 128 bytes long - and parse the Tag Table which is
described as follow:

Byte Offset Field Length Content Encoding
(bytes)

0-3 4 Tag count

4 -7 4 Tag Signature

8-11 4 Offset to beginning of tag data element ulnt32Number

12 - 15 4 Size of tag data element ulnt32Number

16 - (12n+3) 12n Signature, offset and size respectively of

subsequent n tags

- Search for the ‘desc’ Tag Signature (named “profileDescriptionTag” in the
specification).
o If the ‘desc’ tag is found, get the ‘Offset’ and 'Size of tag data’ values.
o Go to the defined offset (which is from the beginning of the ICC profile).

If the type tag present at the offset is of type ‘desc’ (named “textDescriptionType” in the
specification), then the structure is :

Byte Offset Content Encoded as...

0..3 ‘desc’ (64657363h) type signature

4..7 reserved, must be set to 0

8..11 ASCII invariant description count, including terminating ulnt32Number
null (description length)

12..n-1 ASCII invariant description 7-bit ASCII

n..n+3 Unicode language code ulnt32Number

n+4..n+7 Unicode localizable description count (description ulnt32Number
length)

n+8..m-1 Unicode localizable description

You should:

- Get the DWORD at offset 8 (from the start of the “textDescriptionType structure),
which is the “"ASCII invariant description count”. Call it "ASCIILength”

- Skip “ASCIILegnth” byte.

- Skip a DWORD [skip Unicode Language code]

- Get the DWORD which is the Unicode string length. Call it “"UnicodeLength”

Try to count the length of the Unicode string until you find a “\0\0’ (two NULL bytes
character indicating the end of a Unicode string).

Copyright VUPEN Security © Reproduction and redistribution prohibited 7

VURP=N

You must also count these terminating NULL characters as part of the length of the
string.

If “"UnicodelLength” is greater than the actual and real length of the string, the image file
is malicious.

Note: the “textDescriptionType” structure is no more defined in the last available
specification. You should review the older specifications available at [ICC-SPEC2].
References

VUPEN/ADV-2010-0599:
http://www.vupen.com/english/advisories/2010/0599

Apple Security Advisory:
http://support.apple.com/kb/HT4070

[ICC-SPEC] Specification ICC.1:2004-10 (Profile version 4.2.0.0):
http://www.color.org/ICC1v42_ 2006-05.pdf

[ICC-SPEC2] Specification ICC.1:2001-04
http://www.color.org/ICC_Minor_Revision_for_ Web.pdf

[ICC-EMBED] File formats supporting ICC profiles embedding:
http://www.color.org/profile_embedding.xalter

Changelog

2009-12-03: Vulnerability discovered by VUPEN and reported to Adobe
2010-03-12: Initial release

Copyright VUPEN Security © Reproduction and redistribution prohibited 8

http://www.color.org/profile_embedding.xalter
http://www.color.org/ICC_Minor_Revision_for_Web.pdf
http://www.color.org/ICC1v42_2006-05.pdf
http://support.apple.com/kb/HT4070
http://www.vupen.com/english/advisories/2010/0599

